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The dynamics of open quantum systems can be simulated by unraveling it into an ensemble of pure state
trajectories undergoing nonunitary monitored evolution, which has recently been shown to undergo
measurement-induced entanglement phase transition. Here, we show that, for an arbitrary decoherence
channel, one can optimize the unraveling scheme to lower the threshold for entanglement phase transition,
thereby enabling efficient classical simulation of the open dynamics for a broader range of decoherence
rates. Taking noisy random unitary circuits as a paradigmatic example, we analytically derive the optimum
unraveling basis that on average minimizes the threshold. Moreover, we present a heuristic algorithm that
adaptively optimizes the unraveling basis for given noise channels, also significantly extending the
simulatable regime. When applied to noisy Hamiltonian dynamics, the heuristic approach indeed extends
the regime of efficient classical simulation based on matrix product states beyond conventional quantum
trajectory methods. Finally, we assess the possibility of using a quasi-local unraveling, which involves
multiple qubits and time steps, to efficiently simulate open systems with an arbitrarily small but finite
decoherence rate.
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Introduction—While an ideal quantum system evolves
under unitary evolution according to the Schrödinger’s
equation, realistic quantum systems are inevitably subject
to environmental noise and undergo open system dynamics,
often well modeled by the Lindblad equation [1]. Efficient
classical simulation of such dynamics not only enables
theoretical understanding of open quantum systems but is
also pivotal in advancing quantum simulation experiments
[2–4] and benchmarking near-term quantum devices [5,6].
Stochastic wave function method is a widely-adopted

approach to simulate open system dynamics [7–11]. In this
method, instead of simulating the evolution of the mixed
density matrix describing the open system, one unravels the
mixed state into an ensemble of pure quantum trajectories
whose statistical average emulates the evolution of the
mixed state. Interestingly, each trajectory in the ensemble
follows nonunitary evolution that can be understood
as monitored quantum dynamics, wherein entanglement
can undergo a measurement-induced phase transition from
a volume- to an area-law scaling when the noise or
decoherence rate increases [12–17]. Since the simulation
cost grows exponentially with entanglement entropy and, in
particular, the area-law scaling of entanglement implies
efficient representation of quantum states in one dimension
using matrix product states (MPS) [18–21], this phenome-
non indicates the presence of a critical decoherence rate
above which efficient classical simulation is feasible in one
dimension [22].

Importantly, the same open system dynamics can be
unraveled into infinitely many equivalent trajectory ensem-
bles, and the entanglement entropy within trajectories
strongly depends on the unraveling scheme. In a pioneering
work, Ref. [23] focused on two classes of unraveling
schemes and designed an entanglement-optimized algo-
rithm that minimizes the entanglement growth at each time
step. Independently, Ref. [24] considered random unitary
circuits (RUC) with dephasing noise and focused on four
empirically chosen unraveling schemes, finding that two of
them result in a lower critical decoherence rate compared to
the conventional unraveling using projective measure-
ments. Yet, it remains open, for generic quantum evolution
subject to a generic type of decoherence, whether one can
systematically obtain an unraveling scheme that minimizes
the critical decoherence rate and extends the regime of
efficient simulation.
In this Letter, we show that, for arbitrary types of

decoherence, one can obtain an unraveling scheme that
optimizes the critical decoherence rate and therefore can
extend the regime of efficient classical simulation. We
consider the most general form of unraveling schemes that
involve a minimum number of Kraus operators for each
decoherence channel. As a paradigmatic example, we first
focus on noisy random unitary circuits [Fig. 1(a)] and
obtain an analytic expression for an optimized unraveling
basis that minimizes the critical threshold on average based
on an effective spin model. Subsequently, we propose a
heuristic algorithm that adaptively optimizes the unraveling
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basis for a given arbitrary quantum channel to maximally
disentangle individual noisy qubits from the rest in each
simulation step.Bothmethods significantly extend the regime
of classical simulation.We then apply our heuristic algorithm
to simulate noisy Hamiltonian dynamics and demonstrate
how classical simulation, utilizing MPS, becomes viable for
low decoherence rates that were previously not feasible. We
further discuss the possibility to extend the efficient simu-
lation regime to any small but finite decoherence rate based on
a quasi-local unraveling scheme, where multiple qubits and
time steps are jointly unraveled [Fig. 1(c)].
We note that alternative methods for simulating noisy

evolution have been proposed based on matrix product
operator (MPO) representation of the density matrix [25–
28]. However, these methods suffer from issues such as
failure to maintain the positivity of the density matrix,
resulting in negative eigenvalues and lack of rigorous error
bounds for quantum state fidelities over the dynamics. In
Supplemental Material [29], we provide comparisons of the
proposed method and MPO-based method in practical
settings. Besides, Ref. [37] showed the existence of an
efficient classical algorithm for noisy random circuits with
any finite decoherence rate, but the algorithm is difficult to
implement in practice.

Unraveling open system dynamics—The dynamics of a
one-dimensional system in a Markovian noisy environment
is generally described by the Lindblad equation [1]. Here,
we consider a discretized evolution, in which the dissipa-
tive part of the Lindblad equation acts on the system as
quantum channels [29] [see Fig. 1(a)]. We focus on the
unraveling of these quantum channels that decohere the
underlying unitary evolution.
A generic quantum channel can be always decomposed

in terms of the Kraus operators Kα

N ½ρ" ¼
XN−1

α¼0

KαρK
†
α; ð1Þ

where Kα satisfies
PN−1

α¼0 K
†
αKα ¼ 1. Such a decoherence

channel can be formulated as unitary coupling UQM be-
tween the system Q and an ancilla qudit M; tracing out the
ancilla qudit reproduces the quantum channel [38], i.e.,

N ½ρ" ¼ trM
!
UQMðρ ⊗ j0ih0jÞU†

QM

"
; ð2Þ

where UQM ¼
PN−1

α;β¼0Kα ⊗ jαþ βmodNihβj, and the
ancilla qudit is of dimension N same as the number of
Kraus operators.
Tracing the ancilla qudit is equivalent to summing over

an ensemble of trajectories generated by measuring the
ancilla qudit in a computational basis. The probability of
the measurement outcome α is determined by the Born rule.
In each trajectory associated with the outcome α, a Kraus
operator Kα acts on the system. Such an ensemble of
trajectories averages to the mixed density matrix N ½ρ" and
therefore serves as an unraveling of the channel.
Crucially, the quantum channel can be unraveled in

infinitely many equivalent ways. Equivalent schemes can
be obtained by measuring the ancilla qudit in a rotated basis
and thus are related by a unitary transformation U as in
Fig. 1(b) [39]. Alternatively, the unitary rotation U on the
ancilla qudit can be viewed as decomposingN in terms of a
different set of Kraus operators related to fKαg by
K0

α ¼
P

β UαβKβ. In the rest of the Letter, we take either
perspective on relating equivalent unraveling schemes,
whichever is convenient.
The challenge for efficient classical simulation lies in the

entanglement entropy within each trajectory. To illustrate
this, we consider the evolution subject to local dephasing
noise of rate p, described by N ϕ;i½ρ" ¼ ð1 − p=2Þρþ
ðp=2ÞZiρZi. The channel can be unraveled into probabi-
listic projective measurement in the Pauli-Z basis with
probability p. It has been shown that such a unitary
evolution interspersed by measurements exhibits a meas-
urement-induced transition in the half-chain entanglement
entropy from a volume- to an area-law scaling [12–14].
This indicates the classical simulation of trajectory dynam-
ics is efficient only above the critical decoherence rate pc.

FIG. 1. (a) Quantum evolution subject to generic local
decoherence. The time evolution is digitized into a quantum circuit
with local decoherence channels. (b) The decoherence channel can
be expressed as a coupling to an ancilla qudit and measuring the
ancilla qudit, where the coupling gate is determined by the Kraus
operators Kα and a rotation gate on the ancilla qudit
Rα ¼

PN−1
β¼0 jαþ βmodNihβj. Equivalent unravelings can differ

by a unitary gate U on the ancilla qudit, which results in an
equivalent set of Kraus operators K0

α ¼
P

β UαβKβ. (c) Multiple
unitary gates and decoherence channels can be combined into a two-
qudit quantum channel, which can be purified by applying a joint
unitary gate on the ancilla and system qudits. (d) Phase diagram for
simulating mixed-field Ising model with dephasing noise using
trajectory unraveling. The unraveling in computational basis yields
a critical error rate of γc ¼ 0.201ð6Þ, whereas the optimized
unraveling reduces the critical rate down to γc ¼ 0.100ð6Þ.
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However, pc depends on the unraveling basis. For
example, the dephasing channelN ϕ;i can be also unraveled
into trajectories inwhich aZi gate is appliedwith probability
p=2. In this unraveling, every trajectory undergoes purely
unitary evolution and is generally always in the volume-law
phase, making it difficult to simulate classically. Our goal is
to find an optimized unraveling basis that minimizes pc and
extends the regime of efficient simulation.
Optimized unraveling for noisy randomunitary circuits—

We first consider the trajectory unraveling of noisy random
unitary circuits operating on a one-dimensional chain of
qudits with local Hilbert space dimension q. The circuit
involves two-qudit Haar random unitary gates arranged in a
brick-layer structure and local decoherence channels
applied to every single qudit after each layer as shown
in Fig. 1(a).
The entanglement entropy in the trajectories of noisy

Haar random circuits has an analytic albeit qualitative
description in terms of the domain wall free energy in a
two-dimensional classical Ising spin model on a triangular
lattice [Fig. 2(a)] [30,31]. The spin model exhibits a
ferromagnetic transition when tuning the decoherence rate,
which is detected by the domain wall free energy and
corresponds to the transition in the entanglement entropy.
The couplings in the spin model are between the neighbor-
ing spins in the triangular lattice and depend on both the
decoherence rate and unraveling scheme. Remarkably, in
the case that every channel is unraveled in the same basis,
the spin model is translationally invariant, and its critical
point pð2Þ

c is exactly solvable [32,33]. Thus, we can
determine an optimized unraveling basis for the RUC that

exactly minimizes the analytically determined critical
decoherence rate pð2Þ

c . We note that the spin model only
describes the quasi-entropy, and its critical point pð2Þ

c
empirically approximates pc in the true von Neumann
entropy. Yet, the unraveling basis that minimizes pð2Þ

c still
greatly reduces the pc for von Neumann entropy, which
will be numerically verified in Fig. 3.
Specifically, for a given unraveling scheme, i.e., a set of

Kraus operators fKαg depending on the decoherence rate
p, the critical point pð2Þ

c in the spin model can be
determined from [30]

#
u2
u1

$
2

− 2
q2 − 1

q2 þ 1

#
u2
u1

$
− 1 ¼ 0; ð3Þ

where

u2 ¼
XN−1

α¼0

ðtrK†
αKαÞ2; u1 ¼

XN−1

α¼0

trK†
αKαK

†
αKα: ð4Þ

Weoptimize the critical thresholdpð2Þ
c in the spinmodel over

equivalent sets of Kraus operators related by unitary trans-
formations U. For the dephasing channel, it turns out pð2Þ

c
depends on two parameters θ andϕ [29], and the optimum is
found at θ ¼ ϕ ¼ π=4 with pð2Þ

c ¼ 0.0685, which is sig-
nificantly lower than pð2Þ

c ¼ 0.3558 in the conventional
unraveling based on projective measurements [30]. The
resulting Kraus operators are K0;1 ¼ ð'

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p=2

p
1þffiffiffiffiffiffiffiffi

p=2
p

ZÞ=
ffiffiffi
2

p
, which coincides with those in one unraveling

scheme studied in Ref. [24] up to a sign difference. Our

FIG. 2. (a) Effective Ising spin model on a triangular lattice for
noisy random unitary circuits (RUC). The Ising couplings
between spins on the same downward-facing triangle depend
on the unraveling scheme, i.e. the Kraus operators Kα. (b) Critical
point pð2Þ

c in the spin model for various unraveling schemes of the
RUC with dephasing noise. The black and blue lines represent
pð2Þ
c in the conventional unraveling based on projective measure-

ments, and general unraveling schemes involving two Kraus
operators, respectively. pð2Þ

c in the general unraveling scheme as a
function of θ for fixed ϕ ¼ π=4 is presented. The lowest pð2Þ

c is
obtained at θ ¼ ϕ ¼ π=4.

FIG. 3. Tripartitie mutual information I3 as a function of the
decoherence rate p in the spin-model optimized unraveling for
RUC. The results are obtained from exact simulation up to system
size L ¼ 24. (Inset) Finite-size scaling collapse determines the
critical decoherence rate pc ¼ 0.089ð3Þ. For comparisons, con-
ventional unraveling based on projective measurements in com-
putational basis yields pc ¼ 0.168ð3Þ and the heuristically
optimized unraveling basis pc ¼ 0.085ð2Þ. The results are
averaged over 400 quantum trajectories.
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method can be applied to an arbitrary type of decoherence
channel. For depolarization and amplitude damping noise,
we obtain the spin-model optimized basis with correspond-
ing pð2Þ

c in Supplemental Material [29].
So far, we only consider optimizing the critical

decoherence rate pð2Þ
c in the spin model. However, the

entanglement within the simulatable regime, i.e., the area-
law phase, may not be optimally minimized. With this
analytic tool, it is worth exploringwhether one canminimize
the quasi-entropywithin the area-lawphase to further reduce
the computational cost of classical simulation.
Exactly solving the spin model can determine an

unraveling basis that is optimized on average for all random
circuit realizations and trajectories. However, in practice,
the optimal basis for each decoherence channel depends on
the specific quantum state it applies to and therefore can
vary among different trajectories. Here, we propose a
heuristic algorithm that optimizes the unraveling for each
individual decoherence channel. The most straightforward
idea is to find the unraveling basis that results in the
minimum entanglement in the system. However, such an
optimization process is computationally expensive, and we
instead search for the basis that maximally and locally
disentangles the noisy qubit from the rest of the system.
Specifically, we first compute the reduced density matrix ρi
of the noisy qubit. Then, we optimize over equivalent Kraus
decompositions of the decoherence channel such that the
average entanglement between the noisy qubit and the rest
is minimized.
To demonstrate the optimized unraveling schemes

indeed lowers pc, we perform an exact numerical simu-
lation of Haar random unitary circuits subject to dephasing
noise operating on a chain of qubits (q ¼ 2) up to system
size L ¼ 24with periodic boundary condition. We compute
the tripartite mutual information I3 ¼ SA þ SB þ SC −
SAB − SAC − SBC þ SABC to determine the critical point
pc, where A, B, and C each represents a quarter of the
system. Such a quantity is expected to change sharply from
a volume-law scaling I3 ¼ OðLÞ to an area-law scaling
I3 ¼ Oð1Þ across the phase transition [34]. In Fig. 3, we
perform the finite-size scaling using the ansatz I3 ¼
F ððp − pcÞL1=νÞ to extract pc. Compared to the conven-
tional unraveling based on projective measurements with
pc ¼ 0.168ð3Þ [29,34], the optimized unravelings obtained
from the spin model and from the heuristic algorithm
yield significantly lower critical decoherence rates pc ¼
0.089ð3Þ and pc ¼ 0.085ð2Þ, respectively.
Optimized unraveling for Hamiltonian dynamics with

dephasing noise—The optimized unraveling scheme
can also extend the regime of efficient simulation for
noisy Hamiltonian dynamics. Here, we study the one-
dimensional mixed-field Ising model (MFIM) under
dephasing noise, which is governed by the Lindblad
equation ρ̇ ¼ −i½H; ρ" þ γ

P
iðZiρZ

†
i − 1

2 fZ
†
i Zi; ρgÞ. We

consider H ¼ −
P

hi;ji ZiZj þ 1.05
P

i Xi − 0.5
P

i Zi,
which is far from any integrable system and is challenging
to simulate in the absence of decoherence [40]. We remark
that the trotterized evolution of the Lindblad equation can
be represented in the brick-layer structure in Fig. 1(a),
where the quantum channels are N ϕ;i of dephasing
rate p ¼ 2γdt.
We first apply our heuristic algorithm to exactly simulate

the noisy dynamics. The finite size scaling analysis yields
the critical decoherence rate γc ¼ 0.100ð6Þ, which is
significantly lower than γc ¼ 0.201ð6Þ obtained in the
conventional unraveling [29].
The optimized unraveling allows simulating the noisy

dynamics of an arbitrarily large system based on MPS in an
extended regime. In the MPS simulation, the required bond
dimension χ grows exponentially with the system size
[χ ∼OðexpðLÞÞ] in the volume-law phase, while the
required χ is only a constant [χ ∼Oð1Þ] in the area-law
phase. We use two unraveling schemes to simulate the
noisy MFIM of system size L ¼ 100, where the exact
simulation is not possible. Indeed, we find that, for a
relatively small bond dimension χ ≤ 256, the entanglement
saturates, and the MPS can capture the trajectory dynamics
for γ ≥ 0.2 in the conventional unraveling scheme, whereas
the entanglement saturates in an extended regime γ ≥ 0.1 in
the optimized basis (Fig. 4).
Discussion—We have introduced optimized unraveling

schemes for trajectory simulation of one-dimensional open
system dynamics under arbitrary types of decoherence. We
focused on the single-qubit unraveling and showed that the
classical simulation is efficient when the decoherence rate
is above a significantly reduced but finite pc (γc). These
results open multiple directions for future research.

FIG. 4. Maximum half-chain entanglement entropy S averaged
over trajectories as a function of bond dimension χ in MPS
simulation for MFIM with dephasing noise. We consider the
system size L ¼ 100 and compare the entanglement in (a) unrav-
eling in the computational basis and (b) optimized unraveling for
various dephasing rates γ. Dashed lines with empty circles and
solid lines with filled circles represent data points in the area- and
volume-law phases, respectively.
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By unraveling multiple noisy channels at the same time,
an efficient simulation may be possible for noisy dynamics
with any nonvanishing decoherence rate γ. The entangle-
ment between the system and ancilla qudits is generated at
the rate of γ. Over a time period T ≳ 1=γ, each system qudit
becomes decohered and only entangles with the ancilla
qudits. Thus, considering an optimized unraveling basis
over LT ancilla qudits for all noisy channels within this
period, one can disentangle the system in each trajectory
into a short-range entangled state [41]. However, this
procedure generally requires optimization over a nonlocal
unitary rotation on LT ancilla qudits, which is computa-
tionally challenging. It remains open whether one can find
an efficient representation of the optimized unraveling basis
over LT ancilla qudits.
Alternatively, one can take a coarse-grained perspective

on noisy random circuits. Specifically, we combine all the
gates and decoherence channels within a diamond-shaped
region into a single quantum channel on two qudits, each
involving m consecutive qubits in the original circuit [as
shown Figs. 1(a) and 1(c)]. Although each diamond-shaped
block contains Oðm2Þ two-qubit unitary gates, only OðmÞ
gates support on both qudits and generate entanglement
between them. In contrast, decoherence within each block
generates Oðm2Þ entanglement between the system and
ancilla qudits. Thus, after the coarse graining, the effective
decoherence rate increases by m; we expect a reduced
critical decoherence rate γc ¼ Oð1=mÞ if we optimize the
unraveling basis over the coarse-grained noisy channel.
Hence, by grouping m ∼ 1=γ qubits in a single qudit and
obtaining the optimized unraveling for noisy channels
acting on two qudits, one can facilitate efficient simulation
at an arbitrarily small but finite γ. We leave for future work
to develop an explicit algorithm to realize this idea. We
remark that such an algorithm only involves finding
optimized unraveling for polynomially many decoherence
channels that involve Oðm2Þ ancilla qudits, which is at a
cost of Oðexpðm2ÞÞ ∼Oðexpð1=γ2ÞÞ. The polynomial re-
source in system size L is consistent with previous results
from both theoretical complexity analysis [37] and numeri-
cal simulation based on matrix product operators [27].
Another future direction is to study the optimized unrav-

eling for open systemdynamics in higher dimensions. In this
case, bipartite entanglement does not on its own determine
the cost of classical simulation. It remains open how to
design an unraveling scheme to reduce the complexity of
simulating trajectory dynamics on classical computers.
Furthermore, it is of great practical interest to simulate

noisy evolution in near-term quantum simulation platforms
based on the optimized trajectory unraveling. On one hand,
the classical simulation allows benchmarking near-term
devices [5,42]. On the other hand, the input from classical
simulation combined with samples from quantum simu-
lators may allow probing “computationally assisted”

observables [43–45] that are difficult to compute by
classical computers alone.

Note added—Upon completion of the present manu-
script, we became aware of an independent work appearing
on arXiv on the same day [46], which also studies the
optimized unraveling based on statistical mechanics map-
ping. However, the two works consider different research
problems and have distinct motivations—this work focuses
on unraveling in simulating one-dimensional open system
dynamics whereas Ref. [46] focuses on unraveling in
sampling from two-dimensional quantum circuits, which
maps to simulating one-dimensional open system dynamics
subject to measurements.
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