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Abstract— We consider estimation of motion on spheres as
a variational problem. The concept of variational estimation
for mechanical systems is based on application of variational
principles from mechanics, to state estimation of mechanical
systems evolving on configuration manifolds. If the configura-
tion manifold is a symmetric space, then the overlying connected
Lie group of which it is a quotient space, can be used to design
nonlinearly stable observers for estimation of configuration
and velocity states from measurements. If the configuration
manifold is a sphere, then it can be globally represented by an
unit vector. We illustrate the design of variational observers for
mechanical systems evolving on spheres, through its application
to estimation of pointing directions (reduced attitude) on the
regular sphere S2.

I. INTRODUCTION

We present the design of a state estimation scheme based
on variational principles used in geometric mechanics, for
reduced attitude state estimation. Specifically, this estimation
scheme can be applied to pointing direction estimation of a
body-fixed sensor on a rigid body in spatial motion. More
generally, the observer design principles outlined here are
applicable to mechanical systems evolving on Lie groups or
symmetric spaces as configuration manifolds. Considering
the geometry of the configuration manifold becomes nec-
essary, especially when this manifold is not contractible.
In particular, this is true for the Lie group of rigid body
attitudes SO(3), and the space of reduced attitudes (pointing
directions) S2.

Geometric mechanics-based state estimation schemes that
account for the geometry of the configuration space, have
appeared in research publications over the last twenty years.
In particular, some of these estimation schemes have explic-
itly been designed using principles of geometric mechanics.
The design of observers for systems on connected, locally
compact, non-trivial, finite-dimensional Lie groups, symmet-
ric spaces, and semi-direct products of such groups, is further
complicated by the fact that these groups are not contractible
(see, e.g., [1]–[3]). This means that any smooth observer or
controller design on such Lie groups have multiple equilibria,
which in turn precludes global asymptotic stability of any one
equilibrium. This has been pointed out for the Lie group of
rigid body rotations, SO(3), in prior research (e.g., [4]–[6]),
as well as for the regular sphere S2 in [5]. Smooth estimation
schemes on these Lie groups, and consequently on symmetric
spaces obtained from them, can (at best) be almost globally
asymptotically stable (AGAS).
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Due to these considerations, an increasing number of
estimation schemes have been designed directly on the Lie
groups of rigid body rotations SO(3) and rigid body motions
SE(3) over the last twenty years or so. Early research in this
direction extended traditional approaches like attitude de-
termination using Wahba’s problem, complementary filters,
gradient-based observers, set-bounded filters and unscented
filters; a sample of this literature can be found in [7]–[15].
Besides accounting for the geometry of the configuration
space, these estimation schemes also take advantage of
the symmetry properties of Lie groups in their design in
continuous time (e.g., [12], [14]) or in discrete time (e.g.,
[6], [16]). Published research over the last decade on this
topic has applied concepts like near-optimal filtering [17]–
[19], invariant filter design [20]–[22], variational observer
design [16], [23], stochastic filtering and Bayesian estima-
tion [24], [25], and cascaded observer design [26].

These techniques for estimation on Lie groups can easily
be adapted for estimation of systems evolving on symmetric
spaces as configuration manifolds. Although the current pub-
lished literature on estimation on Lie groups (and their tan-
gent bundles) is quite voluminous, the literature on observer
designs on symmetric spaces is scant. Existing literature on
control design on symmetric spaces is less scant, although
not quite as voluminous as either controller or estimator
design problems on Lie groups. Pointing direction control,
also termed reduced attitude control, has been treated in
prior literature using the tools of geometric mechanics; see,
e.g., [5], [27]. Variational and optimal control problems on
Stiefel manifolds, which are also symmetric spaces, were
treated in [28], [29].

The design of variational observers is based on the
Lagrange-d’Alembert principle from variational mechanics,
applied to state estimation problems for mechanical sys-
tems [30]. In this work, we start with a general treatment of
variational problems on spheres Sn for integer n > 1. This
is followed by a treatment of variational observer design on
the regular sphere S2. Among symmetric spaces, the sphere
S2 = SO(3)/SO(2) is of great interest due to its application
to pointing direction estimation and control. We focus our
attention on variational observer design on the tangent bundle
of the sphere. Besides its application to pointing direction
estimation, the sphere is an interesting case study as the
simplest non-trivial example of a symmetric space.

The remainder of this paper is organized as follows. In
section II, we provide a background of a variational problem
set up on the sphere Sn−1 ≡ SO(n)/SO(n− 1). Section III
obtains a continuous-time variational observer design on the
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sphere S2 applying the Lagrange-d’Alembert principle. This
is followed by section III-B, which designs the variational
observer for reduced attitude and angular velocity in discrete
time as a Lie group variational integrator [31]. Section
IV provides numerical simulation results for the discrete-
time variational observer. These simulation results provide
numerical validation of the proposed estimation scheme.
Section V concludes this paper with a summary of the results
obtained here, and possible future research directions related
to this work.

II. A VARIATIONAL PROBLEM ON THE SPHERE Sn−1

Consider the sphere Sn−1 that can be expressed as the
space of unit vectors in the vector space Rn. Therefore, if
Γ ∈ Rn is used to represent the configuration on the sphere,
then Sn−1 is defined by:

Sn−1 :=
{
Γ ∈ Rn |ΓTΓ = 1

}
. (1)

The sphere Sn−1 is obtained as the symmetric space
SO(n)/SO(n−1), where the Lie group SO(n) is defined as
the set of proper orthogonal n× n matrices:

SO(n) :=
{
Q ∈ Rn×n |QTQ = In

}
,

where In denotes the n × n identity matrix, which is also
the identity element on SO(n). The Lie algebra of SO(n),
denoted so(n), is defined by:

so(n) :=
{
U ∈ Rn×n |UT + U = 0n

}
,

where 0n is the n × n zero matrix consisting of all zero
entries. Clearly, this makes so(n) identical to the vector space
of n× n skew-symmetric matrices.

Now consider a trajectory (an integral curve) on SO(n),
given by Q : R → SO(n), with Q(t) ∈ SO(n) corresponding
to a value of t ∈ R. This leads to a trajectory on TSO(n) ≡
SO(n)× so(n) given by:

Q̇ :=
dQ

dt
= QU, where U ∈ so(n), (2)

where we omit the variable parameter t in the trajectories for
Q and U ∈ so(n) in eq. (2) for notational convenience. This
also induces a trajectory on Sn−1 and TSn−1 as follows.
If p ∈ Sn−1 ⊂ Rn is a known fixed (constant) unit vector,
then a trajectory on the sphere Sn−1 corresponding to this
trajectory on SO(n), is given by:

Γ(t) = Q(t)Tp. (3)

Therefore, the tangent vector to this trajectory at Γ(t), where
t ∈ R, is given by:

Γ̇ :=
dΓ

dt
= −UΓ, where U ∈ so(n). (4)

Eq. (4) can be used to generate the integral curve given the
value of Γ at an instant, say Γ(0) = Γ0. It is easy to verify
that the trajectory given by eq. (3) is on Sn−1 and the tangent
vector given by eq. (4) is indeed on TΓ(t)Sn−1.

A trajectory on Sn−1 can be obtained in an optimal manner
by setting up a Lagrangian for a corresponding variational
problem. Consider the kinetic energy-like term given by:

T (U) = ⟨U,UΛ⟩ where Λ = ΛT ≻ 0. (5)

Here ⟨·, ·⟩ : Rn×n → R is a suitable inner product and the
positive definite matrix Λ ∈ Rn×n ensures that this function
is positive definite. This, along with eq. (4), also makes
T (U) a metric on Sn−1. In addition, a potential energy-like
function on Sn−1 is defined by:

U(χ,Γ) = κ(1− χTΓ) where κ > 0, (6)

and χ ∈ Sn−1 is a known reference point or trajectory on
Sn−1. This potential function has a maximum of 2κ when
Γ = −χ and a minimum of 0 when Γ = χ, which makes
it a positive definite function of the “error” between Γ and
χ on Sn−1. In fact, U(χ,Γ) defines a measure of the error
between two configurations (or elements) χ and Γ on Sn−1.
Define a Lagrangian from the energy-like functions as:

L(U, χ,Γ) = T (U)−U(χ,Γ) = ⟨U,UΛ⟩−κ(1−χTΓ). (7)

This Lagrangian is used to form the action functional:

S(L(U, χ,Γ)) =
∫ T

0

L(U, χ,Γ)dt. (8)

Extremal values of this action functional generate smooth
trajectories on Sn−1 that satisfy eq. (4). Extremization of
this action involves taking reduced variations on Sn−1 for
the states (Γ, Γ̇) ∈ TSn−1, or alternately, (Γ, U) ∈ Sn−1 ×
so(n). Similar approaches, without the potential energy-like
term given by eq. (6), have been used in the past to obtain
geodesics on spheres and other symmetric spaces [28], [29],
[32]. Although this Lagrangian is not directly related to the
variational estimation problem on S2 that is analyzed and
solved in the remainder of this paper, it sets up the basic
framework that we use.

III. VARIATIONAL OBSERVER DESIGN ON THE SPHERE
S2

As mentioned in the introduction §I, state estimation on
the regular sphere S2 has applications to pointing direction
estimation and control. Here we explore the state estimation
problem, exploiting the variational framework set up in the
previous section, §II.

A. Reduced attitude state observer in continuous time

A pointing direction fixed to a rotating rigid body in
Euclidean three-dimensional space, is often referred to as
its reduced attitude [5]. Reduced attitude can be defined in
one of two ways: an inertially fixed unit vector expressed in
a body-fixed coordinate frame, or a body-fixed unit vector
expressed in an inertial frame. We follow the first definition,
which is relevant for applications like a space telescope
required to point at distant stars or star clusters. Let p ∈ S2 ⊂
R3 denote a unit vector along an inertially-fixed direction.
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Then the reduced attitude representing this direction in the
body-fixed frame is defined as:

Γ = RTp ∈ S2, (9)

where R ∈ SO(3) denotes the body’s (full) attitude, given by
the rotation matrix from the body-fixed frame to the inertial
frame. If R(t) denotes a trajectory on SO(3), the tangent
vector at R(t) is given by:

Ṙ = RΩ×, where Ω× =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ∈ so(3),

(10)
for Ω = [Ω1 Ω2 Ω3]

T ∈ R3. Here (·)× : R3 → so(3) is the
vector space isomorphism from 3D vectors to 3 × 3 skew-
symmetric matrices, and the cross superscript is because
this is equivalent to the cross product operator matrix, i.e.,
a×b = a× b for vectors a, b ∈ R3. The time rate of change
of reduced attitude given in (9) is therefore given by the
kinematic relation:

Γ̇ = ṘTp = (RΩ×)Tp = −Ω×RTp = Γ×Ω, (11)

where Ω ∈ R3 ≡ so(3) denotes the angular velocity of the
body as measured in the body-fixed frame. Note that eqs. (10)
and (11) correspond to eqs. (2) and (4) in §II, respectively.

We assume that measurements of Γ and Ω are available,
and a variational observer (deterministic) is designed for
these states. Denote the estimate of the reduced attitude by

Γ̂ ∈ S2,where Γ̂ = R̂Tp (12)

and R̂ ∈ SO(3) is the (full) attitude estimate, i.e., the
estimated rotation matrix from body to inertial frame. Note
that we are not estimating the full attitude here, but just using
it as a convenient tool for certain steps in our derivation
of the observer for reduced attitude and angular velocity.
Therefore, the velocity kinematics of the estimated reduced
attitude is:

˙̂
Γ = −Ω̂×R̂Tp = Γ̂×Ω̂ (13)

where, Ω̂ ∈ R3 ≡ so(3) is the estimated angular velocity
vector. The error in estimating the reduced attitude can be
represented by the following potential energy-like function:

U(Γ, Γ̂) = k(1− ΓTΓ̂),where k > 0. (14)

The function U in eq. (14) has two critical points: a minimum
of zero when Γ̂ = Γ and a maximum of 2k when Γ̂ = −Γ.
The time derivative of eq. (14) is given by:

d

dt
U(Γ, Γ̂) = −k(Γ̇TΓ̂ + ΓT ˙̂

Γ). (15)

Using eqs. (11) and (13) in eq. (15) and simplifying gives,

U̇(Γ, Γ̂) = −kΓTΓ̂×Ω̃, (16)

where Ω̃ := Ω̂− Ω.
Proposition 1: First variations of Γ, Γ̂ in S2 =

SO(3)/SO(2), a symmetric space, are of the form:

δΓ = Γ×Σ and δΓ̂ = Γ̂×Σ̂, (17)

where Σ, Σ̂ ∈ so(3), are variation vector fields on the Lie
algebra so(3).
Note that the variations given by eq. (17) are on the respec-
tive tangent spaces at Γ, Γ̂ ∈ S2, i.e., ΓTδΓ = 0 and Γ̂TδΓ̂ =
0. Using eqs. (14) and (17), the first variation in U(Γ, Γ̂) is
obtained as,

δU(Γ, Γ̂) = −kΓTΓ̂×Σ̃ where Σ̃ = Σ̂− Σ (18)

Theorem 1: The observer equations for the variational
estimator for reduced attitude and angular velocity in con-
tinuous time are given by

J ˙̃Ω = −Ω×JΩ̃−DΩ̃− kΓ̂×Γ

Ω̂ = Ω̃ + Ω, Ω̂(0) is known,
˙̂
Γ = Γ̂×Ω̂, Γ̂(0) is known.

(19)

Proof: Let the estimation error in angular velocity be
represented by the kinetic energy-like term:

T (Ω̃) =
1

2
Ω̃TJΩ̃ where J = JT ≻ 0 (20)

We now relate the first variation in Ω̃ with the first variation
Σ̃ of the reduced attitude estimation error. Note that if the
full attitude estimation error were to be defined as Q =
RR̂T ∈ SO(3), so that ΓTΓ̂ = pTQp, then the first variation
in ΓTΓ̂ (alternately U(Γ, Γ̂)) relates to the first variation in
Q (because p ∈ S2 is constant). This observation leads to:

δΩ̃ = ˙̃Σ + Ω̃×Σ̃, Σ̃ = Σ̂− Σ, (21)

and therefore δT (Ω̃) = Ω̃TJδΩ̃ = Ω̃TJ( ˙̃Σ + Ω̃×Σ̃). An
action functional is created from the energy-like terms in
eqs. (14) and (20), as follows:

S(L(Ω̃,Γ, Γ̂)) =
∫ T

0

[
1

2
Ω̃TJΩ̃− k(1− ΓTΓ̂)

]
dt (22)

where [0, T ] is the time interval over which this action
integral is defined. Thereafter, we apply the Lagrange-
d’Alembert principle to this action integral, along with a
dissipation term that is linear in the angular velocity esti-
mation error. This term can be obtained from a Rayleigh
dissipation function [30], [33], and is used to dissipate the
energy in the reduced attitude and angular velocity estimation
errors. The variational observer is obtained by applying the
Lagrange-d’Alembert principle, as follows:

δS(L(Ω̃,Γ, Γ̂)) =
∫ T

0

Σ̃TDΩ̃ dt (23)

where D = DT ≻ 0 and DΩ̃ is the dissipation term.
Applying reduced variations for ΓTΓ̂ and Ω̃ as outlined
earlier with fixed endpoints, we get:∫ T

0

[
Ω̃TJ( ˙̃Σ + Ω̃×Σ̃) + kΓTΓ̂×Σ̃− Ω̃TDΣ̃

]
dt = 0

=⇒ Ω̃TJΣ̃
∣∣∣T
0
−

∫ T

0

˙̃ΩTJΣ̃dt

+

∫ T

0

[
Ω̃T

{
J(Ω̃×Σ̃)−DΣ̃

}
+ kΓTΓ̂×Σ̃

]
dt (24)

8698

Authorized licensed use limited to: Amit Sanyal. Downloaded on March 01,2025 at 01:46:46 UTC from IEEE Xplore.  Restrictions apply. 



Due to fixed endpoints, Σ̃(0) = Σ̃(T ) = 0. Substituting this
into eq. (24) gives,∫ T

0

Σ̃T
[
− J ˙̃Ω− Ω̃×JΩ̃−DΩ̃− kΓ̂×Γ

]
dt = 0 (25)

As Σ̃(t) is variable for t ∈ (0, T ), eq. (25) leads to the result.

Eq. (19) describes the continuous-time variational observer
for reduced attitude and angular velocity states on TS2. The
observer in eqs. (19) is initialized by selecting appropriate
initial state estimates (Γ̂(0), Ω̂(0)) ∈ S2 × R3. Moreover
using the total energy function

E(Ω̃,Γ, Γ̂) = T (Ω̃) + U(Γ, Γ̂) (26)

as a Lyapunov function and applying a generalization of the
invariance principle (given by Theorem 8.4 of Khalil), it can
be readily shown that the observer is almost globally asymp-
totically stable (AGAS) at (Γ̂, Ω̂) = (Γ,Ω) and unstable at
(Γ̂, Ω̂) = (−Γ,Ω), that is, it converges to the true states in
an AGAS manner.

B. Discrete time variational observer design for reduced
attitude and angular velocity

A discrete-time version of the observer in (19) is obtained
in the form of a Lie group variational integrator (LGVI).
In addition to maintaining the energy-momentum properties
of the continuous-time observer, this LGVI scheme also
preserves the structure of the configuration space of the
system. Readers are directed to, e.g., [6], [31], for use
of LGVI to discretize systems obtained from variational
principles. We discretize the Lagrangian assuming a fixed
time step size ∆t between measurements:

L(Γi, Γ̂i, Ω̃i) =
1

2
Ω̃T

i JΩ̃i − k(1− ΓT
i Γ̂i), (27)

for i = 0, 1, 2, ..., N − 1, over the time interval [0, T ]. The
discrete action sum is defined as:

Sd(L(...)) = ∆t

N−1∑
i=0

L(Γi, Γ̂i, Ω̃i)

= ∆t

N−1∑
i=0

[
1

2
Ω̃T

i JΩ̃i − k(1− ΓT
i Γ̂i)

] (28)

Discretize the reduced attitude kinematics on S2 as:

Γ̂i+1 = F̂T
i Γ̂i, Γi+1 = FT

i Γi, where Fi, F̂i ∈ SO(3). (29)

Considering again ΓTΓ̂ = pTQp where Q is the full attitude
estimation error, the kinematic relation in (29) corresponds
to Qi+1 = QiF̃i where F̃i = FiF̂

T
i . With first variations of

Γi, Γ̂i (and therefore, Qi) defined as in the continuous-time
system, this leads to the first variation in F̃i as follows:

δF̃i = −Σ̃×
i F̃i + F̃iΣ̃

×
i+1, and

δ(ΓT
i Γ̂i) = (Γ×

i Σ
×
i )

TΓ̂i + ΓT
i (Γ̂

×
i Σ̂i) = ΓT

i Γ̂
×
i Σ̃i

(30)

where Σ̃i = Σ̂i − Σi. In addition, we discretize the angular
momentum as follows:

(JΩ̃i)
× = Ω̃×

i J + J Ω̃×
i

≈ 1

∆t
[(F̃i − I)J − J (F̃T

i − I)]

=
1

∆t

(
F̃iJ − J F̃T

i

) (31)

where I is the identity matrix and J = (1/2)tr(J)I−J . This
leads to the first variation in the discrete angular velocity:

(JδΩ̃i)
× =

1

∆t
(δF̃iJ − J δF̃T

i ) (32)

with δF̃i given in eq. (30). Therefore, the first variation of
the energy-like terms are: δU(Γi, Γ̂i) = −kΓT

i Γ̂
×Σ̃i and

δT (Ω̃i) = δT (F̃i)

=
1

∆t2
⟨J (F̃i − I), δF̃i⟩

=
1

∆t2
⟨J (F̃i − I), F̃iΣ̃

×
i+1 − Σ̃×

i F̃i⟩

=
1

2∆t2

[
⟨Σ̃×

i ,J F̃T
i ⟩ − ⟨Σ̃×

i+1, F̃
T
i J ⟩

]

=
1

2∆t2

[
⟨Σ̃×

i ,J F̃T
i − F̃T

i J ⟩ − ⟨Σ̃×
i+1, F̃

T
i J − J F̃i⟩

]

=
1

2∆t

[
⟨Σ̃×

i+1, F̃
T
i (JΩ̃i)

×F̃i⟩ − ⟨Σ̃×
i , (JΩ̃i)

×⟩

]
(33)

The first variation of the discrete action sum is obtained as:

δSd(...) =

N−1∑
i=0

[
− 1

2
⟨Σ̃×

i , (J Ω̃i)
×⟩+ 1

2
⟨Σ̃×

i+1, (F̃
T
i J Ω̃i)

×⟩

+ kΣ̃T
i Γ̂i

×
Γi∆t

]

=

N−1∑
i=0

[
Σ̃T

i F̃
T
i J Ω̃×

i − Σ̃T
i J Ω̃i + kΣ̃T

i Γ̂i
×
Γi∆t

]
(34)

Adding the dissipation term −DΩ̃i and applying the discrete
Lagrange-d’Alembert principle, leads to:

δSd(...)−
N−1∑
i=0

Σ̃T
i DΩ̃i∆t = 0 (35)

Substituting eq. (34) in eq. (35) with fixed endpoint varia-
tions (Σ̃0 = Σ̃N = 0), readily leads to the following observer
equations for the discrete variational reduced attitude and
angular velocity estimation scheme:

Ω̂i = Ω̃i +Ωi, Ω̂0, Γ̂0 known,

Γ̂i+1 = exp(−∆tΩ̂×
i )Γ̂i, i = 0, 1, . . . , N − 1,

(JΩ̃i)
× =

1

∆t
(F̃iJ − J F̃T

i ),

where J =
1

2
Tr[J ]I − J, and

(J +D∆t)Ω̃i+1 = F̃T
i JΩ̃i + kΓ×

i+1Γ̂i+1∆t.

(36)
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IV. SIMULATION RESULTS

This section presents numerical simulation results for
the discrete time variational observer design for reduced
attitude and angular velocity obtained in Section III-B. These
simulation results are provided for a time period of T = 60 s,
and with a time step size of ∆t = 0.01 s. The vehicle’s initial
reduced attitude and angular velocity estimates, respectively,
are

Γ̂0 = [0.1952 − 0.9759 0.0976]Tm.

and Ω̂0 = [0.2000 − 0.0500 0.1000]Trad/s.
(37)

Terminal conditions for measured reduced attitude unit vec-
tors, respectively, are

Γ0 = [0.5774 − 0.5774 0.5774]Tm.

and Γf = [−0.4082 0.4082 − 0.8165]Tm.
(38)

The control gain for the potential energy-like func-
tion is set to k = 3. The observer gain matri-
ces J = diag([0.0512 0.0602 0.0596]) and, D =
diag([0.2940 0.2625 0.3150]). We now consider a reduced-
attitude maneuver that transfers an initial reduced attitude
Γ0 ∈ S2 and an initial angular velocity Ω0 = 0 ∈ R3 to
a terminal reduced attitude Γf ∈ S2 and a terminal angular
velocity Ωf = 0 ∈ R3 in the fixed maneuver time T > 0.
According to Euler’s principal rotation theorem, there exists
an axis a ∈ S2 and an angle α ∈ [0, 2π) that satisfy
eαa

×
= ΓfΓ

−1
0 . We treat only a rest-to-rest reduced-attitude

maneuver that meets the specified boundary conditions given
by:

Γ(t) = eθ(t)a
×
Γ0

= [I + a× sin θ(t) + (a×)2(1− cos θ(t))]Γ0,

Ω(t) = θ̇(t)a,

(39)

where the rotation angle θ : [0, T ] → S1 satisfies

θ(0) = 0, θ̇(0) = 0,

θ(T ) =

{
α, 0 ≤ α < π

−2π + α, π ≤ α < 2π
, θ̇(T ) = 0.

(40)

The rotation angle θ(t) is chosen as a polynomial in time,
with coefficients determined to satisfy the initial and terminal
boundary conditions in (40). We follow the strategy of a
rotation about an inertially-fixed axis, given in [5]. This
axis, normalized to lie in S2, is given by a = Γ0 ×
Γf/||Γ0 × Γf || ∈ S2, assuming Γ0 and Γf are not collinear.
The angle α ∈ [0, 2π) satisfies:

cos(α) = ΓT
0 Γf . (41)

If Γ0 and Γf are collinear, then these vectors are either
equal or differ by a sign; if they are equal, then no attitude
maneuver is required, whereas if they differ by a sign, then
a is chosen to be an arbitrary direction perpendicular to Γ0

with α = π. Simulated measurements in attitude are obtained
by adding uniformly distributed random noise in [0, π/240]
rad to θ(t) in eq. (39). Angular velocity measurements are
corrupted by adding uniformly distributed random noise in
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Fig. 1: Simulation Results

[0, (π/240)2] rad/s to Ω(t) in eq. (39). The results of the sim-
ulation are summarized in Fig. 1a and Fig. 1b. The simulated
rest-to-rest maneuver occurs over a time period of T = 60 s.
The plot in Fig. 1a shows the reduced attitude estimation
error in terms of the potential energy-like function given
in eq. (14) converging to small values close to zero within
the simulated period, implying that the rigid body pointing
direction converges to the desired pointing direction, Γf . Fig.
1b shows the norm of the error between the estimated angular
velocity and measured angular velocity vectors of the rigid
body converging to zero. These simulation studies support
the stability of the proposed estimation scheme as well as
its robustness to sensor measurement noise, as estimates
converge to small neighborhoods of true states.

V. CONCLUSION

This article presents a variational observer for reduced
attitude (pointing direction) and angular velocity of a rigid
body in rotational motion. It starts with an overview of a
variational problem on the configuration space of the (n−1)-
dimensional sphere Sn−1 embedded in Rn. This is then used
to formulate the variational observer designed to estimate
states on the tangent bundle of the sphere S2, using a
Lagrangian constructed from energy-like terms that quantify
the state estimation errors, and applying the Lagrange-
d’Alembert principle with a dissipation term to dissipate
these energies. This is known to give a nonlinearly stable
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observer. This is followed by a discrete-time version ob-
tained using the discrete Lagrange-d’Alembert principle. The
discrete variational observer equations are in the form of a
variational integrator. Numerical simulation results obtained
with the discrete observer and simulated measurement noise
align with the theoretical stability properties, demonstrating
robustness to noise. Future work will provide complete
proofs of nonlinear stability and robustness for continuous
and discrete time versions of this variational observer.
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[29] K. Hüper, I. Markina, and F. S. Leite, “A Lagrangian approach
to extremal curves on Stiefel manifolds,” Journal of Geometric
Mechanics, vol. 13, no. 1, pp. 55–72, mar 2021. [Online]. Available:
https://www.aimsciences.org/article/doi/10.3934/jgm.2020031

[30] A. Bloch, J. Ballieul, P. Crouch, and J. Marsden, “Nonholonomic
mechanics and control, volume 24 of interdisciplinary applied mathe-
matics,” 2003.

[31] T. Lee, M. Leok, and N. McClamroch, “A Lie group variational
integrator for the attitude dynamics of a rigid body with applications to
the 3D pendulum,” in Proceedings of the IEEE Conference on Control
Applications, 2005, pp. 962–967.

[32] J. Moser and A. P. Veselov, “Discrete versions of some
classical integrable systems and factorization of matrix
polynomials,” Communications in Mathematical Physics, vol.
139, no. 2, pp. 217–243, Aug 1991. [Online]. Available:
https://doi.org/10.1007/BF02352494

[33] J. Marsden and T. Ratiu, Introduction to mechanics and symmetry: a
basic exposition of classical mechanical systems, 2nd ed. Springer
Verlag, 1999, vol. 17.

8701

Authorized licensed use limited to: Amit Sanyal. Downloaded on March 01,2025 at 01:46:46 UTC from IEEE Xplore.  Restrictions apply. 


