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Abstract—Post-translational modifications (PTMs) play a criti-
cal role in many aspects of cell biology including cell growth, dif-
ferentiation, and survival. Accurate identifications of PTM pe
tides and their PTM locations are very important in proteomi
The retention time information of PTM peptides can be used
improve the accuracy of PTM identification and experimen
proteomic strategies. Therefore, understanding PTM effects
retention times will be beneficial for future research.

Here, we present VA-PRT (Visualization tool for Analyzi
Post-translational modification Retention Times) that syste
atically investigates the PTM effects on retention times usi
visualization techniques and advanced statistical methods. T
usefulness of VA-PRT is demonstrated using a large synthetic p1
teomic and phosphoproteomic dataset. VA-PRT is implement
in R and will be freely available for public use.

Index Terms—post-translational modifications, mass spectro
etry, retention time, visualization, hypothesis tests

I. INTRODUCTION

Post-translational modification (PTM) is a substantial field
of study in proteomics research [1]. PTMs have been linked to
various cellular processes required for normal function. Study
of specific PTM site effects is an ongoing research topic. It has
previously been observed that the retention times of PTM pep-
tides differ from their unmodified counterparts [2], [3]. Thus,
retention time prediction may improve PTM identifications
by reducing their false negatives and false positives. Further
study of the retention time of PTM peptides can increase our
knowledge about chromatographic behavior of PTM peptides,
and may lead to better experimental proteomic strategies.

Here, we introduce a visualization tool for analyzing post-
translational modification retention times (VA-PRT). This tool
can be used to investigate the various aspects of retention time
differences between unmodified peptides and their counterpart
PTM peptides using various visualization techniques (e.g.,
scatterplots, boxplots, non-parametric regressions). It also pro-
vides hypothesis test results related to whether the effect of
PTM on retention times is statistically significant. In this paper,
we demonstrate the usefulness of VA-PRT to detect an effect of
phosphorylation, one of the most important PTMs, on peptide
retention times.
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II. VA-PRT
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Fig. 1: An example output of VA-PRT. The following visual-
izations are shown: boxplots of changes in retention times in
respect to peptide lengths (top left), a histogram of changes in
retention times with a vertical line that represents the median
value (top right), and scatterplots between retention times of
unmodified peptides vs. their counterpart modified peptides
with a quantile regression (bottom left), a robust regression
(bottom middle), and a contour plot (bottom right).

VA-PRT is a visualization tool that allows researchers to
investigate the effect of PTMs on retention time of peptides
(Figure 1). VA-PRT contains several visualization components
including but not limited to (i) histograms of changes in
retention times between unmodified and PTM peptides at both
overall-level and a specific PTM type level, (ii) scatterplots of
retention times of unmodified vs. PTM peptides, which can
reveal a linear or non-linear trend of PTM effects on retention
times at both the overall-level and at specific PTM type level,
and (iii) peptide-specific retention time distribution boxplots.
VA-PRT also performs PTM specific hypothesis tests about the
effect of a specific PTM on retention times using Wilcoxon
signed-rank tests.

VA-PRT is implemented in R. The R package will be freely
available for public use in the future. Based on user-defined
parameters and input files, VA-PRT automatically outputs



various graphs and hypothesis test results that will be useful
for investigating the effect of PTM on retention times. VA-
PRT can produce several important visuals using one function
(Figure 1), while additionally allowing the user to create
individual scatterplots or histograms. The visualizations are
saved as pdf files and the hypothesis test results are saved as
text files.

VA-PRT contains several functions that allow for visual
analysis based on paired modified and unmodified peptides
with an option of a filtering step (e.g., setting upper and lower
bounds on retention time). The package ggplot2 is frequently
utilized in VA-PRT. Details about major statistical methods
used in the VA-PRT are listed as follows:

A. Hypothesis tests

VA-PRT performs non-parametric paired analyses to test
the effects of PTMs on retention time. Specifically, it uses a
Wilcoxon signed-rank test [4] to investigate whether (paired)
retention times between modified and unmodified peptides
are significantly different. Noting that the normality of data
is often violated in retention times, a Wilcoxon signed-rank
test is an appropriate choice for this purpose. VA-PRT reports
both mean and median changes of retention times with their
corresponding p-values. Small p-values (e.g., less than 0.05)
imply that retention times between modified and unmodified
peptides are significantly different. In other words, the effects
of PTMs on retention time are significant.

B. Robust and Quantile Regressions

Considering outliers and high leverage data points that may
be present in the dataset, VA-PRT uses robust regressions and
quantile regressions instead of least squares regressions. In
robust regression, an M-estimation procedure with a Huber
weight function is employed [5], [6]. In the Huber weight
function, weights of observations with small residuals are one,
while observations with larger residuals have smaller weights.
Thus, potential outliers have small weights. In VA-PRT, the
function rlm from the MASS package is used for the robust
regression [7].

VA-PRT employs the 50" quantile regression, which is
a median regression, to explore a linear trend of data. The
regression computes the 50" conditional quantile function of
the response variable (e.g., retention times of modified pep-
tides), given the covariate (e.g., retention times of unmodified
peptides). In simple terms, a median regression aims to fit a
line using the median values of the response variable rather
than the mean values. Similar to robust regression, the line of
fit is less influenced by outliers than a least square regression
approach. The median regression is additionally considered
since the distributions of retention times may not be normal,
but highly skewed. VA-PRT uses the function rq from the
quantreg package with the modified version of the Barrodale
and Roberts algorithm for //-regression [8], [9].

C. Contour Plots

VA-PRT visualizes the distribution of paired retention times
of unmodified peptides vs. modified peptides using a 2-

dimensional density contour plot. In this visualization, the 2D
kernel density estimation is used. This contour plot is useful to
explore scatterplots with many overlapped observations. The
function kde2d from the MASS package is employed [7].

D. Local Polynomial Regressions

VA-PRT uses a local polynomial regression to explore a
non-linear trend of data. It smooths the response variable (e.g.,
retention times of modified peptides) as a function of the
covariate (e.g., retention times of unmodified peptides). The
function loess from the stats package with default settings is
used in VAR-PRT [10]. This approach displays a non-linear
trend of data. However, it may not be robust in the presence
of outliers.

III. DATA

Considering that phosphorylation is one of the most im-
portant post-translational modifications, we used a synthetic
proteomic and phosphoproteomic dataset which contains
>100,000 peptide sequences [2] to demonstrate the perfor-
mance of the proposed visualization tool. The experimental
and analysis details are shown in [2]. In brief, mixtures of
96 seed tryptic peptides and their synthesized variants were
analyzed by an Orbitrap Velos using a beam-type collision-
induced dissociation (HCD) fragmentation method. The data
was then analyzed by the Mascot search engine (2.3.1;
http://www.matrixscience.com) against the human IPI v3.72
including the sequences of all synthesized peptides.

The data was filtered using an E-value threshold of 0.01.
To increase the accuracy of our analysis, only identifications
matched to the sequences of synthesized peptides were con-
sidered. For each sequence, a retention time associated with
the maximum intensity of the corresponding precursor ion at
the time it was selected for an MS/MS fragmentation was
extracted. VA-PRT then performed retention time matching
between modified peptides and the corresponding unmodified
peptides and visualization analyses.
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Fig. 2: Boxplots of retention time changes after serine (S),
threonine (T), and tyrosine (Y) phosphorylations.
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Fig. 3: Scatterplots between retention times of unmodified peptides vs. modified peptides with robust regression lines in blue.

The red lines represent identify lines (e.g., y=Xx).

TABLE I: The effects of phosphorylations on retention times.

Post-translational modification type p-values Mean change in retention time (min) Median change in retention time (min)
All phosphorylations (STY) <22%10°16 2.80 2.03
Serine Phosphorylation (S) <2.2%10716 3.90 3.02
Threonine Phosphorylation (T) <2.2%10716 3.56 2.86
Tyrosine Phosphorylation (Y) <22%10716 1.58 0.70

IV. RESULTS AND DISCUSSIONS

We explored the effect of phosphorylation on retention times
using VA-PRT. Table I displayed the mean and median effects
of phosphorylation on retention times and Wilcoxon signed-
rank test results that investigated the effects of phosphorylation
on retention times. The overall effect of phosphorylation
on retention times as well as individual effects of serine,
threonine, and tyrosine phosphorylations on retention times
were significant at a 99% confidence level (Table I). Phos-
phorylated peptides generally had longer retention times than
their counterpart unmodified peptides. The median changes
in retention times between phosphorylated and unmodified
peptides were 2.03 minutes. Among serine, threonine, and ty-
rosine phosphorylations, serine phosphorylation had the most
effects on retention time with 3.02 median changes in retention
times (Figure 2). The peptide lengths were also significantly
associated with changes in retention times between phospho-
rylated peptides and unmodified peptides with a p-value of
6.68+1071° based on a linear regression analysis. Furthermore,
we explored the changes in effects of phosphorylation on
retention time with scatterplots and robust regression lines.
As expected, when retention times of unmodified peptides
increased, retention times of the corresponding phosphorylated
peptides increased (Figure 3). However, robust regression
lines were not parallel to identity lines, especially for serine-
and tyrosine-phosphorylated peptides. The slopes of robust
regression lines for serine- and tyrosine-phosphorylated pep-
tides were larger than the identity lines. This implied that
the effects of serine and tyrosine phosphorylations were not
constant. The effects of serine and tyrosine phosphorylations
on retention times became larger for peptides that eluted later.
More investigations using other phosphoproteomic datasets
would be beneficial to confirm the observed effects.

V. CONCLUSIONS

In this paper, we demonstrated the functions of VA-PRT
and its usefulness using a synthetic proteomic and phos-
phoproteomic dataset. We anticipate that VA-PRT will aid
researchers in comprehensively investigating the effect of
various types of PTMs on retention times. With the help of
VA-PRT, researchers will be capable of diagnosing how PTM
affects retention time as well as identifying important factors
(e.g., PTM type, peptide length, interaction effect) that may
influence retention times of peptides.
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