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Abstract— Recently, online optimization methods have been
leveraged to develop the online nonstochastic control frame-
work which is capable of learning online gradient perturbation
controllers in the presence of nonstochastic adversarial distur-
bances. Interestingly, using online optimization for adapting
controllers in the presence of unknown disturbances is not
a completely new idea, and a similar algorithmic framework
called Retrospective Cost Adaptive Control (RCAC) has already
appeared in the controls literature in 2000s. In this paper, we
present the connections between online nonstochastic control
and RCAC, and discuss the different strengths of both ap-
proaches: i.e., RCAC is able to stabilize unknown unstable
plants via the use of target model, while online nonstochastic
control enjoys provably near optimal regret bounds given a
stabilizing policy a priori. We further propose an integration
of these two approaches. We hope that our insights will help
the development of new algorithms that complement the two
approaches.

Online non-stochastic control, Retrospective Cost Adap-
tive Control (RCAC), Online learning

I. INTRODUCTION

Over the past decade, online optimization/learning tech-
niques have achieved great success in numerous sequential
decision making tasks including online portfolio selection,
advertisement placement, and web ranking [1]–[3]. These
methods take full advantage of the available streaming data,
and use regret as a metric for balancing between exploration
and exploitation in the face of uncertainty. Recently, online
optimization methods have been leveraged to develop the on-
line nonstochastic control framework [4]–[11] which is capa-
ble of learning online gradient perturbation controllers (GPC)
in the presence of unknown nonstochastic disturbances. For
many control applications, the disturbance information is
not fully known at the control design stage, and such a
regret-based online control framework can provide unique
benefits in addressing the trade-offs between disturbance
learning (exploration) and system control (exploitation). This
is in contrast to H2 optimal control [12], [13], which makes
optimistic stochastic assumptions about the disturbances, or
H∞ optimal control [14], [15], which makes pessimistic
worst-case assumptions. The connections between online
optimization and nonstochastic control have led to promising
developments in addressing nonstochastic disturbances that
are not known a priori but are learnable in real time.

Interestingly, another online algorithmic framework, Ret-
rospective Cost Adaptive Control (RCAC), which has been
developed from the control community since 2000s, is based
on a very similar idea [16]–[19]. Specifically, RCAC is
based on the idea of “retrospectively optimized control”
[16], [17], and recursively optimizes the policy parameters
in a way that the control performance over the previous

window of operation would have been improved if the re-
optimized policy had been used over that window. Despite
the conceptual similarities, the properties and strengths of
RCAC and online nonstochastic control can be vastly differ-
ent. In this paper, we investigate the promise of connecting
and combining RCAC and non-stochastic control. Our paper
aims at bridging this gap via examining the connections and
differences between RCAC and online nonstochastic control.

Our discussions will be based on two key observations.
First, we observe that online nonstochastic control typically
requires either open-loop stable systems or previously known
stabilizing controllers for output feedback systems [4], [5],
[8]. Given stabilizing controllers, online nonstochastic con-
trol can achieve strong theoretical guarantees in terms of
provably sublinear regret bounds. However, stabilizing un-
known linear systems is not a simple task by itself.1 In
the setting where there lacks an output-feedback stabiliz-
ing controller in the first place, the online nonstochastic
control framework may not be directly applicable. In con-
trast, via a novel use of target models, RCAC is able to
stabilize unknown linear output-feedback systems in many
practical settings without requiring a pre-stabilizing policy.
This demonstrates that the stability issue is not an inherent
weakness of online-optimization-based design philosophy.
Second, we observe that it is quite difficult to establish
sublinear regret bound for RCAC, and directly adapting the
theoretical arguments from online nonstochasic control does
not work. The practical benefits of RCAC come from the use
of larger policy classes, which causes significant difficulties
for theoretical analysis. In light of the above observations,
our key contributions are summarized as follows:

1) We discuss the similarities and differences between
online nonstochastic control (or equivalently GPC) and
RCAC from an algorithmic perspective. We show that
RCAC uses more general policy parameterizations,
making stabilization plausible. We also explain the
special trick used in RCAC to formulate an online
convex optimization problem under such more general
policy parameterization.

2) We discuss the strengths and weaknesses of the two
methods in relation to each other: RCAC can stabi-
lize unknown output-feedback linear systems in many
practical settings, while online nonstochastic control
enjoys strong regret guarantees given stabilizing poli-
cies known a priori.

1Many learning-based stabilization methods require the assumption of
full state observability [7], [20], [21]. Even in such a setting, stabilization
can be hard [22].



3) We present an integration of RCAC and online non-
stochstic control to achieve the best of both worlds and
compare its performance to H2 and H∞ controllers.

The key difficulty in correlating the two methodologies
lies in the disparate architectures each utilizes. To fully
understand the relationship between these approaches, it is
essential to thoroughly examine the foundational objectives
of their respective control policies, the structure of their cost
functions, and how these control policies are interrelated
with their corresponding cost functions. Here, we want to
emphasize that the purpose of our paper is not to undermine
either online nonstochastic control or RCAC. Rather, we
hope that our insights can help clarify the connections
and differences of online nonstochastic control and RCAC,
which potentially will help the future developments of more
powerful algorithms.

II. BACKGROUND

In this section, we briefly review online nonstochastic
control and RCAC. Both methods recursively update policy
parameters in an online manner. For ease of exposition, we
consider a common setting, which addresses the following
linear time-invariant (LTI) system2:

xt+1 = Axt +But +Bwwt

yt = Cxt + vt
(1)

where xt ∈ Rnx , ut ∈ Rnu , wt ∈ Rnw , yt ∈ Rny , vt ∈ Rny

represent the system’s state, input, disturbance, output, and
measurement noise, respectively.

A. Online Nonstochastic Control with GPC

In [4]–[11], online nonstochastic control was developed to
achieve “small” (sublinear) regret, which is defined as

RegretT (A) =
T∑

t=1

lt(y
A
t , uA

t )−min
π∈K

T∑
t=1

lt(y
π
t , u

π
t ) (2)

where {uA
t , y

A
t } are the inputs and the corresponding outputs

generated by an online control algorithm A, lt is a convex
performance metric that quantifies the policy quality, K is
the policy class where the controller in hindsight belongs to,
and {uπ

t , y
π
t } are generated under any policy π ∈ K. In this

work we will focus on the GPC method [8], [23], which is
the main algorithm for online non-stochastic control.

GPC will adopt a special policy parameterization to en-
sure online convex optimization can be applied. The policy
parameterization in GPC requires defining the so-called
Nature’s y′s as follows.

Definition 1: Given a sequence of disturbances {wt}t≥1,
we have ynatt :=

∑t−1
i=1 CAi−1Bwwt−i.

Since (1) is linear, we have ynatt = yt −
∑t−1

i=1 G
[t−i]ui,

where G[i] := CAi−1B denotes the i-th Markov parameter
of the underlying system. In practice, only first h Markov pa-
rameters are used to compute ŷnatt = yt−

∑t−1
i=t−h G

[t−i]ui.

2RCAC can address more general forms of LTI systems via using the
performance variable zt. We keep zt ≡ yt ∀t for the ease of exposition.

In this work, we call h the simulation window for the GPC
algorithm. With the above definition, we can introduce the
GPC policy parameterization. Specifically, GPC generates
control actions via the following policy parameterization:

ut(M) =
m−1∑
i=0

M [i]ŷnatt−i (3)

where the matrices M =
(
M [0], . . . ,M [m−1]

)
are the policy

parameters to be updated in an online manner. Here, the
integer m denotes the control window for GPC. The policy
parameters are updated using the online gradient descent
(OGD) method Mt+1 = ΠM (Mt − αt∇ft(Mt)), where
αt is the learning rate, ΠM represents the projection of the
iterates on a norm bounded constraint set M, and ft(Mt)
is the online surrogate (or “ideal”) cost function which is
calculated over a certain cost window W as given below:

ft(Mt) :=
t∑

i=t−W

li(yi(Mt), ui(Mt)). (4)

Here we have yi(Mt) =
i∑

j=1

m−1∑
k=0

G[j]M
[k]
t ŷnatt−j−k + ŷnati ,

and ui(Mt) is given by (3). On the conceptual level, ft is
quantified on the “ideal” trajectories as if the policy Mt

had been used over the control window. It is important
to note that GPC is not a model free approach, since it
requires the information of the first h Markov parameters, i.e.
G[1:h] =

[
G[1] G[2] . . . G[h]

]
. The above formulation

actually requires (1) to be stable. If (1) is unstable, then
a stabilizing controller is needed to generate a closed-loop
stable system such that GPC can be applied next. In this
case, the total control input is given by ut = ůt+uex

t where
ůt is the stabilizing policy input and uex

t is the exogenous
policy given by (3). See [8] for a detailed discussion. Recent
work by Chen et al. [7], have sought to overcome the need
of a stabilizing controller in the online non-stochastic control
approach. However, their research is confined to the full
state feedback scenario and does not encompass the output
feedback setting that is the focus of the current study.

B. Retrospective Cost Adaptive Control (RCAC)

RCAC is based on the concept of retrospectively optimized
control, where past policy parameters are re-optimized in a
way that the control performance over the previous window
of operation would have been improved if the re-optimized
policy had been used over that window. The intuition here
is that a policy that works well over the last window of
operation should also work reasonably well for the next step
if the disturbance pattern has not changed drastically. A large
body of research results on RCAC have been developed in the
past 25 years [16]–[19]. Interestingly, the concept of regret
is not involved in the developments of RCAC, although the
original version of RCAC in [16] is also just based on OGD.

Similar to GPC, RCAC will use some control parame-
terization and then do online optimization over the policy



parameters. For an LTI system (1), RCAC generates control
actions based on the following policy parameterization [18]:

ut =
m∑
i=1

P
(i)
t ut−i +

m∑
i=1

S
(i)
t yt−i. (5)

where m is the length of the control window. We can
clearly see that the RCAC policy parameterization (5) is quite
different from the GPC parameterization (3). As discussed
in the tutorial paper [18], one can rewrite (5) compactly as
ut = ϕ(t)T θt where θt is a vector augmented from all the
policy parameters {P (i)

t , S
(i)
t }mi=1 (see Equations (6) and (7)

in [18] for formal definitions of {ϕt, θt}). Conceptually, ϕ(t)
holds the past input-output data, and θt is the time-varying
policy parameter. RCAC updates θt via optimizing the so-
called retrospective cost Jt(θ̂) defined as follows:

Jt(θ̂) :=
t∑

i=t−W

ci(ẑi, θ̂) + (θ̂ − θt)
TRθ(θ̂ − θt) (6)

where ci(ẑi, θ̂) := ẑ(i, θ̂)TRz ẑ(i, θ̂) + (Gfui)
TRu(Gfui)

with {Rz, Ru, Rθ} being user-specified weight matrices and
ẑ(i, θ̂) being the retrospective performance variable given as

ẑ(t, θ̂) = yt −Gf (q) (ut − ût) with ût = ϕ(t)T θ̂. (7)

Here we just follow the commonly-used notation in the
RCAC literature, and restate Equation (11) in [18] as (7).
We emphasize that Gf (q) is a dynamical system by itself.
We acknowledge that (7) may mix frequency-domain and
time-domain notations in a non-standard way, but such
notations have been widely adopted in the RCAC literature.
In the above formulation, ût = ϕ(t)T θ̂ is the retrospectively
computed input, and Gf is the so-called target model which
can facilitate the removal of the exact contribution of ut

towards yt and replace it with a new one in the form of ût.
Intuitively, (7) can simulate what happens if the re-optimized
policy had been used over the simulation window.

Early work in [16] used the OGD method to update the
RCAC policy as θt+1 = θt − αt∇Jt(θt). This version of
RCAC is very similar to GPC, despite the differences in the
policy parameterizations and the time-varying cost functions.
Over the years, two other optimization algorithms have been
used for RCAC. The work in [17] uses the online proximal
point method, while the most recent version of RCAC relies
on the recursive least squares (RLS) update law [18], [19].

The target model is a key component that distinguishes
RCAC from GPC. One can choose various target models to
achieve goals such as disturbance rejection and stabilization.
Via choosing the target model smartly, RCAC is capable of
stabilizing unknown LTI systems in many practical settings
[18], [24], given limited amount of information such as
the relative degree3, the first non-zero Markov parameter of
the system , and the Non-minimum phase (NMP) zeros in
case they exist (this is not completely model-free, but the
information required is quite minimal as claimed in [18]).

3Relative degree is the difference between the number of poles and
number of zeros in the system.

III. MAIN RESULTS AND DISCUSSIONS

In this section, we discuss the algorithmic similarities and
differences between RCAC and GPC, clarify the strengths
for each method, and propose an integration to achieve the
best of both worlds.

A. Algorithmic Similarities and Differences

To make the connections between RCAC and GPC trans-
parent, we will examine the first version of RCAC [16],
which uses OGD for updating control policies. As mentioned
in Section II-B, the OGD-based RCAC update in [16] takes
the form of θt+1 = θt − αt∇Jt(θt), which is similar to the
OGD-based GPC update Mt+1 = ΠM (Mt − αt∇ft(Mt)).
Despite such similarities, the policy parameterizations θt
and Mt are quite different. Due to the difference in policy
parameterizations, the cost functions Jt and ft are also
convexified differently. Next, we elaborate on these points.

In [16], the system (1) was transformed into an equivalent
µ−ARMARKOV model, where µ is the number of Markov
parameters used to specify the dynamics. Similar to the GPC
setting where h Markov parameters are used to compute
ŷnatt , setting µ = h results in the following target model4:

Gf (q) =
H0q

n−h +H1q
n−h + . . .+Hh−1

qn + B1qn−1 + . . .+ Bn
where q is the forward-shift operator. The parameters Hi

(Markov parameter) and Bi are determined from the LTI
system using system identification tools [25]. Using the
above Gf , this version of RCAC defines ẑ(t, θ̂) as:

ẑ(t, θ̂) = yt −Bzu

(
Ut − Φ(t)θ̂

)
where Bzu =

[
H0 . . . Hh−1 B1 . . . Bn

]
. Moreover,

Ut and Φ(t) hold the history of ut and ϕ(t), respectively.
Similar to the target model, the policy parameterization of
this version of RCAC uses µc−ARMARKOV architecture.
Setting µc = 0 in [16], the policy parameterization becomes
ut =

∑m
i=1 αc,iut−i +

∑m
i=1 Bc,iyt−i, where αc,i and Bc,i

are similar to P
(i)
t and S

(i)
t defined in Section II-B. Now

we can see that the policy parameterization for RCAC is
more general than the policy parameterization for GPC. This
algorithmic difference can be formalized as follows.

Lemma 1: The GPC policy parameterization is a special
case of the RCAC policy parameterization.

Proof: The output of (1) can be decomposed as {ynatt }
and the forced response {yfrt }. The RCAC policy becomes
ut =

∑m
i=1 αc,iut−i +

∑m
i=1 Bc,iynatt−i +

∑m
i=1 Bc,iy

fr
t−i,

reducing to a disturbance response policy by setting:

αc,i=
−Bc,i
ut−i

yfrt−i=
−Bc,i
ut−i

h∑
i=1

Ĝ[i]ut−i, i = 1, 2, . . . ,m.

This completes the proof.
By choosing more advanced target models, the policy

parameterization of RCAC can become even more general,

4Note that setting µ = h for RCAC does not enforce the simulation
window length to be h. Simulation window length still equals to one



allowing the adaptation of the closed-loop poles and making
the stabilization plausible. In contrast, online nonstochastic
control with GPC does not change the closed-loop system
poles during the online optimization process, and hence
cannot stabilize open-loop unstable systems.

The control parameterization for GPC naturally allows
for convex formulations of {ft} [26]. However, even with
the more complicated control parameterizations for RCAC,
the resultant online optimization problem is still convex if
we choose h = 1. Next we explain this point. For the
above version of RCAC, the loss is defined as ct(ẑt, θ̂) =
1
2 ẑ

T (t, θ̂)ẑ(t, θ̂), and the cost function Jt(θ̂) is given by (6))
using a cost window W . We can obtain the following result.

Lemma 2: The cost function Jt(θ̂) for RCAC is convex
with respect to θ̂ for h = 1 and non-convex for h > 1.

Proof: Recall from (6), the second term in Jt(θ̂) is a
quadratic function of θ̂ and thus it is convex in θ̂. Jt(θ̂) will
be a convex function if the ct is convex in θ̂. In case of
RCAC, ct is a quadratic function of ẑ(i, θ̂) and ûi(θ̂). Thus
ct will be convex in θ̂ only if it is linear in θ̂. Next, we show
that this requirement holds only for h = 1.

Let us first compute ẑ(t, θ̂) using h = 1 (re-simulating
the system by removing input applied at iteration t− 1 and
using a new input). Without loss of generality, we assume
the system has a relative degree r = 1 and use a Gf = H1

q
(the result holds for any r > 1 and the general target models
in [24] as well). Using (7), ẑ(t, θ̂) is given as follows:

ẑ(t, θ̂)=CAxt−1+CBwwt−1+G[1]
m∑
i=1

(P̂ iut−i−1+Ŝiyt−i−1)

This shows that ẑ(t, θ̂) is linear in the policy parameters P̂
and Ŝ. Similarly, ût(θ̂) given by (5) is linear in P̂ and Ŝ.
Notice that even though RCAC specializes ct to a quadratic
cost, the linearity of ẑ(t, θ̂) in θ̂ allows the use of any cost
function ct which is convex in ẑ(t, θ̂) and ût(θ̂). Thus any
convex cost ct(ẑt, ût) will be convex in θ̂. Extending ẑ(t, θ̂)
to h = 2 by substituting ut−i−1 = ϕ(t− i− 1)θ̂ gives us:

ẑ(t, θ̂) = CAxt−1 + CBwwt−1 +G[1]
m∑
i=1

Ŝiyt−i−1

+G[1]
m∑

i,j=1

(
P̂ iP̂ jut−i−j−1 + P̂ iŜjyt−i−j−1

)
Clearly, this shows a nonlinear relation between θ̂ and

ẑ(t, θ̂). Thus any cost function Jt(θ̂) convex in ẑt will be
non-convex in the policy parameters θ̂ for any h > 1.

Due to the use of the more general policy parameteriza-
tions in RCAC, we have to choose h = 1 to convexify the
retrospective cost Jt, making it very difficult to connect a
regret bound on Jt to the original loss

∑T
t=1 lt. This is the

reason why the regret arguments for online nonstochastic
control cannot be applied to RCAC. This is even the case
when the system state dimension is 1. In terms of the
required modelling information, both GPC and the above
version of RCAC require the same set of Markov parameters.

However, the more recent version of RCAC has reduced this
dependence to only the first non-zero Markov parameter [18].

B. Clarifications on Strengths of RCAC and GPC

In light of the above discussions, now we clarify the
strengths of RCAC and GPC. The policy parameterization
for GPC allows simple theoretical analysis. However, such
policy parameterization does not change the closed-loop
poles, and hence lose the ability to stabilize an unstable
system. In contrast, the RCAC policy parameterization is
more general and can potentially adapt the closed-loop poles
to enable stabilizing unknown LTI systems. There is a trade-
off between regret guarantees versus stabilizing abilities.

The stabilization property in RCAC comes from the target
model Gf . When applying RCAC to unstable systems, one
can choose Gf := H

qr+npD(q)
where r is the relative degree

of the system, and H is the first non-zero Markov parameter.
Here, D(q) is a polynomial of degree np = m + n1

specifying the desired closed loop poles of the system where
n1 is the number of unstable poles of the system. RCAC
achieves pole placement under the assumption of persistent
excitation or alternatively use of a forgetting factor λ ∈
(0, 1]5 with ci(ẑi, θ̂) in Jt(θ̂) [19]. RCAC updates Jt(θ̂) in
such a way that the closed-loop poles of the system converges
to the poles of D(q), thereby stabilizing an unstable system.
To see this, define ũt := ut− ût to be the input perturbation
then asymptotically as ẑ(t, θ̂) → 0, yt ≈ Gf (q)ũt from
(7). Using ut from (5) with LTI system (1) leads to a
closed loop system given by yt = G̃yũ(q)ũt + G̃yw(q)wt

where G̃yũ(q) and G̃yw(q) share the same set of poles [24].
Thus asymptotically RCAC makes G̃yũ(q) → Gf (q) and
thus achieve system stabilization. GPC lacks this capability
(in addition, so far there does not exist frequency-domain
interpretations for GPC).

RCAC is capable of performing system stabilization, dis-
turbance rejection and reference tracking in many practical
simulations, but it lacks formal guarantees. Even in case
of simple scalar system with full state observation, stability
guarantee is not easily available. In order to highlight this
difficulty, we consider the most basic setting of constant
disturbance rejection: xt+1 = axt + ut + w; stable system
with |a| < 1 and w ∈ R. Jt(θ̂) = ẑ(t, θ̂)T ẑ(t, θ̂) and
RCAC policy ut = Ptut−1+Stxt−1 is updated by the OGD
update rule. The equilibrium point for this system is given by
(x∗, u∗, P ∗, S∗) = (0,−w, 1,R). It is easy to verify that S∗

is dependent on the initial condition of the system and it will
be different for each trial of this system, thus highlighting
the difficulty of establishing even local stability guarantees
for RCAC. In contrast, GPC enjoys strong regret guarantees
as shown in [26], i.e. GPC can achieve the sublinear regret
bound O(

√
T ) under the assumption that ρ(A) < 1. In order

to bridge the strengths of both approaches, we propose an
integration in the next subsection.

5Here, we assume λ = 1 for simplicity.



(a) Unstable system (b) Stable system

Fig. 1: Cost comparison of RCAC and GPC algorithms for
LTI systems under time varying disturbance sequences. In
(a) we show a magnified view for RCAC.

C. Integration of GPC and RCAC

Based on the underlying similarities between RCAC and
GPC, it seems natural to consider integration. Let us first
consider two LTI systems as examples to further motivate the
need to integrate the two algorithms. In both examples, we
used the control window m = n, simulation window h = 6,
and cost window W = 1 with a quadratic loss function.
Consider the following system:

xt+1 =

2.85 −2.41 0.85
1 0 0
0 1 0

xt +

10
0

 (ut + wt)

yt =
[
−1 1.4 −0.85

]
xt

(8)

This system has an unstable pole at z = 1.75 and it is
subject to the disturbance sequence given by wt ∼ N (0, 0.1)
for t ∈ [0, 100], wt = 0.5(cos 0.25t + sin(0.5t)) for t ∈
(100, 200], and wt = 0.1 cos 2t + sin(0.2t) + w0 for t ∈
(200, 700] where w0 ∼ N (0, 0.1). Fig. 1(a) performs the
cost comparison for RCAC and GPC algorithms on log scale.
Clearly, RCAC can simultaneously stabilize a system while
rejecting disturbance unlike GPC which is unable to handle
such a system. Consider another example given by:

xt+1 =

[
0.94 −0.44
1.00 0

]
xt +

[
1
0

]
ut +

[
0
1

]
wt

yt =
[
1 −0.8

]
xt (9)

We consider a mixed disturbance given by wt = cos 2t+w0

for t ∈ [0, 100], wt = sin 0.2t + w0 for t ∈ (100, 200] and
wt = cos 2t+sin(0.2t)+w0 for t ∈ (200, 700], where w0 ∼
N (0, 0.5) is used for this system. As shown in Fig. 1(b), GPC
achieves a lower cost than RCAC, which reflects its strength
in rejecting adversarial disturbances while minimizing the
tracking cost for stable systems.

The two examples discussed above motivate the need of
a new control policy that can harness the best attributes of
the two algorithms. A natural idea is to synthesize a control
policy that uses GPC for disturbance rejection while using
RCAC for system stabilization. Specifically, we propose to
use a fixed RCAC parameterization as a stabilizing policy
while actively using the OGD in the GPC framework to
adapt to unknown and changing disturbance signals. This
way, the two algorithms not only are seemingly integrated

-2 -1 0 1
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-0.5

0

0.5

1
CL zeros

CL poles

G
f
 zeros

G
f
 poles

(a) Closed loop poles of the
unstable system (8)

(b) Cost comparison for the sys-
tem (9)

Fig. 2: Performance of the RCAC-GPC integrated policy.

to synthesize a new control policy, but also aid in estimating
the Markov parameters required in the GPC algorithm. This
proposed framework is summarized in Algorithm 1.

Algorithm 1 RCAC-GPC algorithm

1: Input: Times steps: t1, N , T , (αt)t≥1, h, m, W , Gf ,
θ0 = 0, M0 = 0, excitation signals: (ηi, νi)Ni=1

/* System stabilization by RCAC */
2: for t = 1, . . . , t1 do
3: Simulate RCAC policy in (5) and update θt using RLS

/* Data Collection for System ID */
4: for t = t1 + 1, . . . , t1 +N do
5: Simulate RCAC policy in (5) for a fixed θt1 with

additional input-output excitation signals (ηt, νt)
/* System Identification */

6: Ĝ[1:h] ← Closed loop system ID with {(ui, yi)}t1+N
i=t1

and (ηi, νi)
N
i=1 using least square estimation in [27].

/* Online optimal control using RCAC-GPC */
7: for t = t1 +N + 1, . . . , T do
8: Compute RCAC policy ůt using (5) with fixed θt1
9: Compute GPC policy ūt using (3)

10: Simulate ut = ůt + ūt and observe loss lt(yt, ut)
11: Update cost ft(Mt) in (4)
12: Update Mt using OGD for ft(Mt)

Algorithm 1 follows three main steps. In the first step, it
simulates the system for t1 iterations with RCAC to stabilize
the system and simultaneously update policy parameters.
In the second step, a fixed RCAC policy parameterization
from Step 1 is used to identify Markov parameters which
are needed for the next GPC step. In line 6, Ĝ[1:h] :=[
Ĝ[1] Ĝ[2] . . . Ĝ[h]

]
are estimated for the implementa-

tion of GPC and RCAC, where Ĝ[i] is an estimate of G[i].
In the last step, it uses a fixed RCAC policy to maintain
system’s stability while using GPC to mitigate unknown and
changing disturbance signals.

Here, it is important to note that estimating Markov
parameters is particularly a challenging task if the underlying
system is unstable. In case of stable as well as unstable
systems, RCAC can be seemingly deployed for the Markov
parameter estimation process. Once RCAC successfully sta-
bilizes a system, one can use the framework proposed by [27]
to estimate the required Markov parameters of the system.
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Fig. 3: Cost comparison for two different control problems

Now, let us revisit the two examples considered above
and use the proposed policy in Algorithm 1 under identical
settings. Fig. 2 (a) shows the location of closed-loop poles for
the system in (8) after 100 iterations of RCAC in comparison
to the desired poles supplied by the target model Gf .
Fig. 2 (b) shows the cost comparison the three algorithms
under identical settings. Clearly, the two algorithms com-
plement each another as the resulting closed loop exhibits
superior performance.

IV. EMPIRICAL COMPARISONS

The efficacy of the proposed algorithm is demonstrated
by empirical comparison to H2 and H∞ controllers in
addition to the RCAC and GPC controllers. We consider
the example of a Boeing 747 at an altitude of 40000ft with
the speed of 774ft/s subject to non-stochastic disturbance
wt, a setting similar to the one in [28]. Conventionally,
H2 and H∞ control paradigms are used to address such
systems. Therefore, we provide a comparison to H2 and H∞
controllers in addition to RCAC and GPC control policies in
Fig. 3 (a). The unified algorithm uses RCAC for the first
200 iterations followed by a fixed RCAC controller with the
GPC for disturbance rejection.

We consider another interesting case where an LTI system
with a NMP zero is subject to a non-stochastic disturbance
signal. The significance of this system stems from the fact
that RCAC requires a priori knowledge of the NMP zero
where as GPC doesn’t need such information.

xt+1 =

0.7 −0.72 0.25
1 0 0
0 1 0

xt +

10
0

 (ut + wt)

yt =
[
0 1 −9.75

]
xt (10)

This system has a relative degree r = 2. The target
model used in this case was Gf (q) =

−(q−9)
q2 , an estimated

of the NMP zero is used. As shown in Fig. 3 (b) the
integrated RCAC-GPC policy outperform the other four
control policies. Empirical studies has shown that often times
explicit reliance of RCAC on the information of NMP zeros
puts it at a disadvantage in comparison to GPC and GPC
outperform RCAC in such cases. On the other hand, RCAC-
GPC policy in such cases leads to superior performance in
comparison to the individual policies. These results therefore,
demonstrate the effectiveness of the integrated RCAC-GPC
policy in system stabilization and disturbance rejection.
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