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Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of
quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a
notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical
randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of
quantum states (time-evolution operators) generated by the evolution, and investigate the conditions
necessary for them to be statistically indistinguishable from uniformly random states (operators) in the
Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the
Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical pseudo-
randomness—indistinguishability up to some large but finite moment—can already be achieved by a
quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is
sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the
resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity

and chaos from the lens of quantum information.
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I. INTRODUCTION

Ergodicity in classical systems is a well established,
unambiguous concept: It is the property of dynamics
exploring all allowed configurations, irrespective of initial
state. Quantum ergodicity, on the other hand, is formulated
rather differently, and typically in an inherently nondy-
namical fashion [1,2]: In systems with a semiclassical limit,
it is taken to be the feature of high-energy eigenstates
having probability densities weakly tending to a uniform
distribution in phase space [3]. This definition though,
does not cover all quantum systems, as there are many
Hamiltonians without an obvious semiclassical limit, e.g.,
systems of interacting qubits. Instead, an appeal is often
made to statistical similarities of the distribution of energy
levels and associated energy eigenstates to those of certain
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random matrix classes, such as in the eigenstate thermal-
ization hypothesis (ETH) [4] and the Bohigas-Giannoni-
Schmit conjecture [5]. Still, such a definition is arguably
also not complete, as it presupposes the existence of
stationary states in dynamics—and not all quantum systems
exhibit these. These include Hamiltonians with general
time dependence, or dynamics arising from (potentially
spatiotemporally random) quantum circuits, a class of
quantum dynamics that has been the subject of much study
recently [6]. As can be seen, there is no unambiguous,
common notion of ergodicity that applies to all systems in
the quantum setting.

In this work, we investigate a notion of quantum
ergodicity that can be universally attributed to closed
quantum dynamics with generic time dependence, which
harkens back to ergodicity of classical dynamical systems:
whether a quantum system explores all of its “ambient
space” over time. We consider two natural dynamical
objects that can capture this behavior, both of which are
always present for any closed quantum system undergoing
unitary dynamics. First, we consider the temporal ensemble
of quantum states {|y(7))}, beginning from some initial
state |w(0)), with the natural ambient space being the entire
Hilbert space. Second, we study the temporal ensemble of
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time-evolution operators {U(t)},, which propagates the
system from the initial time # = O to a later time ¢, with the
ambient space being the manifold of unitary operators
acting on the Hilbert space. Quantum ergodicity according
to this viewpoint inquires if the temporal ensembles of
states or unitaries uniformly cover their respective spaces
over long times.

A previous recent work [7] had already proposed the
notion of quantum states uniformly covering the Hilbert
space in time, dubbed “complete Hilbert-space ergodicity”
(CHSE), as a novel notion of quantum ergodicity. It also
rigorously demonstrated a class of discrete-time driven
systems, which despite their simplicity (encapsulated by a
notion of having “low complexity”), surprisingly exhibits
such behavior. Here, one of our goals is to further ground
this concept, by identifying general physical principles
which allow or forbid CHSE. Additionally, we extend this
dynamical version of quantum ergodicity to that of sta-
tistics of the unitary time-evolution operators themselves, a
notion we dub “complete unitary ergodicity” (CUE). CUE
is a stronger dynamical version of quantum ergodicity, as it
implies CHSE, but not vice versa.

We note that this generalization of the notion of classical
ergodicity to quantum dynamics—that time averaging equals
space averaging—is ostensibly natural, but yet evidently has
not been widely adopted as a standard definition of quantum
ergodicity. A moment’s thought reveals why this may be so:
Under dynamics by a time-independent Hamiltonian, it can
immediately be observed that the populations on energy
eigenstates are always conserved, leading to an obstruction
of coverage of the ambient Hilbert or unitary space. In other
words, CHSE or CUE cannot occur for dynamics under any
static Hamiltonian H, rendering such dynamical notions of
quantum ergodicity ineffectual. However, the key insight of
our analyses, as well as those of Ref. [7], is the realization that
these obstructions need not apply in Hamiltonians H(¢) that
have general time dependence. In this work, we specifically
focus on the class of quantum Hamiltonians driven by
multiple (rationally independent) frequencies, called quasi-
periodically driven systems [8—16], and derive how despite
potentially having “quasienergy states,” the analog of sta-
tionary states for this class of dynamics, they can under
certain conditions already achieve CHSE and/or CUE.

Concretely, we consider here d-dimensional quantum
systems quasiperiodically driven by m rationally indepen-
dent frequencies, and assume the existence of quasienergy
states in dynamics (we note this is a nontrivial assumption
and it may not always hold true; see Refs. [17,18]).
Equivalently, these can be thought of as quantum systems
driven by m external classical harmonic baths with different
fundamental frequencies. Intuitively, a larger number of
drives, i.e., baths, generates more complex dynamics. For
example, one can model a quantum system driven by
random white noise in the limit m — co. We might thus
expect that the ability of a system to uniformly cover its

Hilbert or unitary space depends on the number of
frequencies m of the underlying Hamiltonian. Indeed, in
what follows we rigorize such expectation, showing how m
governs the possibility or impossibility of CHSE and CUE.
The key tool we use is quantum information theoretic: We
leverage the concept of state (unitary) designs, to precisely
quantify the statistical indistinguishability of the distribu-
tion of the temporal ensemble of states (unitaries) to the
corresponding uniformly random ensemble in their respec-
tive spaces. A summary of our main results is as follows.

(i) Complete Hilbert-space ergodicity cannot be satis-
fied if m < 2(d —1). That is, a time-quasiperiodic
quantum system driven by a limited number of
frequencies cannot yield dynamics in which an
arbitrary state uniformly explores all of the Hilbert
space over time.

(i) Complete unitary ergodicity cannot be satisfied if
m < d(d—1). This is a more restrictive statement
that a time-quasiperiodic quantum system driven by
too few frequencies cannot generate time-evolution
operators which are uniformly distributed in the
unitary space.

(iii) Conversely, we explicitly construct families of
time-quasiperiodic quantum Hamiltonians with
m = d*> — 2 fundamental frequencies, each possess-
ing quasienergy states, which provably exhibit CUE,
and therefore CHSE.

These three statements are depicted in Fig. 1.

It is also possible to relax the condition of full indis-
tinguishability of the distributions of temporal and
spatial ensembles, and demand only indistinguishability
of moments up to some finite order £ € N. This property is
called statistical pseudorandomness. We note that statis-
tical pseudorandomness of states or unitaries has been
used as a diagnostic for the presence of quantum informa-
tion scrambling [19,20], and thus our notion of quantum

CUE achievable
g
0n -
@ CUE forbidden
he)
Dimension d
FIG. 1. Achievability of complete unitary ergodicity (CUE) and

complete Hilbert-space ergodicity (CHSE) in time m-quasiperiodic
systems with quasienergy eigenstates. The red regions represent
no-go theorems for CHSE and CUE presented in Sec. IV, for m <
2(d—1) (Theorems 1 and 2) and m < d*> —d (Theorem 3),
respectively. The green region represents an explicit construction
of a (m = d*> — 2)-quasiperiodic system with QEs that satisfies
CUE, presented in Sec. VI.
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ergodicity is intimately tied to (one version of) quantum
chaos. Technically, equality of only up to k& moments
amounts to probing whether the temporal ensemble of
states (unitaries) forms a state (unitary) k-design. With this,
we can also show the following.

(i) If we demand a restricted level of quantum ergo-
dicity wherein the temporal ensemble reproduces
only the uniform distribution up to a finite kth
moment, then this can be achieved already by a
time-periodic (i.e., Floquet) Hamiltonian. However,
the magnitude of the Hamiltonian (or equivalently
the length of the Floquet period) necessarily needs
to grow with k and d in a quantifiable fashion
[Eq. (14)]. This captures the intuitive fact that the
amount of physical resources required—strength of
the Hamiltonian for a fixed time, or driving duration
for a fixed power—needs to be large in order for a
high degree of ergodicity to be achieved.

Our work represents a step toward a unified under-
standing of quantum ergodicity in generic time-dependent
quantum systems. Our dynamical notion of ergodicity
harmonizes with the notions in classical systems, and further
provides a physical understanding of how thermalization
arises in these systems, without reference to stationary states
of dynamics.

This work is organized as follows. We begin by
introducing the relevant concepts underlying our analysis.
In Sec. II, we first introduce our dynamical notion of
quantum ergodicity, CHSE and CUE, defined via the tool
set of quantum state and unitary designs. In Sec. III, we
recap quasiperiodically driven systems and their structure
in dynamics and, in particular, a generalization of the
Floquet decomposition into windings of quasienergies and
quasienergy eigenstates (QEs) on high-dimensional tori.
The reader knowledgeable in these topics may elect to skip
this section. In Sec. IV, we present our first results: three no-
go theorems establishing conditions under which CUE and
CHSE are physically impossible, when the number of
frequencies driving the Hamiltonian are not sufficiently
large, in relation to the dimension. Section V presents a
numerical analysis of three toy models, in which we study
the consequences of our results at the level of few-body
observables. In Sec. VI, we demonstrate a converse to our
no-go theorems: an explicit construction of a quasiperiodi-
cally driven system which satisfies CUE (and hence
CHSE), with a sufficiently large number of driving
frequencies. In Sec. VII, we consider relaxing ergodicity
to comparing finite moments. We show that Floquet
systems can achieve this relaxed notion of ergodicity by
providing examples in both continuous and discrete time.
Lastly, in Sec. VIII, we close with a discussion of
connections to previous works and future directions.

Before proceeding, let us remark that dynamical notions
of quantum ergodicity have recently been discussed in
other works [21-25]. By borrowing notions from classical
ergodic theory, Ref. [21] provides a definition of quantum

ergodicity that requires that certain basis vectors are
cyclically transported to each other in a precise sense.
Separately, Refs. [22,23] build connections between tem-
poral unitary designs and the ETH. Although the con-
servation of energy prevents the temporal ensemble from
forming an exact k-design, these references relax the
k-design condition in two distinct ways: Reference [22]
introduces a partial unitary design, which restricts to
expectation values of some observables, while Ref. [23]
uses free probability to construct a notion dubbed
k-freeness. Common to these works is the focus on
time-independent systems. In contrast, the stronger
dynamical version of quantum ergodicity studied in our
work requires the absence of any conserved quantity, and is
suited for time-dependent systems without energy conser-
vation. Bridging our work and these other notions of
quantum ergodicity is an interesting question.

II. DYNAMICAL FORMULATION
OF QUANTUM ERGODICITY

Consider a d-dimensional quantum system undergoing
dynamics under a time-dependent Hamiltonian or a quan-
tum circuit. An immediate question arises, which forms the
fundamental motivation behind our work: Is there a sense in
which such a system can be termed ergodic?

In this section, we will introduce a concept of quantum
ergodicity defined in terms of statistical similarities of
temporal ensembles of dynamical objects—namely,
time-evolved wave functions as well as time-evolution
operators—to ensembles of such objects distributed unbias-
edly (i.e., uniformly) in the respective spaces that they
live in. In more pedestrian terms, this is the familiar idea of
“time averaging equals space averaging” in classical
dynamics, applied to the quantum setting.

A. Hilbert-space ergodicity (HSE)

We start by discussing quantum ergodicity at the level of
quantum states |w(¢)) = U(2)|y(0)) uniformly covering
the Hilbert space over time, a notion first introduced
already in Ref. [7], dubbed complete Hilbert-space ergo-
dicity. More precisely, since global phases are irrelevant, it
was proposed to consider whether the ensemble of time-
evolved density matrices {y(7)}, called the “temporal
ensemble” (if it exists [26]), where y/(t) = |y (1)) (w(7)|, is
statistically indistinguishable to the ensemble of states
{® }11a0r called the “spatial ensemble.” The latter is defined
as the set of states randomly sampled without preference to
a particular direction in the projective Hilbert space
P(CY) = {y = lw)(w|:ly) €C’, {wly) = 1}, or in other
words, the set where states ¢ and V@V’ occur equally
likely, where V is drawn from the unique, uniform Haar
measure on the space of unitaries [27]. Formally, we have
the following.

Definition 1 (CHSE). Complete Hilbert-space ergodicity
[7] is the property of quantum dynamics wherein the
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temporal and spatial ensembles of quantum states are
statistically indistinguishable for any initial state
w(0) €P(CY), that s, {W(1)}o ~ {P}rsur Where “~”
denotes equality in distribution.

To make the comparison quantitative, we can consider
finite moments of the respective distributions. For the
temporal ensemble, the kth moment is defined as

" U U (),

(1)

which involves k replicas of the time-evolved state,
while the kth moment of the spatial ensemble {¢}y,. 15
defined as

P = E o4 = / W(UHUS,  (2)
peP(CY)

where dU is the Haar measure on the unitary space and ¢,
any fixed reference state. We note that pg(a)ar have simple,
closed-formed expressions as sums of permutation oper-
ators over the k-replicated Hilbert space [see Eq. (A2)],

which can be derived using Schur’s lemma in representa-

tion theory [28]. As an example, p](_lla)ar: 1/d is the
maximally entropic state, where 1 is the identity

operator on a single copy of the Hilbert space, while

P2 = (14 5)/d(d+ 1), where here T (S) is the identity
(swap) operator on the tensor product of two Hilbert spaces.
Using the kth moments pg?ar, we can define a less
restrictive notion of Hilbert-space ergodicity in terms of
statistical indistinguishability of only up to k-moments.
Definition 2 (k-HSE). A closed quantum system is said to
exhibit Hilbert-space k-ergodicity (k-HSE), for k € N, if for

any initial state y/(0) € P(CY),

Pline = Phicr (3)
Any standard matrix norm can be used to ascertain
this equality (captured by vanishing of the norm of
pfﬁe - pgzar), but it is conventional to use the trace distance
D(p,o) :=1||p — ol|;, where || - ||, is the trace norm, given
by the sum of the absolute value of the eigenvalues. This is

because pgﬁw and pﬁ?ar have interpretations of density

operators on the k-replicated Hilbert space, and the trace
norm operationally captures the probability of distinguish-
ing these two states under an optimal measurement.

In the parlance of quantum information theory, k-HSE is
the statement that the temporal ensemble forms a (state)
k-design (see Ref. [29] and Appendix A). Note that k-HSE
implies k’-HSE for k¥’ < k butnot vice versa, and thus forms a
hierarchical definition of more and more restricted notions
of quantum ergodicity for higher k (see Corollary Al

A

CHSE
d ¢
3-UE
- 3-HSE
2-UE
- 2-HSE
1-UE
- 1-HSE

FIG. 2. Dynamical notions of quantum ergodicity and their
relations. Unitary k-ergodicity (k-UE) (left) and Hilbert-space
k-ergodicity (k-HSE) (right), with complete unitary ergodicity
and complete Hilbert-space ergodicity on top, respectively.
Arrows indicate logical implication.

and Fig. 2). CHSE, which is at the top of this hierarchy, is
then recovered by demanding equality for all k.

Definition 3 (CHSE; equivalent definition Ref. [30]).
If a system exhibits k-HSE for all k for any initial state
w(0) € P(CY), then it is said to exhibit CHSE.

In terms of physical observables, k-HSE constrains the
behavior of time-averaged expectation values tr( O ®)ys(£)®F)
of a joint observable O®) on the k-replicated Hilbert space.
In the case of a product observable O%*) = O®*, this is the
time-averaged kth power of (y(7)|O|y(t)). For example,
1-HSE implies that the time average of O, given by
Eosol (0] Ol (1))] = limy_. (1/T) [T det (1) Ol (1)),
equals Ejcpcoy[(#]0|¢)] = tr(0)/d regardless of the ini-
tial state w(0); i.e., the system over long times reproduces
expectation values within the infinite-temperature state.
More generally, k-HSE implies Eo[(w(1)|Ow(1))*] =
limy_ o (1/7) JT dt{w(0)|Oly(2))* is  equal  to
Eyepct(9|0]h)"] = tr(0®p%) ) [31], which is indepen-
dent of y(0) and can be calculated using the closed-form
expression of nga: described above, which physically
constrains not only the mean but also temporal fluctuations
and beyond to mimic those computed for random states. For
instance, for k = 2, the spatial averaging yields explicitly
[tr(0%) + tr(0)?]/d(d + 1). CHSE is the strongest state-
ment that the time average of any (analytic) function f is
equal to its spatial average; ie., E.olf(w(f))] =
Eyep(ce)lf(@)]- Thisis the consequent of Birkhoff’s ergodic
theorem [32], applied to a quantum system.

B. Unitary ergodicity (UE)

We propose in this work to also consider a different
notion of dynamical quantum ergodicity, captured by the
equivalence of statistics of the ensemble of time-evolution
operators {U(1)},5, to the uniform ensemble of operators
in the space of unitaries. The evolution operators are given
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by the time-ordered exponentials U (t) =7 exp|—i [§dzH (7)]
which propagate the system from time O to time ¢. More
precisely, it is natural to consider the set of unitary quantum
channels {U(1)} 5, defined by U(1)[y] = U(t)y U(t)" (we
consider channels as opposed to the unitary time-evolution
operators themselves, as global phase information is irrel-
evant). For technical convenience, the map U(r) can be
vectorized into the form U(z)* ® U(t). These are elements
of the projective unitary group PU(d) ={V* Q@ V:
VeU(d)} [33] for which there is a notion of a uniform
(Haar) ensemble {V} ... == {V* ® V} describing the distri-
bution of unitary channels obtained from randomly sampling
from the Haar measure dV on the space of unitaries [27]. Our
proposed dynamical notion of quantum ergodicity in this
scenario would then amount to asking whether the temporal
ensemble is equivalent to the spatial ensemble, which in
analogy to CHSE we dub complete unitary ergodicity.

Definition 4 (CUE). Complete unitary ergodicity is the
property of quantum dynamics wherein the temporal
ensemble of unitary time-evolution operators and spatial
ensemble of unitary operators are statistically indistinguish-
able, {U(t)},50 ~ {V}Haar» Where “~” denotes equality in
distribution.

Such an equality may, once again, be probed by
comparing moments of the respective distributions,
defined for the kth moment for the temporal ensemble
as EolU(1)®%] = limy_ o (1/7) [T dt{U(2)* @ U(1)]®*,
and for the spatial ensemble as [Ey_y[VEF*], where
V®kk .= (V* ® V)®k. The latter can be exactly computed
using so-called Weingarten calculus and have closed-
form expressions [34]. For example, the first moment
Evotaar |V ® V] is equal to the quantum channel
Cc[0] = tr(0)1/d, meaning that, under 1-UE, the time
average of any observable O(¢) in the Heisenberg picture
is E»o[O(t)] = tr(0O)1/d. We can then define k-unitary
ergodicity as the statement of indistinguishability only up
to the kth moment:

Definition 5 (UE). For k€N, we say that the evolution
given by a Hamiltonian H(¢) exhibits unitary k-ergodicity
(k-UE) if the evolution operator U(t) satisfies

tEO[U(t)®k’k] - V~Eaar[v®k’k}' (4)

Again, any vanishing of matrix norm for the difference
between the left- and right-hand sides can be used to
numerically ascertain k-UE, though it is common practice
to compare the so-called “frame potentials” (which is
related to the Frobenius norm), viz. asking if

T4l k ;
Eot’[go[hr(lj (HUM)] } V,W[NEHaaI

(WP (5)
In the parlance of quantum information theory, k-UE is
the statement that the temporal ensemble forms a unitary
k-design.

It is straightforward to note that k-UE implies k-HSE, but
the converse is not true (see Appendix A). Thus, k-UE is an
inequivalent, strictly stronger version of quantum ergodic-
ity compared to k-HSE. Further, k-UE defines a hierarchi-
cal definition of more restricted notions of quantum
ergodicity: k-UE implies k’-UE for k' < k but not vice
versa (see Corollary Al and Fig. 2). The most restrictive
condition is when k-UE is satisfied for all k, leading us back
to CUE.

Definition 6 (CUE; equivalent definition). If a system
exhibits k-UE for all k, then it exhibits CUE.

Similarly to k-UE and k-HSE, CUE implies CHSE but
not vice versa.

C. Achievability of HSE or UE and conservation laws

We briefly comment here on the achievability of HSE or
UE in the presence of conservation laws in dynamics. As
the definition of HSE or UE entails a comparison of the
temporal ensemble to the reference uniform (i.e., unbiased)
distribution in the Hilbert space (space of unitaries), it is
intuitively clear that any conserved quantities will preclude
HSE (UE), since there will be “bias” in dynamics toward
them (of course, an interesting question, which we do not
address here, is how to properly modify the reference
distribution in order to account for conserved quantities
[25]). For example, in a time-independent quantum system
which has energy conservation, not even 1-HSE can be
achieved: If |y) is an eigenstate of the Hamiltonian, then its
time average remains pure: y = Eo[y/()], far off from a
maximally mixed state Ecp(ce)[@] = 1/d.

Achieving quantum ergodicity defined by HSE or UE
therefore necessarily requires considering systems with
time dependence, such that there are no conservation laws.
A trivial example of dynamics which satisfies CUE is a
drive U(t) where at every integer time ¢ an independent
Haar-random unitary is applied. Then, the wave function
undergoes a random walk in the Hilbert space. The time
dependence of such a drive is, however, maximally com-
plex: At each time step we need to specify a completely
new random matrix. A natural question to ask is whether or
not CHSE or CUE (or, more generally, different levels of
the hierarchy of complete ergodicity) can be achieved with
time-dependent systems with more succinct, deterministic,
descriptions. Surprisingly, Ref. [7] gave an explicit exam-
ple in the affirmative, in terms of a family of simple,
deterministic, low-complexity quantum drives, derived
from the Fibonacci word and its variants, which provably
exhibits CUE (and hence CHSE). However, a more general
theory that allows us to systematically determine when
CUE or CHSE occurs or not, is at the present time still not
fully established. One of the aims of this work is to present
a step in this direction.

In the next section, we introduce the notion of time
quasiperiodicity, which allows us to classify the time
dependence of a system in increasing levels of complexity.
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Using this, we will systematically classify the time com-
plexity required to achieve the different levels of HSE and
UE in the class of quasiperiodically driven systems.

III. TIME-QUASIPERIODIC QUANTUM SYSTEMS

In this section, we give a brief introduction to the class of
quantum systems which are quasiperiodically driven by m
frequencies, and discuss the structure of the dynamics they
generate, in particular, the possibility of decomposing
dynamics into quasienergies and quasienergy states.

Time-quasiperiodic systems are the direct generalization
of a Floquet system, i.e., a system driven periodically by a
single fundamental frequency [8—16]. This class of systems
has gained much recent interest [35-40], as they may host
novel and exotic dynamical phases like time-quasiperiodic
topological phases [41-43] and time quasicrystals [44—48].

A. Definition

Floquet Hamiltonians are those that periodically repeat
themselves in time, H(7) = H(t+ T), where @ is the
fundamental driving frequency and T = 27/ the corre-
sponding period. An equivalent way of understanding
such Hamiltonians, which allows for an immediate
generalization to multifrequency drives, is to define an
underlying Hamiltonian A(#) on the circle S', with
coordinate 0 € [0, 27). Then, a time-periodic Hamiltonian
can be defined via setting 8 = wt + 6, mod 2z for some
initial phase 6, (which we will typically set to be 0),
ie., H(t)= H(wt). A multitone, or time-quasiperiodic
Hamiltonian then straightforwardly follows by generalizing
this concept, by promoting the circle S' to the torus
T"=S'xS!'x...xS'260=(0,,....,0,), and ® to

-~

m times
o = (v, ...,w,,). Precisely, we have the following.
Definition 7 (m-time-quasiperiodic Hamiltonian). Given
a Hamiltonian H(r), with t€R, we say that H is time
quasiperiodic with m tones, or m-time-quasiperiodic if
there exists a so-called parent Hamiltonian 4 (@) piecewise
smoothly [49] defined on the m-dimensional torus T :=

{0 = (6,.....6,,)|0;€[0,27)} such that
H(t) = H(o1), (6)
for some frequency vector @ = (wy, ..., w,,), where the

winding w? is taken modulo 2z at each entry. Furthermore,
we require that m is the smallest integer such that the above
decomposition holds.

As m has to be the smallest possible number of tones, the
frequency vector @ has to be rationally independent,
meaning that the only integer solution n€Z™ to the
equation n - @ = 0 is n = 0; i.e., @ constitute m indepen-
dent fundamental tones [50]. Henceforth, for simplicity in
the notation, we will drop the hat in the parent Hamiltonian

H(8), and simply write H(@). This is a standard abuse of

notation, as H(t) and H(@) are functions technically
defined in different domains, but they can easily be
distinguished by their arguments [43]. A more familiar
definition of an m-time-quasiperiodic Hamiltonian, which
is equivalent for sufficiently well-behaved functions, is
the statement that H(f) can be written as a convergent
Fourier series with m rationally independent fundamental
frequencies,

H(t)= > Hye™", (7)

nezZ"

where H,, are its Fourier modes (over the torus). In modern
quantum simulation experiments, engineering time-
quasiperiodic driving with a large number of tones m is
readily achievable.

More generally, an m-time-quasiperiodic Hamiltonian
constitutes an example of an m-time-quasiperiodic function
F(t) = F(wt) = 3, c gn Fne™®', where the parent func-
tion £ and frequency vector @ have all the same properties
as that listed in Definition 7.

B. Generalized Floquet decomposition

What is understood about the nature of quantum dynam-
ics generated by time-quasiperiodic Hamiltonians? In the
case of m = 1, we recover time-periodic or Floquet drives,
for which the Floquet theorem guarantees that there exists a
set of quasienergy eigenstates which are also periodic in
time [51]. This is captured by the statement that the unitary
time-evolution operator admits a decomposition,

U(1) = P(wr)e 2, (8)

where Q is the so-called Floquet Hamiltonian whose d
eigenvalues, called quasienergies, and eigenvectors are
defined via Q|a) = g,|a). P(wt) is a periodic unitary with
identical period as the driving Hamiltonian and satisfies
P(0) = 1, and thus is descended from a piecewise-smooth
parent unitary P(6) defined on the circle S!. One may thus
construct quasienergy eigenstates that live on the circle,
defined via

|(0)) = P(0)]a). ©)

Note that the decomposition into the Floquet Hamiltonian
and periodic unitary is not unique: One can shift the
quasienergies ¢, + nw by any integer n € Z and redefine
the appropriate component of P(wt) with a winding
phase. One sees from this decomposition that if we were
to view a Floquet system at stroboscopic times ¢ = nT,
where n € Z, then the system can equivalently be thought
of as undergoing dynamics under a time-independent
Hamiltonian Q; that is, U(nT) = e~"¢"T. This property
of decomposability of dynamics into that of a static
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Hamiltonian, up to a periodic envelope, is known math-
ematically as reducibility [52,53].

When m > 1, it is natural to assume that a generalized
Floquet decomposition, or reducibility of dynamics, holds
too, namely that

U(r) = P(wt)e™i", (10)

where P(@) is a piecewise-smooth unitary defined on T"”
which satisfies P(0) = 1 [54], and Q is the generalized
Floquet Hamiltonian with d quasienergies and eigenstates,
Q|a) = g,|a). Similar to the Floquet case, the genera-
lized Floquet Hamiltonian Q and unitary P(@) will not be
unique, but this fact will be unimportant in our analysis.
One may then construct QEs, now defined as state-valued
functions on the torus:

|(0)) = P(0)]a).

Such a decomposition would then entail that if we prepare
our system in the initial state |a) = |a(0)), the resulting
dynamics is m-time-quasiperiodic up to a global phase:

(1)) = U(1)|a) = e™"!|a(0 = w1)).

More generally, the time dependence of a generic initial
state may then be decomposed as a linear combination
over QEs:

() =D _cae™ " a(wi)), (11)

with ¢, = (a|ly(0)), which can be understood as time
quasiperiodic over the torus T", with n < (m+d—1)
(ignoring the global phase). The factor of m comes from
the physical driving frequencies @, while there are d
additional frequencies coming from the winding phases
e~'4«' minus a global phase.

As appealing as the generalized Floquet decomposition
Eq. (10) is, we stress its existence is nontrivial: It is known
rigorously that this may not always hold in (m > 1)-time-
quasiperiodic systems [17,18]. This could come, for exam-
ple, from topological obstructions in defining a smooth
quasienergy state over the torus; see Ref. [42]. In other
words, a generalized Floquet theorem (i.e., applying to all
time-quasiperiodic Hamiltonians) does not hold, though the
Floquet decomposition may still be valid in some cases.
However, while interesting in its own right, the purpose of
this work is not to investigate the conditions for when such
a decomposition does or does not hold in time-quasiperi-
odic systems; Rather, we assume that the systems in
consideration always admit generalized QEs and study
the compatibility of HSE and UE with such structure in
dynamics. Note that the existence of QEs guarantees that
the infinite-time averages in Eq. (3) [Eq. (4)] always exist;

i.e., the temporal ensemble of states or unitaries is well
defined in the limit r — oo [55].

IV. QUASIENERGY EIGENSTATES LIMIT
COMPLETE QUANTUM ERGODICITY

Having introduced the concepts of Hilbert-space ergo-
dicity and unitary ergodicity, and the class of quantum
dynamics (time-quasiperiodic systems) we consider in this
paper, we are now in a position to present our results. Our
first finding shows that the existence of QEs in time-
periodic (m = 1) systems precludes them from satisfying
CHSE (and hence CUE). That is, Floquet systems cannot
achieve full dynamical quantum ergodicity.

Theorem 1. If H(r) is a time-periodic Hamiltonian with
period T and a bounded strength in the sense that B =
JTde||H(1)|| < o0 [56], then H(r) does not exhibit CHSE
(and thus not CUE) [57].

The quantity B should be understood as a measure of the
“physical resources” needed to realize the dynamics: It is
large for Hamiltonians whose strengths ||H(7)||, are large
or whose driving period is long. Although B changes upon
the substitution H(t) - H(t) + ¢(z)1, its minimum value
over all ¢(z) is proportional to the time-integrated band-
width B =1 [T df[E (1) = Epin(7)] [58]. As B carries
units of energy times time (recall 72 = 1), it has also the
meaning of an “action,” which physically corresponds to
the net effect that H(¢) has on the system during a single
driving period. As we explain further below, B < oo is
simply the physical requirement of a “quantum speed
limit”: that the length of the trajectory traversed by the
wave function over a period 7' cannot be arbitrarily long.

From this point of view, the logic behind the proof of
Theorem 1 can be intuitively explained as an incompati-
bility of dynamics that traverses a finite “distance” to
densely cover the continuous space that is the Hilbert space.
Indeed, the formal proof proceeds by contradiction.

Proof. Assume that the time-periodic Hamiltonian H(¢)
satisfies CHSE. By Floquet’s theorem, H(r) has a QE
la(t)) = e7'|a(0 = wt)), where @ =2x/T. Because
phases are projected out in P(C?), dynamics beginning
from a(0) is time periodic: a(t) = a(6 = wt). We will
reach a contradiction, in three steps.

First, CHSE implies that the state a(¢) uniformly visits
the 2(d — 1)-dimensional projective Hilbert space P(C¢).
This implies that the map 6 > a(6) is topologically dense,
meaning that for any other state |¢) and arbitrarily small
e > 0 there is some angle 6 for which D(a(6),®) < e,
where

DWw.9) = 5 lv—dl =1~ [WldF (12

is the trace distance. This is rigorously proven in
Appendix B.
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Second, we appeal to the quantum speed limit B < oo:
The state a(f) can only travel through a finite path in
P(CY). Specifically, for any finite partition of the circle
0p<6,<---<0,=06y+2n,

> D(a(0;-).al6) < B. "

This is a state-independent variant of the quantum speed
limit, which is traditionally phrased in terms of the average
energy [59] or variance [60] of a specific state, rather
than the Hamiltonian norm [61,62]. Equation (13) is a
straightforward consequence of Schrodinger’s equation
(see Appendix C).

In our final step, we note that the previous two
observations are contradictory: By dimensionality argu-
ments, we can find n ~ 62-1) different states ¢, ...¢,
pairwise separated by at least trace distance §, i.e.,
D(¢;.¢;) > 6 for i # j. If the trajectory a(@) is dense, at
some angles 6y, ..., 6, it must come e-close to these states,
D(a(0;), ¢;) < e. From Eq. (13) and the triangle inequality
we obtain B > §~24"1)(§ — 2¢), which can be made arbi-
trarily large by choosing small enough & and &, contra-
dicting the finiteness of B. Full details are given in
Proposition D2.

This shows the impossibility of CHSE. Lastly, because
CHSE implies CUE, then CUE is also not achievable by
time-periodic systems. u

In Appendix D we show a stronger form of Theorem 1.
We prove that if a periodic Hamiltonian satisfies k<-HSE for
some finite k, then B := [! d¢||H(7)||,, is lower bounded as

e

el
aar (o) f (14

Informally, Eq. (14) says that time-periodic k-HSE is not
achievable for large k or d unless the wave function travels
for a very long distance within a single Floquet period 7,
in line with our physical intuition. For example, inserting
k =1 in the first expression in the maximum, we see that
B> (v/2/3)(d — 1), where the linear growth with d is
required for a quasienergy eigenstate to come close to d
orthogonal states and achieve 1-HSE. In general, for fixed
k, B(d) has to grow at least as d*. For fixed d, B(k) has to
grow at least like [k/log(k+ 1)]473/2, by the second
expression in Eq. (14), which is obtained from analyzing
the geometrical distribution of a k-design in P(C?). In
Sec. VII, we provide explicit examples of time-periodic
quantum systems with B large enough such that k-HSE is
provably achievable.

Our next result is a generalization of Theorem 1 to m-
time-quasiperiodic Hamiltonians, where we remind the
reader our analysis is under the premise of the existence
of QEs. Like in the Floquet case (m = 1), such QEs can
lead to an obstruction of the system to achieve CHSE
or CUE: Dynamics beginning from a QE is necessarily
structured—specifically time quasiperiodic, or in other
words, amounts to winding around an m-dimensional torus
T™. It may then be possible this regularity precludes an
unbiased exploration of the Hilbert space. However, unlike
the Floquet case, now there is an interplay between the
number of tones m of the drive (its “complexity”) and the
dimension d of the ambient space: Such obstruction is
active only if the torus is small enough, such that the time-
evolved state is unable to fully “wrap” around the projec-
tive Hilbert space. Indeed, from a dimension-counting
argument, we obtain the following.

Theorem 2. Let H(t) be an m-quasiperiodic Hamiltonian
with a piecewise-smooth quasienergy eigenstate. Then
H(t) cannot exhibit CHSE if

m<2(d-1). (15)

Proof. The quasienergy eigenstate a(f) densely visits
P(CY) in time (see Appendix B). By the quasiperiodicity
of the time evolution, a(r) = a(f = wt), we deduce that
the map 0 — () is dense, from T” to P(C?). Because
0 — a(@) is piecewise continuous, this map must be
surjective, or entirely covering P(C?). Intuition suggests
that a surjective map from T” to P(C?) requires that the
dimension of the codomain, dim[P(C%)] = 2(d — 1) (the
amount of real numbers required to specify a pure density
matrix), is not greater than the dimension of the domain
m = dim(T™). This intuition is correct, as long as the map
0 — a(0) is piecewise smooth in the torus, which is
required in our definition of quasienergy eigenstate [63].
The technical reason is that a piecewise-smooth map is
piecewise Lipschitz continuous, and such maps do not
increase Hausdorff dimension [see Proposition 1.7.19 of
Ref. [64]]. Thus, CHSE requires m > 2(d — 1). n

The bound m < O(d) where CHSE is impossible is
obtained from the real dimension of P(C?). Similarly, the
same idea can be applied for the consideration of CUE, and
we will obtain a bound which is m < O(d?), coming from
the dimension of the projective unitary group.

Theorem 3. Let H(t) be an m-quasiperiodic Hamiltonian
with a basis of piecewise-smooth quasienergy eigenstates.
Then the evolution given by H(r) cannot exhibit CUE if

m<d(d—1). (16)

We provide the detailed proof in Appendix E. The idea is
to note that the generalized Floquet decomposition for
U(t) = P(wt)e™™?" is quasiperiodic, with m tones corre-
sponding to P(wt), and (at most) an extra d — 1 tones
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corresponding to the winding phases e~*¢’, which then implies
that m +d— 1 =dim(T"*%") > dim[PU(d)] =d*> - 1.
These three no-go theorems are depicted in Fig. 1.

V. IMPLICATIONS OF NO COMPLETE
QUANTUM ERGODICITY

Our results in the previous section show that the
evolution of any state under a few-tone quasiperiodic drive
which allows for QEs necessarily has to be distinguishable
from a Haar-random state via some (potentially nonlocal)
observable. One the one hand, this statement establishes a
no-go theorem for CUE and CHSE as we already discussed,
but on the other, it implies the existence of observables whose
expectation values, temporal correlations, or higher statistical
moments in time retain some memory of the initial state. For
many-body quantum systems, the latter aspect presents us
with an exciting possibility: Even at very late times—when
one expects an infinite-temperature, “featureless” average
state due to the lack of energy conservation—there never-
theless still remain nontrivial measurable features which are
different from those coming from a genuinely featureless
underlying distribution.

We test this idea numerically by focusing on local
or few-body correlators which could be measured in a
realistic setting. We consider a spin-1/2 chain of length L
and two classical Ising Hamiltonians along orthogonal
directions,

L L
1
HO :ZXJ+ZX/_1X/+EX1’
j=1 j=2

L L
1
Hy=> 7+ Z,,Z +1Zr
J=1 Jj=2

where X; and Z; are the Pauli operators acting on site j, and
the boundary terms are introduced solely to break the
spatial-reflection symmetry. We construct three driving
protocols, consisting of certain alternating kicks between
the Ising Hamiltonians with varying amplitudes. First, we
consider a Floquet drive by kicking with Hy at even integer
times and with H; at odd integer times:

Hpo(1) = ia(zn —0)Hy+62n—-1-0H,. (17)

Second, we consider a two-quasiperiodic drive which we
dub the “Cosine drive™:

[Se]

HCos(t) :Zﬁ(n_wlt)Hg(wzt)a (18)

n=1
where ¢g(0) = [1 4 cos(6)]/2 and H, = (1 — x)H, + xH,.
We choose w; = 1 and w, = 7(3 — \/5) which are ration-
ally independent. Both the Floquet and Cosine drives are

expected to posses QEs [11]. Finally, we consider the two-
quasiperiodic Fibonacci drive,

HFib(t> = Zé(l’l - wlt)H)((wzt)7 (19)
n=1
where x(0)=0 if 6€[0,2r—w,) and 1 if

0 € 27 — w,, 2x], which was shown to generically satisfy
CUE in Ref. [7]. According to Theorems 1 and 2, the
Floquet and Cosine drive cannot even exhibit CHSE if
L >?2, and by the same results the Fibonacci drive does
not admit QEs. We ask whether this difference has a
measurable effect.

Our aim is to find a few-body observable whose late-time
temporal moments are different from those of the Haar
distribution. To this end, we consider a linear combination
O = (1/M)> ¢JsS of K-body Pauli observables,

SZGJ[

ij, (20)
where each o;, €{X,Y,Z, 1} acts on a distinct site
J1€{1,2,...,L}. We want to select O as to maximize

the difference between its temporal and Haar averages,

AVT) = E |WwOlow@)] - E_ [9l0lg)
= tr(Op(r1 )) - tr(Opgﬁar), (21)

starting from [y(0)) = 0)8", where p§!) = Eocorl(1)]

and ngar = 1/d. The maximum is achieved by computing

the finite-time average p(Tloll for a fixed Ty = 10° [65] and

setting each coefficient to be Jg = tr(Sp(Tlo)m) - tr(Spggar)

[66]. Note that the resulting observable O is different for
each driving protocol.

Figure 3(a) shows A()(T) for the two-body observable
O obtained by the procedure described above. We see that
the temporal average remains distinguishable from the Haar
average for both the Floquet and Cosine drives for times
much beyond the optimization time T, (vertical dashed
line). In contrast, the corresponding quantity under the
Fibonacci drive steadily decays toward the Haar average
after the optimized time, as predicted by CHSE. This result
shows that QEs in a many-body driven system leave a
detectable signal at level of few-body expectation values,
which is in accordance which our Theorems 1-3 ruling out
CHSE is for such dynamics.

In Fig. 3(b) we repeat a similar exercise now comparing the

temporal correlations Eor[{(y(1)]1y(1)) (w(1)[Salw (1))
against those from the Haar distribution Ejcpcq

[(&|S1|0)(@|S2|@)], with each S; of the form in Eq. (20).
These correlations can be written as tr(p(T2 's 1 ®S,) and

1(PlineS) ® S5). respectively, with pf = Eqe,-r [y (r)®?).
Consequently, we consider a linear combination of correlators
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(a) Temporal average

(b) Temporal correlation

Late-time signal (d)
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A
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) ) ~ H
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1075 ! 1074 |
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Time T
FIG. 3.

L . .
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Size L K-body

Difference between temporal and Haar moments of K-body optimized observable in a spin-1/2 chain driven by a Floquet

protocol and two-quasiperiodic drives with QEs (Cosine) and without QEs (Fibonacci). The observable is different for each driving
protocol and moment. (a) Difference between temporal average and Haar average A(!) with K = 2 and system size L = 6. (b) Difference
between temporal and Haar second moments A(?), The observables are selected to maximize the value at T = 10°, indicated by a vertical
dashed line but are otherwise independent of time. (c) Scaling of the late-time plateaus (7 = 10°) of Floquet and Cosine drive with
system size L for the first moment and K = 2. (d) Same as (c) but for fixed L = 9 and varying K. The initial state is |w) = |0)®F

throughout.
0= (1/M)> 557555 ®S,,  which  maximizes
the difference,

A1) =u(0p?) —w(0pfih).  (22)

at Ty =10° by picking J5 5, = tr(pf S ® S) —

tr(pl(fgarS | ® S,) [67]. Figure 3(b) shows that A for the
Cosine and Floquet drives both eventually display a late-time
plateau at a finite value, which indicates that there is a long-
lived structure distinguishing them from Haar random which
can be probed in the temporal correlations of these two-body
observables. In contrast, A(?) for the Fibonacci drive shows a
steady decay toward the Haar moment.

We finally analyze the scaling of our results in terms of
both the system size L and size of the observable K. In
Fig. 3(c) we show that the late-time signals for the Floquet
and Cosine drive displayed in Fig. 3(a) decay exponentially
in the system size L. This implies that a measurement of
these quantities in practical scenarios would be increasingly
challenging, as the signal becomes exponentially weak.
However, in Fig. 3(d) we also show an exponential
improvement when increasing K. These K-body correlators
can be experimentally probed by various techniques,
including randomized-measurement approaches [68]. It is
an interesting future direction of this work to explore if the
interplay between K and L could allow for a viable
experimental procedure to measure the difference between
the temporal and Haar moments of driven systems which
violate CHSE.

VI. MANY DRIVING FREQUENCIES PERMIT
COMPLETE QUANTUM ERGODICITY

In Sec. IV, we identified constraints on a m-time-
quasiperiodic Hamiltonian’s ability to uniformly cover
either the Hilbert space (Theorem 2) or unitary space
(Theorem 3), under the assumption of existence of QEs.

They tell us that a quantum system driven with too few
tones cannot exhibit dynamical ergodicity: Namely, if
m < O(d), CHSE is impossible; while if m < O(d?),
CUE is impossible. Physically, this is sensible, as when
the number of driving frequencies m is small, dynamics
will not be “complex” enough. However, this leaves open
the obvious converse question: suppose m is large enough.
Then are there time-quasiperiodic systems that do exhibit
CHSE or CUE?

In this section, we will answer this in the affirmative.
We show how to construct explicit m-quasiperiodic
Hamiltonians with m = d?> — 2 tones that host QEs, and
which provably satisfy CUE (and thus CHSE). Together
with the no-go theorems of the previous section, this leads
us to the “phase diagram” depicted in Fig. 1.

A. Single-qubit complete unitary ergodicity
with m =2 driving frequencies

We start with the case for a single qubit, with m = 2,
which will motivate the generalization for systems of
arbitrary dimension.

Our key idea is to construct states |a(@)) (@ =0, 1),
parametrized by 6 = (6, 0,), that satisfy the CHSE con-
dition, and then reverse engineer a Hamiltonian which has
these states as its quasienergy eigenstates. By imposing
Eq. (3) on the states |a(@)), for all k, the resulting
Hamiltonian will satisfy CHSE, but further CUE, which
will motivate the generalization to d > 2.

The CHSE condition requires the state a(f) =
la()){a(t)| to uniformly cover the Bloch sphere P(C?).
Because a(t) = a(f = wt), we can achieve this by select-
ing w = (w;, w,) to be rationally independent, and a () to
be uniformly distributed on P(C?), as a function of the
angles @ on the torus T2.

First, we construct the state |0(f)), parametrized as

10(0)) = V/p(6)|0) + /1 = p(61)e™®1).
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FIG. 4. Transformation 6+ |0(@)). A pair of angles @ =
(0, 6,) in the torus (left) is mapped to (p(0), 8,) in the cylinder
(middle), which is further mapped to the state |0(@)) = ,/p|0) +
e~%/T=p|1) in the Bloch sphere (right). The blue line displays
time evolution @ = wt, with a blue disk marking 7 = 0.

To uniformly cover the Bloch sphere, the function p(6,)
needs to be uniformly distributed in [0, 1] when €, is
uniformly distributed in [0, 27z). This is achieved by any
surjective function such that |[dp/d6,| is almost-everywhere
constant. Here, we consider p(6,) = |1 — 0, /x|, which is
continuous on the circle. The resulting map is depicted
in Fig. 4.

Having defined |0(0)), we set |1(@)) to be the orthogonal
state:

[10)) = v/ p(@)[1) = /1= p(6)e[0).

We now use these two states to construct a quasiperiodic
Hamiltonian which has them as QEs. We can write these
two states as the columns of a unitary P(@) [i.e.,
|a(@)) = P(0)|a)], where

cos (61)

—sin&(0,)e™
sin (60, )e~% ) - (2B)

riove) = ( cosé(0))

and &(0,) = arccos y/ p(6,). Then we choose any ration-
ally independent driving frequencies @ = (w;,w,) and
quasienergy ¢ to define the evolution operator to be given
by the generalized Floquet decomposition, Eq. (10), sub-
stituting Q = diag(—q. q), 6, = w1, and 6, = w,t:

( cos &(w; 1) e’

sin &(w, t)e (20t

—sin&(w, t)e! (@22 )
cosE(w et )’
(24)

Finally, we can obtain the two-quasiperiodic Hamiltonian
by the Schrodinger equation H(t) = i[o,U(1)]U(z)".

It turns out that the evolution given by Eq. (24) not only
satisfies CHSE, but the stronger CUE. This is because the
transformation

cos Eell —sin &e'? ) (25)

cos e~

o (

sin Ee~

is precisely the Euler-angle parametrization of the group
SU(2), and furthermore the assignment & = arccos /p(0;)

makes it measure preserving, i.e., maps the Haar measure
of the torus T3 3 (6,7, ¢) to the Haar measure of SU(2).
Thus, upon substituting

& =arccos /|1 — wt/x],

@ = (0 —q)t,
(26)

n=qt,

we guarantee that U(t), in time, explores SU(2) uniformly.

In the next section, we explain how to generalize this
construction to SU(d), to obtain a d-dimensional quasi-
periodic Hamiltonian which has QEs and satisfies CUE.
That is, the time evolution operator uniformly explores the
entire SU(d) space (the projective unitary space acting on a
qudit of dimension d) over time.

B. Qudit complete unitary ergodicity
with m =d? -2 driving frequencies

By considering a specific sequence of rotations of
the form
cos e —sin e

Rj(é? P, 77) =

sinée™  cos e

Ta_ja

one can construct Hurwitz’s parametrization of SU(d),
in terms of d? — 1 Euler angles [69-71]. We utilize this
parametrization to construct an m-quasiperiodic drive
which satisfies CUE and has QEs, with m = d*> — 2.
This is done by explicitly defining the evolution operator
U(t) in the generalized Floquet decomposition form
[Eq. (10)]. By assigning each Euler angle to a function
of the driving frequencies and the quasienergies, we
guarantee that U(¢) uniformly explores SU(d) in time.
The assignment for the Euler angles is a generalization of
Eq. (26), where the @ — 1 Euler angles are written in terms
of the m = d?> -2 driving angles wt, ..., w,,t, and one of
the quasienergies. The details of this construction are left to
Appendix F.

The driving frequencies and quasienergies can be
selected so that the corresponding winding in the torus
is equidistributed [72], and consequently the trace distance
between the finite-time temporal moments and the corre-
sponding Haar moments decay like 1/7. This power law is

quadratically faster than the 1/y/T decay one gets from
independent random sampling, so this construction might
be useful for producing quasirandom states or unitaries for
quasi-Monte Carlo integration [73].

In our construction, only one quasienergy is related to
one of the Euler angles, and the remaining quasienergy
degrees of freedom are just averaged out in time. We leave
as an open question if it is possible to utilize all the d — 1
quasienergy degrees of freedom. If the answer is positive,
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this would decrease the required number of driving angles
to m = d* — d, saturating the bound given by Theorem 3
and removing the white sliver in the phase diagram
in Fig. 1. If the answer is negative, then the bound in
Theorem 3 could potentially be strengthened.

VII. QUANTUM k ERGODICITY
IN TIME-PERIODIC SYSTEMS

Theorems 1-3 show that the existence of quasienergy
eigenstates forbids the achievability of the most stringent
forms of dynamical ergodicity: CHSE and CUE. It is
natural to ask if there are similar obstructions to quantum
ergodicity if one relaxes to finite moments, as in the notions
of k-HSE and k-UE, introduced in Sec. II. Surprisingly, we
show here that k-HSE and k-UE can be reached even by
time-periodic Hamiltonians, corresponding to the minimal
m = 1 time-periodic or Floquet case.

The achievability of finite k-UE in time-periodic systems
can be understood from the existence of finite k-unitary
designs in quantum information theory [74,75]—an ensem-
ble of a finite number of unitaries which reproduces the
Haar measure up to the kth statistical moment (see
Appendix A for more details).

Utilizing the fact that finite unitary k-designs exist, we
may construct a periodic sequence of rotations which
satisfies k-UE, over discrete time. The construction pro-
ceeds as follows: For any k, let D, = {V(,Vy,...,V,_; } be
a finite unitary k-design with n elements, which can be
selected so that Vy = T by otherwise applying VZ) to all of
its elements. We define a periodic drive by applying a
sequence of gates such that the evolution operator cycles
through D;.

At every integer time t = j mod n, we apply the unitary

V; VJT._I. Then, the evolution operator satisfies U(z) = V.
In this case, the integral in the left-hand side of Eq. (4),

which defines k-UE, can be rewritten in terms of the series:

N

1
1i ®kk — [ [WOkK
Nl—{rc:oN +1 ; U(t) Haar[W ]

Note that this evolution has period 7 = n, and it can
achieve the k-UE condition with B = [ dt||H(1)|| < n,
where the time-periodic Hamiltonian H(¢) consists of a
sequence of infinite-strength kicks H;(t) = ié(t — j) x

log(V;Vi_;) which satisfy [ di||H,(t)||, < This is
consistent with the bound on B given by Eq. (14), as n
has to be sufficiently large in order for D;, to form a unitary
k-design.

In the construction above k-UE is achieved by a periodic
sequence of gates, in discrete time. The Hamiltonian
discontinuously drives the state around P(CY). It is,
however, interesting to ask if the same level of ergodicity
can be achieved when the evolution is continuous, or even

oo

smooth. In what is left of this section, we present some
examples to show that the answer is positive.

We provide examples of continuous time-periodic sys-
tems that satisfy k-HSE and k-UE. We start with a qubit,
d = 2. In this case, k-UE is completely characterized by the
time trajectory of a single quasienergy eigenstate since
the trajectory of the remaining state is determined by their
orthogonality. In a single-qubit Hamiltonian H(r), if one
quasienergy eigenstate |a(0)) (@ = 0 or @ = 1) satisfies the
k-HSE condition,

E 0% = E
@)= E

[#%4]. (27)
and the corresponding quasienergy and driving frequency
are rationally independent, then H(t) satisfies k-UE (see
Corollary G1). Thus, constructing a single-qubit time-
periodic drive which satisfies k-UE reduces to designing
a closed curve () in P(C?) which satisfies Eq. (27),
from which one can construct the evolution operator
by the Floquet decomposition U(r) = P(wt)e~'d2(-4:9)
with P(0) = "1 _|a(0)){(a|, where ¢, @ are chosen to
be rationally independent.

We use two approaches to find curves 0(0) € P(C?) that
satisfy Eq. (27). In Fig. 5(a), we show a continuous curve
constructed to interpolate through the six-state 3-design
{100 11). (10)  [1))/v/2. (0) £ il1))/vZ}, via the great
circles of the Bloch sphere. Equation (27) is easily shown
to hold for k =3 by explicit integration. This curve is
not entirely differentiable, resulting in a Hamiltonian with
discontinuous time dependence which satisfies 3-UE.
Alternatively, the curve shown Fig. 5(b) is obtained by
solving Eq. (27) for k=2 in Fourier space (see
Appendix H), which yields an analytic curve that turns
out to interpolate through a seven-state 2-design. The
corresponding Hamiltonian has analytic time dependence,
but satisfies only 2-UE. The values of B = [/ d||H(7)]|
for the drives shown in Figs. 5(a) and 5(b) satisfy B > 3z
and B > 8.296, respectively [76].

In Appendix H we construct a time-periodic analytic
Hamiltonian which satisfies 1-HSE in any dimension.
This is done again by going into Fourier space. We believe

(a) (b)

FIG. 5. Single-qubit quasienergy eigenstate of a time-periodic
drive that satisfies k-UE, for (a) k = 3 and (b) kK = 2. In (a), the
right-angle corners form six-state 3-design, and, in (b), arrows
mark a seven-state 2-design.
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the Fourier approach may generalize to arbitrary k, and might
allow us to explicitly find time-periodic Hamiltonians which
satisfy k-HSE, or even k-UE, where the time dependence is
smooth, although more analytical understanding is required
in this direction, which we leave open (see Appendix H for
more details).

VIII. SUMMARY AND DISCUSSION

In this work, we have introduced and studied novel
dynamical notions of quantum ergodicity defined in terms
of statistical similarities of the temporal ensemble of states
or unitaries to their respective uniform spatial ensembles.
These are dubbed Hilbert-space ergodicity and unitary
ergodicity, and define a hierarchical tower of quantum
ergodicities based on equivalence at different levels of
moments k. In the limit of & — oo, we obtain complete
Hilbert-space ergodicity and complete unitary ergodicity, in
which the temporal distribution of initial states and evo-
lution operators, respectively, are exactly equal to the
respective uniform Haar distribution. We studied the
achievability of HSE and UE in the class of quasi-
periodically driven systems driven by m fundamental
tones assuming the existence of quasienergy eigenstates,
and proved that CHSE and CUE are not achievable in
Floquet systems, as well as in quasiperiodically driven
d-dimensional systems if m < 2(d — 1) and m < d(d — 1),
respectively. Conversely, we provided examples of drives
satisfying CUE (and hence CHSE) with m = d*> —2. We
finally showed that a more relaxed form of quantum
ergodicity, k-HSE and k-UE for some fixed k, can be
achieved even by Floquet systems with driving periods that
are long enough.

Besides representing an important step toward a unifying
notion of quantum ergodicity and chaos applicable across
different classes of quantum dynamics, our work has
several conceptual and technical implications. For one,
our dynamical notions of ergodicity provide a framework to
understand the emergence of thermalization in extended
driven systems, without reference to eigenstates like in the
eigenstate thermalization hypothesis. For example, a sys-
tem exhibiting 1-HSE is such that the infinite-time average
of any observable is equal to its expectation value at infinite
temperature. Moreover, the higher levels of k-HSE and k-UE
imply that the system at almost all times is locally maximally
mixed, and furthermore the ensemble of pure quantum states
which make up alocal subsystem itself forms a quantum state
k’-design, for some moment &’ related to k [7,77], a recently
uncovered stronger form of quantum thermalization called
“deep thermalization” [77-85].

Our results also provide an avenue to partially answer the
open question of whether a quasiperiodically driven system
exhibits quasienergy eigenstates or not, which is the
mathematical question of reducibility of quantum dynam-
ics. Physically, it corresponds to the question of localization
versus delocalization of a driven system when mapped to

the so-called extended Hilbert space [8,86] (frequently
referred to as the “frequency lattice”). As we have seen, the
presence of QEs is incompatible with CHSE and CUE in
large-dimensional systems, and so a demonstration of
CHSE or CUE would preclude the existence of QEs within
a given model. For instance, in Ref. [7], it was shown that
the family of (m = 2)-quasiperiodically driven systems
called Fibonacci drives provably satisfies CUE in any
dimension. This result, compounded with our Theorem
3, implies that these drives cannot be reducible, a nontrivial
mathematical statement, and further suggests the computa-
tional complexity required to describe such a system grows
unboundedly with time, owing to the lack of regular
structure of quantum dynamics.

There are several open questions arising from our work.
First, our work relates two notions of complexity of
quantum dynamics: (i) the number of driving frequencies
m underlying a driven Hamiltonian, and (ii) the degree of
ergodicity exhibited by dynamics, captured by the moment
k in HSE or UE. An immediate interesting question is the
connection of these notions of complexity to other existing
notions, such as the Krylov [87] or circuit [88,89] complex-
ities of quantum dynamics. These have been recently
studied in periodically driven systems [90,91]. Second,
the question of typicality deserves to be addressed: While
we have provided explicit constructions of quasiperiodi-
cally driven Hamiltonians provably exhibiting HSE and
UE, is such ergodicity expected to hold more in generic
quasiperiodically driven systems? Relatedly, beginning
from a system that does exhibit k-HSE and k-UE, are
these properties robust against noise and perturbations to
the driving Hamiltonian; i.e., can we define universality
classes of ergodic behavior? We leave the exploration of
such interesting questions to future work.
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APPENDIX A: QUANTUM ERGODICITY
BY DESIGN

In this appendix, we introduce the notions of state
and unitary k-designs from quantum information theory.
We state some of their properties and utilize them to prove
the relations between the different levels of HSE and UE
described in the main text.
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We begin with the notion of state k-design, which
underpins HSE.

Definition Al (State k-design). A probability measure y
over P(CY) is a (state) k-design if

Ep®]= E_[4%] (A1)
i peP(C?)

The right-hand side is to be understood as the expectation

value with respect to the invariant measure induced by the

Haar measure of the unitary group. It can be calculated

explicitly using Schur’s lemma of representation theory,

(k
pH;zar = E

4% = Y (d—1)%k!
pepP(c?)

sym m ’ (A2)

where Hﬁ’;in is the orthogonal projector into the symmetric

subspace of (C?)®*, obtained by averaging the operators
V. which permute the k tensors, V,®\_ |y;) =
®§:1 [ x(j)), over all permutations 7 in the symmetric
group of k elements S; [28]:

W _ 1
Miym =1 > Ve

TES;

(A3)

For HSE, we are interested in the case where u is
the state temporal ensemble, in continuous time, p;y,e =
limy_,(1/7) [] dt6,,;). with 6, the Dirac measure
centered at w(r). Simply, k-HSE is the statement that
Hime fOrms a k-design.

Note that the assumption that the limit 7 — oo exists is
implicit in the definition of k-HSE. There are examples
of dynamics where this average may fail to converge.
Nevertheless, if the Hamiltonian is quasiperiodic and has
quasienergy eigenstates, then p,,. iS guaranteed to exist.
This is because |y(¢)), when expanded in the quasienergy-
eigenstate basis, is seen to be n quasiperiodic, for some
integer n that depends on the rational dependence of the
quasienergy and driving frequencies, and then by the
Kronecker-Weyl theorem, pme = (271)™" [, d05,,g).

One simple way to verify if a probability measure u
forms a k-design is via the so-called frame potential:

F = E i),

v.~u (A4)

It can be shown that u forms a k-design if and only if
F,(tk) = F;’jar = [(d—=1)'k!/(d + k — 1)!] (see Proposition
38 in Ref. [29]). In the particular case of the temporal
ensemble ;. With initial state w(0), the frame potential is
given by

FO = E [[w(@)w(n)],

1,1>0

which is equal to the Haar frame potential if and only if the
system satisfies k-HSE.

Now we introduce unitary k-designs, which provide the
framework of UE.

Definition A2 (Unitary k-design). A probability measure
v over U(d) is a unitary k-design:

E [U®k,k] = F [V®k,k}.

U~v Haar (AS)

The right-hand side denotes average over the Haar
measure of PU(d), which can be constructed by sampling
Haar V from U(d) or SU(d), and projecting into PU(d) by
taking the tensor product V* ® V.

Unitary k-ergodicity (k-UE) is the statement that the
unitary operator temporal ensemble v, = limy_ o, (1/7)x
Jo dtéy(,) forms a unitary k-design. As before, this ensem-
ble is guaranteed to converge under a quasiperiodic
Hamiltonian with quasienergy eigenstates.

A probability measure v is a unitary k-design if the frame
potential,

FH = E [[w(UTV),

E
U V~y

is equal to the Haar frame potential (Lemma 33 in
Ref. [29]):
k),
F Haar "™ o,

(e (WIV)[2] = ([ (V)[*].

E E
,V~Haar V~Haar

The unitary frame potential for the temporal ensemble
is given by ]—'t(i];)le = E;s0.r50/[tr(U(¢)TU(2))|*], which is
equal to the unitary Haar frame potential if and only if the
system satisfies k-UE.

There are two basic properties of designs, which we state
below, which allow us to prove the relations between the
different levels of the hierarchies of quantum ergodicity.

Proposition Al (k-designs are k'-designs if k' < k). Let u
be a state (unitary) k-design. Then y is a state (unitary) k’-
design for all ¥’ < k (Observation 29 in Ref. [29]).

Proposition A2 (A unitary k-design acted on a state
forms a state k-design). Let v be a unitary k-design. For a
fixed state |y), let v, be the probability distribution on
P(C9) that results from applying a v-distributed unitary to
ly). Then v, is a state k-design (Ref. [29], p. 25).

Corollary Al (Arrows in Fig. 2). In any time-dependent
system, the following implications hold.

(@) V k>k': k-HSE = k'-HSE,
(b) V k>k': k-UE = k'-UE,
(¢) V keN: k-UE = k-HSE,
(d) CUE = CHSE.

Proof. Properties (a) and (b) follow from Proposition Al,
applied to the state and unitary operator temporal ensembles.
Property (c) follows directly from Proposition A2. Property (d)
is an immediate consequence of property (c). [
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Corollary Al tells us that k-UE is a stronger property
than k-HSE. It is natural to ask if it is strictly stronger. In the
particular case of a qubit, k-HSE and k-UE are equivalent.
The reason is the following property of k-designs in qubits,
which is a converse for Proposition A2.

Theorem Al. Let v be a probability measure on U(2)
such that for any state y € P(C?), the state distribution v,

on P(C?) that results from applying a v-distributed unitary
to y forms a state k-design. Then v is a unitary k-design.

Taking v to be the unitary temporal ensemble we
immediately deduce the following.

Corollary A2. In a qubit (d =2), k-HSE (CHSE) is
equivalent to k-UE (CUE).

The proof of Theorem Al relies on the representation
theory of SU(2). One can understand the central argument
physically, in terms of spin addition: Adding 2k spin-1/2
particles generates the same total spin subspaces as adding
two spin-k/2 particles (ignoring multiplicities).

Proof of Theorem Al. We first transform the assump-
tion that v, is a state design for all y into a single
convenient equality. By the definition of v,,, we have that
Eypes, [9®"] = By, [(UpU)®"]. Then, that the distribution
v, forms a state k-design means that E,.,[(UyU)®] =
Eytiaar (UwU)®*], which is vectorized to

E [U®Fvec(y®) = E [U®FK]vec(y®F).
U~y U~Haar

(A6)

The subspace spanned by {1//‘3”‘},,, is the space of operators

in the symmetric subspace of (C?)®*. Consequently,
Eq. (A6) holds for all y if and only if

k k k k
E [UPHIIG @ My = | E [UPH]IIG, @ T,

(A7)
where H£§2n is the projector into the symmetric subspace
given by Eq. (A3).

Now, in order to use representation-theoretic results, it is
convenient to rewrite Eq. (A7) in terms of the representa-
tion of SU(2) on the symmetric subspace of (C?)®*, which

we denote by Vgly?n(U )= U®kH£Iy{2n. We have

E [Vam(U) ® Van(U)] = | E_[Vin(U) ® Vin(U)).
U~v U~Haar
This allows us to appeal to the following general result
from representation theory, which is a straightforward
consequence of the Peter-Weyl theorem [27].

Lemma Al. Let G be a compact topological group, g —
V(g) a finite-dimensional unitary representation, and yu, ji»
probability measures on G. Then

E [V(g)]= E [V(g)]

g~ g~H2

if and only if

E [W(g)] = E [W(g)l.
g~H g~H
for each irreducible subrepresentation W of V.

We apply Lemma Al to the representation V =
Vgly?{: ® Vgly?n and the probability distributions u; =v
and y, = Haar[SU(2)]. We obtain that for each irreducible
subrepresentations W of vé’;f;‘ ® VS’;Bn Ey[W(U)] =
Ey-taar [W(U)]. However, observe that, because we are
working in d = 2, and SU(2) is self-dual, V) and V{0
are just the (k + 1)-dimensional representations of SU(2),
acting in the Hilbert space of a spin-k/2 particle. Thus, the

irreducible subrepresentations of VEIy{Z}f ® vE’;En are just the

(1,3,...,2k + 1)-dimensional representations, labeled by
the total spin j=0,1,...,k, obtained by adding such
spins. These are the same irreps obtained from the addition
of 2k spin-1/2 particles, which are also the irreducible
subrepresentations of U®KK where again we utilized
the self-duality of SU(2). Thus, we can apply the con-
verse implication of Lemma Al, and we find that
Ey [UBRY] = By oppaa [U®*¥], which says that v is a
unitary k-design. [

It is worth noting that Theorem Al holds only for
qubits. The underlying reason is that, if d > 3, there
are irreps which appear in the representation U > U®k*
that do not appear in the symmetric representation

U VER(U) @ VEL(U).

APPENDIX B: ERGODICITY IMPLIES DENSITY

In this appendix, we show that our notions of quantum
ergodicity imply density over time, in two ways. First, if the
system satisfies CHSE, then any state visits the projective
Hilbert space densely in time, meaning that it eventually
comes arbitrarily close to any other state. Second, if the
system satisfies CUE, then the unitary operator visits the
projective unitary group densely in time, meaning that it
eventually comes arbitrarily close to any other unitary.

1. Complete ergodicity implies density
in the projective Hilbert space

We will show that a state |y(z)) undergoing evolution
which satisfies k-HSE uniformly covers the projective
Hilbert space. To precisely quantify uniform covering,
we introduce the following concept.

Definition Bl (e-net and dense set). For ¢ > 0, a set of
states S C P(CY) is an e-net if for any state ¢ € P(C¢) there
exists y € S such that D(¢,y) < e, where D(¢,y) is the
trace distance given by Eq. (12). If S forms an e-net for any
e > 0, it is said that S is dense.

We show that, under k-HSE, for any initial state v, its
evolution is an e-net, for e that grows smaller with
increasing k and, consequently, under CHSE, the evolution
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of y is dense in P(C%). To that end, we prove the following
result about state k-designs.
Lemma Bl. Let v be a state k-design, and define

L \/1_ ( (d - 1)k! )1/5
(d+k—1)!
For any & > y, the support of v forms an &-net.
Proof. Let ¢ €P(C?) remain fixed. We consider the
quantity F := E,.,[|(¢|w)[**]. This is a modified frame
potential [Eq. (A4)] in which, instead of a double
average, we keep one state fixed and perform only one
average. We will verify that F is lower bounded by
(1 — €)%, which implies that there is some y € supp(v)

such that |{¢|y)[** > (1 — €2)* and D(¢,y) < e. Because
v is a k-design,

F=u(g £ ) = (oo E142)
Y peP(C?)

From Eq. (A2) and the fact that ¢®* has support only in the
symmetric subspace, we readily obtain

(B1)

(d—1)Ik!

F=lasi-

> (1 - &>k

|
Applying Lemma B1 to the temporal ensemble gener-
ated by an initial state w, whose support is
Sy ={w(1)|t€[0,c0)}, we see that S, is an e-net under
k-HSE, as long as € > y. Now, because lim;_ .y = 0, we
have that, under CHSE, S, is dense, meaning that for any
other state |¢) and & > 0, there is a time at which the trace
distance satisfies

D(¢.y (1)) <e. (B2)

2. CUE implies density in the projective
unitary group

A similar result to the previous section holds for unitary
complete ergodicity. If the evolution given by U(t) satisfies
CUE, then U(t) densely visits the projective unitary group
PU(d), meaning that for any other unitary V and ¢ > 0,

Do) (U.V) = J L= U@ VIE <e (8

at some time ¢. The quantity (1/d?)|tr(U'V)|? is a matrix
analog of the fidelity between states, as it equals 1 if
and only if U equals V up to some global phase, so
Dpy(q)(U, V) may be understood as a matrix analog of the
trace distance.

The proof is very similar to the one for CHSE, but
now using tools of unitary designs instead of state designs.
We define

F=E [|trU(t)'fV|2k} = tr( E [U(t)@’kvk]"'V@"*"),

>0

which is a modified unitary frame potential, in which we
perform only one average while keeping the unitary V
fixed. Under CUE,

F = tr( E [|er W3],

[Wekk|Tyekk ) — [
W eSUu(d)

W eSU(d)

where the second equality holds because of the right-
invariance of the Haar measure.

The quantity F fﬁar = Ewesu(a[|[rtW|*] is the unitary
frame potential of the Haar measure, and it is well known to
be k! for k < d [19,29], but for k > d, which is the relevant

case here, this is not longer true. In general, 7 = F E{kzm can

be shown to be equal to the number of permutations of
{1,...,k} satisfying a specific subsequence-length con-
straint [92]. This number cannot be written as a simple
expression, but it can be shown to satisfy [93,94]

lim FY/k = 42

k—o0

This means that for any e there exits k such that
d?*F > (1 - €)%, which implies that at some time,
d*tr(U(1)"V)|* > (1 — €?)*. Taking the kth root yields
Eq. (B3).

As aremark, although not used in this article, it is in fact
true that if the system is k-UE, for only finite k, then the
unitary operator, in time, forms an e-net over the projective
unitary group. This follows directly from a unitary-design
analog to Lemma B1 [95].

APPENDIX C: QUANTUM SPEED LIMIT

We show a type of quantum speed limit, in which the
distance traveled by any state in the projective Hilbert space
is upper bounded by the time integral of the norm of the
Hamiltonian [96].

Proposition C1. Consider any state |y(7)) evolving
under the unitary dynamics generated by H(z). For any
pair of times t, < t;, the trace distance between the state at
time 7, and the state at #; is upper bounded as follows:

DOl (1) =/ 1= w0 ()P < [ a0

0
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Proof. We have the following chain of inequalities:
t 4l
[l [* sl
) )
31
= [ atopw o)
0

L4
dta,|w<r>>H
)

= [l (1)) = lw(20)) |
= /2= 2Re{y (1) Iy (1))

> 1= o) ()P

The first line holds by the definition of operator norm ||-|| .,
the second is Schrodinger’s equation, the third is the
integral triangle inequality, and the fourth is the funda-
mental theorem of calculus. The last inequality holds
because 2 — 2Re(z) > 1 — |z|? for any z€C. "

By applying the result above to a finite sequence of
times, we can bound the length of the path traversed
by state.

Corollary C1. For times ty <t} <---

<ty=T,

> DGt )wt) < [ dilHO)o

As we take the sequence of times to have finer spacings,
the left-hand side approaches the total length of the path
traveled by the state y in P(C?), which is seen to be upper
bounded by the right-hand side, which depends only on the
end points ¢y, and 7.

APPENDIX D: TIME-PERIODIC SYSTEMS
AND k-HSE

In this appendix, we show that k-HSE in a time-periodic
Hamiltonian with period T requires a Hamiltonian strength
B = [I'dt||H(1)|| which grows with k and d. Specifically,
k-HSE implies that B > max{B,, B, }, with

AT
)H/Z, (D2)

C=25%(d—-1)>24(2d - 3)*"3, and y=y(k,d) as
defined as in Lemma B1. Theorem 1 follows, upon taking
k — co. The bound B; is better when k < d, and is
surpassed by B, when k> d. We derive each bound
separately, as they require different techniques.

To obtain the bound B; in Eq. (D1), we utilize the
following simple combinatorial result.

(D1)

8 k
=C 3— 2d
7 = da) (log(k—l— 1)

Lemma D1. Let (j;),c {

...d—1} be a permutation of the
set of integers {0, 1, ...,

- 1} where d > 2. Then,

QU

— l_maX(jCli’jl_l) Z\éz(d_l)

=1

Proof. Let us minimize over all possible permutations j;:

I — mmz / _ max Jz Ji-1)

The minimum on Eq. (D3) is achieved for the permu-
tation (j;) =(0,d—1,1,d-2,2,d-3,...), as the
alternation between large and small numbers maximizes

(D3)

the values max(j;, j,_1). For this permutation, L =

>4t \/min(j.d - j)/Vd (this is easier to verify by

separating the cases where d is even or odd). We can
lower bound this sum by the integral

e V2
Z\/EA dx mm(x,d—x)ZT(d_l)-

]
Proposition DI. (First lower bound on Hamiltonian
strength under periodic k-HSE). Let H(t) be a periodic
Hamiltonian with period 7. If H(¢) satisfies k-HSE, then
B:= [l dt|H(1)|, = By, as defined by Eq. (D1).
Proof. We begin with the case k=1,
B, = (v/2/3)(d = 1). Consider a quasienergy eigenstate
a(wt) € P(CY), whose existence is guaranteed by Floquet’s
theorem. We will apply Corollary C1 on the state a(8) by
finding a list of angles 6,6, ..., 60,_; such that the trace
distance between the states a(¢;) is lower bounded as

where

D(a(0).a(0)) 2 /1 -2y
fori # j. As a(G) touches all the states a(6;) in some order
910 < «9]1 <. <L 9 i (where j; is a permutation of the
indices), Corollary C1 guarantees that

d—
Zz /q max]h]l 1)2?@_1)7
=1

where the second inequality is Lemma D1.

To construct the angles 6; satistying Eq. (D4), begin by
setting 6, = 0. Now, inductively, assume we have already
found the first j < d angles 6,0, ...,0,_;. We setI1; to be
the orthogonal projector into span{|a(6y)), ....|a(0,_1))}.
By 1-HSE, Ey{tr[ll;a(0)]} = tr(I1;)/d = j/d, so there
must exist €; such that tr[II; a( )] <j/d. For any
i <j, we have |(a(6;)|a(6;))]? <tr[H a(0,)] < j/d, so
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D(a(0;).a(6;)) > /1 — j/d, yielding Eq. (D4) and prov-
ing the bound for k = 1.
For the case where k > 1, observe that the Hamiltonian

k
Hyn()=> 1® @ H(f) ® - ®1
' =1 Jth entry

acting on the symmetric subspace of (C?)®* satisfies
I-HSE if and only if H(r) satisfies k-HSE, because
{|#)(#|®*}, spans the space of operators in the symmetric
subspace [See Eq. (11b) in Ref. [28]]. Consequently,
we can apply the case k=1 on Hgyy,(t), which gives
Jo dtllH (D)l o = (v2/3)(dsym = 1),
(**4=1) is the dimension of the symmetric subspace.
Finally, note that ||Hyy,(1)[|, = k[|[H(?)|| . Which yields
the desired result. (]

Now we prove the bound B, given by Eq. (D2), for
which we require the following lemma regarding the
geometry of P(C?).

Lemma D2 (Lower bound on the packing number of
complex projective space). For any ¢ € (0, 1), we can pack
inside P(C?) at least n = [¢~2(¢=)] disjoint balls [97] of
radius £/2, where [ -] denotes the ceiling function.

Proof. The following is a standard argument in
covering and packing theory, which we include here for
completeness.

Let ., be largest number of disjoint balls of radius &/2
that we can pack inside P(C). Take C = {¢;,...¢p, } to
be the centers of the balls forming such a maximal packing.
The set C forms an e-net, for, if it did not, there would exist
a state which is more than ¢ trace distance away from any
state in C, which would mean that we can add another ball
of radius €/2 to the packing, contradicting the maximality
of 1.« Then, all the balls of radius & centered at points in C
together cover the whole P(CY). Each ball has volume
V(¢), and normalizing the total volume of P(C9) to unity,
we must have n,,, V(e) > 1. Thus we can pack at least
n=[(1/V(e)] < nmay balls of radius ¢ inside P(C?).

To finish the proof, we explicitly compute the volume
V(¢). The distribution of the overlap x = |(y|¢o)|* = 1 —
D(y, ¢)? of a Haar-random state y € P(C?) with a fixed
state ¢ is given by p(x) = (d = 1)(1 —x)472 [Eq. (14) in
Ref. [98] ], from which we can derive the volume [99]

1
V@:/’ w:/ dxp(x) = 241,
D(y.py)<e 1-¢2

which gives n = [¢~2(4=17, as claimed. "

Proposition D2 (Second lower bound on Hamiltonian
strength under periodic k-HSE). Let H(t) be a periodic
Hamiltonian with period 7. If H(¢) satisfies k-HSE, then
B = [I'dt|H(1)||s = B, as defined by Eq. (D2)

where  dgp, =

[

(Ds)

lleo

Proof. Again, consider a quasienergy eigenstate
a(wt) € P(CY). By k-HSE, the curve {a(0)|0 €T} forms
ay-net, taking y as in Lemma B1. For any § € (0, 1), we can
pack at least n = [6-24"D7] balls of radius 6/2 inside
P(C?) (Lemma D2). That is, there exists a set of states
{¢;}_, (the centers of the balls) whose pairwise trace
distances are lower bounded, D(¢;,¢;) > 6 for i # j. By
the y-net property, we can find angles 6; so that
D(a(6;).¢;) < y. The angles may be assumed to be sorted,
relabeling the ¢; otherwise. By Corollary CI and the
triangle inequality,

B > zn:D(a(gj)a a(ej-H mod n)) = n<5 - 27)
j=1

> 5241 (5 - 2p). (D6)
Maximizing Eq. (D6) over §, we get B> B, for
6=4(d-1)y/(2d-3) < 1. One can verify that B, >
[8/(4d)?[k/log(k + 1)]*3/> by applying Stirling’s
approximation to the binomial in y. [

APPENDIX E: PROOF OF THEOREM 3

Let H(z) be an m-quasiperiodic Hamiltonian with a
basis of piecewise smooth quasienergy eigenstates, i.e.,
such that the generalized Floquet decomposition given by
Eq. (10) holds. We will show that, under CUE, neces-
sarily m > d(d —1).

In Eq. (10), we may write Q = diag(qq, ..., q4_;) as a
diagonal matrix in the basis of QEs. Because global phases
are irrelevant, we may assume that Q is traceless, so that
g0 =—>.%! q,, giving a total of d — 1 rationally inde-
pendent quasienergies ¢ = (qy, ..., q4_1)- The exponential

) -1 . .
e—i0r — dlag(elzazl ‘/ut’ e_lqlt’ . e—lﬂmfﬂ)

is a quasiperiodic function, with frequency vector con-
tained in ¢, and U(t) = P(wt)e™"?" overall is a quasiperi-
odic function, with frequency vector contained in (¢, ®).
We say “contained in,” and not “equal to,” because the
driving frequencies may be reducible (e.g., if there is
rational dependence), but, regardless, we are guaranteed
that the map 7+ U(t) ® U(t)* is n quasiperiodic, for
some n <m+d—1.

Furthermore, if the evolution satisfies CUE, the
n-quasiperiodic map ¢+ U(¢) @ U(t)* densely visits
the projective unitary group PU(d) (see Appendix B 2).
Then the parent function T" — PU(d) is also dense. By
assumption, this map is piecewise smooth, so

m+d—1>n=dim(T") > dim(PU(d)) = d*> - 1,

which gives m > d(d — 1). n
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APPENDIX F: COMPLETE UNITARY
ERGODICITY WITH m=d? -2 TONES

In this appendix, we explain how to construct a mea-
sure preserving surjective function from the (42— 1)-
dimensional torus to SU(d). We then utilize this map to
construct a (d? — 2)-quasiperiodic Hamiltonian which has
QEs and satisfies CUE.

We consider Hurwitz’s Euler-angle parametrization
of SU(d) [69-71], which is constructed as follows. For
je{l1,2,...,d — 1}, define the two-level unitary rotation
matrices,

1

Jj—1

cos e —sin&e'?

R i I 4) = . : :
](5 v:1) sinfe™? cosée "
Taj

and for re€{1,2, ..., j} define the Euler angles,

bis
g€ [0,2>, ¢, €[0.27).  n€(0.27),  (F1)
which are, in total, d*> — 1. Consider the matrices

Ey =Ri(&11.01.1.m)-
Ey =Ry (&0, 922, 0)R (€12, 912, 12).
E3 = R3(&33. 933, 0)Ry (&3, 023, 0)R (&1 5, 013, 113).

E;=Ri(&; 9 OR;-1(&j-1j.0j-1,4,0) -+
R2(§2,j’ P2.j> O)Rl(gl.j’ P1j> nj)’

for j < d -1, and multiply them all together, to obtain

V(& ;@ jinj) = E\Ey---E4y,

which yields a parametrization of SU(d). One can compute
the Haar measure of SU(d) to be [71]

dUHaar & H d’h H d[(SIH gr,j)zr]d(pr,jﬁ

1<j<d—1  1<r<j

which means that this parametrization is not measure
preserving, because of that sin term. However, we can
make it measure preserving by considering a change of
variables 0, ; — &, ; given by

fr,j(ﬁr,j) = arcsin(|1 — Qr‘j/ﬂ|l/2r)’

for 6, ;€[0,2z), which gives d[(sin¢, ;)*] =d|1 -6, ;/
7| « d6, ;. Then the map

(Qr,ja%,p’lj) = V(ér,j(er,j)’(pr,jﬂlj)

is measure preserving from T¢ ! to SU(d).

To construct a drive that satisfies CUE with QEs,
consider ¢y, ...,q4_1, W1, @, ...,0p2_, to be rationally
independent frequencies. We assign two of the Euler angles
as N1 = qit, @rq-1 = (wp_y —qq)t. The remaining
d> -3 angles 0,j.rj,nj are set to be equal to
w1t ...wp_st, respectively. By this assignment, the para-

metrization V is a function of wt = (w;, m,, ...,02_,)t
and ¢,t. Now, using the fact that
Ri(& 9 = (0 +q)t.n = q1)
= R,(¢, ¢ = wt,n = 0) exp[—idiag(—q, ¢,0, ..., 0)1],
it is seen that
P(wt) = V(wt, q,t) explidiag(—q,, ¢,,0, ...,0):]V(0)*
(F2)

depends only on wt and not on ¢g;f. Then, we may
define the evolution operator by the generalized Floquet
decomposition,

U(t) == P(w1)e Q" = V(wt, q;1)e"2'V(0)T, (F3)

where the matrix Q = diag(— > 9"} 4. 91,92, .-+ 9a_1)
is the diagonal matrix of quasienergies, and O =
diag(= 32475 4a 0, 42 -+ Gan1)-

Because of the rational independence of (w,q), the
map t+> (®,q)t uniformly covers the (d*>+d—3)-
dimensional torus. Using that V forms a measure preserv-
ing map, from T¢~! to SU(d), we obtain

E [U(r)®H] = [E[ E

w —iQt ®k,k:| F4
>0 >0 WeSU(d)[( ¢ ) ] ( )

= E
W eSu(d)

[W®k,k} , (FS)
where the second equality holds by the right invariance of the
Haar measure. This proves that the (d*> — d)-quasiperiodic
Hamiltonian H(¢) = i[o,U(t)]U(z)" satisfies CUE and
has, by construction, QEs with the preselected quasienergies
q0s -2 9d-1-

APPENDIX G: SUFFICIENT AND NECESSARY
CONDITIONS FOR k-HSE
WITH QUASIENERGY EIGENSTATES

In this appendix, we assume that an m-quasiperiodic
Hamiltonian H(¢) has a basis of QE |a(t)) = e~/ x
|a(0@ = wt)), with a€{0,...,d—1}. We derive a pro-
perty on |a(@ = ®)) which is equivalent to k-HSE.
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Specifically, we see that k-HSE is equivalent to requiring
that all tensor product combinations (of length k) of the

states a(@), averaged over the torus and symmetrized, are

equal to pﬂ?ar. To show this, we require first to compute the

time average of an arbitrary state expanded in the basis
of QE.

Lemma GI. Let H(t) be a quasiperiodic Hamiltonian
with QEs, such that the quasienergies (possibly excluding
one) and @ are rationally independent and a state
(1)) = 34 cae™'|a(0 = @1)). Then

d—1
E [y (r)®] =

>0 Z |cal |2 T |cak |2psym(a)’ (Gl)

where Psym(a) = ’Pangl}izn[EﬂeT”’ [®I;':1 a](a)i| Hg@n» with

Hﬁly(zn the orthogonal projector into the symmetric subspace

and P, a normalization factor, equal to the total number of
different permutations of @ = (ay, ..., ay).

To gain intuition, it is useful to first understand the
time-independent version of Lemma G1, derived in
Ref. [25]. If the Hamiltonian has no time dependence, it

has proper eigenstates |a), and poym(q) = Pal'lgly?n ®'_

ajﬂély(zn reduces to a symmetrized product of a, ..., .
We generalize this result to quasiperiodic systems, where
the only difference is an additional average over the torus.

Proof. In the statement, we allow one quasienergy to not
be rationally independent but, in fact, up to an irrelevant
global phase, we can shift all quasienergies by adding a
constant multiple of the identity to H(r). This constant
can be chosen to ensure that all quasienergies and @ are
rationally independent, which we henceforth assume.
Moreover, note that although the quasienergies are only
defined up to a shift n-w, this condition is preserved
upon substituting ¢, — ¢, + n, - @, so it is a well-defined
condition on the quasienergy spectrum.

By the rational independence and the quasiperiodicity of
the states a;(), we can split the time average in two
separate averages, one corresponding to the winding
quasienergy phases, and the other to the quasienergy
eigenstates, defined over the torus,

E [y (n®] =" ﬁc i E [e'izﬁzl("“f"’"&)’}
tZOW - a;“p; >0 :

af \j=l1

<, E.[8 @150 ). (©2)

0eT" Lj=1
where the sum runs over all possible pairs of tuples of
indicesa = (ay, ..., ), p = (Bi, ..., Br). The time average
of the exponential in Eq. (G2) is

E e ij:](qaj—q/,j)t] _ { 1 if pePerms(a)

G3
>0 0 else, ( )

where Perms(a) is the set of all permutations of e. This is a
consequence of the rational independence, which only
allows the linear combination Z§:1(‘Ia, — qp,) to be zero
if # is a permutation of a. This last statement is called the no
k-resonance condition in Ref. [25].

By writing the symmetric projector explicitly in terms of
permutation operators [Eq. (A3)], we see that

(G4)

Inserting Egs. (G3) and (G4) into Eq. (G2), and overall left-
multiplying by Hé’y?n, we obtain Eq. (G1). [

Theorem G1. Let H(t) be a quasiperiodic Hamiltonian
with QEs, such that the quasienergies (possibly excluding
one) and @ are rationally independent. Then H(¢) satisfies

k-HSE if and only if for every a=(q,...,q)€
{0,....d - 1}¥,
k
Psym(a) = Pﬁqﬁma (GS)

(k)

where pgn@e) is defined in Lemma Gl and py,,, =

[E(/) eP(C?) [¢®k]-

Proof. This result follows entirely from Eq. (G1). If
we assume Eq. (G5), then Eq. (Gl) reduces to k-HSE,
by noting that >, ¢, |* - - [cq, [* = 1. Conversely, if we
assume k-HSE, then from Eq. (Gl), we see that the
polynomials defined over all R¢,

— E o 11 g1
P(xO’ [EXS} xd—l) - psym(a)xo x] o .xd—l ’
1

k ng_n Ny_1
Q(-XO’ ~-'1xd—l) = Zpg;za;xooxf o 'xdi] P (G6)
(14

coincide for values (xi,...,x;)€[0,1]¢ that satisfy
Zj?:lxk =1, where n, counts the number of times a
appears in the tuple @ = (ay, ..., a). This is seen by taking
the initial state [y) to have coefficients ¢, = \/X,. It
follows that P and Q must be equal everywhere, and thus
equal as polynomials, meaning that each of their coef-
ficients is the same. Note that there may be repeated terms
in the expressions (G6), due to the existence permutations
of (a,...,a) that produce the same values of n,.
However, by the symmetry of pgyq), the coefficients
for the repeated terms are the same, guaranteeing that

Psym(a) = pga)ar for all a. m

Theorem G1 provides a set of conditions to verify
k-HSE in quasiperiodic systems which feature QEs.
Moreover, as we prove below, when applied to a single-
qubit Hamiltonian, these conditions simplify greatly: One
just needs to analyze a single quasienergy eigenstate to

041059-20



HILBERT-SPACE ERGODICITY IN DRIVEN QUANTUM ...

PHYS. REV. X 14, 041059 (2024)

guarantee that the whole system is k-HSE (and further
k-UE by Corollary A2).

Corollary GI1. If H(r) is a single-qubit quasiperiodic
Hamiltonian with a quasienergy eigenstate that satisfies the
k-HSE (CHSE) condition [Eq. (3)] and a quasienergy that is
rationally independent from the driving frequencies, then
H(t) satisfies k-UE (CUE).

Proof. Assume that 0(0) satisfies the k-HSE condition.
We will show that this implies that H(¢) satisfies k-UE.

The second quasienergy eigenstate is guaranteed to exist
(see Corollary 3.4 in Ref. [18]), determined by the
resolution of the identity 1(@) =1 —0(f). We compute

SymlEg[®k (0)]1_[2];211 for arbitrary a € {0, 1}* by not-
ing that, in between the projectors to the symmetric
subspace Hgly?n the tensor product @ becomes commuta-
tive, allowing for algebraic manipulation,

Ple) [y [0(0) @ (1 - 0(60))® |1
a

x (187 ® Ey[0(0)24| )i,

where we used the binomial theorem in the second equality.

Using that the state 0(@) satisfies the k-HSE con-
dition, and in consequence the (k— j)-HSE condition
[see Corollary A1, property (a)], we have E,[0(0)®*/] =
Pl =T /(1= j+ k), by Eq. (A2) with d =2.
Further noting that Hgyzn(ﬂ@ (2 Hé’;;{' >)H£§2n = ngn, we
may compute

A /e =i
(k)
. = Hsm 7
/)syma (|a|>z< )l—j+k Yy (G)

J=0

k
_ Mok

1 + k = PHaar* (G8)

By Theorem G1, the Hamiltonian satisfies k-HSE, and by
Corollary A2, this further implies k-UE. ]

APPENDIX H: k-HSE IN THE FREQUENCY
LATTICE

In this appendix, we derive a set of equations in Fourier
space, which are sufficient and necessary for the system to
satisfy k-HSE. We consider the case where the quasienergy
eigenstates |a(t)) = e~ |a(f = wt)) exist and allow for a
Fourier decomposition:

= Z |a,,>e‘i"'0.

neznm

(H1)

The Fourier components |a,,) do not need to be normalized.
They can be understood as the partial components of the
eigenstates of a time-independent Hamiltonian defined over
a so-called frequency lattice [8,35,38].

All the information about the dynamics is encoded in the
Fourier components |a,,), allowing us to write k-HSE as a
condition in terms of them. By Fourier transforming the
MAtrices Pgym(q) i Theorem Gl and assuming the rational
independence hypothesis, k-HSE can be recast as

k k
Pl 37 @ la, Yoty M = pltls (12)

nne/Ci

for all @ = (ay, ..., a;), where the sum runs over

(e -$0)

j=1
The Fourier components must satisfy an additional ortho-
normality constraint, due to the unitarity of the dynamics:
The orthonormality condition of the quasienergy eigenstates
YV 0eT":{a(0)|d(0)) = b,y is Fourier transformed, via
the convolution theorem, to

Vn'ez": Z <an|a/n’+n> = SaaOn'o-

nezZ"

(H3)

Equations (H3) and (H2) completely characterize the
Fourier components of the QEs under k-HSE, in the
sense that if one constructs a family of vectors satisfying
them, it is possible to then reconstruct an m-quasiperiodic
Hamiltonian that satisfies k-HSE. This can be done by
constructing the quasienergy eigenstates |a(@)) via
Eq. (H1), and from them the evolution operator via the
generalized Floquet decomposition Eq. (10), where the
(rationally independent) quasienergies and driving frequen-
cies can be chosen freely.

For brevity, we say that a set of vectors |a,) € C?, with
a€{0,...,d—1} and n€Z", is an (m, k)-ergodic lattice
[(m, k)-EL] if Eqs. (H2) and (H3) are satisfied. In what is
left of this appendix, we provide examples of finite (m, k)-
ELs, where finite means that there is only a finite number
of nonzero vectors |a,). Finite (m,k)-ELs give rise to
m-quasiperiodic Hamiltonians with analytic time depend-
ence, which have QEs and satisfy k-HSE.

A (1,1)-EL yields a periodic Hamiltonian that satisfies
I-HSE. For m=1, k=1, Eq. (H2) reduces to
Y wezlan){a,| =1/d, which is readily satisfied, along
with Eq. (H3) by

T eZﬂina/d|vn>

|an> = \/g

forne{0,...,d — 1} (and |a,) = O for other n € Z), where
{|v;)}¢=} forms an orthonormal basis of C?. This proves

(H4)
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that 1-HSE is achievable by analytic time-periodic dynam-
ics, in arbitrary dimension.

We now specialize to the case of a single qubit, d = 2.
By Corollary G1, to guarantee k-UE we only need to study
the components of one quasienergy eigenstate, say, |0,).
The components of the orthogonal state are determined
by [1,) =[0_,),, where (}), = ( "). Consequently, it
is enough to solve Eq. (H2) for @ = (0,0,...,0), i.e.,
Dot ek ®j_1 10,)(0n | = P . We numerically find
solutions for (m =1,k =2), and (m = 2,k = 3), giving
rise to single-qubit periodic and two-quasiperiodic analytic
Hamiltonians which satisfy 2-UE and 3-UE, respectively.

An (m =1,k = 2)-EL in a qubit is generated by

0,) = aylg-), —a_|p.), a_|p-), —aile.)
(n=0) (n=1) (n=2) (n=23), (H5)
and |0,) = 0 for other n € Z, where a, =1y/1 £ (1/1/3)

and |¢.) are any basis states. The state [0(0)) =
>, e (a = 0),) is displayed in Fig. 5(b), with the selection
[¢s) = =\/3 % (1/v/6)[0) + 74, /3 5 (1/VO)]1),
which ensures |a = 0(60 = 0)) = |0).

An (m =2,k = 3)-EL in a qubit is generated by

) ) = (0.0)
= =0

0 =L 15 4 o), n—<1 0 (H6)
V2021 n— (L
0 other n € 72,

where =) = (0) & [1))/VZ. o) = (1/v/3)|) — (1/v/8) [ 1),

[0), = (L/V3)H) + (1/V6)]-).

Finding (m = 1, k)-ELs for higher k and d would prove
our claim that k-HSE is achievable with periodic, time-
continuous drives. Nevertheless, we note that the number of
terms in Eq. (H2) grows exponentially with k, which poses
an obstacle for numerical solutions. Analytical understand-
ing of the structure of (m,k)-ELs is necessary, and a
direction we leave open.
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