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ABSTRACT

Scientific software development demands robust solutions to meet
the complexities of modern scientific systems. In response, we pro-
pose a paradigm-shifting Neuro-Symbolic Approach to Certified
Scientific Software Synthesis. This innovative framework integrates
large language models (LLMs) with formal methods, facilitating
automated synthesis of complex scientific software while ensuring
verifiability and correctness. Through a combination of technolo-
gies including a Scientific and Satisfiability-Aided Large Language
Model (SaSLLM), a Scientific Domain Specific Language (DSL), and
Generalized Planning for Abstract Reasoning, our approach trans-
forms scientific concepts into certified software solutions. By lever-
aging advanced reasoning techniques, our framework streamlines
the development process, allowing scientists to focus on design
and exploration. This approach represents a significant step to-
wards automated, certified-by-design scientific software synthesis,
revolutionizing the landscape of scientific research and discovery.
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1 INTRODUCTION

In today’s era of rapid scientific advancement, software plays a cru-
cial role in facilitating research and innovation. From multi-scale
analysis to predictive modeling, scientific software serves as the
backbone of modern scientific exploration. However, the develop-
ment of such software presents numerous challenges, including
ensuring correctness, verifiability, and adaptability to emerging
architectures [5, 9, 17]. Such software must leverage secure, fault-
tolerant, high-performance computing (HPC) solutions at scales of
hundreds of exaflops to enable rapid prototyping, simulation, and
big data analysis. The software stack of these systems relies on nu-
merous programming frameworks and libraries, requiring program-
mers to have extensive knowledge for design decisions, trade-off
analyses, and system configuration. Without adequate automation
and tool support, these tasks become tedious, code becomes in-
creasingly complex, and developer productivity declines [7, 10]. As
scientific problems grow more complex, there is an urgent need for
innovative approaches to effectively address these challenges.

Despite many advances in the use of large language models
(LLMs) for code generation, current state-of-the-art techniques fall
short in synthesizing code for entire scientific software stacks. They
do not fully exploit emerging architectures nor provide proof that
the synthesized code accurately implements the desired scientific
concepts. These problems are recognized as crippling challenges
in software development for complex HPC, scientific, and control
systems [1, 3, 11, 13, 15-17, 20].

Motivated by the pressing demand for reliable and efficient sci-
entific software solutions, we introduce a groundbreaking Neuro-
Symbolic Approach to Certified Scientific Software Synthesis. Our
motivation stems from the recognition that existing methodologies
often fall short in providing scalable, verifiable, and automated so-
lutions for complex scientific software development. Traditional
approaches [14, 24, 25] rely heavily on manual intervention, leading
to errors, inefficiencies, and delays in the software development
lifecycle. Moreover, as scientific research pushes the boundaries of
computational capabilities, there is a growing need for software
that can harness the full potential of emerging architectures, such
as high-performance computing (HPC) solutions.

Against this backdrop, our objectives are twofold: firstly, to
streamline the process of scientific software development by lever-
aging cutting-edge technologies such as large language models
(LLMs) [8, 28] and formal methods; and secondly, to ensure the
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correctness, verifiability, and scalability of synthesized software
across diverse scientific domains. By combining the power of artifi-
cial intelligence with rigorous formal reasoning, our approach aims to
revolutionize the way scientific software is conceptualized, designed,
and implemented.

In this paper, we present the foundational principles of our
Neuro-Symbolic Approach and outline its key components. We
demonstrate how this approach empowers scientists to focus on
conceptual design and exploration, while automated reasoning
agents handle the intricacies of software synthesis. By embracing
the concept of certified-by-design software, we aim to propel sci-
entific research forward, unlocking new possibilities for discovery
and innovation.

2 RELATED WORK

In the domain of software certification there has been a growing
recognition of the limitations of traditional process-oriented stan-
dards, particularly in sectors where software plays a predominant
role. While standards like those outlined by regulatory bodies such
as the U.S. Food and Drug Administration (FDA) emphasize the
use of specific development and testing processes, their efficacy in
guaranteeing system safety and reliability, especially in software-
intensive environments, has been called into question [27]. The
discrepancy between adherence to process-oriented standards and
actual system performance has been evident in numerous instances,
such as the recurring recalls of medical devices due to software
quality issues, highlighting the need for alternative certification ap-
proaches [26]. Consequently, product-based or case-based certifica-
tion methodologies [18], centered on the construction of assurance
cases, have gained traction among researchers and practitioners.
These methodologies pivot towards explicit documentation of argu-
ments substantiated by evidence, aiming to demonstrate that a sys-
tem satisfies its critical requirements. However, challenges persist in
these approaches, including the informal nature of argumentation,
the lack of rigor in evidence provision, and the absence of support
for software evolution and incremental updates, underscoring the
imperative for advancements in certification methodologies. These
challenges are more significant for Al enabled software products.
Existing research endeavors have sought to address the short-
comings of current certification paradigms by exploring avenues
for formal tool support and automation in assurance case develop-
ment [4, 21-23]. Pernsteiner et al. introduced a formal assurance
case for a radiotherapy system, leveraging verification and analysis
tools to provide evidence supporting safety requirements [22]. Simi-
larly, Near et al. developed a formal assurance case for a proton ther-
apy system, employing custom-tailored code analysis tools to verify
code-level properties [21]. While these efforts represent strides to-
wards formalization and automation in assurance case construction,
the process of developing assurance cases and selecting appropri-
ate evidence-generating tools remains largely manual. Moreover,
a body of prior work has focused on specification inference and
extensible type systems to synthesize operational specifications and
facilitate the application of multiple type systems within a single
language [2, 12]. These endeavors, while valuable, underscore the
need for further advancements in automated analysis synthesis
frameworks, like the proposed NS-CSD approach, to enhance the
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rigor, efficiency, and scalability of software certification processes
in scientific domains.

3 PARADIGM SHIFT: AUTOMATED
REASONING IN LLM-BACKED CERTIFIED
BY DESIGN SOFTWARE SYNTHESIS

Our Certified by Design approach marks a departure from estab-
lished practices in scientific software development, ushering in a
new era where software engineering aligns closely with the prin-
ciples of true engineering. By leveraging formal methods, we aim
to shift the focus of scientists from manual coding to conceptual
design, creativity, and idea exploration. Central to our approach
is the creation of a mathematical model of architectural design,
allowing for the synthesis of solutions and rigorous validation.

Our approach, termed Neuro-Symbolic Methodology for Certi-
fied Software Design (NS-CSD), integrates neuro-symbolic tech-
niques with formal methods to revolutionize the development of
scientific software. The NS-CSD framework aims to automate the
generation of complex scientific software while ensuring its cor-
rectness, security, and other quality attributes. Key components
include:

e Neuro-Symbolic Architecture: We envision a novel ar-
chitecture that combines the power of large language mod-
els (LLMs) with symbolic reasoning capabilities. This ar-
chitecture, named Scientific and Satisfiability-Aided Large
Language Model (SaSLLM), leverages advances in chain-of-
thought (CoT) reasoning to decompose complex scientific
concepts into verifiable hypotheses. SaSLLM uses Satisfiabil-
ity modulo theories (SMT) solvers [6] facilitates automated
reasoning, verification, and code synthesis.

o Scientific Domain Specific Language (DSL): this ATWare
relies on an automated approach to generate a DSL tailored to
represent scientific reasoning problems in a format accessible
to domain scientists. This DSL enables symbolic reasoning
and proof checking while maintaining interpretability for
non-experts.

¢ Generalized Planning for Abstract Reasoning: To ad-
dress feasibility analysis challenges, we employ a General-
ized Planning (GP) framework [19] for abstract reasoning. GP
solvers are utilized to model abstraction and scientific reason-
ing problems, allowing for efficient and effective handling of
complex scientific concepts across disciplinary boundaries,
reasoning about the validity of scientific concepts while gen-
erating code.

o Certified by Design Foundation: Our approach is rooted
in the Certified by Design paradigm, shifting the focus of sci-
entific software development towards automated synthesis
and certification. Through symbolic Al reluing on mathemat-
ical modeling and formal methods, we ensure the correct-
ness, security, and other quality attributes of the synthesized
software.

e Integration and Verification: NS-CSD integrates LLMs,
symbolic reasoning, DSL, and GP solvers to transform scien-
tific concepts into verified software. We employ automated
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verification techniques to ensure the correctness of the syn-
thesized code and produce proofs of correctness for each
stage of the software development lifecycle.

By combining neuro-symbolic techniques with formal methods,
the NS-CSD approach offers a revolutionary way to synthesize and
certify scientific software, paving the way for enhanced reliability,
security, and innovation in scientific research and engineering.

4 EARLY DEMONSTRATION: APPLYING
NS-CSD TO CLIMATE MODELING

Scenario: A research institute aims to enhance its climate mod-
eling software to incorporate new scientific findings about cloud
feedback mechanisms rapidly. These mechanisms are critical for
understanding climate sensitivity to greenhouse gas emissions but
involve complex interactions that are difficult to model. The goal
is to use the proposed framework to automate the generation of
updated simulation code that accurately reflects the latest research
on cloud feedbacks.

In our framework, the Neuro-Symbolic Methodology for Cer-
tified Software Design (NS-CSD), we follow a series of steps to
automate the synthesis of scientific software while ensuring its
correctness, security, and other quality attributes.

Step 1: Encoding Scientific Knowledge - We begin by formally
encoding the latest scientific theories and findings about cloud feed-
back mechanisms into a Scientific Domain Specific Language (DSL).
This DSL represents the reasoning problem in a format accessible
to domain scientists, making it suitable for symbolic reasoning and
proof checking.

Step 2: Symbolic Reasoning with SaSLLM - Next, we lever-
age our novel architecture, the Scientific and Satisfiability-Aided
Large Language Model (SaSLLM), to perform symbolic reasoning.
SaSLLM decomposes the encoded scientific concepts into verifiable
hypotheses using advances in chain-of-thought (CoT) reasoning.
This enables automated reasoning, verification, and code synthesis.

Step 3: Generalized Planning for Abstract Reasoning - To
address feasibility analysis challenges, we employ a Generalized
Planning (GP) framework for abstract reasoning. GP solvers model
abstraction and reasoning problems, enabling efficient handling of
complex scientific concepts across disciplinary boundaries.

Step 4: Automated Code Generation - Based on the decom-
posed scientific concepts and verified hypotheses, the GP solvers
generate new or modified code segments for the climate model
simulations. This includes integrating new equations, adjusting pa-
rameters, and ensuring that the generated code adheres to scientific
standards.

Step 5: Integration and Verification - Finally, we integrate
the synthesized code segments into the existing climate modeling
software. Automated verification techniques are then employed to
ensure the correctness of the synthesized code, producing proofs
of correctness for each stage of the software development lifecycle.

5 CONCLUSION

The paradigm shift towards automated reasoning in LLM-backed
Certified by Design synthesis represents a transformative approach
to scientific software development. By leveraging neuro-symbolic
architectures, DSL, and generalized planning frameworks, this
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methodology streamlines the transformation of scientific concepts
into robust software solutions. With a focus on verifiability, scala-
bility, and efficiency, this approach promises to revolutionize the
traditional practices of software engineering, empowering scien-
tists to concentrate on conceptual design and exploration of ideas.
As we continue to advance in this direction, the potential for accel-
erating scientific discovery and innovation is immense, promising
a future where the boundaries of possibility in software synthesis
are continually pushed forward.
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