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Abstract—Many intelligent sensing systems rely heavily on
automatic analysis tools to extract high level information from the
raw videos or images captured by cameras. In particular, deep-
learning-based computer vision solutions have shown promising
results in analysis tasks ranging from image segmentation to
object detection and recognition. In practical systems, image
distortions due to factors such as noise and blur may degrade
the accuracy of these analysis tools. This paper proposes a no-
reference image quality assessment model for predicting the
quality of images from the perspective of three major computer
vision tasks: image segmentation, image classification, and object
detection. A data set is constructed that considers distortions
including noise, blur, and bad lighting, which commonly occur
during the image acquisition process in diverse applications.
Three widely used deep-learning-based algorithms are considered
to label the quality of the images in the dataset. A set of light-
weight features are extracted to characterize the structure of the
content in an image. Based on the data set and the extracted
features, a classification model is built to predict the quality of
images used in computer vision tasks. Experimental results show
that the proposed model offers more accurate predictions than
common image quality measures such as BRISQUE, NIQE, and
PIQE.

Index Terms—image quality assessment, no-reference, com-
puter vision, image classification, object detection, image seg-
mentation

I. INTRODUCTION

Cameras have become vital components in a variety of
intelligent sensing applications such as intrusion management,
crowd detection, traffic monitoring, and augmented reality.
Many of these applications rely heavily on deep-learning-
based computer vision (CV) tools that can automatically
analyze the images captured by cameras and extract high
level information from them. Due to environmental or human
factors, the sensed images may suffer from different types of
distortions like noise, blur, or bad light. The accuracy of a
CV algorithm could degrade if the quality of an input image
is not satisfactory. Therefore, it is necessary to assess how
and to what extent image distortions affect the performance
of common CV tools.

In the field of image quality assessment (IQA), there are
extensive studies on modelling the perceptual image quality
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which is evaluated by human users [1]-[3]. Traditional per-
ceptual quality assessment methods take advantage of known
characteristics of the human visual system (HVS) such as
luminance sensitivity, color perception, spatial resolution [4].
However, the quality of an image evaluated by a computer
vision algorithm is not necessarily sensitive to the same
factors that drive human perceptions. In our recent work on
object detection quality [5], we found that the performance of
classical object detection algorithms could be influenced by the
quality of background, whereas human beings can easily focus
on a moving object even with a blurred background. It has
also been shown in [6] that some characteristics of the HVS
are useless for CNN-based methods of computer vision tasks.
For example, images are typically presented to CNNs as a
static rectangular pixel grid with fixed spatial resolution but the
primate eye has an eccentricity dependent spatial resolution.

There are a few studies on the problem of quality evaluation
for different computer vision tasks. For example, five quality
factors, including contrast, brightness, focus, sharpness, and
illumination, were used to evaluate the performance of face
recognition [7]. The degradation of the performance of face
detectors was quantified considering different factors includ-
ing noise, blur, and compression in [8]. An image quality
prediction model for object detection was proposed based
on features like image gradient, edge, and estimated object
size [9]. For target tracking, the image quality for tracking in
airborne reconnaissance systems was studied in [10], and it has
been found that the accuracy of target detection is impacted
by factors such as jitter, level of noise, and edge sharpness,
but it is less sensitive to spatial resolution.

In this paper, we aim to advance existing studies by tackling
the challenge of building a more general quality prediction
model for a wide range of intelligent sensing applications
considering common types of distortions that may occur. We
propose to study three representative computer vision methods:
image classification, object detection, and image segmentation,
because almost all of the existing image analysis tasks are
based on at least one of these three methods. We consider
image distortions caused by noise, blur, and bad lighting.
We propose a no-reference image quality assessment model
based on local features in an image such as edge as well
as global features like contrast and estimated object size.
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Fig. 1: Samples of distortions.

The model is trained using a large number of images with
different distortions considering three representative deep-
learning-based computer vision algorithms. The accuracy of
the proposed model is then evaluated on a separate test data
set and compared with commonly used IQA measures.

II. DATASET AND PERFORMANCE METRICS
A. Dataset Generation

We have generated a distorted images dataset based on three
different datasets, ImageNet [11], PASCAL VOC2012 [12],
and COCO [13], corresponding to the three CV tasks being
considered. We selected 685 correctly classified images which
are used in the ImageNet challenge for image classification.
We selected 1225 images from PASCAL VOC2012, which
contains 20 object categories for object detection. For image
segmentation, we chose 772 images from COCO, which is a
large dataset for object detection, segmentation, and captioning
published by Microsoft. For each of the 2,682 selected original
images, we simulated 6 specific types of distortion: Gaussian
noise, Gaussian blur, motion blur, lens blur, brighten, and
darken. And for each distortion type, 5 distortion levels were
simulated (low, mid-low, mid, mid-high, and high).

Samples of distorted images in our dataset are shown in
Fig.1. Gaussian noise was added to the original images, where
variances were set to be 0.001, 0.002, 0.003, 0.005, and 0.01.
The 2D circularly symmetric Gaussian blur kernel was applied
to generate the blurring effect of each image by using standard
deviations of 0.1, 0.5, 1, 2, and 5. Motion blur was simulated
to approximate the linear motion of a camera by 1, 2, 4, 6,
and 10 pixels with an angle of 45 degrees. Circular averaging
filter was used to simulate lens blur by adjusting filter radius
to 1, 2, 4, 6, and 8, where a higher radius means a high level
of lens blur. For the brighten and darken distortions, we non-
linearly adjusted the luminance channel by keeping extreme
values fixed and increasing or decreasing others. For brighten
effects, 0.1, 0.2, 0.4, 0.7, and 1.1 were used for increasing from
low to high distortion levels, and for darken effects, 0.05, 0.1,
0.2, 0.4, and 0.8 were used for decreasing from low to high
distortion levels.

B. Deep-Learning-Based Computer Vision Tasks and Metrics

We considered three core tasks in computer vision: image
classification, object detection, and image segmentation. These

(c) Image Segmentation

(a) Object Detection

(b) Image Classification

Fig. 2: Different computer vision tasks.

foundational tasks underpin almost all other computer vision
processes. Specifically, given an image, it is crucial to segment
the various parts of the scene, as illustrated in Fig. 2(c). Once
the different segments are identified, it is essential to detect and
isolate each meaningful object in the scene (localization) from
the background, as shown in Fig. 2(a). Finally, classification,
as shown in Fig. 2(b), allows us to build more complex tasks
such as action recognition. We propose to study the following
deep-learning-based methods because of their efficiency and
popularity in the computer vision field:

o ResNet-50 for image classification [14];

e YOLOV3 for object detection [15];

o Mask-RCNN for image segmentation [16].

There are a variety of metrics for evaluating the performance
of different CV tasks. Towards a general quality model, we
chose a set of metrics that can generate normalized values
ranging from O to 1.

For image classification, the accuracy measures the number
of correct predictions over a total number of predictions:

A Number of Correct Predictions o
ccuracy = .
4 Total Number of Predictions

Apart from the accuracy of each class in an image, we are
also interested in the probability values associated with the
classification accuracy for each class. For correctly classified
images, the confidence in the prediction is reflected in the
probability score while the score for misclassified images
is effectively set to zero, resulting in a ¢TE (classification
evaluator) ranging from O to 1, which is given by

cT'E = Accuracy * Probability Score. 2)

For object detection, the evaluation metric is the mean
average precision (mAP) score that is calculated by taking the
mean AP (average precision) over all the classes in an image:

=1
1
mAP = ; AP,. 3)

The performance of image segmentation can be evaluated
using the intersection-over-union (loU), also known as the
Jaccard Index which basically determine the pixels common
between the ground truth and the prediction divided by the
total pixels present across both masks:

Tol — groundtruth N prediction

“)

To analyze the impact of the studied distortions on the
performance of CV tasks, we applied the three chosen deep-
learning-based methods on each image in our distorted dataset.

~ groundtruth U prediction’
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Fig. 3: Impact of distortions on the accuracy (%) of computer

The average accuracy (cTE/mAP/IoU) for different groups of
data are shown in Fig. 3. It is evident that different types
and levels of distortions can affect the performance of these
tasks. The lower the distortion in an input image, the better
the results for the computer vision tasks.

Each image was labeled as either “good” or “bad” to
indicate its general usefulness for different CV tasks. The
distribution of accuracy for the three CV tasks was consid-
ered, which is shown in Fig. 4. First, for the Mask-RCNN
model used for image segmentation, when it was trained, it
gave a positive response to an IoU of 0.5 and above when
compared with the ground truth. Furthermore, we analyzed
the distribution of accuracy values in our entire dataset, and
we found that the images resulting in an JoU of 0.5 and above
can consistently produce decent mAP values larger than 0.50
and cTE scores as high as 0.90 or above. Therefore, the images
with IoU > 0.5, mAP > 0.50, and ¢TE > 0.90 were labeled
as “good”, and the rest of images in our dataset were labeled
as “bad”. Our goal was to predict the quality of an image as
either “good” or “bad” without any prior knowledge of the
type or the extent of distortions in it.

III. NO-REFERENCE IQA FOR COMPUTER VISION TASKS

We introduce a classification model for assessing the quality
of images for CV tasks. It operates directly on a possibly
distorted image and falls into the category of no-reference
IQA methods. The classification model is based on 11 fea-
tures that describe the structure of the content in an image.
These features fall into 8 categories: edge, image gradient,
colorfulness, contrast, blur, brightness, resolution, and object
size. The structure of the proposed model is shown in Fig. 5.

Edge: This represents the boundary information which plays
a great role in segmenting, detecting, and observing patterns,
and this was obtained using the Canny operator [17]. We
propose to include three features in this category, using three
thresholds for broad, moderate, and narrow edge analysis [17],
respectively.

Image gradient: This is also a quality-contributing fac-
tor and it has its magnitude and direction. For an im-
age f(z,y), the gradient of f at location (x,y) is defined
as the two dimensional column vector: [8f/dz,df/dy]",
where 0f/0x = f(z+1,y) — f(x —1,y), and Of /0y =

1
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vision tasks.

flz,y+1)— f(z,y — 1) using finite difference filters. The
magnitude and direction of this gradient at location (x,y) are:

mag(e,y) =\ (0F0n)* + 0F )0y, 5
dir(z,y) = tan ™ [g;;gﬂ ) (6)

The statistical properties of gradient could be used to depict
the characteristics of an image. We calculate 2 features in this
category: meanGmag (the average gradient magnitude) and
meanGdir (the average gradient direction) [9].

Colorfulness: This is also an important indicator of image
quality. To compute it, we can separate an image into its RGB
color components and then calculate the difference between
the red and green channels as well as the yellow-blue mask,
which is given by

rg=R—G @)

1
ysz(R—i—G)—B ®)
We calculate the mean and standard deviation of each mask
and then compute the overall mean and standard deviation, as
outlined in (9) and (10). Using these values, we can determine
the colorfulness according to (11) [18].

Trgy = \/ 0% + 00 ©
Hrgyb = 4/ N%g + l‘l’zb' (10)
I = tirgyp + (0.3 % Trgyp). (11

Contrast: We considered the RMS contrast of an image
because it does not depend on the angular frequency content
or the spatial distribution of contrast in an image. This is
calculated as the standard deviation of the pixel intensities
of an image, given by [19]:

M—-1N-1

Icontrast = ﬁ Z Z (Ilj - I_)Qa

i=0 j=0

12)

where I is the mean of the pixel intensities, I;; is each pixel,
and M and N indicate the resolution of the image.
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Fig. 4: Distribution of accuracy values for different computer vision tasks.
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Fig. 5: Structure of the proposed model

Blur: The level of blur in an image can be represented
by the reduction of the variance in gray level [20]. Given an
image, I, the local point variance at (m,n) is given by

W

>

where I is the mean gray level defined as

1

Wz Wy

> [I(m+z’,n+j>f SRNE)

ZU (m7 n) =
j

SRRt .
I= v ;;(I(m-l—z,n—i—j)), (14)

and w, and w, denote the size of a window centered on the
point (m,n). The focus based on the local variance will be
given by a global variance as follows:
72
[lv - lvi| ’

1

VAR(I)piur N

(15)

M=
N

where [, is given by

) 1 M N
lv = W ;;lv(m,n)

Brightness: This is assessed by converting an image to
grayscale and analyzing its histogram. The overall brightness
can be calculated using the standard method in [21]. To find
the brightness ratio, we divide each frequency by the total pixel

(16)

count. The overall brightness is then calculated by scaling each
ratio according to its intensity and summing the results.

Resolution: This is very crucial because when an image is
resized to smaller dimensions, all objects shrink proportionally
which can affect the accuracy of detection. The resolution is
easily calculated by multiplying the image’s width and height.

Object size: It could affect the extent to which an object can
be separated from the background. We can apply the method
in [22] to perform a quick estimation of object size. Initially,
a contour-based spatial prior is extracted based on the layout
of edges in the given image along a non-selective pathway.
Then, local features such as color, luminance are gathered
via a selective pathway. Lastly, Bayesian inference is used
to auto-weight and integrate the local cues to predict the exact
locations of objects.

We used the ensemble subspace KNN classifier [23] to
train a model to predict image quality based on the extracted
features. The algorithm basically chooses without replacement
a random set of predictors from the possible total predictors,
then trains a weak learner using the chosen predictors. This is
done for the specified number of learners using the randomly
chosen predictors. Then it predicts by taking an average of
the prediction of the weak learners and classify the category
with the highest average score. The tuning parameters include
the number of learners, dimensions and learner types. The pro-
posed model was chosen instead of a CNN-based classification
model, because it just requires light-weight computation and it
is more clear to interpret than black-box CNN-based models.

IV. PERFORMANCE EVALUATION

Our dataset was divided into a training set and a testing set
for building and evaluating the proposed classification model.
The entire dataset contains 83142 images, and 75% of the
dataset (62357 images) were used for training and the rest
25% of them (20785 images) were used for testing. In the
training process, 32-fold cross validation, 512 base learners of
nearest neighbor learner type, and 8 subspace dimensions are
set to train the ensemble subspace KNN classifier.

The classification performance of the proposed model on
the test set is exhibited in the confusion matrix in Table I. It
predicted 14260 samples of “good” labeled data out of a total
of 15500 “good” samples and 4017 of “bad” labeled data out
of 5285. The overall accuracy of classification on the test set
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is 90.6%. The proposed model was also compared with three
other popular no-reference IQA models including BRISQUE
[1], NIQE [2], and PIQE [3]. Because these three models are
regression models, we slightly modified them to classification
models to enable fair comparison. Take BRISQUE for exam-
ple, we generated a box diagram as shown in Fig. 6 to show
the distribution of BRISQUE scores in different label types. As
we know that for BRISQUE, the higher score means the worse
image quality, and from the diagram, the mode of the “bad”
is obviously higher than the mode of the “good”. We used the
average of the 2 modes as the threshold to label the predictions.
The same modification was applied for NIQE and PIQE. The
overall classification accuracy for these prediction models are
presented in Table II, which shows that the proposed method
performed better than the other three IQA models.

TABLE I: Confusion matrix

Caterogy | Bad Good
Bad 4017 | 1240
Good 1268 | 14260

TABLE II: No-Reference classification comparison

Algorithms | BRISQUE | NIQE | PIQE Proposed

Accuracy 76.7% 75.7% | 76.7% | 90.6%

V. CONCLUSION

We have proposed a no-reference model that can predict
the quality of an image from the perspective of deep-learning-
based CV tasks. The model was built based on a compre-
hensive dataset that includes common types of distortions,
and it considered three fundamental CV tasks. The model
has achieved good prediction accuracy and it is lightweight
and easy to implement. It serves as a general and effective
quality assessment solution for a wide range of camera-based
intelligent sensing applications.

REFERENCES

[1] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image
quality assessment in the spatial domain,” IEEE Transactions on Image
Processing, vol. 21, pp. 4695-4708, 2012.

(2]

[4

=

[5

—

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

189

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209-212, 2013.

V. N, P. D, M. C. Bh, S. S. Channappayya, and S. S. Medasani,
“Blind image quality evaluation using perception based features,” in
2015 Twenty First National Conference on Communications (NCC),
2015, pp. 1-6.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” Image
Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600-612, 2004.
L. Kong, R. Dai, and Y. Zhang, “A new quality model for object
detection using compressed videos,” in Image Processing (ICIP), 2016
IEEE International Conference on. 1EEE, 2016, pp. 3797-3801.

G. F. Elsayed, S. Shankar, B. Cheung, N. Papernot, A. Kurakin,
1. Goodfellow, and J. Sohl-Dickstein, “Adversarial examples that fool
both computer vision and time-limited humans,” 2018.

A. Abaza, M. A. Harrison, and T. Bourlai, “Quality metrics for practical
face recognition,” in Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), 2012, pp. 3103-3107.

S. Gunasekar, J. Ghosh, and A. C. Bovik, “Face detection on distorted
images augmented by perceptual quality-aware features,” IEEE Trans-
actions on Information Forensics and Security, vol. 9, no. 12, pp. 2119—
2131, 2014.

L. Kong, A. Ikusan, R. Dai, and J. Zhu, “Blind image quality prediction
for object detection,” in 2019 IEEE Conference on Multimedia Informa-
tion Processing and Retrieval (MIPR), 2019, pp. 216-221.

J. M. Irvine and R. J. Wood, “Real-time video image quality estimation
supports enhanced tracker performance,” in Airborne Intelligence,
Surveillance, Reconnaissance (ISR) Systems and Applications X, vol.
8713, International Society for Optics and Photonics. SPIE, 2013, pp.
302 — 313. [Online]. Available: https://doi.org/10.1117/12.2016174

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” 2019.

T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollér, and C. L. Zitnick, “Microsoft
COCO: common objects in context,” CoRR, vol. abs/1405.0312, 2014.
[Online]. Available: http://arxiv.org/abs/1405.0312

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” 2017.
[Online]. Available: https://arxiv.org/abs/1703.06870

J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679-698, 1986.

D. Hasler and S. E. Suesstrunk, “Measuring colorfulness in natural
images,” in Human vision and electronic imaging VIII, vol. 5007.
International Society for Optics and Photonics, 2003, pp. 87-95.

E. Peli, “Contrast in complex images.” Journal of the Optical Society of
America. A, Optics and image science, vol. 7 10, pp. 203240, 1990.
J. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J. Fernandez-
Valdivia, “Diatom autofocusing in brightfield microscopy: a comparative
study,” in Proceedings 15th International Conference on Pattern Recog-
nition. ICPR-2000, vol. 3, 2000, pp. 314-317 vol.3.

S. Bezryadin, P. Bourov, and D. Ilinih, “Brightness calculation in digital
image processing,” in International symposium on technologies for
digital photo fulfillment, vol. 1.  Society for Imaging Science and
Technology, 2007, pp. 10-15.

K.-F. Yang, H. Li, C.-Y. Li, and Y.-J. Li, “A unified framework for salient
structure detection by contour-guided visual search,” IEEE Transactions
on Image Processing, vol. 25, no. 8, pp. 3475-3488, 2016.

T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832-844, 1998.

Authorized licensed use limited to: University of Cincinnati. Downloaded on March 01,2025 at 05:10:05 UTC from IEEE Xplore. Restrictions apply.



