

1 **Title: Development of an *in vitro* Biofilm Model of the Human Supra-gingival**
2 **Microbiome for Oral Microbiome Transplantation**

3
4 Don H. K. Ketagoda¹, Peter Varga¹, Tracy R. Fitzsimmons¹, Nicole E. Moore^{2,3}, Laura S.
5 Weyrich^{2,3,4}, and Peter S. Zilm^{1*}

6 **Affiliations**

7 ¹Adelaide Dental School, University of Adelaide, SA, Australia.

8 ²Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide,
9 SA, Australia.

10 ³ (Present address) Department of Anthropology, The Pennsylvania State University,
11 University Park, PA, USA.

12 ⁴(Present address) Huck Institutes of the Life Sciences, The Pennsylvania State University,
13 PA, United States.

14

15 *Corresponding author, peter.zilm@adelaide.edu.au.

16

17

18

19

20

21

22

23

24

25

26

27

28 **Abstract**

29 The high prevalence of dental caries and periodontal disease place a significant burden on
30 society, both socially and economically. Recent advances in genomic technologies have linked
31 both diseases to shifts in the oral microbiota – a community of more than 700 bacterial species
32 that live within the mouth. The development of oral microbiome transplantation draws on the
33 success of fecal microbiome transplantation for the treatment of gut pathologies associated with
34 disease. Many current *in vitro* oral biofilm models have been developed but do not fully capture
35 the complexity of the oral microbiome which is required for successful OMT. To address this,
36 we developed an *in vitro* biofilm system that maintained an oral microbiome with 252 species
37 on average over 14 days. Six human plaque samples were grown in 3D printed flow cells (FCs)
38 on hydroxyapatite discs using artificial saliva medium (ASM). Biofilm composition and
39 growth were monitored by high throughput sequencing and confocal microscopy/SEM,
40 respectively. While a significant drop in bacterial diversity occurred, up to 291 species were
41 maintained in some flow cells over 14 days with 70% viability grown with ASM. This novel
42 *in vitro* biofilm model represents a marked improvement on existing oral biofilm systems and
43 provides new opportunities to develop oral microbiome transplant therapies.

44 **Key words**

45 Dental plaque, DNA sequencing, Oral Microbiome transplantation. Flow cell, Microbiota,
46 Oral bacteria, Species diversity.

47

48 **Introduction**

49 Globally, 2.5 billion and 743 million people are estimated to suffer from untreated dental caries
50 and severe periodontitis, respectively^{1,2}. The highest prevalence of caries occurs in
51 industrialised, middle-income countries as a result of refined sugar consumption (WHO 2017).

52 This trend is now being observed in developing countries³, highlighting the need for better
53 therapeutics.

54 Caries and periodontal disease aetiologies are directly linked to the microbiota present
55 in dental plaque biofilms – diverse, symbiotic microbial communities that live within
56 ecosystems on tooth enamel and dentine. The microbiota contained within plaque biofilms are
57 notoriously difficult to treat using classical methods, such as physical removal or antibiotics³.
58 Elsewhere in the body, microbiota have been manipulated using transplantation (e.g. Faecal
59 Microbiota Transplantation (FMT) therapy), where microbiota from one individual are placed
60 into another. While FMTs are now commonplace in the gut for certain diseases (e.g.
61 *Clostridioides difficile* infection)⁴, oral microbial transplants (OMT) do not exist for the mouth,
62 despite the promise they hold for treating recalcitrant oral diseases⁵. However, several
63 challenges will need to be addressed to develop successful OMT therapies, and one important
64 component is culturing donor dental plaque *in vitro* to increase bacterial biomass and improve
65 safety associated with direct transplant from one person to another.

66 Several *in vitro* biofilm models have been developed that have significantly broadened
67 our understanding of the bacterial interactions that cause disease⁶⁻⁸ but they do not always
68 reflect the dynamic nature of the oral environment⁹. For example, the Calgary and Zurich
69 model lack the shear forces associated with saliva flow and the continuous displacement of
70 nutrients typical of the oral environment. Flow cell (FC) systems can address these issues,
71 however, to our knowledge, these models have not been used to grow complex polymicrobial
72 oral biofilms required for OMT.

73 Here, we developed a 3D printed, flow cell inoculated with human supragingival dental
74 plaque grown in artificial salivary media, (ASM) and cultured over 14 days. We compared
75 bacterial biofilm thickness, volume, composition and diversity after growth and maintained a

76 core oral microbiome consisting of over 250 bacterial species. The methodology provides the
77 technology essential for future OMT therapies.

78 **Materials and Methods**

79 **Collection of supra-gingival plaque**

80 Ethical approval was obtained by the University of Adelaide (#H-2017-108). Dental
81 plaque was collected from six healthy volunteers (aged 25-60 years). Prior to plaque collection,
82 the tip of a sterile Gracey curette (5/6) (Henry Schein, NSW, Australia) was washed in 200µL
83 sterile PBS (pH 7.4) and stored at -80°C to monitor contaminant DNA¹⁰. Plaque was collected
84 from the buccal interproximal sites of the first two incisors (#31, #32) and the mesio-buccal
85 surface of maxillary first and second molars (#36, #37). Plaque samples from each volunteer
86 were pooled into 200µL sterile PBS.

87 **Flow cell and inoculation**

88

89 FCs were 3D printed in polypropylene (Fig. A.1) to enable sterilisation. The flow rate
90 of medium was adjusted to 2/5 the total volume of the FC⁷. Each FC contained five
91 hydroxyapatite (HA) discs (D=5mm x H=2mm; Clarkson Chromatography Products, PA,
92 USA). Following sterilisation, FCs were filled with 25% ASM devoid of sucrose 24hrs prior
93 to inoculation to allow pellicle formation and confirm sterility. ASM was modified from the
94 study by Dashper et al, and contained 0.50 g/L tryptone (Oxoid, England), 0.50 g/L neutralised
95 bacteriological peptone (Oxoid), 0.625 g/L type III porcine gastric mucin (Sigma-Aldrich,
96 Germany), 0.25 g/L yeast extract (Oxoid), 0.05 g/L KCl, 0.05 g/L CaCl₂, 0.088 g/L NaCl, and
97 1mg/L haemin (Sigma-Aldrich)⁷. Dental plaque was vortexed in PBS for 30s, and 100µL was
98 added to 1mL of ASM and used to inoculate the FC. Media flow began after 24hrs, and the
99 biofilm was grown at 36 °C for 14 days. 100µL of the planktonic culture was then removed for
100 sequencing, and each HA disc was removed and placed into a separate sterile 1.5mL tube. Two
101 discs were used for scanning electron microscopy (SEM) and confocal laser scanning

102 microscopy (CLSM), while three discs were kept for High Throughput Sequencing (HTS)
103 (Table 1).

104 **Biofilm Imaging**

105

106 *SEM*

107 Each disc was prepared for SEM¹¹, and coated with 2nm platinum, and imaged with a
108 SEM-FEI Quanta 450 FEG. Due to variations in the density of biofilms, micrographs were
109 imaged at three random positions on discs at 1,000x, 5,000x and 20,000x magnification.

110 *CLSM*

111 Each disc was washed in sterile PBS three times for 10 minutes to remove unbound
112 cells. Biofilms were stained using a LIVE/DEAD™ BacLight™ kit (Invitrogen, Vic,
113 Australia), following the manufacturer's instructions. Images were captured at three random
114 positions using an Olympus FV3000 microscope at 60x magnification using the dimensions of
115 1024 pixels for both axes. Each stack was acquired using a z-step size of 0.5µm. Images were
116 processed using IMARIS software (Bitplane, Zurich, Switzerland, version 7.6) for viability,
117 average biofilm volume (µm³), and thickness (µm). Collated cells were excluded from the
118 analysis.

119 **16S rRNA amplicon sequencing**

120 DNA was extracted from 100µL taken from controls; plaque used for inoculation of
121 flow cell (inoculated plaque); three HA discs with biofilm growth after 14 days; and planktonic
122 cells (Table 1) using the Qiagen DNeasy PowerSoil® Kit (Qiagen, Maryland, USA), following
123 the manufacturer's instructions. Extraction blank controls (EBCs) were added at the start and
124 end of each extraction to monitor laboratory contamination¹².

125 DNA sequencing libraries were generated by amplifying the V4 hypervariable region
126 of 16S rRNA gene, as previously described¹³, using an Invitrogen Platinum High Fidelity DNA
127 polymerase (Life Technologies, USA). Thermocycling conditions consisted of 6 mins

128 denaturation at 95°C; 38 cycles of 95°C for 30s, 50°C for 30s and 72°C for 90s; and a final
129 extension of 60°C for 10 minutes¹⁴ (Adler et al. 2013); one no-template control (NTC) was
130 added per amplification batch. Samples were quantified using the Invitrogen Qubit dsDNA BR
131 assay (Life Technologies), purified using 1.1X Axygen AxyPrep Mag™ PCR Clean-up beads,
132 quantified using the D1000 reagents on the Tapestation (Agilent, Santa Clara, CA, USA), and
133 equimolar pooled at 5nM for sequencing at the South Australia Health and Medical Research
134 Institute (SAHMRI, Adelaide, Australia) on an Illumina MiSeq using 150bp paired-end
135 sequencing. The demultiplexed sequencing data was imported into the Quantitative Insights
136 Into Microbial Ecology (QIIME2-2021.4)¹⁵. Deblurring was performed on merged,
137 demultiplexed, paired-end sequence reads that were quality filtered, and DNA sequences were
138 denoised in amplicon sequence variants (ASVs)¹⁶ and trimmed to 120bp.

139 Contaminants from laboratory sources (EBCs and NTCs) and FC controls were
140 removed using the R package decontam¹⁷ implemented in phyloseq R¹⁸ using the prevalence
141 based method¹⁷. Decontam score thresholds were chosen based on a histogram of decontam
142 scores for each filtration step (Appendix Table 1).

143 *Visualization and Statistical analysis*

144 Diversity and compositional analyses were done using QIIME2. Sequences from each
145 sample were rarefied to 1,462 and 26,608 sequences, as the highest number of sequences from
146 ASM samples. α -diversity was calculated using the observed features metric of each sample.
147 The β -diversity of the samples were analysed using weighted and unweighted UniFrac
148 (phylogenetic matrices), Jaccard, and the Bray Curtis indexes and visualised using principal
149 coordinates analysis (PCoA) plots with EMPeror¹⁹. A Kruskal-Wallis test was used to assess
150 significant differences in α -diversity between sample types. Significant differences in β -
151 diversity was assessed using PERMANOVA. A corrected p-value of <0.05 was considered

152 significant. Linear discriminant analysis (LDA) effect size (LEfSe)²⁰ was used to detect
153 significantly abundant bacterial species between groups; an LDA score of >2 was used as the
154 significance threshold. Significantly abundant taxa detected via LefSe analysis were visualised
155 in a heat map using the ‘heatmap’ function in QIIME2 (Appendix Figure 4).

156 **Results**

157 **Viability, thickness and volume of biofilms grown in ASM**

158 Qualitative SEM assessment of biofilms grown on HA discs in ASM were predominantly
159 rod- and cocci-shaped bacteria that grew in ‘islands’ and varied in biofilm density between
160 donors (Figure 1A, B). CLSM analysis revealed an average $1.57 \times 10^4 \pm 6.08 \times 10^3$ and
161 4283 ± 2166 live and dead cells from plaque grown in ASM (Table 2), and importantly, >70%
162 of cells were viable (Figure 2A). Lastly, the average thickness and biovolume of ASM-grown
163 biofilms were $30.88 \pm 6.11 \mu\text{m}$ and $4.36 \times 10^5 \pm 8.48 \times 10^4 \mu\text{m}^3$, respectively.

164 **Significant differences in microbial composition between biological and control samples.**

165 Initial analysis aimed to reduce the impact of contaminant DNA introduced during
166 DNA extraction and library preparation, as well as the laboratory environment during
167 collection and growth in the FC system. We examined the composition of the controls
168 alongside the biological samples by conducting PCoA of unweighted UniFrac values (Figure
169 2B). The microbial composition of laboratory controls (EBCs/NTCs) was significantly
170 different from biological samples, including spent medium, planktonic cells, inoculated
171 samples, and biofilms grown over 14-days in ASM (PERMANOVA, pseudo-F; test: 21.51;
172 $p \leq 0.001$). Contaminants identified in the EBCs/NTCs accounted for 30.55% (42 species) of
173 the total species and were removed from the data using the decontam package. The composition
174 of FC controls (Table 1) was also significantly different from biological samples
175 (PERMANOVA, pseudo-F; test: 17.99; $p \leq 0.001$). As such, we also then removed contaminant

176 amplicon sequence variants present in the FC controls using decontam, which accounted for
177 17.63% (35 species) of the remaining sequences in all biological samples (Appendix Table 2)
178 post filtering with EBCs.

179 **α -diversity was reduced in biofilms after 14 days (T14)**

180 We predicted that α -diversity (unweighted UniFrac, i.e. PERMANOVA) may decrease
181 after growth in the FC, as seen with other systems⁸. We compared the α -diversity between
182 inoculated plaque (T0) and T14 biofilms (Table 1). Inoculated plaque samples had an average
183 of 312 species per donor, and after 14 days growth *in vitro*, an average of 252 species were
184 recovered from each donor biofilm (291 species recovered overall). This was a significant
185 decrease in α -diversity compared to the original inoculum (Kruskal-Wallis Pairwise; H test:
186 6.25, $p<0.05$), but we retained donor specific α -diversity signatures in all sample groups
187 (Kruskal-Wallis; All Groups; H test: 13.05, $p>0.05$) (Appendix Figure 2A, B). Overall, the α -
188 diversity was not significantly different between removal of plaque from the donor and
189 inoculation into the flow cell (Kruskal-Wallis Pairwise; H test: 1.19, $p>0.05$).

190 **β -diversity significantly differed between inoculated plaque and T14 biofilms in ASM**

191 We next examined compositional shifts from the inoculum through to T14 biofilms
192 grown in ASM. Significant differences in bacterial composition were observed after 14 days
193 *in vitro*. Inoculated plaque and T14 biofilms were significantly different across all six donors
194 (PERMANOVA test; pseudo-F; test: 5.68; $p\leq0.001$). However, the microbial composition of
195 biofilms grown on three discs from the same FC clustered closely according to each donor.

196 **Reduction in significantly abundant species at T14 biofilms compared to inoculated
197 plaque**

198 When inoculated plaque was compared to T14 biofilms, the relative abundance of
199 *Firmicutes* and *Bacterioidetes* increased while *Actinobacteria* and *Fusobacteria* decreased.
200 Specifically, LefSe identified 42 significantly abundant ASVs that were higher in abundance
201 at the time of inoculation (T0) compared to T14, belonging to *Firmicutes* (n=11),
202 *Actinobacteria* (n=9), *Proteobacteria* (n=6), *Fusobacteria* (n=2), *Bacterioidetes* (n=1),
203 *Tenericutes* (n=1), *GN02* (n=1), *Spirochaetes* (n=1) and *Synergistetes* (n=1) phyla (Figure 3).
204 In contrast, 16 differentially abundant genera were more prevalent in T14 biofilms, *Firmicutes*
205 (n=9), *Actinobacteria* (n=3), *Bacterioidetes* (n=3) and *Proteobacteria* (n=1).

206 **Discussion**

207 The present study provides the methodology to culture human plaque biofilms on
208 hydroxyapatite over 14 days. It is thought that ~250-300 bacterial species are thought to be
209 maintained as a core microbiome in the oral cavity²¹, a significant challenge for OMT therapy
210 is to reproduce this diversity *in vitro*. Visual analysis of biofilms was consistent with other
211 research which found local variations in the density of biofilms on hydroxyapatite discs^{7,22}.
212 These findings highlight our selection to include three random sampling regions for biofilm
213 analysis.

214 DNA sequencing indicated the α - and β - diversity of T14 biofilms grown with ASM
215 was significantly decreased compared to inoculated plaque with a significant alteration in five
216 phyla between inoculated plaque and T14 biofilms. This was a similar shift in bacterial
217 composition at the phyla level to the study by Du et al. 2017²³. A significant decrease in α -
218 diversity was observed for biofilms grown in ASM; however, an average of 252 bacterial
219 species across the six donor samples were detected in each plaque sample (275—244 species)
220 after 14 days. To our knowledge, this is the highest oral microbial diversity yet reported using
221 an *in vitro* flow cell model.

222 Examination of the significantly altered taxa between T0 and T14 biofilms grown in
223 ASM, revealed a reduction in *Actinobacteria* and *Fusobacteria* and an increase in
224 *Bacteroidetes* and *Firmicutes*. The majority of *Actinobacteria* species that reduced in
225 abundance after 14 days were oral commensals²⁴. Although this decrease is not ideal, it could
226 be explained by the increase in abundance of *Firmicutes* and *Bacteroidetes*, which is shown to
227 form an alliance against *Actinobacteria*²⁵. The reduction of *Fusobacteria*, *Spirochaetes*, and
228 *Synergistetes* at 14 days may be a positive result as these phyla are linked to poor oral health
229 outcomes²⁶⁻²⁸. However, it is unclear when this transition in abundance occurred.

230 Kistler, et al. (2015) also noted a significant change in bacterial composition over time
231 using saliva as the inoculum, the taxonomic composition of biofilms grown *in vitro* were
232 similar to dental plaque, with the most abundant genera being *Prevotella*, *Streptococcus*, and
233 *Veillonella*⁸. The shift in bacterial composition at T14 maybe due to the absence of the host-
234 immune interaction⁸ or the absence of certain nutrients and growth factors in the medium. ASM
235 can support the growth of a wide range of bacterial species but may decrease metabolic activity
236 in others such as *A. naeslundii*²⁹. Previously published research included sucrose in ASM,
237 however sucrose was excluded in this study because it favours the growth of cariogenic
238 bacteria^{7,30}.

239 In conclusion, the 3D printed biofilm model was found to be capable of growing oral
240 biofilms with the highest oral microbial diversity reported (average of 252 species) using ASM.
241 This study also demonstrated the ability of ASM to maintain a high species diversity which
242 suggests the methodology has the potential to be used as an antimicrobial testing platform for
243 antimicrobials, oral care products, natural and synthetic compounds, and oral microbiome
244 transplant therapy³¹.

245

246 **Availability of Data and Materials**

247 All QIIME2, code, analysis files, and R code used to plot figures can be found here:

248 https://github.com/DonKevin1994/In_Vitro_Biofilm_Model

249

250 **Acknowledgements**

251 The authors would also like to acknowledge the instruments and scientific and technical
252 assistance of Adelaide Microscopy at the University of Adelaide, North Terrace Campus, a
253 facility that is funded by the University and State and Federal Governments.

254

255 **Declaration of Conflicting Interests**

256 All authors declare no potential conflicts of interest with respect to the authorship and/or
257 publication of this article.

258

259 **Funding**

260 The authors gratefully acknowledge funding by the Australian Dental Research Foundation
261 (Grant 515-2019) and the National Health & Medical Research Council Ideas Grant
262 (2019/GNT1187737).

263

264 **Tables and Figure Legends**

265 **Table 1. List of samples collected during the study.** Biological samples,1-4; Control
266 samples, 5-8.

Sample number	Sample name	Description
1.	Inoculated plaque/T0	Plaque sample mixed with nutrient media prior to FC inoculation
2.	T14 biofilms	Biofilms formed on HA discs after 14 days
3.	Planktonic cells	Planktonic cells taken from the FC after 14 days

4.	Spent medium	Media outflow (waste) from the FC collected for 14 days
5.	FC control	Media collected from FC prior to plaque inoculation
6.	Media control at T0	Nutrient media collected at T0
7.	Media control at T14	Nutrient media collected at T14
8.	PBS control	PBS collected prior to the start of the experiment

267
268

Table 2. Number of live and dead cells, biofilm thickness and biovolume across 6 donors

Subject	Number of live cells	Number of dead cells	Biofilm thickness (μm)	Biovolume (μm ³)
1	1.21 x10 ⁴ ±4.61 x10 ³	3759.33±2162.45	30.75±10.96	4.34 x10 ⁵ ±1.52 x10 ⁵
2	1.78 x10 ⁴ ±4.52 x10 ³	7075.00±1038.48	40.00±3.00	5.63 x10 ⁵ ±4.15 x10 ⁴
3	5.73 x10 ³ ±1.75 x10 ³	1973.33±1521.70	22.17±5.11	3.15 x10 ⁵ ±7.09 x10 ⁴
4	1.20 x10 ⁴ ±8.18 x10 ³	2260.33±975.12	35.00±16.52	4.93 x10 ⁵ ±2.30 x10 ⁵
5	1.16 x10 ⁴ ±2.70 x10 ³	6701.00±1102.21	29.17±4.37	4.12 x10 ⁵ ±6.06 x10 ⁴
6	9.76 x10 ³ ±3.65 x10 ³	3933.67±1335.28	28.17±1.04	3.98 x10 ⁵ ±1.46 x10 ⁴

269

270 **Figure 1. Supragingival dental plaque biofilm formation on HA discs following 14 days**
271 **growth using ASM A)** SEM images of HA discs grown in ASM from all 6 donors, 1-6. Images
272 were taken from three random regions of each HA disc using the magnifications: 1,000x,
273 5,000x and 20,000x. Scale bars = 2μm, 10μm and 50μm, respectively.

274 **Figure 2. Cell viability and 16S rRNA sequencing analysis on microbiota grown in ASM**
275 **for 14-days.** A) Percentage viability of supragingival biofilms established in the established

276 biofilm grown using ASM media. 73.5% and 72.4% of cells in biofilms were alive and 26.5%
277 and 27.6% were dead in ASM media. Error bars represent mean \pm S.D. *** p <0.0001, ns: non-
278 significant. B) PCoA plot indicating differentiation of microbiota. Axis 1 explains 31.04% of
279 the variation in the dataset; axis 2 explains 12.00% of the variation and axis 3 explains 7.098%
280 of the variation. The bacterial samples including inoculated and collected plaque, T14 biofilms
281 and planktonic cells, cluster more distantly along the first ordination axis whereas control
282 samples representing the sample blanks and negative controls cluster closely together. C)
283 Comparison of β -diversity of the collected, inoculated and T14 biofilms grown in ASM. Axis
284 1 explains 51.75% of the variation in the dataset; axis 2 explains 21.36% of the variation and
285 axis 3 explains 11.65% of the variation. D) Change in the dominant phyla from T0 to T14.

286 **Figure 3.** Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis at species level to
287 compare the oral microbiome profiles of the donors between inoculated plaque (T0) and T14
288 biofilms grown in ASM.

289 **References**

- 290
- 291 1 Jepsen, S. et al. Periodontal manifestations of systemic diseases and developmental
292 and acquired conditions: Consensus report of workgroup 3 of the 2017 World
293 Workshop on the Classification of Periodontal and Peri-Implant Diseases and
294 Conditions. *Journal of Clinical Periodontology* **45**, S219-S229,
295 doi:<https://doi.org/10.1111/jcpe.12951> (2018).
- 296 2 Kassebaum, N. J. et al. Global, regional, and national prevalence, incidence, and
297 disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a
298 systematic analysis for the global burden of diseases, injuries, and risk factors. *J
299 Dent Res* **96**, 380-387, doi:10.1177/0022034517693566 (2017).
- 300 3 Bhayade, S. S., Mittal, R., Chandak, S. & Bhoneley, A. Assessment of social,
301 demographic determinants and oral hygiene practices in relation to dental caries
302 among the children attending Anganwadis of Hingna, Nagpur. *J Indian Soc Pedod
303 Prev Dent* **34**, 124-127, doi:10.4103/0970-4388.180415 (2016).
- 304 4 Lee, C. H. et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical
305 Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A
306 Randomized Clinical Trial. *Jama* **315**, 142-149, doi:10.1001/jama.2015.18098 (2016).
- 307 5 Nascimento, M. M. Oral microbiota transplant: a potential new therapy for oral
308 diseases. *J Calif Dent Assoc* **45**, 565-568 (2017).
- 309 6 Belibasakis, G. N. & Thurnheer, T. Validation of antibiotic efficacy on in vitro
310 subgingival biofilms. *J Periodontol* **85**, 343-348, doi:10.1902/jop.2013.130167 (2014).

311 7 Dashper, S. G. *et al.* Casein Phosphopeptide-Amorphous Calcium Phosphate
312 Reduces *Streptococcus mutans* Biofilm Development on Glass Ionomer Cement and
313 Disrupts Established Biofilms. *PLoS One* **11**, e0162322,
314 doi:10.1371/journal.pone.0162322 (2016).

315 8 Kistler, J. O., Pesaro, M. & Wade, W. G. Development and pyrosequencing analysis
316 of an in-vitro oral biofilm model. *BMC Microbiol* **15**, 24, doi:10.1186/s12866-015-
317 0364-1 (2015).

318 9 Salli, K. M. & Ouwehand, A. C. The use of in vitro model systems to study dental
319 biofilms associated with caries: a short review. *J Oral Microbiol* **7**, 26149,
320 doi:10.3402/jom.v7.26149 (2015).

321 10 Eisenhofer, R. *et al.* Contamination in Low Microbial Biomass Microbiome Studies:
322 Issues and Recommendations. *Trends in Microbiology* **27**, 105-117,
323 doi:<https://doi.org/10.1016/j.tim.2018.11.003> (2019).

324 11 Yap, B., Zilm, P. S., Briggs, N., Rogers, A. H. & Cathro, P. C. The effect of sodium
325 hypochlorite on *Enterococcus faecalis* when grown on dentine as a single- and multi-
326 species biofilm. *Aust Endod J* **40**, 101-110, doi:10.1111/aej.12073 (2014).

327 12 Weyrich, L. S. *et al.* Laboratory contamination over time during low-biomass sample
328 analysis. *Molecular Ecology Resources* **19**, 982-996,
329 doi:<https://doi.org/10.1111/1755-0998.13011> (2019).

330 13 Caporaso, J. G. *et al.* Ultra-high-throughput microbial community analysis on the
331 Illumina HiSeq and MiSeq platforms. *The ISME Journal* **6**, 1621-1624,
332 doi:10.1038/ismej.2012.8 (2012).

333 14 Adler, C. J. *et al.* Sequencing ancient calcified dental plaque shows changes in oral
334 microbiota with dietary shifts of the Neolithic and Industrial revolutions. *Nat Genet* **45**,
335 450-455, 455e451, doi:10.1038/ng.2536 (2013).

336 15 Bolyen, E. *et al.* Author Correction: Reproducible, interactive, scalable and extensible
337 microbiome data science using QIIME 2. *Nat Biotechnol* **37**, 1091,
338 doi:10.1038/s41587-019-0252-6 (2019).

339 16 Amir, A. *et al.* Deblur Rapidly Resolves Single-Nucleotide Community Sequence
340 Patterns. *mSystems* **2**, doi:10.1128/mSystems.00191-16 (2017).

341 17 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple
342 statistical identification and removal of contaminant sequences in marker-gene and
343 metagenomics data. *Microbiome* **6**, 226, doi:10.1186/s40168-018-0605-2 (2018).

344 18 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive
345 analysis and graphics of microbiome census data. *PLoS One* **8**, e61217,
346 doi:10.1371/journal.pone.0061217 (2013).

347 19 Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for
348 visualizing high-throughput microbial community data. *Gigascience* **2**, 16,
349 doi:10.1186/2047-217x-2-16 (2013).

350 20 Segata, N. *et al.* Metagenomic biomarker discovery and explanation. *Genome Biol*
351 **12**, R60, doi:10.1186/gb-2011-12-6-r60 (2011).

352 21 Bik, E. M. *et al.* Bacterial diversity in the oral cavity of 10 healthy individuals. *ISME J*
353 **4**, 962-974, doi:10.1038/ismej.2010.30 (2010).

354 22 Nyvad, B., Crielaard, W., Mira, A., Takahashi, N. & Beighton, D. Dental caries from a
355 molecular microbiological perspective. *Caries Res* **47**, 89-102,
356 doi:10.1159/000345367 (2013).

357 23 Du, Q., Li, M., Zhou, X. & Tian, K. A comprehensive profiling of supragingival
358 bacterial composition in Chinese twin children and their mothers. *Antonie Van
359 Leeuwenhoek* **110**, 615-627, doi:10.1007/s10482-017-0828-4 (2017).

360 24 Scholewie, K. *et al.* Bacterial biofilm composition in healthy subjects with and without
361 caries experience. *J Oral Microbiol* **11**, 1633194,
362 doi:10.1080/20002297.2019.1633194 (2019).

363 25 Li, W. & Ma, Z. FBA Ecological Guild: Trio of Firmicutes-Bacteroidetes Alliance
364 against Actinobacteria in Human Oral Microbiome. *Scientific Reports* **10**, 287,
365 doi:10.1038/s41598-019-56561-1 (2020).

366 26 Harrandah, A. M., Chukkapalli, S. S., Bhattacharyya, I., Progulske-Fox, A. & Chan, E.
367 K. L. Fusobacteria modulate oral carcinogenesis and promote cancer progression. *J*
368 *Oral Microbiol* **13**, 1849493, doi:10.1080/20002297.2020.1849493 (2021).
369 27 McCracken, B. A. & Nathalia Garcia, M. Phylum Synergistetes in the oral cavity: A
370 possible contributor to periodontal disease. *Anaerobe* **68**, 102250,
371 doi:10.1016/j.anaerobe.2020.102250 (2021).
372 28 Visser, M. B. & Ellen, R. P. New insights into the emerging role of oral spirochaetes
373 in periodontal disease. *Clin Microbiol Infect* **17**, 502-512, doi:10.1111/j.1469-
374 0691.2011.03460.x (2011).
375 29 Arzmi, M. H. *et al.* Polymicrobial biofilm formation by *Candida albicans*, *Actinomyces*
376 *naeslundii*, and *Streptococcus mutans* is *Candida albicans* strain and medium
377 dependent. *Med Mycol* **54**, 856-864, doi:10.1093/mmy/myw042 (2016).
378 30 Rolla, G., Scheie, A. A. & Ciardi, J. E. Role of sucrose in plaque formation. *Scand J*
379 *Dent Res* **93**, 105-111, doi:10.1111/j.1600-0722.1985.tb01317.x (1985).
380 31 Nath, S. *et al.* Development and characterization of an oral microbiome transplant
381 among Australians for the treatment of dental caries and periodontal disease: A study
382 protocol. *PLoS One* **16**, e0260433, doi:10.1371/journal.pone.0260433 (2021).
383