
A Case Study on the Convergence of Direct Policy Search for
Linear Quadratic Gaussian Control

Darioush Keivan1, Peter Seiler2, Geir Dullerud1, and Bin Hu3

Abstract— Policy optimization has gained renewed attention
from the control community, serving as a pivotal link between
control theory and reinforcement learning. In the past few
years, the global convergence theory of direct policy search on
state-feedback linear control benchmarks has been developed.
However, it remains difficult to establish the global convergence
of policy optimization on the linear quadratic Gaussian (LQG)
problem, marked by the presence of suboptimal stationary
points and the lack of cost coerciveness. In this paper, we revisit
the policy optimization intricacies of LQG via a case study
on first-order single-input single-output (SISO) systems. For
this case study, while the issue related to suboptimal stationary
points can be easily fixed via parameterizing the policy class
more carefully, the non-coerciveness of the LQG cost function
still poses a substantial obstacle to a straightforward global con-
vergence proof for the policy gradient method. Our contribu-
tion, within the scope of this case study, introduces an approach
to construct a positive invariant set for the policy gradient flow,
addressing the non-coerciveness issue in the global convergence
proof. Based on our analysis, the policy gradient flow can
be guaranteed to converge to the globally optimal full-order
dynamic controller in this particular scenario. In summary,
although centered on a specific case study, our work broadens
the comprehension of how the absence of coerciveness impacts
LQG policy optimization, highlighting inherent complexities.

I. INTRODUCTION

The empirical successes of deep reinforcement learn-
ing [1], [2] have sparked considerable interest in direct
policy search techniques within the field of control [3].
Substantial progress has been made in comprehending the
global convergence properties of direct policy search across
various linear state-feedback control problems such as the
linear quadratic regulator (LQR) [4]–[10], risk-sensitive con-
trol [11]–[15], linear quadratic dynamic games [16]–[18],
Markov jump linear control [19]–[21], stabilization [22]–
[24], and nonsmooth H∞ synthesis [25]. More recently,
the research attention has been shifted towards the output
feedback setting [26]–[32], with a particular emphasis on
the linear quadratic Gaussian (LQG) problem [33]–[36]. For
the LQG problem, globally optimal controllers emerge as
dynamical controllers, deduced by solving two algebraic
Riccati equations [37]. Although the LQG problem has
been extensively studied in classical control, its optimization
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landscape over the policy space is less explored. Recent
studies [33], [34] delved into the connectivity of the feasible
set of full-order stabilizing dynamical controllers, revealing
that while potentially disconnected, they encompass at most
two path-connected components that are diffeomorphic under
a similarity transformation, holding promise for gradient-
based algorithms in finding a global optimal policy. However,
it remains difficult to establish the global convergence of
policy optimization for the LQG problem, marked by two
important issues: the presence of suboptimal stationary points
and the lack of cost coerciveness.

To better understand the theoretical properties of direct
policy search on LQG, this paper presents a case study of
a specific single-input single-output (SISO) system, which
was originally studied as Example 3 of [33]. This example
was previously utilized to demonstrate the existence of
suboptimal stationary points in the LQG policy optimization
problem1. For the system in our case study, we show that the
issue related to suboptimal stationary points can be easily
fixed via adopting a controllable policy parameterization.
However, the non-coerciveness of the LQG cost function
still poses a substantial obstacle to proving the global
convergence of direct policy search on such a seemingly
simple example. Our contribution, within the scope of this
case study, introduces an approach to construct a positive
invariant set for the policy gradient flow, addressing the non-
coerciveness issue in the global convergence proof. Based
on our analysis, the policy gradient flow can be guaranteed
to converge to the globally optimal full-order dynamic con-
troller in this particular scenario. Our result sheds new light
on how to address the non-coerciveness issue in the LQG
policy optimization problem.

II. BACKGROUND AND PROBLEM FORMULATION

A. Background: Policy Optimization for LQG

In this section, we briefly review the LQG policy opti-
mization formulation from [33]. Consider a continuous-time
linear dynamical system

ẋ(t) = Ax(t) +B u(t) + w(t)

y(t) = C x(t) + v(t)
(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is
the control input, y(t) ∈ Rp is the output measurement,
w(t) ∈ Rn is the system process noise, and v(t) ∈ Rp is the

1As discussed in [33], [35], suboptimal stationary points are tied to a loss
of minimality (controllability or observability). Indeed, full-order minimal
controllers cannot be saddle points [33].
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measurement noise. It is assumed that both w(t) and v(t)
are white Gaussian noises with intensity matrices W ⪰ 0
and V ≻ 0. The LQG cost is defined as

J := lim
T→∞

1

T
E
[ ∫ T

0

(
x⊤Qx+ u⊤Ru

)
dt

]
(2)

where Q ⪰ 0 and R ≻ 0. The standard LQG problem as-
sumes controllability for the pairs (A,B) and (A,W

1
2 ), and

observability for the pairs (C,A) and (Q
1
2 , A). Then LQG

can be tackled by solving two algebraic Riccati equations
[37], yielding the following optimal controller:

ξ̇(t) = (A−BK − LC) ξ(t) + Ly(t),

u(t) = −K ξ(t),
(3)

where ξ(t) ∈ Rn is the internal state of the controller, K ∈
Rm×n is the feedback gain, and L ∈ Rn×p is the Kalman
gain. It is well-known that K and L can be evaluated as
K = R−1BTS and L = PCTV −1, respectively, with S
and P being the unique positive semi-definite solutions to
the following Riccati equations:

SA+ATS − SBR−1BTS +Q = 0, (4)

AP + PAT − PCTV −1CP +W = 0. (5)

Drawing from (3), we can formulate the LQG policy opti-
mization problem by focusing solely on full-order dynamical
controllers that are parameterized as

ξ̇(t) = AK ξ(t) +BK y(t),

u(t) = CK ξ(t),
(6)

where AK ∈ Rn×n, BK ∈ Rn×p, and CK ∈ Rm×n

are the decision variables to be solved. Then, LQG can be
formulated as the following policy optimization problem

min
K∈K

J(K) (7)

where K := (AK , BK , CK) is any full-order dynamical
controller parameterized by (6), J is the LQG cost function,
and K is the set of all stabilizing full-order dynamical
policies, i.e. K = {(AK , BK , CK) : Acl,K is Hurwitz} with
Acl,K being defined as

Acl,K :=

[
A BCK

BKC AK

]
.

For any stabilizing policy K ∈ K, the cost J is given by

J(K) = tr(Qcl,KXK) = tr(Wcl,KYK) (8)

where XK and YK are the unique positive semi-definite
solutions to the following Lyapunov equations

AclXK +XKAT
cl +Wcl,K = 0

AT
clYK + YKAcl +Qcl,K = 0.

(9)

In the above equations, Qcl,K and Wcl,K are defined as

Qcl,K :=

[
Q 0
0 CT

KWCK

]
,Wcl,K :=

[
W 0
0 BKV BT

K

]
.

For the policy search problem (7), there are two main
issues. First, there may exist suboptimal stationary points

that prevent convergence to the global minimum. Second,
the LQG cost can be non-coercive [3], [33], and it is not
even clear how to guarantee that direct policy search can
stay in the feasible set K. These challenges motivate our
study, aiming for a better understanding.

B. Problem Statement: Case Study on an Example from [33]

In this paper, we will re-examine the above difficulties via
a case study on a specific SISO system that was originally
presented as Example 3 in [33]. In this particular example,
we have A = −1, B = 1, C = 1, W = V = 1, and further
assume Q = 1 and R = 1. In this setting, we can easily
address the existence of suboptimal stationary points2 via
choosing BK = 1. Such a simplified policy parameterization
is actually natural for this example, since there is some
redundancy in using both parameters (BK , CK) due to the
fact that the transfer function of the controller is just equal
to K(s) = (BKCK)(sI − AK)−1. Using BK = 1, the
feasibility set K in our problem can be simplified as

K =

{[
AK

CK

]
∈ R2 : AK < 1, AK + CK < 0

}
. (10)

For simplicity, we will denote AK as scalar a and CK as
scalar c, respectively. Within the feasible set (10), the LQG
cost (8) can be calculated as

J = −−a2 + ac2 + a+ c3 − 3c2 + c

2(a+ c)(a− 1)
(11)

The derivatives of J with respect to a and c are given by

∂J

∂a
=

c(a2c+ a2 + 2ac2 − 6ac+ c3 − 3c2 + 4c)

2(a+ c)2(a− 1)2
,

∂J

∂c
= −2a2c+ a2 + 4ac2 − 6ac+ 2c3 − 3c2

2(a+ c)2(a− 1)
.

(12)

We will see that even for this seemingly simple example, the
lack of coerciveness still causes significant trouble for prov-
ing a global convergence result. We believe that the insights
gained from this example will advance our understanding of
the non-coercive issue in LQG policy optimization.

III. OPTIMIZATION LANDSCAPE

In this section, we explore the optimization landscape of
the above SISO example in more detail. From [33], it is
known that the feasible set (10) is connected, and the LQG
cost (11) is non-coercive over the feasible set. The following
lemma provides a characterization of the stationary points
for the above example, revealing the subtle optimization
landscape caused by the non-coerciveness issue.

Lemma 1 (Non-coerciveness): Within the set (10), the
cost (11) has a single stationary point (which is the global
optimal point). However, at the boundary of the feasible set
(10), there exists a point where the cost function retains a
finite value, yet the corresponding gradient is indefinable.

2Based on [33], any point satisfying BK = CK = 0 and AK < 0 is a
suboptimal stationary point.
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Proof: Assume a + c ̸= 0 and a ̸= 1 so that ∇J is
well defined. Setting ∂J

∂a = 0 and ∂J
∂c = 0, we have[

c(a2c+ a2 + 2ac2 − 6ac+ c3 − 3c2 + 4c)
2a2c+ a2 + 4ac2 − 6ac+ 2c3 − 3c2

]
=

[
0
0

]
(13)

Multiplying (13) by the matrix
[
2c−3 3c−c2

2c+1 −c−c2

]
from the left

hand side yields the following two equations:[
4c2(a2 + 2c− 3)

4c2(−2ac− c2 + 2c+ 1)

]
=

[
0
0

]
. (14)

The value c = 0 is a solution to these equations, which gives
(a∗, c∗) = (0, 0) as the solution, in which, the corresponding
gradient is indefinable. Notice that (14) is also satisfied when
a2 = −2c + 3 and 2ac = −c2 + 2c + 1. Merging the two
equations, we obtain c4+4c3−10c2+4c+1 = 0. This leads
to three solutions (a∗, c∗) ∈ {(1, 1), (1−2

√
2, 2

√
2−3), (1+

2
√
2,−2

√
2 − 3)}. In summary we have four solutions:

(a∗, c∗) = (1 − 2
√
2, 2

√
2 − 3) is the only stationary point

inside the feasible set, while (a∗, c∗) = (0, 0) is on the
boundary. The other two solutions are outside the feasible set.
Now it is straightforward to verify that (1− 2

√
2, 2

√
2− 3)

is the global optimal point. We can also demonstrate that the
cost function attains a finite value as we take a sequence
approaching the stationary point (a∗, c∗) = (0, 0) using
the stabilizing controller Kϵ =

[ −ϵ
−2ϵ

]
. It is clear that

limϵ→0+ J(Kϵ) = 1
2 and limϵ→0+ Kϵ ∈ ∂K, illustrating

the non-coerciveness of the optimization landscape, thereby
completing the proof.

IV. GLOBAL CONVERGENCE OF GRADIENT FLOW

In this section, we prove that the policy gradient flow ini-
tialized from any point in the feasible set (10) is guaranteed
to stay in the feasible set and will converge to the global
optimal solution regardless of the lack of coerciveness. For
the above example, the gradient flow is defined as

d

dt

[
a(t)
c(t)

]
= −∇J

([
a(t)
c(t)

])
. (15)

The cost value is known to be decreasing along the gradient
flow trajectories. However, the gradient flow may not con-
verge to a stationary point due to the possibilities of moving
towards infinity or the boundary of the feasible set. Next,
we will rule out such possibilities. We will show that from
any initial policy in the feasible set, a positive invariant set
encompassing the initial policy and the global optimal point
(i.e.,

[
a∗

c∗
]
=

[
1−2

√
2

2
√
2−3

]
) can be formed within the feasible set

(10). Consequently, the gradient flow will stay within this set
and converge to the unique stationary point in this set, which
happens to be the global optimal LQG solution. Let us first
establish that the gradient flow never converges to [ 00 ].

Lemma 2: Let [ a0
c0 ] be an initial controller for the gradient

flow (15). Define the shaded region in Figure 1 with m = 0.3
and an ϵ > 0 is defined as

ϵ :=

{
min{|a0|, 0.01} a0 < 0

min{m(−a0 − c0), 0.01} a0 ≥ 0.

a+ c = 0

a = 1

•
[
a0
c0

]

a = −ϵ

a+mc = −ϵ

a+ c = − ϵ
m

a

c

Fig. 1. Cost Function near point
[
0
0

]

Then the gradient flow does not enter the shaded area.
Proof: The three line segments that define the shaded

area in Fig. 1 are given as: S1 := {(a, c) : a = −ϵ and 0 ≤
c ≤ ϵ}, S2 := {(a, c) : a+mc = −ϵ and −ϵ < a ≤ 0}, and
S3 := {(a, c) : a + c = − ϵ

m and 0 < a ≤ 1}. By careful
calculations, we can verify that the gradient flow moves
outward from the shaded area along these three segments.
Due to the page limits, the detailed calculations are given in
our full report, which is available at arXiv. By choosing
ϵ as mentioned in the lemma statement, we can ensure that
the initial controller lies outside the shaded region in Fig.
1, and the gradient flow on the boundaries of the shaded
regions points outward. This means that even if the gradient
flow initialized from the initial controller [ a0

c0 ] approaches the
boundary of the shaded region, the gradient flow will never
enter the shaded area. This gives the desired conclusion.

Before proceeding to our construction of the positive
invariant set, we need another supporting lemma. Specifi-
cally, in the following lemma, we demonstrate that, for any
initial controller in the feasible set (10), a subset of the
feasible region encompassing both the initial policy and the
stationary point can be chosen to ensure that within this
subset, the gradient flow remains contained, thereby ruling
out the possibility of diverging to infinity.

Lemma 3: Let [ a0
c0 ] be an initial controller for the gra-

dient flow (15). There exists a value R0 (where R0 ≥
max{2,

∣∣∣[ a0+c∗

c0−c∗

]∣∣∣}) such that for any circle centered at[−c∗

c∗

]
=

[
3−2

√
2

2
√
2−3

]
with radius R ≥ R0, the circle encap-

sulates both the stationary point
[
a∗

c∗
]

and the initial policy.
Furthermore, when the gradient flow is initialized from this
initial policy, it remains within the boundary of the region
formed by the intersection of this circle with the boundary
region of the feasible set.
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Proof: Define the angle associated with a point (a, c)
on the circle as θ = atan2

(
a+c∗

c−c∗

)
. Then each point on the

circle can be expressed as:

ac(θ) = −c∗ +R cos(θ)

cc(θ) = c∗ +R sin(θ).
(16)

As shown in Fig. 2, we split the circle arc into two sections;
S1 := {(ac(θ), cc(θ)) : 3π

4 < θ < 3π
2 } and S2 :=

{(ac(θ), cc(θ)) : 3π
2 ≤ θ < sin−1

(
1+c∗

R

)
}. We can

establish that the gradient flow points towards the inside
of the circle along these two segments. To accomplish this,
we need to verify that for every point, the inner product[

∂J
∂a
∂J
∂c

]
·
[
R cos(θ)
R sin(θ)

]
> 0.

The verification of the above inner product inequality
requires some careful calculations. Such calculations are
quite tidious, and definitely non-trivial. Due to the page limit,
the detailed calculations for the verification of the above
inner product inequality are only given in our full report that
is available on arXiv. Once the inner produce inequality is
verified, then the desired conclusion then directly follows as
a consequence.

a

c
a+ c = 0

a = 1

−c∗

c∗

S1

S2

•
[
a∗

c∗

]

•
[
a0
c0

]R

θ

Fig. 2. Cost Function near
[
a∗

c∗

]

Based on Lemma 2 and Lemma 3, we are ready to create
a positive invariant set around the initial policy and the
stationary point, in which the gradient flow remains confined.
This is formalized as follows.

Lemma 4: Let [ a0
c0 ] be an initial controller for the gradient

flow (15). Define a compact set that encapsulates both the
initial policy point [ a0

c0 ] and the stationary point
[
a∗

c∗
]
=[

1−2
√
2

2
√
2−3

]
. This set is structured into six segments, labeled as

S1, S2, S3, S4, S5, and S6, as depicted in Figure IV. The
delineation of these segments is as follows:

S1 = {(a, c) : a+ c = −ϵ1 and − c∗ − R√
2
≤ a ≤ −ϵ2}

S2 = {(a, c) : a = −ϵ2 and 0 ≤ c ≤ ϵ2 − ϵ1}
S3 = {(a, c) : a+mc = −ϵ2 and − ϵ2 ≤ a ≤ 0}

S4 = {(a, c) : a+ c = − ϵ2
m

and 0 < a ≤ 1− ϵ3}

S5 = {(a, c) : a = 1− ϵ3 and

c∗ −R cos (θ1) ≤ c ≤ ϵ3 −
ϵ2
m

− 1}

S6 = {(ac(θ), cc(θ)) :
3π

4
< θ <

3π

2
+ θ1}

where m = 0.3, ϵ1, ϵ2 and ϵ3 are positive real numbers which
are defined as

ϵ2 :=

{
min{|a0|, 0.01} a0 < 0

min{m(−a0 − c0), 0.01} a0 ≥ 0

ϵ1 ∈ (0, ϵ2]

ϵ3 ∈

{
(0, 1− a0] a0 ≥ 0

(0, 1) a0 < 0

Also, R is defined as lemma 3 and θ1 = sin−1
(

1+c∗−ϵ3
R

)
.

The points (ac(θ), cc(θ)) on the circle S6 are defined as in
(16). The gradient flow initialized from [ a0

c0 ] remains within
this compact set, which establishes this compact set a positive
invariant set.

a

c
a+ c = 0

a = 1

S1

S2

S3

S4

S5

S6

•
[
a∗

c∗

]

•
[
a0
c0

]R

θ

Fig. 3. Cost Function far from
[
a0
c0

]

Proof: We first establish the motion of the gradient
flow towards the interior of the compact set along all six
segments. Our previous analysis, as shown in Lemma 2,
confirms the inward movement of the gradient flow on S2,
S3 and S4. Furthermore, Lemma 3 demonstrates the inward
direction of the gradient flow along S6. To complete the
analysis, we must establish that the gradient flow, for every
point along S1 and S5, also moves towards the inside of the
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compact set.

Analysis along S1: Here we need to show that for every point
on S1, −

[
∂J
∂a
∂J
∂c

]
·
[−1
−1

]
> 0. From (12), we have

−
[
∂J
∂a
∂J
∂c

]
·
[
−1
−1

]
=

∂J

∂a
+

∂J

∂c

=
(−2c− 1)a3 + (−3c2 + 9c+ 1)a2 + (c2 − 6c)a

2(a+ c)2(a− 1)2

+
c4 − c3 + c2

2(a+ c)2(a− 1)2

(17)

The denominator of (17) is positive along this line segment;
therefore, we only need to demonstrate that the numerator is
also positive. Substituting c = −a − ϵ1 into the numerator
yields the following to prove

− 8a3 + (3ϵ21 − 4ϵ1 + 8)a2 + (4ϵ31 + 4ϵ21 + 8ϵ1)a

+ ϵ41 + ϵ31 + ϵ21 > 0.
(18)

To establish the validity of (18), we aim to demonstrate
its applicability for all values of a within the range
a ≤ −ϵ2 ≤ −ϵ1. Given from Lemma 2 that ϵ1 is constrained
to be less than or equal to 0.01, we can divide this proof
into two distinct cases:

Case 1: −1 ≤ a ≤ −ϵ1:
In this case, we establish a lower bound for (18) as follows:

− 8a3 + (eϵ21 − 4ϵ1 + 8)a2 + (4ϵ31 + 4ϵ21 + 8ϵ1)a

+ ϵ41 + ϵ31 + ϵ21 >(i) (4ϵ1 + 8)a2 + (ϵ31 + 4ϵ21 + 8ϵ1)a

+ ϵ41 + ϵ31 + ϵ21 >(ii) ϵ41 + (1 + a)ϵ31 + ϵ21 >(iii) 0,

(19)

where (i) holds because −8a3 ≥ 8ϵ1a
2 and 3ϵ21a

2 ≥ −3ϵ31a.
Inequality (ii) holds due to 4ϵ1a

2 ≥ −4ϵ21a and
8a2 ≥ −8ϵ1a. Finally, (iii) follows from −1 ≤ a.

Case 2: a ≤ −1:
In this case, we establish a lower bound for (18) as follows:

− 8a3 + (eϵ21 − 4ϵ1 + 8)a2 + (4ϵ31 + 4ϵ21 + 8ϵ1)a

+ ϵ41 + ϵ31 + ϵ21 >(i) (4ϵ1 + 8)a2 + (ϵ31 + 4ϵ21 + 8ϵ1)a

+ ϵ41 + ϵ31 + ϵ21 >(ii) 8a(a+
13

8
ϵ1) >

(iii) 0

(20)

Inequality (i) holds because −8a3 ≥ 8ϵ1a
2 and 3ϵ21a

2 ≥
−3ϵ31a. Inequality (ii) is true as ϵ1 ≥ ϵ21 ≥ ϵ31 > 0. Inequality
(iii) holds due to our assumption that ϵ1 ≤ 0.01 and a ≤
−1. Thus, we show that for every points along along S1,
−
[

∂J
∂a
∂J
∂c

]
·
[−1
−1

]
> 0.

Analysis along S5: Here we need to show that for every point
on S5, −

[
∂J
∂a
∂J
∂c

]
·
[−1

0

]
> 0. From (12), we have

−
[
∂J
∂a
∂J
∂c

]
·
[
−1
0

]
=

∂J

∂a

=
1 + c2

2(a− 1)2
+

−a2 − 3c2

2(a− 1)2(a+ c)

+
−a2 − 3c2

2(a− 1)(a+ c)2
+

a

(a+ c)(a− 1)

>(i) 0
(21)

where inequality (i) holds since along S5, a = 1 − ϵ3 > 0
and thus all the terms in (21) are positive. Consequently, we
guarantee that −

[
∂J
∂a
∂J
∂c

]
·
[−1

0

]
> 0 for every point along S5.

By choosing ϵ1 and ϵ2, ϵ3 and R as mentioned before, we
ensure that the initial controller lies inside the compact set
and the gradient flow on the boundaries of the compact set
points inward. This implies that even if the initial controller
[ a0
c0 ] approaches the boundaries, the gradient flow points

inward the compact set, demonstrating its positive invariance
nature. The invariance can be affirmed using, for instance,
Nagumo’s theorem [38], [39] or direct methods, thereby
completing the proof.

Now, we are ready to demonstrate the convergence of
gradient flow to the global stationary point.

Theorem 1: Starting from any initial controller [ a0
c0 ]

within feasible set (10), the gradient flow (15) will stay
in the feasible set and converge to the stationary point[
a∗

c∗
]
=

[
1−2

√
2

2
√
2−3

]
, which is the unique global optimal point.

Proof: Given any initial controller [ a0
c0 ], we can apply

Lemma 4 to construct a compact set encompassing both
the initial policy and the stationary point. Furthermore, it is
established that this compact set S is positive invariant with
respect to (15). Consider the Lyapunov function V = J .
From (15), we know that V̇ ≤ 0. Since

[
a∗

c∗
]

is the only
point where V̇ = 0, we can use LaSalle’s theorem [40] to
show that the gradient flow approaches

[
a∗

c∗
]

as t → ∞. This
completes the proof.

V. CONCLUSION

In this paper, we delved into LQG policy optimization
by examining a specific case of a single-input single-output
(SISO) system. To prove the global convergence of direct
policy search on this problem, we need to overcome two
main difficulties. Firstly, to remove suboptimal stationary
points, we adopt a controllable policy parameterization ap-
proach. Secondly, we need to address the non-coerciveness
of the LQG cost function. Our resolution to this challenge
was to create a positive invariant set within the feasible
set, which includes both the initial policy and the global
stationary point. Specifically, for this SISO example, our
approach in constructing the positive invariant set allows
us to prove that the policy gradient flow is guaranteed to
stay in the feasible set and converge to the global optimal
solution regardless of the non-coerciveness issue. It is our
hope that the understandings derived from this case study
could illuminate broader LQG policy optimization problems.
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stabilizing feedback gains via a model-free policy gradient method,”
IEEE Control Systems Letters, vol. 7, pp. 407–412, 2022.

[24] F. Zhao, X. Fu, and K. You, “On the sample complexity of sta-
bilizing linear systems via policy gradient methods,” arXiv preprint
arXiv:2205.14335, 2022.

[25] X. Guo and B. Hu, “Global convergence of direct policy search for
state-feedback H∞ robust control: A revisit of nonsmooth synthesis
with goldstein subdifferential,” in 36th Conference on Neural Infor-
mation Processing Systems, vol. 28, 2022.

[26] H. Feng and J. Lavaei, “On the exponential number of connected
components for the feasible set of optimal decentralized control
problems,” in 2019 American Control Conference (ACC). IEEE, 2019,
pp. 1430–1437.

[27] I. Fatkhullin and B. Polyak, “Optimizing static linear feedback:
Gradient method,” SIAM Journal on Control and Optimization, vol. 59,
no. 5, pp. 3887–3911, 2021.

[28] Y. Tang and Y. Zheng, “On the global optimality of direct policy
search for nonsmooth H∞ output-feedback control,” in 2023 62nd
IEEE Conference on Decision and Control (CDC), 2023, pp. 6148–
6153.

[29] J. Umenberger, M. Simchowitz, J. Perdomo, K. Zhang, and R. Tedrake,
“Globally convergent policy search for output estimation,” Advances
in Neural Information Processing Systems, vol. 35, pp. 22 778–22 790,
2022.

[30] J. Duan, W. Cao, Y. Zheng, and L. Zhao, “On the optimization
landscape of dynamic output feedback linear quadratic control,” IEEE
Transactions on Automatic Control, 2023.
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