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Abstract— Variational estimation of a mechanical system is
based on the application of variational principles from mechan-
ics to state estimation of the system evolving on its configuration
manifold. If the configuration manifold is a Lie group, then the
underlying group structure can be used to design nonlinearly
stable observers for estimation of configuration and velocity
states from measurements. Measured quantities are on a vector
space on which the Lie group acts smoothly. We formulate the
design of variational observers on a general finite-dimensional
Lie group, followed by the design and experimental evaluation
of a variational observer for rigid body motions on the Lie
group SE(3).

I. INTRODUCTION

State estimation schemes for mechanical systems have a
wide range of applications in mobile robotics, aerospace
vehicles and oceangoing vessels, among others. Mechanical
systems have a second order structure, with the degrees of
freedom commonly represented by generalized (local) coor-
dinates on a configuration manifold. The velocity states are
represented by generalized velocities on the tangent space to
the configuration manifold for a given configuration. Based
on variational principles used in geometric mechanics, one
can design variational observers for mechanical systems in
general. The observer design principles outlined in this article
are generally applicable to mechanical systems evolving
on Lie groups as configuration manifolds. Considering the
geometry of the configuration manifold becomes necessary,
especially when this manifold is not contractible. In partic-
ular, this is true for the Lie groups of rigid body attitude
(orientation) SO(3) and rigid body pose SE(3).

State estimation schemes of mechanical systems that ac-
count for the geometry of the configuration space, are partic-
ularly advantageous if the configuration space happens to be
a Lie group. This is because Lie groups are parallelizable [1],
and the state space of such a mechanical system is the tangent
bundle of the Lie group. This makes it possible to represent
the states globally on the state space without using local
coordinates, and use the symmetry properties of the Lie
group to design state estimators.

However, the design of observers for systems on con-
nected, locally compact, finite-dimensional Lie groups (or
semi-direct products of such groups), is complicated by the
fact that these groups are not contractible (see, e.g., [2]–[4]).
This means that any smooth observer or controller design
on such Lie groups have multiple equilibria, which in turn
precludes global asymptotic stability of any one equilibrium.
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This has been pointed out, in particular, for the Lie group
of rigid body rotations, SO(3), in prior research (e.g., [5]–
[7]). Smooth estimation schemes on these Lie groups, and
consequently on symmetric spaces obtained from them, can
(at best) be almost globally asymptotically stable (AGAS).

Due to these considerations, an increasing number of state
estimation schemes have been designed directly on the Lie
groups of rigid body rotations SO(3) and rigid body motions
SE(3). In particular, over the last twenty years, many esti-
mation schemes on Lie groups have been explicitly designed
using principles of geometric mechanics. These estimators do
not suffer from kinematic singularities like estimators using
coordinate descriptions of attitude, and they do not suffer
from the unstable unwinding phenomenon encountered when
using unit quaternions for attitude representation. Unwinding
occurs due to the unit quaternion hypersphere S3 double
covering SO(3) [5]. Early research in this direction ex-
tended traditional approaches like attitude determination us-
ing Wahba’s problem, complementary filters, gradient-based
observers, set-bounded filters and unscented filters; a sample
of this literature can be found in [8]–[16]. Besides accounting
for the geometry of the configuration space, these estimation
schemes also take advantage of the symmetry properties of
Lie groups in their design in continuous time (e.g., [13], [15])
or in discrete time (e.g., [7], [17]). Published research over
the last decade on this topic has applied concepts like near-
optimal filtering [18]–[20], invariant filter design [21]–[23],
variational observer design [17], [24], stochastic filtering
and Bayesian estimation [25], [26], and cascaded observer
design [27].

In this work, we present a design for variational observers
on finite-dimensional Lie groups, with applications to rigid
body motion estimation. This variational observer design
approach is based on application of the Lagrange-d’Alembert
principle from variational mechanics [28], to state estimation
problems for mechanical systems. In this work, we give
the general approach to design of variational observers on
(real) finite-dimensional Lie groups using this principle.
We use a matrix representation of the Lie group and a
corresponding matrix representation of its Lie algebra. This
matrix representation of the Lie algebra is isomorphic to its
representation as a real, finite-dimensional vector space of the
same dimension as the Lie group. This general development
has not appeared before in the published literature. It is
followed by a brief overview of the variational pose estimator
(VPE), which has appeared in our prior research [17], [29].
The VPE is a variational observer designed on the (tangent
bundle of the) Lie group of rigid body motions, SE(3).
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This is followed by experimental results from a hardware
implementation of the VPE using a depth camera sensor.

The remainder of this paper is organized as follows.
Section II gives the general principles behind design of
variational state estimation schemes on finite-dimensional
Lie groups and obtains the structure of the variational ob-
server. Section III shows how this general design gives the
variational pose estimator (VPE) for state estimation of rigid
body motions, which has appeared in our prior research,
when applied to TSE(3). Both continuous- and discrete-
time versions of this variational observer are provided in
this section. This is followed by the implementation and
evaluation of the VPE in experiments using a depth camera
(vision) sensor, in section IV. Finally, section V concludes
this article by summarizing its contributions and giving
planned future directions of related research.

II. VARIATIONAL OBSERVER DESIGN ON
FINITE-DIMENSIONAL LIE GROUPS

Consider a (real) finite-dimensional Lie group G that has
a regular action on a finite-dimensional vector space W ⊆
Rm. The group configuration is usually not measured directly
in applications. Instead, measurements on the vector space
W are used to estimate states on the Lie group. For an n-
dimensional Lie group G, its Lie algebra g is isomorphic
to Rn, i.e., g ∼= Rn. A matrix representation of the group
G on Rm×m is used for state estimation, which expresses
it as a subgroup of GL(m,R). This enables representation
of its action on W by the matrix product. Let g(t) denote a
trajectory (integral curve) on the Lie group for a given t ∈ R.
The tangent vector to the Lie group at g(t) is given by the
kinematic expression:

ġ = gξ∨, (1)

where g ∈ G, ξ∨ ∈ g where ξ ∈ Rn. Here (·)∨ : Rn → g
denotes the vector space isomorphism from Rn to g. Note
that the RHS of eq. (1) gives a left-invariant vector field on
G with the integral curve g(t) for a given g(0).

A. Formulation of Variational Observer Design

The problem of state estimation on the Lie group G
is based on instantaneous vector measurements on W. An
instantaneous set of l vectors measured on W are represented
by the column vectors of matrix L ∈ Rm×l. It is assumed
that the action of G on these vectors give a set of known
vectors and enough of these vectors are measured at each
instant to give full observability of the states (g, ξ) ∈ G× g.
In addition, if measurements of some components of the
velocity state ξ on the Lie algebra g are available, they can
also be used to estimate velocity states. This sets us up for
the observer design for full state estimation of (g, ξ) ∈ G×g
from these measurements.

As mentioned in §I, the design framework of varia-
tional estimation schemes follows applying the Lagrange-
d’Alembert principle from variational mechanics to an
energy-like quantity in the state estimation errors with dis-
sipative terms that dissipate this energy. Denoting the state

estimates at an instant t by (ĝ(t), ξ̂(t)) ∈ TG ∼= G× g, we
have these satisfy the kinematic relation:

˙̂g = ĝξ̂∨, (2)

which gives an integral curve ĝ(t) for a given ĝ(0). Define
the (right-invariant) estimation error in the configuration on
the group by:

h = gĝ−1 ∈ G, (3)

which also defines an integral curve given the initial estima-
tion error h(0) = g(0)ĝ(0)−1 ∈ G. From (1) and (2), this
estimation error satisfies:

ḣ = hη∨ where η∨ ∈ g and η = Adĝ
(
ξ − ξ̂

)
. (4)

Here η represents the estimation error in the velocity state,
and Adg denotes the adjoint representation of g ∈ G on g. A
quadratic positive definite function of this velocity estimation
error is given by the kinetic energy-like function:

T (η) =
1

2
ηTJη where J = JT ≻ 0. (5)

Let P ∈ Rm×l be the known constant matrix whose
column vectors correspond to the set of vector measure-
ments that are the column vectors in L, i.e., P = gL
(where the group action on W is represented by the matrix
multiplication). Since the configuration on the group G is
not directly measured, we express the estimation error in
the configuration in terms of the measurement residual. The
measurement residual P − ĝL can be expressed in terms of
the estimation error in configuration on the group h, defined
by eq. (3), as follows:

E := P − ĝL = P − ĝg−1P = (I − h−1)P, (6)

where I denotes the identity element (matrix) on G. A class
K function of this estimation error in the configuration, Ψ :
R+ → R+, is used as a measure of this error, using this
matrix representation of G. This leads to a potential energy-
like function:

U(ĝ, L, P ) = Ψ
(
∥P − ĝL∥

)
, (7)

where any matrix norm ∥ · ∥ : Rm×l → R+ may be used
on the right side of eq. (7). This potential function can be
expressed in terms of h (in an abuse of notation) as:

U(h, P ) = Ψ
(
∥(I − h−1)P )∥

)
. (8)

Assuming measurements of P and η, the Lagrangian used
to design the variational estimation scheme is defined as:

L(η, h, P ) = T (η)− U(h, P ). (9)

An action integral is obtained from this Lagrangian for
(h(t), η(t)) over a time interval t ∈ [0, T ] as follows:

S(L(η, h, P )) =

∫ T

0

L(η, h, P )dt. (10)

After the Lagrangian and action functional are expressed in
terms of the state estimation errors (h, η) ∈ G×g ∼= TG, the
first variation of this action functional, which involves first
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variations of these estimation errors, is obtained. We apply
reduced variations [28], [30] on the Lie group G as follows:

δh = hυ∨, δη = υ̇ + adηυ, (11)

and adη denotes the adjoint representation of the Lie algebra
g. In addition, a dissipation term linear in η that is obtained
from a Rayleigh dissipation function, is introduced to dis-
sipate the energy and guarantee asymptotic stability of the
resulting observer.

B. Variational Observer on the Lie group G

Using the Rayleigh dissipation function defined by:

R(η) =
1

2
ηTDη, (12)

we obtain the dissipation term:

τD = −∇ηR(η) = −Dη. (13)

Application of the Lagrange-d’Alembert principle to the
Lagrangian (9) with the dissipation term (13) for t ∈ [0, T ],
leads to the following expression:

δh,ηS
(
L(η, h, P )

)
+

∫ T

0

τT
Dυdt = 0. (14)

The first term in the left side of (14) is the first variation of
the action functional with respect to the observer error states
(h, η), with the reduced variations on G× g satisfying (11).

The first variation of the potential energy-like term is
obtained as:

δU(h, P ) = Ψ′(·)υTTP (h), (15)

where Ψ′(·) is the derivative of the class-K function Ψ(·)
and TP : G → Rn (where bRn ∼= g⋆) is obtained from
the gradient of ∥P − ĝL∥ along the variation vector field
hυ∨. With measurements of P and η, the variational observer
obtained is given by the following result.

Theorem 1: The variational estimation scheme on the
tangent bundle of the Lie group G is given by:

Jη̇ = ad∗ηJη −Ψ′(∥P − ĝL∥)TP (h)−Dη,

ξ̂ = ξ − Adg−1η,
˙̂g = ĝξ̂∨,

(16)

where ad∗ζ = (adζ)
T and (P, η) are measured.

Proof: The first variation of the action functional is obtained
as:

δh,ηS
(
L(η, h, P )

)
=

∫ T

0

[
δηTJη − δU(h, P )

]
dt

=

∫ T

0

[(
υ̇T + υTad∗η

)
Jη −Ψ′(·)υTTP (h)

]
dt.

(17)

Applying integration by parts to the first term on the right
side of the second line of expression (17) with fixed endpoint
variations (υ(0) = υ(T ) = 0 ∈ g), we can reduce this
expression to the following:

δh,ηS
(
L(η, h, P )

)
=

∫ T

0

υT[ad∗ηJη − Jη̇

−Ψ′(∥P − ĝL∥)TP (h)
]
dt.

(18)

Now applying the Lagrange-d’Alembert principle as given
by (14), we obtain the following expression:∫ T

0

υT[ad∗
ηJη − Jη̇ −Dη

−Ψ′(∥P − ĝL∥)TP (h)
]
dt = 0.

(19)

As eq. (19) holds for all variations with fixed endpoints, the
expression within the square brackets in the integral, must
vanish identically. This gives the first of eqs. (16), while the
second of eqs. (16) arises from eq. (4), and the third of eqs.
(16) is identical to eq. (2). ■

Note that the statement of Theorem 1 is applicable when
measurements of vectors in W and all velocities η are
available. However, it is possible to adapt the theory to
cases when the velocities η can be obtained (perhaps taking
time derivatives) from vectors in P . This was done for the
variational pose estimator described next.

III. THE VARIATIONAL POSE ESTIMATOR FOR STATE
ESTIMATION OF RIGID BODY MOTION

The variational pose estimator (VPE) was first obtained in
continuous and discrete time in [17], using the same design
principles outlined in §II for finite-dimensional Lie groups.
We provide a brief recap of this VPE design, now in the
context of this general theory.

A. Pose and Velocities Measurement Model

Consider the rotational and translational motion of a rigid
body. Let I denote the inertial frame and B denote the body
coordinate frame. Let R ∈ SO(3) denote the rotation matrix
from frame B to frame I and b ∈ R3 denote the position of
origin of B expressed in frame I. Then the pose of the rigid
body is given by

g =

[
R b
0 1

]
∈ SE(3). (20)

Consider optical measurements of j points at time t with
known and fixed positions in frame I, denoted qj . These
points generate

(
j
2

)
unique relative position vectors from

pairwise differences. Let ai be the position of the i-th
stationary point measured in frame B. The measured vectors
in the presence of additive noise are expressed as:

ām = RT(q̄ − b) + ℘̄,

where q̄ and ām are defined as follows:

q̄ =
1

j

j∑
i=1

qi, ā
m =

1

j

j∑
i=1

ami , (21)

and ℘̄ is the additive measurement noise obtained by aver-
aging the measurement noise vectors for each ai.

Now, denote the angular and translational velocity of the
rigid body expressed in frame B by Ω and ν, respectively.
Therefore, the kinematics of the rigid body is given by

Ṙ = RΩ×, ḃ = Rν ⇒ ġ = gξ∨, (22)

where ξ =

[
Ω
ν

]
∈ R6, ξ∨ =

[
Ω× ν
0 0

]
. Consider the

(
j
2

)
relative position vectors for j measured points from optical

8692

Authorized licensed use limited to: Amit Sanyal. Downloaded on March 01,2025 at 01:41:41 UTC from IEEE Xplore.  Restrictions apply. 



sensor measurements, denoted as dj = qλ − qℓ in frame I
and the corresponding vectors in frame B as ej = aλ − aℓ,
where λ, ℓ are any two measured points such that, λ ̸= ℓ.
Therefore,

dj = Rej ⇒ D = RE, (23)

where D = [d1 . . . dn], E = [e1 . . . en] ∈ R3×n with
n = 3 if

(
j
2

)
= 2 and n =

(
j
2

)
if
(
j
2

)
> 2. In the presence

of measurement noise, the measured value of matrix E is
given by,

Em = RTD + L,

where the columns of matrix L ∈ R3×n are additive noise
vectors in the vector measurements made in frame B.

B. Pose Estimation in SE(3)

The estimated pose and its kinematics are represented as

ĝ =

[
R̂ b̂
0 1

]
∈ SE(3), ˙̂g = ĝξ̂∨, (24)

where b̂ is the position estimate, R̂ is the attitude estimate,
and ξ̂ is the rigid body velocities estimate, with ĝ0 as the
initial pose estimate. The pose estimation error is defined as

h = gĝ−1 =

[
Q b−Qb̂
0 1

]
=

[
Q χ
0 1

]
∈ SE(3), (25)

where Q = RR̂T is the attitude estimation error, and χ =
b−Qb̂. Velocity kinematics for the estimation error is:

ḣ = hη∨, where η(ĝ, ξm, ξ̂) =

[
ω
υ

]
= Adĝ(ξ − ξ̂), (26)

where ξm = ξ ∈ R6 is the measured rigid body velocities, υ
and ω are translational and angular velocity estimation errors

respectively, and Adg =

[
R 0

b×R R

]
for g =

[
R b
0 1

]
.

The potential energy-like quantity in the pose estimation
error can be expressed as the sum of rotational and transla-
tional measurement residuals:

U(ĝ, Em, D, ām, q̄) = Ur(g, E
m, D) + Ut(g, ā

m, q̄)

= Φ
(
U0
r (g, E

m, D)
)
+

1

2
αyTy, (27)

where

y = q̄ − R̂ām − b̂ (28)

U0
r (g, E

m, D) =
1

2

〈
D − R̂Em, (D − R̂Em)W

〉
, (29)

W is positive definite, Φ : [0,∞) 7→ [0,∞) is a C2 function
that satisfies Φ(0) = 0 and Φ′(z) > 0 for all z ∈ [0,∞).
Additionally, Φ′(·) ≤ α(·) where α(·) is a class K function
[31] and Φ′(·) is the derivative of Φ(·) with respect to its
argument. This ensures that U0

r (ĝ, R
m) and Ur(ĝ, R

m) have
the same indices and minimizer R̂ ∈ SO(3). Now, define the
kinetic energy-like function as

T (η) =
1

2
ηTJη, (30)

where η ≡ η(ĝ, ξm, ξ̂) and J ∈ R6×6 > 0 is an artificial
inertia-like kernel matrix. The Lagrangian is defined as

L(ĝ, Em, D, ām, q̄, η) = T (η)− U(ĝ, Em, D, ām, q̄), (31)

and the corresponding action functional over an arbitrary
time interval [t0, T ] where T > 0 is given by,

S
(
L(ĝ, Em, D, ām, q̄, η)

)
=

∫ T

t0

L(ĝ, Em, D, ām, q̄, η)dt,

(32)
such that ˙̂g = ĝξ∨. The following lemma gives the La-
grangian expression in case of perfect measurements.

Lemma 1: The Lagrangian in the absence of measurement
noise is given by

L(ĝ, b, R, φ) =
1

2
φTJφ− Φ

(
⟨I −Q,K⟩

)
− 1

2
αyTy, (33)

where K = DWDT is a positive definite matrix and y ≡
y(h) = (I −QT)b+QTχ.

C. VPE for Rigid Body Motion in Continuous Time

Proposition 1: The nonlinear variational pose estimator of
a rigid body in continuous time is given by

Jη̇ = ad∗
ηJη − Z(ĝ, Em, D, ām, q̄)− Dη,

ξ̂ = ξm − Adĝ−1η,
˙̂g = ĝξ̂∨,

(34)

where ad∗ζ = (adζ)
T and adζ is defined as

adζ =

[
w× 0
v× w×

]
for ζ =

[
w
v

]
∈ R6, (35)

and

Z(ĝ, Em, D, ām, q̄) =

[
Φ′

(
U0
r (· · · )

)
SK(R̂) + α(p̄)×y

αy

]
,

(36)
where U0

r (· · · ) = U0
r (ĝ, E

m, D) is defined in (29), y ≡
y(ĝ, ām, q̄) is defined in (28), and

SK(R̂) = vex
(
DW (Em)TR̂T − R̂(Lm)WDT), (37)

where vex(·) : so(3) → R3 is the inverse of the (·)× map
and D ∈ R6×6 > 0.
In our prior work [17], this estimator was shown to be
almost globally asymptotically stable, with convergence to
zero errors from almost all initial estimates except for those
in a set of (volume) measure zero in the state space TSE(3).
In practice, the presence of measurement noise leads to
ultimate boundedness of estimation errors, where the bounds
are determined by observer gains.

D. VPE for Rigid Body Motion in Discrete Time

The variational pose estimation scheme presented in
Proposition 1 is discretized for implementation on onboard
computers. It is discretized using the framework of discrete
geometric mechanics, and the resulting discrete-time esti-
mator is obtained in the form of a Lie group variational
integrator (LGVI) [32]. The advantages of LGVIs are two-
fold: they discretize the motion on the Lie group without the
need for local maps or projection, and they are variational
in nature which implies preservation of energy-momentum
properties of the continuous dynamics [33], [34].
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Since the estimation scheme in Proposition 1 is ob-
tained from a variational principle of mechanics, it can be
discretized by applying the discrete Lagrange–d’Alembert
principle [35]. Consider an interval of time [t0, T ] ∈ R+

separated into N equal-length subintervals [ti, ti+1] for i =
1, 2, . . . , N with tN = T and ∆t = ti+1− ti is the time step
size. Then, an LGVI is applied to the following discrete-
time form of the Lagrangian (33) to obtain the discrete-
time estimator. Therefore, the discrete-time variational pose
and velocities estimator corresponding to the continuous-
time estimator given by Proposition 1, is obtained as

(Jωi)
× =

1

∆t

(
FiJ − JFT

i

)
,

(M +∆tDt)υi+1 = FT
i Mυi

+∆tα(b̂i+1 + R̂i+1ā
m
i+1 − p̄i+1),

(J +∆tDr)ωi+1 = FT
i Jωi +∆tMυi+1 × υi+1

+∆tαp̄×i+1(b̂i+1 + R̂i+1ā
m
i+1)

−∆tΦ′
(
U0
r (ĝi+1, E

m
i+1, Di+1)

)
SKi+1

(R̂i+1),

ξ̂i = ξmi − Adĝ−1
i
ηi,

ĝi+1 = ĝi exp(∆tξ̂∨i ),

(38)

where Fi ∈ SO(3), J is defined in terms of the matrix J

as J =
1

2
trace[J ]I − J , M is a positive definite matrix,

φi = [ωT
i υT

i ]
T,

(
ĝ(t0), ξ̂(t0)

)
= (ĝ0, ξ̂0) and SKi(R̂i) is

the value of SK(R̂) at time ti, where SK(R̂) is defined
by (37). Dt and Dr are positive definite matrices used in
two Rayleigh dissipation terms linear in the translational
velocity and angular velocity estimation errors, respectively.
This discrete-time version of the VPE was first obtained
in [17]. It is implemented using a vision-inertial sensor, as
reported in the following section.

IV. EXPERIMENTAL RESULTS FOR VPE USING VISION
AND INERTIAL SENSING

This section outlines results from an experimental eval-
uation of the variational pose estimator (VPE) in discrete-
time, given by (38). For our experiment, we used the ZED
2i stereo camera sensor for onboard implementation, and
the Vicon motion capture system for external verification.
The instantaneous vector measurements for VPE in the form
of point clouds are obtained from the ZED stereo camera.
These vector measurements are the feature points in 3D space
that are observed by the stereo camera. The Scale-Invariant
Feature Transform (SIFT) is the feature matching algorithm
in OpenCV that is used for identifying and matching features
points between two successive camera frames. Ground truth
in the form of pose measurements are obtained from the
Vicon motion capture system. The VPE-generated estimates
are then compared with the Vicon measurements and are
shown in time plots here. The experiment is conducted for
43 s with a time step size of ∆t = 1/15 s, while the ZED
camera is operating at a frequency of 15 Hz.

Simulation parameters for this experiment are given here.
The initial attitude and position estimates are

R̂0 = expSO(3)

π

4
×

[
3

7

6

7

2

7

]T
×

and b̂0 =

 2.5
0.5
−1.8

 ,

(39)
respectively. The initial angular and translational velocities,
respectively, are

Ω̂0 = [−0.41976 − 0.1305 − 0.1305]T rad/s, (40)

and ν̂0 = [−0.09 0.05 0.7]T m/s. The positive definite
estimator gain matrices are:

J = diag([2.1 2.0 1.6]),

M = diag([0.095 0.037 0.019]),

Dr = diag([59.01 42.63 25.86]),

Dt = diag([0.184 0.294 0.357]).

(41)

Fig. 1(a) shows a comparison between position estimation
errors from VPE and unfiltered data from the ZED camera,
by taking the respective differences from the ground truth
given by the Vicon mo-cap system. The position estimation
error from VPE converges from non-zero initial conditions
to a bounded neighborhood of the true states. The attitude
estimation error, parameterized by the principal rotation
angle Φ = cos−1( 12 (tr(Q) − 1)) of the attitude estimation
error matrix Q ∈ SO(3), is shown in Fig. 1(b). The principal
angle from VPE converges from the given initial condition
to a bounded neighborhood of zero. Figs. 1(c) and 1(d) show
the estimation errors in translational and angular velocity (as
obtained by the VPE from the point cloud measurements)
with time, respectively. These errors are also seen to converge
to small neighborhoods of zero errors.
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(d) Estimation error in angular ve-
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Fig. 1: Experimental results
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V. CONCLUSION

This paper describes variational estimators for state esti-
mation of systems evolving on finite-dimensional Lie groups
as their configuration manifolds. These variational estimators
are designed by applying the Lagrange-d’Alembert principle
to a Lagrangian consisting of energy-like quantities in the
state estimation errors and dissipative terms that dissipate
this total energy. The resulting observer estimates the con-
figuration and velocity states from vector measurements by
using the underlying structure of the Lie group. A particular
application is given for the Lie group of rigid body motions,
from our prior published research. The variational pose
estimator (VPE) is formulated in both continuous time and
discrete time. The VPE in discrete time is then experimen-
tally validated using a stereo camera and a Vicon motion
capture system. It is seen that state estimates converge to
a bounded neighborhood of the true states. These experi-
mental results corroborate the theory behind design of this
variational estimation scheme. Future work will show the
nonlinear stability of this general variational estimator design
for finite-dimensional Lie groups.
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