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Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of
quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a
notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical
randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of
quantum states (time-evolution operators) generated by the evolution, and investigate the conditions
necessary for them to be statistically indistinguishable from uniformly random states (operators) in the
Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the
Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical pseudo-
randomness—indistinguishability up to some large but finite moment—can already be achieved by a
quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is
sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the
resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity
and chaos from the lens of quantum information.
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I. INTRODUCTION

Ergodicity in classical systems is a well established,
unambiguous concept: It is the property of dynamics
exploring all allowed configurations, irrespective of initial
state. Quantum ergodicity, on the other hand, is formulated
rather differently, and typically in an inherently nondy-
namical fashion [1,2]: In systems with a semiclassical limit,
it is taken to be the feature of high-energy eigenstates
having probability densities weakly tending to a uniform
distribution in phase space [3]. This definition though,
does not cover all quantum systems, as there are many
Hamiltonians without an obvious semiclassical limit, e.g.,
systems of interacting qubits. Instead, an appeal is often
made to statistical similarities of the distribution of energy
levels and associated energy eigenstates to those of certain

random matrix classes, such as in the eigenstate thermal-
ization hypothesis (ETH) [4] and the Bohigas-Giannoni-
Schmit conjecture [5]. Still, such a definition is arguably
also not complete, as it presupposes the existence of
stationary states in dynamics—and not all quantum systems
exhibit these. These include Hamiltonians with general
time dependence, or dynamics arising from (potentially
spatiotemporally random) quantum circuits, a class of
quantum dynamics that has been the subject of much study
recently [6]. As can be seen, there is no unambiguous,
common notion of ergodicity that applies to all systems in
the quantum setting.
In this work, we investigate a notion of quantum

ergodicity that can be universally attributed to closed
quantum dynamics with generic time dependence, which
harkens back to ergodicity of classical dynamical systems:
whether a quantum system explores all of its “ambient
space” over time. We consider two natural dynamical
objects that can capture this behavior, both of which are
always present for any closed quantum system undergoing
unitary dynamics. First, we consider the temporal ensemble
of quantum states fjψðtÞigt beginning from some initial
state jψð0Þi, with the natural ambient space being the entire
Hilbert space. Second, we study the temporal ensemble of
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time-evolution operators fUðtÞgt, which propagates the
system from the initial time t ¼ 0 to a later time t, with the
ambient space being the manifold of unitary operators
acting on the Hilbert space. Quantum ergodicity according
to this viewpoint inquires if the temporal ensembles of
states or unitaries uniformly cover their respective spaces
over long times.
A previous recent work [7] had already proposed the

notion of quantum states uniformly covering the Hilbert
space in time, dubbed “complete Hilbert-space ergodicity”
(CHSE), as a novel notion of quantum ergodicity. It also
rigorously demonstrated a class of discrete-time driven
systems, which despite their simplicity (encapsulated by a
notion of having “low complexity”), surprisingly exhibits
such behavior. Here, one of our goals is to further ground
this concept, by identifying general physical principles
which allow or forbid CHSE. Additionally, we extend this
dynamical version of quantum ergodicity to that of sta-
tistics of the unitary time-evolution operators themselves, a
notion we dub “complete unitary ergodicity” (CUE). CUE
is a stronger dynamical version of quantum ergodicity, as it
implies CHSE, but not vice versa.
We note that this generalization of the notion of classical

ergodicity to quantumdynamics—that time averaging equals
space averaging—is ostensibly natural, but yet evidently has
not been widely adopted as a standard definition of quantum
ergodicity. A moment’s thought reveals why this may be so:
Under dynamics by a time-independent Hamiltonian, it can
immediately be observed that the populations on energy
eigenstates are always conserved, leading to an obstruction
of coverage of the ambient Hilbert or unitary space. In other
words, CHSE or CUE cannot occur for dynamics under any
static Hamiltonian H, rendering such dynamical notions of
quantum ergodicity ineffectual. However, the key insight of
our analyses, aswell as those ofRef. [7], is the realization that
these obstructions need not apply in HamiltoniansHðtÞ that
have general time dependence. In this work, we specifically
focus on the class of quantum Hamiltonians driven by
multiple (rationally independent) frequencies, called quasi-
periodically driven systems [8–16], and derive how despite
potentially having “quasienergy states,” the analog of sta-
tionary states for this class of dynamics, they can under
certain conditions already achieve CHSE and/or CUE.
Concretely, we consider here d-dimensional quantum

systems quasiperiodically driven by m rationally indepen-
dent frequencies, and assume the existence of quasienergy
states in dynamics (we note this is a nontrivial assumption
and it may not always hold true; see Refs. [17,18]).
Equivalently, these can be thought of as quantum systems
driven bym external classical harmonic baths with different
fundamental frequencies. Intuitively, a larger number of
drives, i.e., baths, generates more complex dynamics. For
example, one can model a quantum system driven by
random white noise in the limit m → ∞. We might thus
expect that the ability of a system to uniformly cover its

Hilbert or unitary space depends on the number of
frequencies m of the underlying Hamiltonian. Indeed, in
what follows we rigorize such expectation, showing how m
governs the possibility or impossibility of CHSE and CUE.
The key tool we use is quantum information theoretic: We
leverage the concept of state (unitary) designs, to precisely
quantify the statistical indistinguishability of the distribu-
tion of the temporal ensemble of states (unitaries) to the
corresponding uniformly random ensemble in their respec-
tive spaces. A summary of our main results is as follows.

(i) Complete Hilbert-space ergodicity cannot be satis-
fied if m < 2ðd − 1Þ. That is, a time-quasiperiodic
quantum system driven by a limited number of
frequencies cannot yield dynamics in which an
arbitrary state uniformly explores all of the Hilbert
space over time.

(ii) Complete unitary ergodicity cannot be satisfied if
m < dðd − 1Þ. This is a more restrictive statement
that a time-quasiperiodic quantum system driven by
too few frequencies cannot generate time-evolution
operators which are uniformly distributed in the
unitary space.

(iii) Conversely, we explicitly construct families of
time-quasiperiodic quantum Hamiltonians with
m ¼ d2 − 2 fundamental frequencies, each possess-
ing quasienergy states, which provably exhibit CUE,
and therefore CHSE.

These three statements are depicted in Fig. 1.
It is also possible to relax the condition of full indis-

tinguishability of the distributions of temporal and
spatial ensembles, and demand only indistinguishability
of moments up to some finite order k∈N. This property is
called statistical pseudorandomness. We note that statis-
tical pseudorandomness of states or unitaries has been
used as a diagnostic for the presence of quantum informa-
tion scrambling [19,20], and thus our notion of quantum

FIG. 1. Achievability of complete unitary ergodicity (CUE) and
completeHilbert-space ergodicity (CHSE) in timem-quasiperiodic
systems with quasienergy eigenstates. The red regions represent
no-go theorems for CHSE and CUE presented in Sec. IV, form <
2ðd − 1Þ (Theorems 1 and 2) and m < d2 − d (Theorem 3),
respectively. The green region represents an explicit construction
of a ðm ¼ d2 − 2Þ-quasiperiodic system with QEs that satisfies
CUE, presented in Sec. VI.
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ergodicity is intimately tied to (one version of) quantum
chaos. Technically, equality of only up to k moments
amounts to probing whether the temporal ensemble of
states (unitaries) forms a state (unitary) k-design. With this,
we can also show the following.

(i) If we demand a restricted level of quantum ergo-
dicity wherein the temporal ensemble reproduces
only the uniform distribution up to a finite kth
moment, then this can be achieved already by a
time-periodic (i.e., Floquet) Hamiltonian. However,
the magnitude of the Hamiltonian (or equivalently
the length of the Floquet period) necessarily needs
to grow with k and d in a quantifiable fashion
[Eq. (14)]. This captures the intuitive fact that the
amount of physical resources required—strength of
the Hamiltonian for a fixed time, or driving duration
for a fixed power—needs to be large in order for a
high degree of ergodicity to be achieved.

Our work represents a step toward a unified under-
standing of quantum ergodicity in generic time-dependent
quantum systems. Our dynamical notion of ergodicity
harmonizes with the notions in classical systems, and further
provides a physical understanding of how thermalization
arises in these systems, without reference to stationary states
of dynamics.
This work is organized as follows. We begin by

introducing the relevant concepts underlying our analysis.
In Sec. II, we first introduce our dynamical notion of
quantum ergodicity, CHSE and CUE, defined via the tool
set of quantum state and unitary designs. In Sec. III, we
recap quasiperiodically driven systems and their structure
in dynamics and, in particular, a generalization of the
Floquet decomposition into windings of quasienergies and
quasienergy eigenstates (QEs) on high-dimensional tori.
The reader knowledgeable in these topics may elect to skip
this section. In Sec. IV, we present our first results: three no-
go theorems establishing conditions under which CUE and
CHSE are physically impossible, when the number of
frequencies driving the Hamiltonian are not sufficiently
large, in relation to the dimension. Section V presents a
numerical analysis of three toy models, in which we study
the consequences of our results at the level of few-body
observables. In Sec. VI, we demonstrate a converse to our
no-go theorems: an explicit construction of a quasiperiodi-
cally driven system which satisfies CUE (and hence
CHSE), with a sufficiently large number of driving
frequencies. In Sec. VII, we consider relaxing ergodicity
to comparing finite moments. We show that Floquet
systems can achieve this relaxed notion of ergodicity by
providing examples in both continuous and discrete time.
Lastly, in Sec. VIII, we close with a discussion of
connections to previous works and future directions.
Before proceeding, let us remark that dynamical notions

of quantum ergodicity have recently been discussed in
other works [21–25]. By borrowing notions from classical
ergodic theory, Ref. [21] provides a definition of quantum

ergodicity that requires that certain basis vectors are
cyclically transported to each other in a precise sense.
Separately, Refs. [22,23] build connections between tem-
poral unitary designs and the ETH. Although the con-
servation of energy prevents the temporal ensemble from
forming an exact k-design, these references relax the
k-design condition in two distinct ways: Reference [22]
introduces a partial unitary design, which restricts to
expectation values of some observables, while Ref. [23]
uses free probability to construct a notion dubbed
k-freeness. Common to these works is the focus on
time-independent systems. In contrast, the stronger
dynamical version of quantum ergodicity studied in our
work requires the absence of any conserved quantity, and is
suited for time-dependent systems without energy conser-
vation. Bridging our work and these other notions of
quantum ergodicity is an interesting question.

II. DYNAMICAL FORMULATION
OF QUANTUM ERGODICITY

Consider a d-dimensional quantum system undergoing
dynamics under a time-dependent Hamiltonian or a quan-
tum circuit. An immediate question arises, which forms the
fundamental motivation behind our work: Is there a sense in
which such a system can be termed ergodic?
In this section, we will introduce a concept of quantum

ergodicity defined in terms of statistical similarities of
temporal ensembles of dynamical objects—namely,
time-evolved wave functions as well as time-evolution
operators—to ensembles of such objects distributed unbias-
edly (i.e., uniformly) in the respective spaces that they
live in. In more pedestrian terms, this is the familiar idea of
“time averaging equals space averaging” in classical
dynamics, applied to the quantum setting.

A. Hilbert-space ergodicity (HSE)

We start by discussing quantum ergodicity at the level of
quantum states jψðtÞi ¼ UðtÞjψð0Þi uniformly covering
the Hilbert space over time, a notion first introduced
already in Ref. [7], dubbed complete Hilbert-space ergo-
dicity. More precisely, since global phases are irrelevant, it
was proposed to consider whether the ensemble of time-
evolved density matrices fψðtÞgt≥0 called the “temporal
ensemble” (if it exists [26]), where ψðtÞ ¼ jψðtÞihψðtÞj, is
statistically indistinguishable to the ensemble of states
fϕgHaar called the “spatial ensemble.” The latter is defined
as the set of states randomly sampled without preference to
a particular direction in the projective Hilbert space
PðCdÞ ¼ fψ ¼ jψihψ j∶jψi∈Cd; hψ jψi ¼ 1g, or in other
words, the set where states ϕ and VϕV† occur equally
likely, where V is drawn from the unique, uniform Haar
measure on the space of unitaries [27]. Formally, we have
the following.
Definition 1 (CHSE). Complete Hilbert-space ergodicity

[7] is the property of quantum dynamics wherein the
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temporal and spatial ensembles of quantum states are
statistically indistinguishable for any initial state
ψð0Þ∈PðCdÞ, that is, fψðtÞgt≥0 ∼ fϕgHaar, where “∼”
denotes equality in distribution.
To make the comparison quantitative, we can consider

finite moments of the respective distributions. For the
temporal ensemble, the kth moment is defined as

ρðkÞtime ≔ E
t≥0

½ψðtÞ⊗k% ¼ lim
T→∞

1

T

Z
T

0
dt½UðtÞψð0ÞUðtÞ†%⊗k;

ð1Þ

which involves k replicas of the time-evolved state,
while the kth moment of the spatial ensemble fϕgHaar is
defined as

ρðkÞHaar ≔ E
ϕ∈PðCdÞ

½ϕ⊗k% ¼
Z

dUðUϕ0U†Þ⊗k; ð2Þ

where dU is the Haar measure on the unitary space and ϕ0

any fixed reference state. We note that ρðkÞHaar have simple,
closed-formed expressions as sums of permutation oper-
ators over the k-replicated Hilbert space [see Eq. (A2)],
which can be derived using Schur’s lemma in representa-
tion theory [28]. As an example, ρð1ÞHaar ¼ 1=d is the
maximally entropic state, where 1 is the identity
operator on a single copy of the Hilbert space, while
ρð2ÞHaar ¼ ð1þ SÞ=dðdþ 1Þ, where here 1 (S) is the identity
(swap) operator on the tensor product of two Hilbert spaces.
Using the kth moments ρðkÞHaar, we can define a less
restrictive notion of Hilbert-space ergodicity in terms of
statistical indistinguishability of only up to k-moments.
Definition 2 (k-HSE). A closed quantum system is said to

exhibit Hilbert-space k-ergodicity (k-HSE), for k∈N, if for
any initial state ψð0Þ∈PðCdÞ,

ρðkÞtime ¼ ρðkÞHaar: ð3Þ

Any standard matrix norm can be used to ascertain
this equality (captured by vanishing of the norm of
ρðkÞtime − ρðkÞHaar), but it is conventional to use the trace distance
Dðρ; σÞ ≔ 1

2 kρ − σk1, where k · k1 is the trace norm, given
by the sum of the absolute value of the eigenvalues. This is
because ρðkÞtime and ρðkÞHaar have interpretations of density
operators on the k-replicated Hilbert space, and the trace
norm operationally captures the probability of distinguish-
ing these two states under an optimal measurement.
In the parlance of quantum information theory, k-HSE is

the statement that the temporal ensemble forms a (state)
k-design (see Ref. [29] and Appendix A). Note that k-HSE
implies k0-HSE for k0 ≤ k but not vice versa, and thus forms a
hierarchical definition of more and more restricted notions
of quantum ergodicity for higher k (see Corollary A1

and Fig. 2). CHSE, which is at the top of this hierarchy, is
then recovered by demanding equality for all k.
Definition 3 (CHSE; equivalent definition Ref. [30]).

If a system exhibits k-HSE for all k for any initial state
ψð0Þ∈PðCdÞ, then it is said to exhibit CHSE.
In terms of physical observables, k-HSE constrains the

behavior of time-averaged expectationvalues trðOðkÞψðtÞ⊗kÞ
of a joint observable OðkÞ on the k-replicated Hilbert space.
In the case of a product observable OðkÞ ¼ O⊗k, this is the
time-averaged kth power of hψðtÞjOjψðtÞi. For example,
1-HSE implies that the time average of O, given by
Et≥0½hψðtÞjOjψðtÞi% ¼ limT→∞ð1=TÞ

R
T
0 dthψðtÞjOjψðtÞi,

equals Eϕ∈PðCdÞ½hϕjOjϕi% ¼ trðOÞ=d regardless of the ini-
tial state ψð0Þ; i.e., the system over long times reproduces
expectation values within the infinite-temperature state.
More generally, k-HSE implies Et≥0½hψðtÞjOjψðtÞik% ¼
limT→∞ð1=TÞ

R
T
0 dthψðtÞjOjψðtÞik is equal to

Eϕ∈PðCdÞ½hϕjOjϕik% ¼ trðO⊗kρðkÞHaarÞ [31], which is indepen-
dent of ψð0Þ and can be calculated using the closed-form
expression of ρðkÞHaar described above, which physically
constrains not only the mean but also temporal fluctuations
and beyond to mimic those computed for random states. For
instance, for k ¼ 2, the spatial averaging yields explicitly
½trðO2Þ þ trðOÞ2%=dðdþ 1Þ. CHSE is the strongest state-
ment that the time average of any (analytic) function f is
equal to its spatial average; i.e., Et≥0½fðψðtÞÞ% ¼
Eϕ∈PðCdÞ½fðϕÞ%. This is the consequent of Birkhoff’s ergodic
theorem [32], applied to a quantum system.

B. Unitary ergodicity (UE)

We propose in this work to also consider a different
notion of dynamical quantum ergodicity, captured by the
equivalence of statistics of the ensemble of time-evolution
operators fUðtÞgt≥0 to the uniform ensemble of operators
in the space of unitaries. The evolution operators are given

FIG. 2. Dynamical notions of quantum ergodicity and their
relations. Unitary k-ergodicity (k-UE) (left) and Hilbert-space
k-ergodicity (k-HSE) (right), with complete unitary ergodicity
and complete Hilbert-space ergodicity on top, respectively.
Arrows indicate logical implication.
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by the time-ordered exponentialsUðtÞ¼T exp½−i
R
t
0 dτHðτÞ%

which propagate the system from time 0 to time t. More
precisely, it is natural to consider the set of unitary quantum
channels fUðtÞgt≥0, defined by UðtÞ½ψ % ¼ UðtÞψUðtÞ† (we
consider channels as opposed to the unitary time-evolution
operators themselves, as global phase information is irrel-
evant). For technical convenience, the map UðtÞ can be
vectorized into the form UðtÞ' ⊗ UðtÞ. These are elements
of the projective unitary group PUðdÞ ¼ fV' ⊗ V∶
V ∈UðdÞg [33] for which there is a notion of a uniform
(Haar) ensemble fVgHaar ≔ fV' ⊗ Vg describing the distri-
bution of unitary channels obtained from randomly sampling
from the Haar measure dV on the space of unitaries [27]. Our
proposed dynamical notion of quantum ergodicity in this
scenario would then amount to asking whether the temporal
ensemble is equivalent to the spatial ensemble, which in
analogy to CHSE we dub complete unitary ergodicity.
Definition 4 (CUE). Complete unitary ergodicity is the

property of quantum dynamics wherein the temporal
ensemble of unitary time-evolution operators and spatial
ensemble of unitary operators are statistically indistinguish-
able, fUðtÞgt≥0 ∼ fVgHaar, where “∼” denotes equality in
distribution.
Such an equality may, once again, be probed by

comparing moments of the respective distributions,
defined for the kth moment for the temporal ensemble
as Et≥0½UðtÞ⊗k;k% ≔ limT→∞ð1=TÞ

R
T
0 dt½UðtÞ' ⊗ UðtÞ%⊗k,

and for the spatial ensemble as EV∼Haar½V⊗k;k%, where
V⊗k;k ≔ ðV' ⊗ VÞ⊗k. The latter can be exactly computed
using so-called Weingarten calculus and have closed-
form expressions [34]. For example, the first moment
EV∼Haar½V' ⊗ V% is equal to the quantum channel
Cð1Þ½O% ¼ trðOÞ1=d, meaning that, under 1-UE, the time
average of any observable OðtÞ in the Heisenberg picture
is Et≥0½OðtÞ% ¼ trðOÞ1=d. We can then define k-unitary
ergodicity as the statement of indistinguishability only up
to the kth moment:
Definition 5 (UE). For k∈N, we say that the evolution

given by a Hamiltonian HðtÞ exhibits unitary k-ergodicity
(k-UE) if the evolution operator UðtÞ satisfies

E
t≥0

½UðtÞ⊗k;k% ¼ E
V∼Haar

½V⊗k;k%: ð4Þ

Again, any vanishing of matrix norm for the difference
between the left- and right-hand sides can be used to
numerically ascertain k-UE, though it is common practice
to compare the so-called “frame potentials” (which is
related to the Frobenius norm), viz. asking if

E
t≥0

E
t0≥0

h
jtrðU†ðt0ÞUðtÞÞjk

i
¼? E

V;W∼Haar

h
jtrðW†VÞj2k

i
: ð5Þ

In the parlance of quantum information theory, k-UE is
the statement that the temporal ensemble forms a unitary
k-design.

It is straightforward to note that k-UE implies k-HSE, but
the converse is not true (see Appendix A). Thus, k-UE is an
inequivalent, strictly stronger version of quantum ergodic-
ity compared to k-HSE. Further, k-UE defines a hierarchi-
cal definition of more restricted notions of quantum
ergodicity: k-UE implies k0-UE for k0 ≤ k but not vice
versa (see Corollary A1 and Fig. 2). The most restrictive
condition is when k-UE is satisfied for all k, leading us back
to CUE.
Definition 6 (CUE; equivalent definition). If a system

exhibits k-UE for all k, then it exhibits CUE.
Similarly to k-UE and k-HSE, CUE implies CHSE but

not vice versa.

C. Achievability of HSE or UE and conservation laws

We briefly comment here on the achievability of HSE or
UE in the presence of conservation laws in dynamics. As
the definition of HSE or UE entails a comparison of the
temporal ensemble to the reference uniform (i.e., unbiased)
distribution in the Hilbert space (space of unitaries), it is
intuitively clear that any conserved quantities will preclude
HSE (UE), since there will be “bias” in dynamics toward
them (of course, an interesting question, which we do not
address here, is how to properly modify the reference
distribution in order to account for conserved quantities
[25]). For example, in a time-independent quantum system
which has energy conservation, not even 1-HSE can be
achieved: If jψi is an eigenstate of the Hamiltonian, then its
time average remains pure: ψ ¼ Et≥0½ψðtÞ%, far off from a
maximally mixed state Eϕ∈PðCdÞ½ϕ% ¼ 1=d.
Achieving quantum ergodicity defined by HSE or UE

therefore necessarily requires considering systems with
time dependence, such that there are no conservation laws.
A trivial example of dynamics which satisfies CUE is a
drive UðtÞ where at every integer time t an independent
Haar-random unitary is applied. Then, the wave function
undergoes a random walk in the Hilbert space. The time
dependence of such a drive is, however, maximally com-
plex: At each time step we need to specify a completely
new random matrix. A natural question to ask is whether or
not CHSE or CUE (or, more generally, different levels of
the hierarchy of complete ergodicity) can be achieved with
time-dependent systems with more succinct, deterministic,
descriptions. Surprisingly, Ref. [7] gave an explicit exam-
ple in the affirmative, in terms of a family of simple,
deterministic, low-complexity quantum drives, derived
from the Fibonacci word and its variants, which provably
exhibits CUE (and hence CHSE). However, a more general
theory that allows us to systematically determine when
CUE or CHSE occurs or not, is at the present time still not
fully established. One of the aims of this work is to present
a step in this direction.
In the next section, we introduce the notion of time

quasiperiodicity, which allows us to classify the time
dependence of a system in increasing levels of complexity.

HILBERT-SPACE ERGODICITY IN DRIVEN QUANTUM … PHYS. REV. X 14, 041059 (2024)

041059-5



Using this, we will systematically classify the time com-
plexity required to achieve the different levels of HSE and
UE in the class of quasiperiodically driven systems.

III. TIME-QUASIPERIODIC QUANTUM SYSTEMS

In this section, we give a brief introduction to the class of
quantum systems which are quasiperiodically driven by m
frequencies, and discuss the structure of the dynamics they
generate, in particular, the possibility of decomposing
dynamics into quasienergies and quasienergy states.
Time-quasiperiodic systems are the direct generalization

of a Floquet system, i.e., a system driven periodically by a
single fundamental frequency [8–16]. This class of systems
has gained much recent interest [35–40], as they may host
novel and exotic dynamical phases like time-quasiperiodic
topological phases [41–43] and time quasicrystals [44–48].

A. Definition

Floquet Hamiltonians are those that periodically repeat
themselves in time, HðtÞ ¼ Hðtþ TÞ, where ω is the
fundamental driving frequency and T ¼ 2π=ω the corre-
sponding period. An equivalent way of understanding
such Hamiltonians, which allows for an immediate
generalization to multifrequency drives, is to define an
underlying Hamiltonian ĤðθÞ on the circle S1, with
coordinate θ∈ ½0; 2πÞ. Then, a time-periodic Hamiltonian
can be defined via setting θ ¼ ωtþ θ0 mod 2π for some
initial phase θ0 (which we will typically set to be 0),
i.e., HðtÞ ¼ ĤðωtÞ. A multitone, or time-quasiperiodic
Hamiltonian then straightforwardly follows by generalizing
this concept, by promoting the circle S1 to the torus
Tm ¼ S1 × S1 × ( ( ( × S1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m times

∋ θ ¼ ðθ1;…; θmÞ, and ω to

ω ¼ ðω1;…;ωmÞ. Precisely, we have the following.
Definition 7 (m-time-quasiperiodic Hamiltonian). Given

a Hamiltonian HðtÞ, with t∈R, we say that H is time
quasiperiodic with m tones, or m-time-quasiperiodic if
there exists a so-called parent Hamiltonian ĤðθÞ piecewise
smoothly [49] defined on the m-dimensional torus Tm ≔
fθ ¼ ðθ1;…; θmÞjθj ∈ ½0; 2πÞg such that

HðtÞ ¼ ĤðωtÞ; ð6Þ

for some frequency vector ω ¼ ðω1;…;ωmÞ, where the
winding ωt is taken modulo 2π at each entry. Furthermore,
we require thatm is the smallest integer such that the above
decomposition holds.
Asm has to be the smallest possible number of tones, the

frequency vector ω has to be rationally independent,
meaning that the only integer solution n∈Zm to the
equation n · ω ¼ 0 is n ¼ 0; i.e., ω constitute m indepen-
dent fundamental tones [50]. Henceforth, for simplicity in
the notation, we will drop the hat in the parent Hamiltonian
ĤðθÞ, and simply write HðθÞ. This is a standard abuse of

notation, as HðtÞ and HðθÞ are functions technically
defined in different domains, but they can easily be
distinguished by their arguments [43]. A more familiar
definition of an m-time-quasiperiodic Hamiltonian, which
is equivalent for sufficiently well-behaved functions, is
the statement that HðtÞ can be written as a convergent
Fourier series with m rationally independent fundamental
frequencies,

HðtÞ ¼
X

n∈Zm

Hnein·ωt; ð7Þ

where Hn are its Fourier modes (over the torus). In modern
quantum simulation experiments, engineering time-
quasiperiodic driving with a large number of tones m is
readily achievable.
More generally, an m-time-quasiperiodic Hamiltonian

constitutes an example of anm-time-quasiperiodic function
FðtÞ ¼ F̂ðωtÞ ¼

P
n∈Zm Fnein·ωt, where the parent func-

tion F̂ and frequency vector ω have all the same properties
as that listed in Definition 7.

B. Generalized Floquet decomposition

What is understood about the nature of quantum dynam-
ics generated by time-quasiperiodic Hamiltonians? In the
case of m ¼ 1, we recover time-periodic or Floquet drives,
for which the Floquet theorem guarantees that there exists a
set of quasienergy eigenstates which are also periodic in
time [51]. This is captured by the statement that the unitary
time-evolution operator admits a decomposition,

UðtÞ ¼ PðωtÞe−iQt; ð8Þ

where Q is the so-called Floquet Hamiltonian whose d
eigenvalues, called quasienergies, and eigenvectors are
defined via Qjαi ¼ qαjαi. PðωtÞ is a periodic unitary with
identical period as the driving Hamiltonian and satisfies
Pð0Þ ¼ 1, and thus is descended from a piecewise-smooth
parent unitary PðθÞ defined on the circle S1. One may thus
construct quasienergy eigenstates that live on the circle,
defined via

jαðθÞi ¼ PðθÞjαi: ð9Þ

Note that the decomposition into the Floquet Hamiltonian
and periodic unitary is not unique: One can shift the
quasienergies qα þ nω by any integer n∈Z and redefine
the appropriate component of PðωtÞ with a winding
phase. One sees from this decomposition that if we were
to view a Floquet system at stroboscopic times t ¼ nT,
where n∈Z, then the system can equivalently be thought
of as undergoing dynamics under a time-independent
Hamiltonian Q; that is, UðnTÞ ¼ e−iQnT . This property
of decomposability of dynamics into that of a static
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Hamiltonian, up to a periodic envelope, is known math-
ematically as reducibility [52,53].
When m > 1, it is natural to assume that a generalized

Floquet decomposition, or reducibility of dynamics, holds
too, namely that

UðtÞ ¼ PðωtÞe−iQt; ð10Þ

where PðθÞ is a piecewise-smooth unitary defined on Tm

which satisfies Pð0Þ ¼ 1 [54], and Q is the generalized
Floquet Hamiltonian with d quasienergies and eigenstates,
Qjαi ¼ qαjαi. Similar to the Floquet case, the genera-
lized Floquet Hamiltonian Q and unitary PðθÞ will not be
unique, but this fact will be unimportant in our analysis.
One may then construct QEs, now defined as state-valued
functions on the torus:

jαðθÞi ¼ PðθÞjαi:

Such a decomposition would then entail that if we prepare
our system in the initial state jαi ¼ jαð0Þi, the resulting
dynamics is m-time-quasiperiodic up to a global phase:

jαðtÞi ¼ UðtÞjαi ¼ e−iqαtjαðθ ¼ ωtÞi:

More generally, the time dependence of a generic initial
state may then be decomposed as a linear combination
over QEs:

jψðtÞi ¼
X

α

cαe−iqαtjαðωtÞi; ð11Þ

with cα ¼ hαjψð0Þi, which can be understood as time
quasiperiodic over the torus Tn, with n ≤ ðmþ d − 1Þ
(ignoring the global phase). The factor of m comes from
the physical driving frequencies ω, while there are d
additional frequencies coming from the winding phases
e−iqαt, minus a global phase.
As appealing as the generalized Floquet decomposition

Eq. (10) is, we stress its existence is nontrivial: It is known
rigorously that this may not always hold in (m > 1)-time-
quasiperiodic systems [17,18]. This could come, for exam-
ple, from topological obstructions in defining a smooth
quasienergy state over the torus; see Ref. [42]. In other
words, a generalized Floquet theorem (i.e., applying to all
time-quasiperiodic Hamiltonians) does not hold, though the
Floquet decomposition may still be valid in some cases.
However, while interesting in its own right, the purpose of
this work is not to investigate the conditions for when such
a decomposition does or does not hold in time-quasiperi-
odic systems; Rather, we assume that the systems in
consideration always admit generalized QEs and study
the compatibility of HSE and UE with such structure in
dynamics. Note that the existence of QEs guarantees that
the infinite-time averages in Eq. (3) [Eq. (4)] always exist;

i.e., the temporal ensemble of states or unitaries is well
defined in the limit t → ∞ [55].

IV. QUASIENERGY EIGENSTATES LIMIT
COMPLETE QUANTUM ERGODICITY

Having introduced the concepts of Hilbert-space ergo-
dicity and unitary ergodicity, and the class of quantum
dynamics (time-quasiperiodic systems) we consider in this
paper, we are now in a position to present our results. Our
first finding shows that the existence of QEs in time-
periodic (m ¼ 1) systems precludes them from satisfying
CHSE (and hence CUE). That is, Floquet systems cannot
achieve full dynamical quantum ergodicity.
Theorem 1. If HðtÞ is a time-periodic Hamiltonian with

period T and a bounded strength in the sense that B ¼R
T
0 dtkHðtÞk∞ < ∞ [56], thenHðtÞ does not exhibit CHSE
(and thus not CUE) [57].
The quantity B should be understood as a measure of the

“physical resources” needed to realize the dynamics: It is
large for Hamiltonians whose strengths kHðtÞk∞ are large
or whose driving period is long. Although B changes upon
the substitution HðtÞ → HðtÞ þ cðtÞ1, its minimum value
over all cðtÞ is proportional to the time-integrated band-
width B ¼ 1

2

R
T
0 dt½EmaxðtÞ − EminðtÞ% [58]. As B carries

units of energy times time (recall ℏ ¼ 1), it has also the
meaning of an “action,” which physically corresponds to
the net effect that HðtÞ has on the system during a single
driving period. As we explain further below, B < ∞ is
simply the physical requirement of a “quantum speed
limit”: that the length of the trajectory traversed by the
wave function over a period T cannot be arbitrarily long.
From this point of view, the logic behind the proof of

Theorem 1 can be intuitively explained as an incompati-
bility of dynamics that traverses a finite “distance” to
densely cover the continuous space that is the Hilbert space.
Indeed, the formal proof proceeds by contradiction.
Proof. Assume that the time-periodic Hamiltonian HðtÞ

satisfies CHSE. By Floquet’s theorem, HðtÞ has a QE
jαðtÞi ¼ e−iqαtjαðθ ¼ ωtÞi, where ω ¼ 2π=T. Because
phases are projected out in PðCdÞ, dynamics beginning
from αð0Þ is time periodic: αðtÞ ¼ αðθ ¼ ωtÞ. We will
reach a contradiction, in three steps.
First, CHSE implies that the state αðtÞ uniformly visits

the 2ðd − 1Þ-dimensional projective Hilbert space PðCdÞ.
This implies that the map θ ↦ αðθÞ is topologically dense,
meaning that for any other state jϕi and arbitrarily small
ε > 0 there is some angle θ for which D(αðθÞ;ϕ) < ε,
where

Dðψ ;ϕÞ ¼ 1

2
kψ − ϕk1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψ jϕij2

q
ð12Þ

is the trace distance. This is rigorously proven in
Appendix B.
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Second, we appeal to the quantum speed limit B < ∞:
The state αðtÞ can only travel through a finite path in
PðCdÞ. Specifically, for any finite partition of the circle
θ0 ≤ θ1 ≤ ( ( ( ≤ θn ¼ θ0 þ 2π,

Xn

j¼1

D(αðθj−1Þ; αðθjÞ) ≤ B: ð13Þ

This is a state-independent variant of the quantum speed
limit, which is traditionally phrased in terms of the average
energy [59] or variance [60] of a specific state, rather
than the Hamiltonian norm [61,62]. Equation (13) is a
straightforward consequence of Schrödinger’s equation
(see Appendix C).
In our final step, we note that the previous two

observations are contradictory: By dimensionality argu-
ments, we can find n ∼ δ−2ðd−1Þ different states ϕ1;…ϕn
pairwise separated by at least trace distance δ, i.e.,
Dðϕi;ϕjÞ ≥ δ for i ≠ j. If the trajectory αðθÞ is dense, at
some angles θ1;…; θn it must come ε-close to these states,
D(αðθiÞ;ϕi) ≤ ε. From Eq. (13) and the triangle inequality
we obtain B ≥ δ−2ðd−1Þðδ − 2εÞ, which can be made arbi-
trarily large by choosing small enough ε and δ, contra-
dicting the finiteness of B. Full details are given in
Proposition D2.
This shows the impossibility of CHSE. Lastly, because

CHSE implies CUE, then CUE is also not achievable by
time-periodic systems. ▪
In Appendix D we show a stronger form of Theorem 1.

We prove that if a periodic Hamiltonian satisfies k-HSE for
some finite k, then B ≔

R
T
0 dtkHðtÞk∞ is lower bounded as

B ≥ max
# ffiffiffi

2
p

3k

$$
kþ d − 1

k

%
− 1

%
;

8

ð4dÞd

$
k

logðkþ 1Þ

%
d−3=2&

: ð14Þ

Informally, Eq. (14) says that time-periodic k-HSE is not
achievable for large k or d unless the wave function travels
for a very long distance within a single Floquet period T,
in line with our physical intuition. For example, inserting
k ¼ 1 in the first expression in the maximum, we see that
B ≥ ð

ffiffiffi
2

p
=3Þðd − 1Þ, where the linear growth with d is

required for a quasienergy eigenstate to come close to d
orthogonal states and achieve 1-HSE. In general, for fixed
k, BðdÞ has to grow at least as dk. For fixed d, BðkÞ has to
grow at least like ½k= logðkþ 1Þ%d−3=2, by the second
expression in Eq. (14), which is obtained from analyzing
the geometrical distribution of a k-design in PðCdÞ. In
Sec. VII, we provide explicit examples of time-periodic
quantum systems with B large enough such that k-HSE is
provably achievable.

Our next result is a generalization of Theorem 1 to m-
time-quasiperiodic Hamiltonians, where we remind the
reader our analysis is under the premise of the existence
of QEs. Like in the Floquet case (m ¼ 1), such QEs can
lead to an obstruction of the system to achieve CHSE
or CUE: Dynamics beginning from a QE is necessarily
structured—specifically time quasiperiodic, or in other
words, amounts to winding around an m-dimensional torus
Tm. It may then be possible this regularity precludes an
unbiased exploration of the Hilbert space. However, unlike
the Floquet case, now there is an interplay between the
number of tones m of the drive (its “complexity”) and the
dimension d of the ambient space: Such obstruction is
active only if the torus is small enough, such that the time-
evolved state is unable to fully “wrap” around the projec-
tive Hilbert space. Indeed, from a dimension-counting
argument, we obtain the following.
Theorem 2. Let HðtÞ be an m-quasiperiodic Hamiltonian

with a piecewise-smooth quasienergy eigenstate. Then
HðtÞ cannot exhibit CHSE if

m < 2ðd − 1Þ: ð15Þ

Proof. The quasienergy eigenstate αðtÞ densely visits
PðCdÞ in time (see Appendix B). By the quasiperiodicity
of the time evolution, αðtÞ ¼ αðθ ¼ ωtÞ, we deduce that
the map θ ↦ αðθÞ is dense, from Tm to PðCdÞ. Because
θ ↦ αðθÞ is piecewise continuous, this map must be
surjective, or entirely covering PðCdÞ. Intuition suggests
that a surjective map from Tm to PðCdÞ requires that the
dimension of the codomain, dim½PðCdÞ% ¼ 2ðd − 1Þ (the
amount of real numbers required to specify a pure density
matrix), is not greater than the dimension of the domain
m ¼ dimðTmÞ. This intuition is correct, as long as the map
θ ↦ αðθÞ is piecewise smooth in the torus, which is
required in our definition of quasienergy eigenstate [63].
The technical reason is that a piecewise-smooth map is
piecewise Lipschitz continuous, and such maps do not
increase Hausdorff dimension [see Proposition 1.7.19 of
Ref. [64] ]. Thus, CHSE requires m ≥ 2ðd − 1Þ. ▪
The bound m < OðdÞ where CHSE is impossible is

obtained from the real dimension of PðCdÞ. Similarly, the
same idea can be applied for the consideration of CUE, and
we will obtain a bound which is m < Oðd2Þ, coming from
the dimension of the projective unitary group.
Theorem 3. Let HðtÞ be an m-quasiperiodic Hamiltonian

with a basis of piecewise-smooth quasienergy eigenstates.
Then the evolution given by HðtÞ cannot exhibit CUE if

m < dðd − 1Þ: ð16Þ

We provide the detailed proof in Appendix E. The idea is
to note that the generalized Floquet decomposition for
UðtÞ ¼ PðωtÞe−iQt is quasiperiodic, with m tones corre-
sponding to PðωtÞ, and (at most) an extra d − 1 tones
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corresponding to thewindingphasese−iQt,which then implies
that mþd−1¼dimðTmþd−1Þ≥dim½PUðdÞ%¼d2−1.
These three no-go theorems are depicted in Fig. 1.

V. IMPLICATIONS OF NO COMPLETE
QUANTUM ERGODICITY

Our results in the previous section show that the
evolution of any state under a few-tone quasiperiodic drive
which allows for QEs necessarily has to be distinguishable
from a Haar-random state via some (potentially nonlocal)
observable. One the one hand, this statement establishes a
no-go theorem for CUE and CHSE as we already discussed,
but on the other, it implies the existence of observableswhose
expectationvalues, temporal correlations, or higher statistical
moments in time retain some memory of the initial state. For
many-body quantum systems, the latter aspect presents us
with an exciting possibility: Even at very late times—when
one expects an infinite-temperature, “featureless” average
state due to the lack of energy conservation—there never-
theless still remain nontrivial measurable features which are
different from those coming from a genuinely featureless
underlying distribution.
We test this idea numerically by focusing on local

or few-body correlators which could be measured in a
realistic setting. We consider a spin-1=2 chain of length L
and two classical Ising Hamiltonians along orthogonal
directions,

H0 ¼
XL

j¼1

Xj þ
XL

j¼2

Xj−1Xj þ
1

10
X1;

H1 ¼
XL

j¼1

Zj þ
XL

j¼2

Zj−1Zj þ
1

10
Z1;

where Xj and Zj are the Pauli operators acting on site j, and
the boundary terms are introduced solely to break the
spatial-reflection symmetry. We construct three driving
protocols, consisting of certain alternating kicks between
the Ising Hamiltonians with varying amplitudes. First, we
consider a Floquet drive by kicking with H0 at even integer
times and with H1 at odd integer times:

HFloðtÞ ¼
X∞

n¼1

δð2n − tÞH0 þ δð2n − 1 − tÞH1: ð17Þ

Second, we consider a two-quasiperiodic drive which we
dub the “Cosine drive”:

HCosðtÞ ¼
X∞

n¼1

δðn−ω1tÞHgðω2tÞ; ð18Þ

where gðθÞ ¼ ½1þ cosðθÞ%=2 and Hx ¼ ð1 − xÞH0 þ xH1.
We choose ω1 ¼ 1 and ω2 ¼ πð3 −

ffiffiffi
5

p
Þ, which are ration-

ally independent. Both the Floquet and Cosine drives are

expected to posses QEs [11]. Finally, we consider the two-
quasiperiodic Fibonacci drive,

HFibðtÞ ¼
X∞

n¼1

δðn − ω1tÞHχðω2tÞ; ð19Þ

where χðθÞ ¼ 0 if θ∈ ½0; 2π − ω2Þ and 1 if
θ∈ ½2π − ω2; 2π%, which was shown to generically satisfy
CUE in Ref. [7]. According to Theorems 1 and 2, the
Floquet and Cosine drive cannot even exhibit CHSE if
L ≥ 2, and by the same results the Fibonacci drive does
not admit QEs. We ask whether this difference has a
measurable effect.
Our aim is to find a few-body observable whose late-time

temporal moments are different from those of the Haar
distribution. To this end, we consider a linear combination
O ¼ ð1=MÞ

P
S JSS of K-body Pauli observables,

S ¼ σj1 ( ( ( σjK ; ð20Þ

where each σjl ∈ fX; Y; Z; 1g acts on a distinct site
jl ∈ f1; 2;…; Lg. We want to select O as to maximize
the difference between its temporal and Haar averages,

Δð1ÞðTÞ ¼ E
0≤t≤T

h
hψðtÞjOjψðtÞi

i
− E

ϕ∈PðCdÞ
½hϕjOjϕi%

¼ tr
'
Oρð1ÞT

(
− tr

'
Oρð1ÞHaar

(
; ð21Þ

starting from jψð0Þi ¼ j0i⊗L, where ρð1ÞT ¼ E0≤t<T ½ψðtÞ%
and ρð1ÞHaar ¼ 1=d. The maximum is achieved by computing
the finite-time average ρð1ÞTopt

for a fixed Topt ¼ 103 [65] and

setting each coefficient to be JS ¼ trðSρð1ÞTopt
Þ − trðSρð1ÞHaarÞ

[66]. Note that the resulting observable O is different for
each driving protocol.
Figure 3(a) shows Δð1ÞðTÞ for the two-body observable

O obtained by the procedure described above. We see that
the temporal average remains distinguishable from the Haar
average for both the Floquet and Cosine drives for times
much beyond the optimization time Topt (vertical dashed
line). In contrast, the corresponding quantity under the
Fibonacci drive steadily decays toward the Haar average
after the optimized time, as predicted by CHSE. This result
shows that QEs in a many-body driven system leave a
detectable signal at level of few-body expectation values,
which is in accordance which our Theorems 1–3 ruling out
CHSE is for such dynamics.
In Fig. 3(b) we repeat a similar exercise now comparing the

temporal correlations E0≤t≤T ½hψðtÞjS1jψðtÞihψðtÞjS2jψðtÞi%
against those from the Haar distribution Eϕ∈PðCdÞ
½hϕjS1jϕihϕjS2jϕi%, with each Si of the form in Eq. (20).
These correlations can be written as trðρð2ÞT S1 ⊗ S2Þ and
trðρð2ÞHaarS1 ⊗ S2Þ, respectively, with ρð2ÞT ¼ E0≤t<T ½ψðtÞ⊗2%.
Consequently, we consider a linear combination of correlators
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O ¼ ð1=MÞ
P

S1;S2 JS1;S2S1 ⊗ S2, which maximizes
the difference,

Δð2ÞðTÞ ¼ tr
'
Oρð2ÞT

(
− tr

'
Oρð2ÞHaar

(
; ð22Þ

at Topt ¼ 103 by picking JS1;S2 ¼ trðρð2ÞTopt
S1 ⊗ S2Þ −

trðρð2ÞHaarS1 ⊗ S2Þ [67]. Figure 3(b) shows that Δð2Þ for the
Cosine and Floquet drives both eventually display a late-time
plateau at a finite value, which indicates that there is a long-
lived structure distinguishing them from Haar random which
can be probed in the temporal correlations of these two-body
observables. In contrast, Δð2Þ for the Fibonacci drive shows a
steady decay toward the Haar moment.
We finally analyze the scaling of our results in terms of

both the system size L and size of the observable K. In
Fig. 3(c) we show that the late-time signals for the Floquet
and Cosine drive displayed in Fig. 3(a) decay exponentially
in the system size L. This implies that a measurement of
these quantities in practical scenarios would be increasingly
challenging, as the signal becomes exponentially weak.
However, in Fig. 3(d) we also show an exponential
improvement when increasingK. TheseK-body correlators
can be experimentally probed by various techniques,
including randomized-measurement approaches [68]. It is
an interesting future direction of this work to explore if the
interplay between K and L could allow for a viable
experimental procedure to measure the difference between
the temporal and Haar moments of driven systems which
violate CHSE.

VI. MANY DRIVING FREQUENCIES PERMIT
COMPLETE QUANTUM ERGODICITY

In Sec. IV, we identified constraints on a m-time-
quasiperiodic Hamiltonian’s ability to uniformly cover
either the Hilbert space (Theorem 2) or unitary space
(Theorem 3), under the assumption of existence of QEs.

They tell us that a quantum system driven with too few
tones cannot exhibit dynamical ergodicity: Namely, if
m < OðdÞ, CHSE is impossible; while if m < Oðd2Þ,
CUE is impossible. Physically, this is sensible, as when
the number of driving frequencies m is small, dynamics
will not be “complex” enough. However, this leaves open
the obvious converse question: suppose m is large enough.
Then are there time-quasiperiodic systems that do exhibit
CHSE or CUE?
In this section, we will answer this in the affirmative.

We show how to construct explicit m-quasiperiodic
Hamiltonians with m ¼ d2 − 2 tones that host QEs, and
which provably satisfy CUE (and thus CHSE). Together
with the no-go theorems of the previous section, this leads
us to the “phase diagram” depicted in Fig. 1.

A. Single-qubit complete unitary ergodicity
with m= 2 driving frequencies

We start with the case for a single qubit, with m ¼ 2,
which will motivate the generalization for systems of
arbitrary dimension.
Our key idea is to construct states jαðθÞi (α ¼ 0, 1),

parametrized by θ ¼ ðθ1; θ2Þ, that satisfy the CHSE con-
dition, and then reverse engineer a Hamiltonian which has
these states as its quasienergy eigenstates. By imposing
Eq. (3) on the states jαðθÞi, for all k, the resulting
Hamiltonian will satisfy CHSE, but further CUE, which
will motivate the generalization to d > 2.
The CHSE condition requires the state αðtÞ ¼

jαðtÞihαðtÞj to uniformly cover the Bloch sphere PðC2Þ.
Because αðtÞ ¼ αðθ ¼ ωtÞ, we can achieve this by select-
ing ω ¼ ðω1;ω2Þ to be rationally independent, and αðθÞ to
be uniformly distributed on PðC2Þ, as a function of the
angles θ on the torus T2.
First, we construct the state j0ðθÞi, parametrized as

j0ðθÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pðθ1Þ

p
j0iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pðθ1Þ

p
e−iθ2 j1i:

(a) (b) (c) (d)

FIG. 3. Difference between temporal and Haar moments of K-body optimized observable in a spin-1=2 chain driven by a Floquet
protocol and two-quasiperiodic drives with QEs (Cosine) and without QEs (Fibonacci). The observable is different for each driving
protocol and moment. (a) Difference between temporal average and Haar averageΔð1Þ withK ¼ 2 and system size L ¼ 6. (b) Difference
between temporal and Haar second momentsΔð2Þ. The observables are selected to maximize the value at T ¼ 103, indicated by a vertical
dashed line but are otherwise independent of time. (c) Scaling of the late-time plateaus (T ¼ 106) of Floquet and Cosine drive with
system size L for the first moment and K ¼ 2. (d) Same as (c) but for fixed L ¼ 9 and varying K. The initial state is jψi ¼ j0i⊗L

throughout.
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To uniformly cover the Bloch sphere, the function pðθ1Þ
needs to be uniformly distributed in [0, 1] when θ1 is
uniformly distributed in ½0; 2πÞ. This is achieved by any
surjective function such that jdp=dθ1j is almost-everywhere
constant. Here, we consider pðθ1Þ ¼ j1 − θ1=πj, which is
continuous on the circle. The resulting map is depicted
in Fig. 4.
Having defined j0ðθÞi, we set j1ðθÞi to be the orthogonal

state:

j1ðθÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
pðθ1Þ

p
j1i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pðθ1Þ

p
eiθ2 j0i:

We now use these two states to construct a quasiperiodic
Hamiltonian which has them as QEs. We can write these
two states as the columns of a unitary PðθÞ [i.e.,
jαðθÞi ¼ PðθÞjαi], where

Pðθ1; θ2Þ ¼
$

cos ξðθ1Þ − sin ξðθ1Þeiθ2

sin ξðθ1Þe−iθ2 cos ξðθ1Þ

%
; ð23Þ

and ξðθ1Þ ¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffi
pðθ1Þ

p
. Then we choose any ration-

ally independent driving frequencies ω ¼ ðω1;ω2Þ and
quasienergy q to define the evolution operator to be given
by the generalized Floquet decomposition, Eq. (10), sub-
stituting Q ¼ diagð−q; qÞ, θ1 ¼ ω1t, and θ2 ¼ ω2t:

UðtÞ ¼
$

cos ξðω1tÞeiqt − sin ξðω1tÞeiðω2−qÞt

sin ξðω1tÞe−iðω2−qÞt cos ξðω1tÞe−iqt

%
:

ð24Þ

Finally, we can obtain the two-quasiperiodic Hamiltonian
by the Schrödinger equation HðtÞ ¼ i½∂tUðtÞ%UðtÞ†.
It turns out that the evolution given by Eq. (24) not only

satisfies CHSE, but the stronger CUE. This is because the
transformation

ðξ; η;φÞ ↦
$

cos ξeiη − sin ξeiφ

sin ξe−iφ cos ξe−iη

%
ð25Þ

is precisely the Euler-angle parametrization of the group
SUð2Þ, and furthermore the assignment ξ ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffi
pðθ1Þ

p

makes it measure preserving, i.e., maps the Haar measure
of the torus T3 ∋ ðθ1; η;φÞ to the Haar measure of SUð2Þ.
Thus, upon substituting

ξ ¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − ω1t=πj

p
; η ¼ qt; φ ¼ ðω2 − qÞt;

ð26Þ

we guarantee that UðtÞ, in time, explores SUð2Þ uniformly.
In the next section, we explain how to generalize this

construction to SUðdÞ, to obtain a d-dimensional quasi-
periodic Hamiltonian which has QEs and satisfies CUE.
That is, the time evolution operator uniformly explores the
entire SUðdÞ space (the projective unitary space acting on a
qudit of dimension d) over time.

B. Qudit complete unitary ergodicity
with m= d2 − 2 driving frequencies

By considering a specific sequence of rotations of
the form

Rjðξ;φ; ηÞ ¼

0

BBB@

1j−1
cos ξeiη − sin ξeiφ

sin ξe−iφ cos ξe−iη

1d−j−1

1

CCCA;

one can construct Hurwitz’s parametrization of SUðdÞ,
in terms of d2 − 1 Euler angles [69–71]. We utilize this
parametrization to construct an m-quasiperiodic drive
which satisfies CUE and has QEs, with m ¼ d2 − 2.
This is done by explicitly defining the evolution operator
UðtÞ in the generalized Floquet decomposition form
[Eq. (10)]. By assigning each Euler angle to a function
of the driving frequencies and the quasienergies, we
guarantee that UðtÞ uniformly explores SUðdÞ in time.
The assignment for the Euler angles is a generalization of
Eq. (26), where the d2 − 1 Euler angles are written in terms
of the m ¼ d2 − 2 driving angles ω1t;…;ωmt, and one of
the quasienergies. The details of this construction are left to
Appendix F.
The driving frequencies and quasienergies can be

selected so that the corresponding winding in the torus
is equidistributed [72], and consequently the trace distance
between the finite-time temporal moments and the corre-
sponding Haar moments decay like 1=T. This power law is
quadratically faster than the 1=

ffiffiffiffi
T

p
decay one gets from

independent random sampling, so this construction might
be useful for producing quasirandom states or unitaries for
quasi-Monte Carlo integration [73].
In our construction, only one quasienergy is related to

one of the Euler angles, and the remaining quasienergy
degrees of freedom are just averaged out in time. We leave
as an open question if it is possible to utilize all the d − 1
quasienergy degrees of freedom. If the answer is positive,

FIG. 4. Transformation θ ↦ j0ðθÞi. A pair of angles θ ¼
ðθ1; θ2Þ in the torus (left) is mapped to (pðθ1Þ; θ2) in the cylinder
(middle), which is further mapped to the state j0ðθÞi ¼ ffiffiffi

p
p j0iþ

e−iθ2
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
j1i in the Bloch sphere (right). The blue line displays

time evolution θ ¼ ωt, with a blue disk marking t ¼ 0.
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this would decrease the required number of driving angles
to m ¼ d2 − d, saturating the bound given by Theorem 3
and removing the white sliver in the phase diagram
in Fig. 1. If the answer is negative, then the bound in
Theorem 3 could potentially be strengthened.

VII. QUANTUM k ERGODICITY
IN TIME-PERIODIC SYSTEMS

Theorems 1–3 show that the existence of quasienergy
eigenstates forbids the achievability of the most stringent
forms of dynamical ergodicity: CHSE and CUE. It is
natural to ask if there are similar obstructions to quantum
ergodicity if one relaxes to finite moments, as in the notions
of k-HSE and k-UE, introduced in Sec. II. Surprisingly, we
show here that k-HSE and k-UE can be reached even by
time-periodic Hamiltonians, corresponding to the minimal
m ¼ 1 time-periodic or Floquet case.
The achievability of finite k-UE in time-periodic systems

can be understood from the existence of finite k-unitary
designs in quantum information theory [74,75]—an ensem-
ble of a finite number of unitaries which reproduces the
Haar measure up to the kth statistical moment (see
Appendix A for more details).
Utilizing the fact that finite unitary k-designs exist, we

may construct a periodic sequence of rotations which
satisfies k-UE, over discrete time. The construction pro-
ceeds as follows: For any k, letDk ¼ fV0; V1;…; Vn−1g be
a finite unitary k-design with n elements, which can be
selected so that V0 ¼ 1 by otherwise applying V†

0 to all of
its elements. We define a periodic drive by applying a
sequence of gates such that the evolution operator cycles
through Dk.
At every integer time t ¼ j mod n, we apply the unitary

VjV
†
j−1. Then, the evolution operator satisfies UðtÞ ¼ Vj.

In this case, the integral in the left-hand side of Eq. (4),
which defines k-UE, can be rewritten in terms of the series:

lim
N→∞

1

N þ 1

XN

t¼0

UðtÞ⊗k;k ¼ E
Haar

½W⊗k;k%:

Note that this evolution has period T ¼ n, and it can
achieve the k-UE condition with B ¼

R
T
0 dtkHðtÞk∞ ≤ nπ,

where the time-periodic Hamiltonian HðtÞ consists of a
sequence of infinite-strength kicks HjðtÞ ¼ iδðt − jÞ ×
logðVjV

†
j−1Þ which satisfy

R
dtkHjðtÞk∞ ≤ π. This is

consistent with the bound on B given by Eq. (14), as n
has to be sufficiently large in order for Dk to form a unitary
k-design.
In the construction above k-UE is achieved by a periodic

sequence of gates, in discrete time. The Hamiltonian
discontinuously drives the state around PðCdÞ. It is,
however, interesting to ask if the same level of ergodicity
can be achieved when the evolution is continuous, or even

smooth. In what is left of this section, we present some
examples to show that the answer is positive.
We provide examples of continuous time-periodic sys-

tems that satisfy k-HSE and k-UE. We start with a qubit,
d ¼ 2. In this case, k-UE is completely characterized by the
time trajectory of a single quasienergy eigenstate since
the trajectory of the remaining state is determined by their
orthogonality. In a single-qubit Hamiltonian HðtÞ, if one
quasienergy eigenstate jαðθÞi (α ¼ 0 or α ¼ 1) satisfies the
k-HSE condition,

E
θ∈ T

½αðθÞ⊗k% ¼ E
ϕ∈PðC2Þ

½ϕ⊗k%; ð27Þ

and the corresponding quasienergy and driving frequency
are rationally independent, then HðtÞ satisfies k-UE (see
Corollary G1). Thus, constructing a single-qubit time-
periodic drive which satisfies k-UE reduces to designing
a closed curve αðθÞ in PðC2Þ which satisfies Eq. (27),
from which one can construct the evolution operator
by the Floquet decomposition UðtÞ ¼ PðωtÞe−idiagð−q;qÞ
with PðθÞ ¼

P
1
α¼0 jαðθÞihαj, where q, ω are chosen to

be rationally independent.
We use two approaches to find curves 0ðθÞ∈PðCdÞ that

satisfy Eq. (27). In Fig. 5(a), we show a continuous curve
constructed to interpolate through the six-state 3-design
fj0i; j1i; ðj0i) j1iÞ=

ffiffiffi
2

p
; ðj0i) ij1iÞ=

ffiffiffi
2

p
g, via the great

circles of the Bloch sphere. Equation (27) is easily shown
to hold for k ¼ 3 by explicit integration. This curve is
not entirely differentiable, resulting in a Hamiltonian with
discontinuous time dependence which satisfies 3-UE.
Alternatively, the curve shown Fig. 5(b) is obtained by
solving Eq. (27) for k ¼ 2 in Fourier space (see
Appendix H), which yields an analytic curve that turns
out to interpolate through a seven-state 2-design. The
corresponding Hamiltonian has analytic time dependence,
but satisfies only 2-UE. The values of B ¼

R
T
0 dtkHðtÞk∞

for the drives shown in Figs. 5(a) and 5(b) satisfy B ≥ 3π
and B ≥ 8.296, respectively [76].
In Appendix H we construct a time-periodic analytic

Hamiltonian which satisfies 1-HSE in any dimension.
This is done again by going into Fourier space. We believe

(a) (b)

FIG. 5. Single-qubit quasienergy eigenstate of a time-periodic
drive that satisfies k-UE, for (a) k ¼ 3 and (b) k ¼ 2. In (a), the
right-angle corners form six-state 3-design, and, in (b), arrows
mark a seven-state 2-design.
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the Fourier approachmay generalize to arbitrary k, andmight
allow us to explicitly find time-periodic Hamiltonians which
satisfy k-HSE, or even k-UE, where the time dependence is
smooth, although more analytical understanding is required
in this direction, which we leave open (see Appendix H for
more details).

VIII. SUMMARY AND DISCUSSION

In this work, we have introduced and studied novel
dynamical notions of quantum ergodicity defined in terms
of statistical similarities of the temporal ensemble of states
or unitaries to their respective uniform spatial ensembles.
These are dubbed Hilbert-space ergodicity and unitary
ergodicity, and define a hierarchical tower of quantum
ergodicities based on equivalence at different levels of
moments k. In the limit of k → ∞, we obtain complete
Hilbert-space ergodicity and complete unitary ergodicity, in
which the temporal distribution of initial states and evo-
lution operators, respectively, are exactly equal to the
respective uniform Haar distribution. We studied the
achievability of HSE and UE in the class of quasi-
periodically driven systems driven by m fundamental
tones assuming the existence of quasienergy eigenstates,
and proved that CHSE and CUE are not achievable in
Floquet systems, as well as in quasiperiodically driven
d-dimensional systems if m < 2ðd − 1Þ and m < dðd − 1Þ,
respectively. Conversely, we provided examples of drives
satisfying CUE (and hence CHSE) with m ¼ d2 − 2. We
finally showed that a more relaxed form of quantum
ergodicity, k-HSE and k-UE for some fixed k, can be
achieved even by Floquet systems with driving periods that
are long enough.
Besides representing an important step toward a unifying

notion of quantum ergodicity and chaos applicable across
different classes of quantum dynamics, our work has
several conceptual and technical implications. For one,
our dynamical notions of ergodicity provide a framework to
understand the emergence of thermalization in extended
driven systems, without reference to eigenstates like in the
eigenstate thermalization hypothesis. For example, a sys-
tem exhibiting 1-HSE is such that the infinite-time average
of any observable is equal to its expectation value at infinite
temperature.Moreover, the higher levels of k-HSE and k-UE
imply that the system at almost all times is locally maximally
mixed, and furthermore the ensemble of pure quantum states
whichmake up a local subsystem itself forms a quantumstate
k0-design, for some moment k0 related to k [7,77], a recently
uncovered stronger form of quantum thermalization called
“deep thermalization” [77–85].
Our results also provide an avenue to partially answer the

open question of whether a quasiperiodically driven system
exhibits quasienergy eigenstates or not, which is the
mathematical question of reducibility of quantum dynam-
ics. Physically, it corresponds to the question of localization
versus delocalization of a driven system when mapped to

the so-called extended Hilbert space [8,86] (frequently
referred to as the “frequency lattice”). As we have seen, the
presence of QEs is incompatible with CHSE and CUE in
large-dimensional systems, and so a demonstration of
CHSE or CUE would preclude the existence of QEs within
a given model. For instance, in Ref. [7], it was shown that
the family of (m ¼ 2)-quasiperiodically driven systems
called Fibonacci drives provably satisfies CUE in any
dimension. This result, compounded with our Theorem
3, implies that these drives cannot be reducible, a nontrivial
mathematical statement, and further suggests the computa-
tional complexity required to describe such a system grows
unboundedly with time, owing to the lack of regular
structure of quantum dynamics.
There are several open questions arising from our work.

First, our work relates two notions of complexity of
quantum dynamics: (i) the number of driving frequencies
m underlying a driven Hamiltonian, and (ii) the degree of
ergodicity exhibited by dynamics, captured by the moment
k in HSE or UE. An immediate interesting question is the
connection of these notions of complexity to other existing
notions, such as the Krylov [87] or circuit [88,89] complex-
ities of quantum dynamics. These have been recently
studied in periodically driven systems [90,91]. Second,
the question of typicality deserves to be addressed: While
we have provided explicit constructions of quasiperiodi-
cally driven Hamiltonians provably exhibiting HSE and
UE, is such ergodicity expected to hold more in generic
quasiperiodically driven systems? Relatedly, beginning
from a system that does exhibit k-HSE and k-UE, are
these properties robust against noise and perturbations to
the driving Hamiltonian; i.e., can we define universality
classes of ergodic behavior? We leave the exploration of
such interesting questions to future work.
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APPENDIX A: QUANTUM ERGODICITY
BY DESIGN

In this appendix, we introduce the notions of state
and unitary k-designs from quantum information theory.
We state some of their properties and utilize them to prove
the relations between the different levels of HSE and UE
described in the main text.
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We begin with the notion of state k-design, which
underpins HSE.
Definition A1 (State k-design). A probability measure μ

over PðCdÞ is a (state) k-design if

E
ψ∼μ

½ψ⊗k% ¼ E
ϕ∈PðCdÞ

½ϕ⊗k%: ðA1Þ

The right-hand side is to be understood as the expectation
value with respect to the invariant measure induced by the
Haar measure of the unitary group. It can be calculated
explicitly using Schur’s lemma of representation theory,

ρðkÞHaar ≔ E
ϕ∈PðCdÞ

½ϕ⊗k% ¼ ΠðkÞ
sym

ðd − 1Þ!k!
ðdþ k − 1Þ!

; ðA2Þ

where ΠðkÞ
sym is the orthogonal projector into the symmetric

subspace of ðCdÞ⊗k, obtained by averaging the operators
Vπ which permute the k tensors, Vπ ⊗k

j¼1 jψ ji ¼
⊗k

j¼1 jψπðjÞi, over all permutations π in the symmetric
group of k elements Sk [28]:

ΠðkÞ
sym ¼ 1

k!

X

π∈Sk

Vπ: ðA3Þ

For HSE, we are interested in the case where μ is
the state temporal ensemble, in continuous time, μtime ¼
limT→∞ð1=TÞ

R
T
0 dtδψðtÞ, with δψðtÞ the Dirac measure

centered at ψðtÞ. Simply, k-HSE is the statement that
μtime forms a k-design.
Note that the assumption that the limit T → ∞ exists is

implicit in the definition of k-HSE. There are examples
of dynamics where this average may fail to converge.
Nevertheless, if the Hamiltonian is quasiperiodic and has
quasienergy eigenstates, then μtime is guaranteed to exist.
This is because jψðtÞi, when expanded in the quasienergy-
eigenstate basis, is seen to be n quasiperiodic, for some
integer n that depends on the rational dependence of the
quasienergy and driving frequencies, and then by the
Kronecker-Weyl theorem, μtime ¼ ð2πÞ−n

R
Tn dθδψðθÞ.

One simple way to verify if a probability measure μ
forms a k-design is via the so-called frame potential:

F ðkÞ
μ ≔ E

ψ ;ϕ∼μ
½jhψ jϕij2k%: ðA4Þ

It can be shown that μ forms a k-design if and only if
F ðkÞ

μ ¼ F ðkÞ
Haar ¼ ½ðd − 1Þ!k!=ðdþ k − 1Þ!% (see Proposition

38 in Ref. [29]). In the particular case of the temporal
ensemble μtime with initial state ψð0Þ, the frame potential is
given by

F ðkÞ
time ¼ E

t;t0≥0
½jhψðt0ÞjψðtÞij2k%;

which is equal to the Haar frame potential if and only if the
system satisfies k-HSE.
Now we introduce unitary k-designs, which provide the

framework of UE.
Definition A2 (Unitary k-design). A probability measure

ν over UðdÞ is a unitary k-design:

E
U∼ν

½U⊗k;k% ¼ E
Haar

½V⊗k;k%: ðA5Þ

The right-hand side denotes average over the Haar
measure of PUðdÞ, which can be constructed by sampling
Haar V from UðdÞ or SUðdÞ, and projecting into PUðdÞ by
taking the tensor product V' ⊗ V.
Unitary k-ergodicity (k-UE) is the statement that the

unitary operator temporal ensemble νtime ¼ limT→∞ð1=TÞ×R
T
0 dtδUðtÞ forms a unitary k-design. As before, this ensem-
ble is guaranteed to converge under a quasiperiodic
Hamiltonian with quasienergy eigenstates.
A probability measure ν is a unitary k-design if the frame

potential,

F ðkÞ
ν ≔ E

U;V∼ν
½jtrðU†VÞj2k%;

is equal to the Haar frame potential (Lemma 33 in
Ref. [29]):

F ðkÞ
Haar ≔ E

W;V∼Haar
½jtrðW†VÞj2k% ¼ E

V∼Haar
½jtrðVÞj2k%:

The unitary frame potential for the temporal ensemble
is given by F ðkÞ

time ¼ Et≥0;t0≥0½jtrðUðt0Þ†UðtÞÞj2k%, which is
equal to the unitary Haar frame potential if and only if the
system satisfies k-UE.
There are two basic properties of designs, which we state

below, which allow us to prove the relations between the
different levels of the hierarchies of quantum ergodicity.
Proposition A1 (k-designs are k0-designs if k0 ≤ k). Let μ

be a state (unitary) k-design. Then μ is a state (unitary) k0-
design for all k0 ≤ k (Observation 29 in Ref. [29]).
Proposition A2 (A unitary k-design acted on a state

forms a state k-design). Let ν be a unitary k-design. For a
fixed state jψi, let νψ be the probability distribution on
PðCdÞ that results from applying a ν-distributed unitary to
jψi. Then νψ is a state k-design (Ref. [29], p. 25).
Corollary A1 (Arrows in Fig. 2). In any time-dependent

system, the following implications hold.
(a) ∀ k ≥ k0∶ k-HSE ⇒ k0-HSE,
(b) ∀ k ≥ k0∶ k-UE ⇒ k0-UE,
(c) ∀ k∈N∶ k-UE ⇒ k-HSE,
(d) CUE ⇒ CHSE.
Proof. Properties (a) and (b) follow from Proposition A1,

applied to the state and unitary operator temporal ensembles.
Property (c) follows directly from Proposition A2. Property (d)
is an immediate consequence of property (c). ▪
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Corollary A1 tells us that k-UE is a stronger property
than k-HSE. It is natural to ask if it is strictly stronger. In the
particular case of a qubit, k-HSE and k-UE are equivalent.
The reason is the following property of k-designs in qubits,
which is a converse for Proposition A2.
Theorem A1. Let ν be a probability measure on Uð2Þ

such that for any state ψ ∈PðC2Þ, the state distribution νψ
on PðC2Þ that results from applying a ν-distributed unitary
to ψ forms a state k-design. Then ν is a unitary k-design.
Taking ν to be the unitary temporal ensemble we

immediately deduce the following.
Corollary A2. In a qubit (d ¼ 2), k-HSE (CHSE) is

equivalent to k-UE (CUE).
The proof of Theorem A1 relies on the representation

theory of SU(2). One can understand the central argument
physically, in terms of spin addition: Adding 2k spin-1=2
particles generates the same total spin subspaces as adding
two spin-k=2 particles (ignoring multiplicities).
Proof of Theorem A1. We first transform the assump-

tion that νψ is a state design for all ψ into a single
convenient equality. By the definition of νψ , we have that
Eϕ∼νψ ½ϕ

⊗k% ¼ EU∼ν½ðUψUÞ⊗k%. Then, that the distribution
νψ forms a state k-design means that EU∼ν½ðUψUÞ⊗k% ¼
EU∼Haar½ðUψUÞ⊗k%, which is vectorized to

E
U∼ν

½U⊗k;k%vecðψ⊗kÞ ¼ E
U∼Haar

½U⊗k;k%vecðψ⊗kÞ: ðA6Þ

The subspace spanned by fψ⊗kgψ is the space of operators
in the symmetric subspace of ðC2Þ⊗k. Consequently,
Eq. (A6) holds for all ψ if and only if

E
U∼ν

½U⊗k;k%ΠðkÞ
sym ⊗ ΠðkÞ

sym ¼ E
U∼Haar

½U⊗k;k%ΠðkÞ
sym ⊗ ΠðkÞ

sym;

ðA7Þ

where ΠðkÞ
sym is the projector into the symmetric subspace

given by Eq. (A3).
Now, in order to use representation-theoretic results, it is

convenient to rewrite Eq. (A7) in terms of the representa-
tion of SU(2) on the symmetric subspace of ðC2Þ⊗k, which
we denote by VðkÞ

symðUÞ ≔ U⊗kΠðkÞ
sym. We have

E
U∼ν

½VðkÞ'
sym ðUÞ ⊗ VðkÞ

symðUÞ% ¼ E
U∼Haar

½VðkÞ'
sym ðUÞ ⊗ VðkÞ

symðUÞ%:

This allows us to appeal to the following general result
from representation theory, which is a straightforward
consequence of the Peter-Weyl theorem [27].
Lemma A1. Let G be a compact topological group, g ↦

VðgÞ a finite-dimensional unitary representation, and μ1, μ2
probability measures on G. Then

E
g∼μ1

½VðgÞ% ¼ E
g∼μ2

½VðgÞ%

if and only if

E
g∼μ1

½WðgÞ% ¼ E
g∼μ2

½WðgÞ%;

for each irreducible subrepresentation W of V.
We apply Lemma A1 to the representation V ¼

VðkÞ'
sym ⊗ VðkÞ

sym and the probability distributions μ1 ¼ ν
and μ2 ¼ Haar½SUð2Þ%. We obtain that for each irreducible
subrepresentations W of VðkÞ'

sym ⊗ VðkÞ
sym, EU∼ν½WðUÞ% ¼

EU∼Haar½WðUÞ%. However, observe that, because we are
working in d ¼ 2, and SU(2) is self-dual, VðkÞ

sym and VðkÞ'
sym

are just the (kþ 1)-dimensional representations of SU(2),
acting in the Hilbert space of a spin-k=2 particle. Thus, the
irreducible subrepresentations of VðkÞ'

sym ⊗ VðkÞ
sym are just the

ð1; 3;…; 2kþ 1Þ-dimensional representations, labeled by
the total spin j ¼ 0; 1;…; k, obtained by adding such
spins. These are the same irreps obtained from the addition
of 2k spin-1=2 particles, which are also the irreducible
subrepresentations of U⊗k;k, where again we utilized
the self-duality of SU(2). Thus, we can apply the con-
verse implication of Lemma A1, and we find that
EU∼ν½U⊗k;k% ¼ EU∼Haar½U⊗k;k%, which says that ν is a
unitary k-design. ▪
It is worth noting that Theorem A1 holds only for

qubits. The underlying reason is that, if d ≥ 3, there
are irreps which appear in the representation U ↦ U⊗k;k

that do not appear in the symmetric representation
U ↦ VðkÞ'

sym ðUÞ ⊗ VðkÞ
symðUÞ.

APPENDIX B: ERGODICITY IMPLIES DENSITY

In this appendix, we show that our notions of quantum
ergodicity imply density over time, in two ways. First, if the
system satisfies CHSE, then any state visits the projective
Hilbert space densely in time, meaning that it eventually
comes arbitrarily close to any other state. Second, if the
system satisfies CUE, then the unitary operator visits the
projective unitary group densely in time, meaning that it
eventually comes arbitrarily close to any other unitary.

1. Complete ergodicity implies density
in the projective Hilbert space

We will show that a state jψðtÞi undergoing evolution
which satisfies k-HSE uniformly covers the projective
Hilbert space. To precisely quantify uniform covering,
we introduce the following concept.
Definition B1 ðε-net and dense set). For ε > 0, a set of

states S ⊆ PðCdÞ is an ε-net if for any state ϕ∈PðCdÞ there
exists ψ ∈ S such that Dðϕ;ψÞ ≤ ε, where Dðϕ;ψÞ is the
trace distance given by Eq. (12). If S forms an ε-net for any
ε > 0, it is said that S is dense.
We show that, under k-HSE, for any initial state ψ , its

evolution is an ε-net, for ε that grows smaller with
increasing k and, consequently, under CHSE, the evolution
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of ψ is dense in PðCdÞ. To that end, we prove the following
result about state k-designs.
Lemma B1. Let ν be a state k-design, and define

γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
$

ðd − 1Þ!k!
ðdþ k − 1Þ!

%
1=k

s

: ðB1Þ

For any ε ≥ γ, the support of ν forms an ε-net.
Proof. Let ϕ∈PðCdÞ remain fixed. We consider the

quantity F ≔ Eψ∼ν½jhϕjψij2k%. This is a modified frame
potential [Eq. (A4)] in which, instead of a double
average, we keep one state fixed and perform only one
average. We will verify that F is lower bounded by
ð1 − ε2Þk, which implies that there is some ψ ∈ suppðνÞ
such that jhϕjψij2k ≥ ð1 − ε2Þk and Dðϕ;ψÞ ≤ ε. Because
ν is a k-design,

F ¼ tr
$
ϕ⊗k E

ψ∼ν
½ψ⊗k%

%
¼ tr

$
ϕ⊗k E

ϕ∈PðCdÞ
½ϕ⊗k%

%
:

From Eq. (A2) and the fact that ϕ⊗k has support only in the
symmetric subspace, we readily obtain

F ¼ ðd − 1Þ!k!
ðdþ k − 1Þ!

≥ ð1 − ε2Þk:

▪
Applying Lemma B1 to the temporal ensemble gener-

ated by an initial state ψ , whose support is
Sψ ¼ fψðtÞjt∈ ½0;∞Þg, we see that Sψ is an ε-net under
k-HSE, as long as ε ≥ γ. Now, because limk→∞ γ ¼ 0, we
have that, under CHSE, Sψ is dense, meaning that for any
other state jϕi and ε > 0, there is a time at which the trace
distance satisfies

D(ϕ;ψðtÞ) < ε: ðB2Þ

2. CUE implies density in the projective
unitary group

A similar result to the previous section holds for unitary
complete ergodicity. If the evolution given by UðtÞ satisfies
CUE, then UðtÞ densely visits the projective unitary group
PUðdÞ, meaning that for any other unitary V and ε > 0,

DPUðdÞðU;VÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

d2
jtr½UðtÞ†V%j2

r
< ε ðB3Þ

at some time t. The quantity ð1=d2ÞjtrðU†VÞj2 is a matrix
analog of the fidelity between states, as it equals 1 if
and only if U equals V up to some global phase, so
DPUðdÞðU;VÞ may be understood as a matrix analog of the
trace distance.

The proof is very similar to the one for CHSE, but
now using tools of unitary designs instead of state designs.
We define

F ≔ E
t≥0

h
jtrUðtÞ†Vj2k

i
¼ tr

$
E
t≥0

½UðtÞ⊗k;k%†V⊗k;k

%
;

which is a modified unitary frame potential, in which we
perform only one average while keeping the unitary V
fixed. Under CUE,

F ¼ tr
$

E
W ∈SUðdÞ

½W⊗k;k%†V⊗k;k

%
¼ E

W ∈ SUðdÞ
½jtrWj2k%:

where the second equality holds because of the right-
invariance of the Haar measure.
The quantity F ðkÞ

Haar ¼ EW ∈ SUðdÞ½jtrWj2k% is the unitary
frame potential of the Haar measure, and it is well known to
be k! for k ≤ d [19,29], but for k > d, which is the relevant
case here, this is not longer true. In general, F ¼ F ðkÞ

Haar can
be shown to be equal to the number of permutations of
f1;…; kg satisfying a specific subsequence-length con-
straint [92]. This number cannot be written as a simple
expression, but it can be shown to satisfy [93,94]

lim
k→∞

F 1=k ¼ d2:

This means that for any ε there exits k such that
d−2kF > ð1 − ε2Þk, which implies that at some time,
d−2kjtrðUðtÞ†VÞj2k > ð1 − ε2Þk. Taking the kth root yields
Eq. (B3).
As a remark, although not used in this article, it is in fact

true that if the system is k-UE, for only finite k, then the
unitary operator, in time, forms an ε-net over the projective
unitary group. This follows directly from a unitary-design
analog to Lemma B1 [95].

APPENDIX C: QUANTUM SPEED LIMIT

We show a type of quantum speed limit, in which the
distance traveled by any state in the projective Hilbert space
is upper bounded by the time integral of the norm of the
Hamiltonian [96].
Proposition C1. Consider any state jψðtÞi evolving

under the unitary dynamics generated by HðtÞ. For any
pair of times t0 ≤ t1, the trace distance between the state at
time t0 and the state at t1 is upper bounded as follows:

D(ψðt0Þ;ψðt1Þ)≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jhψðt0Þjψðt1Þij2

q
≤
Z

t1

t0
dtkHðtÞk∞:
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Proof. We have the following chain of inequalities:
Z

t1

t0
dtkHðtÞk∞ ≥

Z
t1

t0
dtkHðtÞjψðtÞik

¼
Z

t1

t0
dtk∂tjψðtÞik

≥
))))
Z

t1

t0
dt∂tjψðtÞi

))))

¼ kjψðt1Þi − jψðt0Þik

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2Rehψðt0Þjψðt1Þi

p

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψðt0Þjψðt1Þij2

q
:

The first line holds by the definition of operator norm k·k∞,
the second is Schrödinger’s equation, the third is the
integral triangle inequality, and the fourth is the funda-
mental theorem of calculus. The last inequality holds
because 2 − 2ReðzÞ ≥ 1 − jzj2 for any z∈C. ▪
By applying the result above to a finite sequence of

times, we can bound the length of the path traversed
by state.
Corollary C1. For times t0 ≤ t1 ≤ ( ( ( ≤ tM ¼ T,

XM

j¼1

D(ψðtj−1Þ;ψðtjÞ) ≤
Z

T

t0
dtkHðtÞk∞:

As we take the sequence of times to have finer spacings,
the left-hand side approaches the total length of the path
traveled by the state ψ in PðCdÞ, which is seen to be upper
bounded by the right-hand side, which depends only on the
end points t0 and T.

APPENDIX D: TIME-PERIODIC SYSTEMS
AND k-HSE

In this appendix, we show that k-HSE in a time-periodic
Hamiltonian with period T requires a Hamiltonian strength
B ≔

R
T
0 dtkHðtÞk∞ which grows with k and d. Specifically,

k-HSE implies that B ≥ maxfB1; B2g, with

B1 ¼
ffiffiffi
2

p

3k

$$
kþ d − 1

k

%
− 1

%
; ðD1Þ

B2 ¼ Cγ3−2d ≥
8

ð4dÞd

$
k

logðkþ 1Þ

%
d−3=2

; ðD2Þ

C ¼ 25−4dðd − 1Þ2−2dð2d − 3Þ2d−3, and γ ¼ γðk; dÞ as
defined as in Lemma B1. Theorem 1 follows, upon taking
k → ∞. The bound B1 is better when k≲ d, and is
surpassed by B2 when k ≫ d. We derive each bound
separately, as they require different techniques.
To obtain the bound B1 in Eq. (D1), we utilize the

following simple combinatorial result.

Lemma D1. Let ðjlÞl∈ f0;1;…d−1g be a permutation of the
set of integers f0; 1;…; d − 1g, where d ≥ 2. Then,

Xd−1

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

maxðjl; jl−1Þ
d

r
≥

ffiffiffi
2

p

3
ðd − 1Þ:

Proof. Let us minimize over all possible permutations jl:

L ¼ min
jl

Xd−1

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −maxðjl; jl−1Þ

d

r
: ðD3Þ

The minimum on Eq. (D3) is achieved for the permu-
tation ðjlÞ ¼ ð0; d − 1; 1; d − 2; 2; d − 3;…Þ, as the
alternation between large and small numbers maximizes
the values maxðjl; jl−1Þ. For this permutation, L ¼
Pd−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðj; d − jÞ

p
=

ffiffiffi
d

p
(this is easier to verify by

separating the cases where d is even or odd). We can
lower bound this sum by the integral

L ≥
1ffiffiffi
d

p
Z

d−1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðx; d − xÞ

p
≥

ffiffiffi
2

p

3
ðd − 1Þ:

▪
Proposition D1. (First lower bound on Hamiltonian

strength under periodic k-HSE). Let HðtÞ be a periodic
Hamiltonian with period T. If HðtÞ satisfies k-HSE, then
B ≔

R
T
0 dtkHðtÞk∞ ≥ B1, as defined by Eq. (D1).

Proof. We begin with the case k ¼ 1, where
B1 ¼ ð

ffiffiffi
2

p
=3Þðd − 1Þ. Consider a quasienergy eigenstate

αðωtÞ∈PðCdÞ, whose existence is guaranteed by Floquet’s
theorem. We will apply Corollary C1 on the state αðθÞ by
finding a list of angles θ0; θ1;…; θd−1 such that the trace
distance between the states αðθjÞ is lower bounded as

D(αðθiÞ; αðθjÞ) ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

maxði; jÞ
d

r
ðD4Þ

for i ≠ j. As αðθÞ touches all the states αðθjÞ in some order
θj0 ≤ θj1 ≤ ( ( ( ≤ θjd−1 (where jl is a permutation of the
indices), Corollary C1 guarantees that

B ≥
Xd−1

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

maxðjl; jl−1Þ
d

r
≥

ffiffiffi
2

p

3
ðd − 1Þ;

where the second inequality is Lemma D1.
To construct the angles θj satisfying Eq. (D4), begin by

setting θ0 ¼ 0. Now, inductively, assume we have already
found the first j < d angles θ0; θ1;…; θj−1. We set Πj to be
the orthogonal projector into spanfjαðθ0Þi;…; jαðθj−1Þig.
By 1-HSE, Eθftr½ΠjαðθÞ%g ¼ trðΠjÞ=d ¼ j=d, so there
must exist θj such that tr½ΠjαðθjÞ% ≤ j=d. For any
i < j, we have jhαðθiÞjαðθjÞij2 ≤ tr½ΠjαðθjÞ% ≤ j=d; so
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D(αðθiÞ; αðθjÞ) ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j=d

p
, yielding Eq. (D4) and prov-

ing the bound for k ¼ 1.
For the case where k > 1, observe that the Hamiltonian

HsymðtÞ ¼
Xk

j¼1

1 ⊗ ( ( ( ⊗ HðtÞ|ffl{zffl}
jth entry

⊗ ( ( ( ⊗ 1

acting on the symmetric subspace of ðCdÞ⊗k satisfies
1-HSE if and only if HðtÞ satisfies k-HSE, because
fjϕihϕj⊗kgϕ spans the space of operators in the symmetric
subspace [See Eq. (11b) in Ref. [28] ]. Consequently,
we can apply the case k ¼ 1 on HsymðtÞ, which givesR
T
0 dtkHsymðtÞk∞ ≥ ð

ffiffiffi
2

p
=3Þðdsym − 1Þ, where dsym ¼

ðkþd−1
k Þ is the dimension of the symmetric subspace.

Finally, note that kHsymðtÞk∞ ¼ kkHðtÞk∞, which yields
the desired result. ▪
Now we prove the bound B2 given by Eq. (D2), for

which we require the following lemma regarding the
geometry of PðCdÞ.
Lemma D2 (Lower bound on the packing number of

complex projective space). For any ε∈ ð0; 1Þ, we can pack
inside PðCdÞ at least n ¼ ⌈ε−2ðd−1Þ⌉ disjoint balls [97] of
radius ε=2, where ⌈ · ⌉ denotes the ceiling function.
Proof. The following is a standard argument in

covering and packing theory, which we include here for
completeness.
Let nmax be largest number of disjoint balls of radius ε=2

that we can pack inside PðCdÞ. Take C ¼ fϕ1;…ϕnmax
g to

be the centers of the balls forming such a maximal packing.
The set C forms an ε-net, for, if it did not, there would exist
a state which is more than ε trace distance away from any
state in C, which would mean that we can add another ball
of radius ε=2 to the packing, contradicting the maximality
of nmax. Then, all the balls of radius ε centered at points in C
together cover the whole PðCdÞ. Each ball has volume
VðεÞ, and normalizing the total volume of PðCdÞ to unity,
we must have nmaxVðεÞ ≥ 1. Thus we can pack at least
n ¼ ⌈ð1=VðεÞ⌉ ≤ nmax balls of radius ε inside PðCdÞ.
To finish the proof, we explicitly compute the volume

VðεÞ. The distribution of the overlap x ¼ jhψ jϕ0ij2 ¼ 1 −
Dðψ ;ϕ0Þ2 of a Haar-random state ψ ∈PðCdÞ with a fixed
state ϕ0 is given by pðxÞ ¼ ðd − 1Þð1 − xÞd−2 [Eq. (14) in
Ref. [98] ], from which we can derive the volume [99]

VðεÞ ¼
Z

Dðψ ;ϕ0Þ<ε
dψ ¼

Z
1

1−ε2
dxpðxÞ ¼ ε2ðd−1Þ; ðD5Þ

which gives n ¼ ⌈ε−2ðd−1Þ⌉, as claimed. ▪
Proposition D2 (Second lower bound on Hamiltonian

strength under periodic k-HSE). Let HðtÞ be a periodic
Hamiltonian with period T. If HðtÞ satisfies k-HSE, then
B ≔

R
T
0 dtkHðtÞk∞ ≥ B2, as defined by Eq. (D2)

Proof. Again, consider a quasienergy eigenstate
αðωtÞ∈PðCdÞ. By k-HSE, the curve fαðθÞjθ∈ Tg forms
a γ-net, taking γ as in Lemma B1. For any δ∈ ð0; 1Þ, we can
pack at least n ¼ ⌈δ−2ðd−1Þ⌉ balls of radius δ=2 inside
PðCdÞ (Lemma D2). That is, there exists a set of states
fϕjgnj¼1 (the centers of the balls) whose pairwise trace
distances are lower bounded, Dðϕi;ϕjÞ > δ for i ≠ j. By
the γ-net property, we can find angles θj so that
DðαðθjÞ;ϕjÞ < γ. The angles may be assumed to be sorted,
relabeling the ϕj otherwise. By Corollary C1 and the
triangle inequality,

B ≥
Xn

j¼1

D(αðθjÞ; αðθjþ1 mod nÞ) ≥ nðδ − 2γÞ

≥ δ−2ðd−1Þðδ − 2γÞ: ðD6Þ

Maximizing Eq. (D6) over δ, we get B ≥ B2 for
δ ¼ 4ðd − 1Þγ=ð2d − 3Þ < 1. One can verify that B2 ≥
½8=ð4dÞd%½k= logðkþ 1Þ%d−3=2 by applying Stirling’s
approximation to the binomial in γ. ▪

APPENDIX E: PROOF OF THEOREM 3

Let HðtÞ be an m-quasiperiodic Hamiltonian with a
basis of piecewise smooth quasienergy eigenstates, i.e.,
such that the generalized Floquet decomposition given by
Eq. (10) holds. We will show that, under CUE, neces-
sarily m ≥ dðd − 1Þ.
In Eq. (10), we may write Q ¼ diagðq0;…; qd−1Þ as a

diagonal matrix in the basis of QEs. Because global phases
are irrelevant, we may assume that Q is traceless, so that
q0 ¼ −

Pd−1
α¼1 qα, giving a total of d − 1 rationally inde-

pendent quasienergies q ¼ ðq1;…; qd−1Þ. The exponential

e−iQt ¼ diagðei
P

d−1
α¼1

qαt; e−iq1t;…; e−iqd−1tÞ

is a quasiperiodic function, with frequency vector con-
tained in q, and UðtÞ ¼ PðωtÞe−iQt overall is a quasiperi-
odic function, with frequency vector contained in ðq;ωÞ.
We say “contained in,” and not “equal to,” because the
driving frequencies may be reducible (e.g., if there is
rational dependence), but, regardless, we are guaranteed
that the map t ↦ UðtÞ ⊗ UðtÞ' is n quasiperiodic, for
some n ≤ mþ d − 1.
Furthermore, if the evolution satisfies CUE, the

n-quasiperiodic map t ↦ UðtÞ ⊗ UðtÞ' densely visits
the projective unitary group PUðdÞ (see Appendix B 2).
Then the parent function Tn → PUðdÞ is also dense. By
assumption, this map is piecewise smooth, so

mþ d − 1 ≥ n ¼ dimðTnÞ ≥ dimðPUðdÞÞ ¼ d2 − 1;

which gives m ≥ dðd − 1Þ. ▪
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APPENDIX F: COMPLETE UNITARY
ERGODICITY WITH m= d2 − 2 TONES

In this appendix, we explain how to construct a mea-
sure preserving surjective function from the ðd2 − 1Þ-
dimensional torus to SUðdÞ. We then utilize this map to
construct a ðd2 − 2Þ-quasiperiodic Hamiltonian which has
QEs and satisfies CUE.
We consider Hurwitz’s Euler-angle parametrization

of SUðdÞ [69–71], which is constructed as follows. For
j∈ f1; 2;…; d − 1g, define the two-level unitary rotation
matrices,

Rjðξ;φ; ηÞ ¼

0

BBB@

1j−1
cos ξeiη − sin ξeiφ

sin ξe−iφ cos ξe−iη

1d−j−1

1

CCCA;

and for r∈ f1; 2;…; jg define the Euler angles,

ξr;j ∈
h
0;
π
2

%
; φr;j ∈ ½0; 2πÞ; ηj ∈ ½0; 2πÞ; ðF1Þ

which are, in total, d2 − 1. Consider the matrices

E1 ¼ R1ðξ1;1;φ1;1; η1Þ;
E2 ¼ R2ðξ2;2;φ2;2; 0ÞR1ðξ1;2;φ1;2; η2Þ;
E3 ¼ R3ðξ3;3;φ3;3; 0ÞR2ðξ2;3;φ2;3; 0ÞR1ðξ1;3;φ1;3; η3Þ;

..

.

Ej ¼ Rjðξj;j;φj;j; 0ÞRj−1ðξj−1;j;φj−1;j; 0Þ ( ( (
R2ðξ2;j;φ2;j; 0ÞR1ðξ1;j;φ1;j; ηjÞ;

for j ≤ d − 1, and multiply them all together, to obtain

Vðξr;j;φr;j; ηjÞ ¼ E1E2 ( ( (Ed−1;

which yields a parametrization of SUðdÞ. One can compute
the Haar measure of SUðdÞ to be [71]

dUHaar ∝
Y

1≤j≤d−1
dηj

Y

1≤r≤j
d½ðsin ξr;jÞ2r%dφr;j;

which means that this parametrization is not measure
preserving, because of that sin term. However, we can
make it measure preserving by considering a change of
variables θr;j ↦ ξr;j given by

ξr;jðθr;jÞ ¼ arcsin
'
j1 − θr;j=πj1=2r

(
;

for θr;j ∈ ½0; 2πÞ, which gives d½ðsin ξr;jÞ2r% ¼ dj1 − θr;j=
πj ∝ dθr;j. Then the map

ðθr;j;φr;j; ηjÞ ↦ Vðξr;jðθr;jÞ;φr;j; ηjÞ

is measure preserving from Td2−1 to SUðdÞ.
To construct a drive that satisfies CUE with QEs,

consider q1;…; qd−1;ω1;ω2;…;ωd2−2 to be rationally
independent frequencies. We assign two of the Euler angles
as ηd−1 ¼ q1t, φ1;d−1 ¼ ðωd2−2 − q1Þt. The remaining
d2 − 3 angles θr;j;φr;j; ηj are set to be equal to
ω1t;…ωd2−3t, respectively. By this assignment, the para-
metrization V is a function of ωt ¼ ðω1;ω2;…;ωd2−2Þt
and q1t. Now, using the fact that

R1ðξ;φ ¼ ðωþ qÞt; η ¼ qtÞ
¼ R1ðξ;φ ¼ ωt; η ¼ 0Þ exp½−idiagð−q; q; 0;…; 0Þt%;

it is seen that

PðωtÞ ≔ Vðωt; q1tÞ exp½idiagð−q1; q1; 0;…; 0Þt%Vð0Þ†

ðF2Þ

depends only on ωt and not on q1t. Then, we may
define the evolution operator by the generalized Floquet
decomposition,

UðtÞ ≔ PðωtÞe−iQt ¼ Vðωt; q1tÞe−iQ̃tVð0Þ†; ðF3Þ

where the matrix Q ¼ diagð−
Pd−1

α¼1 qα; q1; q2;…; qd−1Þ
is the diagonal matrix of quasienergies, and Q̃ ¼
diagð−

Pd−1
α¼2 qα; 0; q2;…; qd−1Þ.

Because of the rational independence of ðω; qÞ, the
map t ↦ ðω; qÞt uniformly covers the ðd2 þ d − 3Þ-
dimensional torus. Using that V forms a measure preserv-
ing map, from Td2−1 to SUðdÞ, we obtain

E
t≥0

½UðtÞ⊗k;k% ¼ E
t≥0

h
E

W ∈SUðdÞ
½ðWe−iQ̃tÞ⊗k;k%

i
ðF4Þ

¼ E
W ∈SUðdÞ

h
W⊗k;k

i
; ðF5Þ

where the second equality holds by the right invariance of the
Haar measure. This proves that the ðd2 − dÞ-quasiperiodic
Hamiltonian HðtÞ ¼ i½∂tUðtÞ%UðtÞ† satisfies CUE and
has, by construction, QEs with the preselected quasienergies
q0;…; qd−1.

APPENDIX G: SUFFICIENT AND NECESSARY
CONDITIONS FOR k-HSE

WITH QUASIENERGY EIGENSTATES

In this appendix, we assume that an m-quasiperiodic
Hamiltonian HðtÞ has a basis of QE jαðtÞi ¼ e−iqαt ×
jαðθ ¼ ωtÞi, with α∈ f0;…; d − 1g. We derive a pro-
perty on jαðθ ¼ ωÞi which is equivalent to k-HSE.
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Specifically, we see that k-HSE is equivalent to requiring
that all tensor product combinations (of length k) of the
states αðθÞ, averaged over the torus and symmetrized, are
equal to ρðkÞHaar. To show this, we require first to compute the
time average of an arbitrary state expanded in the basis
of QE.
Lemma G1. Let HðtÞ be a quasiperiodic Hamiltonian

with QEs, such that the quasienergies (possibly excluding
one) and ω are rationally independent and a state
jψðtÞi ¼

P
α cαe

−iqαtjαðθ ¼ ωtÞi. Then

E
t≥0

½ψðtÞ⊗k% ¼
Xd−1

α1;…;αk¼0

jcα1 j
2 ( ( ( jcαk j

2ρsymðαÞ; ðG1Þ

where ρsymðαÞ ≔ PαΠ
ðkÞ
symEθ∈ Tm

h
⊗k

j¼1 αjðθÞ
i
ΠðkÞ

sym, with

ΠðkÞ
sym the orthogonal projector into the symmetric subspace

and Pα a normalization factor, equal to the total number of
different permutations of α ¼ ðα1;…; αkÞ.
To gain intuition, it is useful to first understand the

time-independent version of Lemma G1, derived in
Ref. [25]. If the Hamiltonian has no time dependence, it
has proper eigenstates jαi, and ρsymðαÞ ¼ PαΠ

ðkÞ
sym ⊗k

j¼1

αjΠ
ðkÞ
sym reduces to a symmetrized product of α1;…; αk.

We generalize this result to quasiperiodic systems, where
the only difference is an additional average over the torus.
Proof. In the statement, we allow one quasienergy to not

be rationally independent but, in fact, up to an irrelevant
global phase, we can shift all quasienergies by adding a
constant multiple of the identity to HðtÞ. This constant
can be chosen to ensure that all quasienergies and ω are
rationally independent, which we henceforth assume.
Moreover, note that although the quasienergies are only
defined up to a shift n · ω, this condition is preserved
upon substituting qα → qα þ nα · ω, so it is a well-defined
condition on the quasienergy spectrum.
By the rational independence and the quasiperiodicity of

the states αjðtÞ, we can split the time average in two
separate averages, one corresponding to the winding
quasienergy phases, and the other to the quasienergy
eigenstates, defined over the torus,

E
t≥0

½ψðtÞ⊗k% ¼
X

αβ

$Yk

j¼1

cαjc
'
βj
Et≥0

h
e
−i
P

k
j¼1

ðqαj−qα0j
Þti

× E
θ∈ Tm

h
⊗
k

j¼1
jαjðθÞihβjðθÞj

i%
; ðG2Þ

where the sum runs over all possible pairs of tuples of
indices α ¼ ðα1;…; αkÞ, β ¼ ðβ1;…; βkÞ. The time average
of the exponential in Eq. (G2) is

E
t≥0

½e−i
P

k
j¼1

ðqαj−qβj Þt% ¼
#
1 if β∈PermsðαÞ
0 else;

ðG3Þ

where PermsðαÞ is the set of all permutations of α. This is a
consequence of the rational independence, which only
allows the linear combination

Pk
j¼1ðqαj − qβjÞ to be zero

if β is a permutation of α. This last statement is called the no
k-resonance condition in Ref. [25].
By writing the symmetric projector explicitly in terms of

permutation operators [Eq. (A3)], we see that

X

β∈ PermsðαÞ
⊗
k

j¼1
jαjðθÞihβjðθÞj ¼ Pα ⊗

k

j¼1
αjðθÞΠ

ðkÞ
sym: ðG4Þ

Inserting Eqs. (G3) and (G4) into Eq. (G2), and overall left-
multiplying by ΠðkÞ

sym, we obtain Eq. (G1). ▪
Theorem G1. Let HðtÞ be a quasiperiodic Hamiltonian

with QEs, such that the quasienergies (possibly excluding
one) and ω are rationally independent. Then HðtÞ satisfies
k-HSE if and only if for every α ¼ ðα1;…; αkÞ∈
f0;…; d − 1gk,

ρsymðαÞ ¼ ρðkÞHaar; ðG5Þ

where ρsymðαÞ is defined in Lemma G1 and ρðkÞHaar ≔
Eϕ∈PðCdÞ½ϕ⊗k%.
Proof. This result follows entirely from Eq. (G1). If

we assume Eq. (G5), then Eq. (G1) reduces to k-HSE,
by noting that

P
α jcα1 j

2 ( ( ( jcαk j
2 ¼ 1. Conversely, if we

assume k-HSE, then from Eq. (G1), we see that the
polynomials defined over all Rd,

Pðx0;…; xd−1Þ ¼
X

α

ρsymðαÞx
n0
0 xn11 ( ( ( xnd−1d−1 ;

Qðx0;…; xd−1Þ ¼
X

α

ρðkÞHaarx
n0
0 xn11 ( ( ( xnd−1d−1 ; ðG6Þ

coincide for values ðx1;…; xkÞ∈ ½0; 1%k that satisfyPk
j¼1 xk ¼ 1, where nα counts the number of times α

appears in the tuple α ¼ ðα1;…; αkÞ. This is seen by taking
the initial state jψi to have coefficients cα ¼

ffiffiffiffiffi
xα

p
. It

follows that P and Q must be equal everywhere, and thus
equal as polynomials, meaning that each of their coef-
ficients is the same. Note that there may be repeated terms
in the expressions (G6), due to the existence permutations
of ðα1;…; αkÞ that produce the same values of nα.
However, by the symmetry of ρsymðαÞ, the coefficients
for the repeated terms are the same, guaranteeing that
ρsymðαÞ ¼ ρðkÞHaar for all α. ▪
Theorem G1 provides a set of conditions to verify

k-HSE in quasiperiodic systems which feature QEs.
Moreover, as we prove below, when applied to a single-
qubit Hamiltonian, these conditions simplify greatly: One
just needs to analyze a single quasienergy eigenstate to
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guarantee that the whole system is k-HSE (and further
k-UE by Corollary A2).
Corollary G1. If HðtÞ is a single-qubit quasiperiodic

Hamiltonian with a quasienergy eigenstate that satisfies the
k-HSE (CHSE) condition [Eq. (3)] and a quasienergy that is
rationally independent from the driving frequencies, then
HðtÞ satisfies k-UE (CUE).
Proof. Assume that 0ðθÞ satisfies the k-HSE condition.

We will show that this implies that HðtÞ satisfies k-UE.
The second quasienergy eigenstate is guaranteed to exist

(see Corollary 3.4 in Ref. [18]), determined by the
resolution of the identity 1ðθÞ ¼ 1 − 0ðθÞ. We compute
ΠðkÞ

symEθ½⊗k
j¼1 αjðθÞ%Π

ðkÞ
sym for arbitrary α∈ f0; 1gk by not-

ing that, in between the projectors to the symmetric
subspace ΠðkÞ

sym, the tensor product ⊗ becomes commuta-
tive, allowing for algebraic manipulation,

ρsymðαÞ

Pα
¼ ΠðkÞ

symEθ

h
0ðθÞ⊗k−jαj ⊗ (1 − 0ðθÞ)⊗jαj

i
ΠðkÞ

sym

¼ ΠðkÞ
sym

Xjαj

j¼0

$ jαj
j

%
ð−1Þjαj−j

×
'
1⊗j ⊗ Eθ

h
0ðθÞ⊗k−j

i(
ΠðkÞ

sym;

where we used the binomial theorem in the second equality.
Using that the state 0ðθÞ satisfies the k-HSE con-

dition, and in consequence the (k − j)-HSE condition
[see Corollary A1, property (a)], we have Eθ½0ðθÞ⊗k−j% ¼
ρðk−jÞHaar ¼ Πðk−jÞ

sym =ð1 − jþ kÞ, by Eq. (A2) with d ¼ 2.
Further noting that ΠðkÞ

symð1⊗j ⊗ Πðk−jÞ
sym ÞΠðkÞ

sym ¼ ΠðkÞ
sym, we

may compute

ρsymðαÞ ¼
$

k

jαj

%Xjαj

j¼0

$ jαj
j

%
ð−1Þjαj−j

1 − jþ k
ΠðkÞ

sym ðG7Þ

¼ ΠðkÞ
sym

1þ k
¼ ρðkÞHaar: ðG8Þ

By Theorem G1, the Hamiltonian satisfies k-HSE, and by
Corollary A2, this further implies k-UE. ▪

APPENDIX H: k-HSE IN THE FREQUENCY
LATTICE

In this appendix, we derive a set of equations in Fourier
space, which are sufficient and necessary for the system to
satisfy k-HSE. We consider the case where the quasienergy
eigenstates jαðtÞi ¼ e−iqαtjαðθ ¼ ωtÞi exist and allow for a
Fourier decomposition:

jαðθÞi ¼
X

n∈Zm

jαnie−in·θ: ðH1Þ

The Fourier components jαni do not need to be normalized.
They can be understood as the partial components of the
eigenstates of a time-independent Hamiltonian defined over
a so-called frequency lattice [8,35,38].
All the information about the dynamics is encoded in the

Fourier components jαni, allowing us to write k-HSE as a
condition in terms of them. By Fourier transforming the
matrices ρsymðαÞ in Theorem G1 and assuming the rational
independence hypothesis, k-HSE can be recast as

PαΠ
ðkÞ
sym

X

nj;n0j ∈K

⊗
k

j¼1
jαjnjihαjn0j jΠ

ðkÞ
sym ¼ ρðkÞHaar; ðH2Þ

for all α ¼ ðα1;…; αkÞ, where the sum runs over

K ¼
#$

n1;…;nk;
n01;…; n0k

%
∈ ðZmÞ2k

****
Xk

j¼1

nj ¼
Xk

j¼1

n0j

&
:

The Fourier components must satisfy an additional ortho-
normality constraint, due to the unitarity of the dynamics:
The orthonormality condition of the quasienergy eigenstates
∀ θ∈ Tm∶hαðθÞjα0ðθÞi ¼ δαα0 is Fourier transformed, via
the convolution theorem, to

∀n0 ∈Zm∶
X

n∈Zm

hαnjα0n0þni ¼ δαα0δn00: ðH3Þ

Equations (H3) and (H2) completely characterize the
Fourier components of the QEs under k-HSE, in the
sense that if one constructs a family of vectors satisfying
them, it is possible to then reconstruct an m-quasiperiodic
Hamiltonian that satisfies k-HSE. This can be done by
constructing the quasienergy eigenstates jαðθÞi via
Eq. (H1), and from them the evolution operator via the
generalized Floquet decomposition Eq. (10), where the
(rationally independent) quasienergies and driving frequen-
cies can be chosen freely.
For brevity, we say that a set of vectors jαni∈Cd, with

α∈ f0;…; d − 1g and n∈Zm, is an ðm; kÞ-ergodic lattice
[ðm; kÞ-EL] if Eqs. (H2) and (H3) are satisfied. In what is
left of this appendix, we provide examples of finite ðm; kÞ-
ELs, where finite means that there is only a finite number
of nonzero vectors jαni. Finite ðm; kÞ-ELs give rise to
m-quasiperiodic Hamiltonians with analytic time depend-
ence, which have QEs and satisfy k-HSE.
A (1,1)-EL yields a periodic Hamiltonian that satisfies

1-HSE. For m ¼ 1, k ¼ 1, Eq. (H2) reduces toP
n∈Z jαnihαnj ¼ 1=d, which is readily satisfied, along

with Eq. (H3) by

jαni ¼
1ffiffiffi
d

p e2πinα=djvni ðH4Þ

for n∈ f0;…; d − 1g (and jαni ¼ 0 for other n∈Z), where
fjvligd−1l¼0 forms an orthonormal basis of Cd. This proves
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that 1-HSE is achievable by analytic time-periodic dynam-
ics, in arbitrary dimension.
We now specialize to the case of a single qubit, d ¼ 2.

By Corollary G1, to guarantee k-UE we only need to study
the components of one quasienergy eigenstate, say, j0ni.
The components of the orthogonal state are determined
by j1ni ¼ j0−ni⊥, where ðabÞ⊥ ¼ ð−b'a' Þ. Consequently, it
is enough to solve Eq. (H2) for α ¼ ð0; 0;…; 0Þ, i.e.,
P

nj;n0j ∈K ⊗k
j¼1 j0njih0n0j j ¼ ρðkÞHaar. We numerically find

solutions for ðm ¼ 1; k ¼ 2Þ, and ðm ¼ 2; k ¼ 3Þ, giving
rise to single-qubit periodic and two-quasiperiodic analytic
Hamiltonians which satisfy 2-UE and 3-UE, respectively.
An ðm ¼ 1; k ¼ 2Þ-EL in a qubit is generated by

j0ni¼ aþjϕ−i; −a−jϕþi; a−jϕ−i; −aþjϕþi
ðn¼ 0Þ ðn¼ 1Þ ðn¼ 2Þ ðn¼ 3Þ; ðH5Þ

and j0ni ¼ 0 for other n∈Z, where a) ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) ð1=

ffiffiffi
3

p
Þ

q

and jϕ)i are any basis states. The state j0ðθÞi ¼P
n e

−iθjðα ¼ 0Þni is displayed inFig. 5(b),with the selection
jϕ)i ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ) ð1=

ffiffiffi
6

p
Þ

q
j0i) e3iπ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ∓ ð1=

ffiffiffi
6

p
Þ

q
j1i,

which ensures jα ¼ 0ðθ ¼ 0Þi ¼ j0i.
An ðm ¼ 2; k ¼ 3Þ-EL in a qubit is generated by

j0ni ¼
1

2
ffiffiffi
2

p

8
>>>>>><

>>>>>>:

jþiþ jvi n ¼ ð0; 0Þ
j−i − jvi⊥ n ¼ ð0; 1Þ
j−iþ jvi⊥ n ¼ ð1; 0Þ
jþi − jvi n ¼ ð1; 1Þ
0 other n∈Z2;

ðH6Þ

where j)i¼ðj0i) j1iÞ=
ffiffiffi
2

p
, jvi¼ð1=

ffiffiffi
3

p
Þj−i−ð1=

ffiffiffi
6

p
Þjþi,

jvi⊥ ¼ ð1=
ffiffiffi
3

p
Þjþiþ ð1=

ffiffiffi
6

p
Þj−i.

Finding ðm ¼ 1; kÞ-ELs for higher k and d would prove
our claim that k-HSE is achievable with periodic, time-
continuous drives. Nevertheless, we note that the number of
terms in Eq. (H2) grows exponentially with k, which poses
an obstacle for numerical solutions. Analytical understand-
ing of the structure of ðm; kÞ-ELs is necessary, and a
direction we leave open.
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