Neuro-Symbolic Approach to Certified Scientific Software
Synthesis

Hamid Bagheri
University of Nebraska-Lincoln
Lincoln, NE, USA
bagheri@unl.edu

Ibrahim Mujhid
University of Hawaii at Manoa
Honolulu, HI, USA
ijmujhid@hawaii.edu

ABSTRACT

Scientific software development demands robust solutions to meet
the complexities of modern scientific systems. In response, we pro-
pose a paradigm-shifting Neuro-Symbolic Approach to Certified
Scientific Software Synthesis. This innovative framework integrates
large language models (LLMs) with formal methods, facilitating
automated synthesis of complex scientific software while ensuring
verifiability and correctness. Through a combination of technolo-
gies including a Scientific and Satisfiability-Aided Large Language
Model (SaSLLM), a Scientific Domain Specific Language (DSL), and
Generalized Planning for Abstract Reasoning, our approach trans-
forms scientific concepts into certified software solutions. By lever-
aging advanced reasoning techniques, our framework streamlines
the development process, allowing scientists to focus on design
and exploration. This approach represents a significant step to-
wards automated, certified-by-design scientific software synthesis,
revolutionizing the landscape of scientific research and discovery.

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion.

KEYWORDS

Certified by Design, Neuro-Symbolic Approach, Scientific Software
Synthesis, Large Language Models, Formal Methods

ACM Reference Format:

Hamid Bagheri, Mehdi Mirakhorli, Mohamad Fazelnia, Ibrahim Mujhid,
and Md Rashedul Hasan. 2024. Neuro-Symbolic Approach to Certified Scien-
tific Software Synthesis. In Proceedings of the ACM International Conference,
2024, Location. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3664646.3664776

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference, 2024,

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0685-1/24/07

https://doi.org/10.1145/3664646.3664776

Mehdi Mirakhorli
University of Hawaii at Manoa
Honolulu, HI, USA
mehdi23@hawaii.edu

Mohamad Fazelnia
University of Hawaii at Manoa
Honolulu, HI, USA
mfazel@hawaii.edu

Md Rashedul Hasan
University of Nebraska-Lincoln
Lincoln, NE, USA
mhasan6@huskers.unl.edu

1 INTRODUCTION

In today’s era of rapid scientific advancement, software plays a cru-
cial role in facilitating research and innovation. From multi-scale
analysis to predictive modeling, scientific software serves as the
backbone of modern scientific exploration. However, the develop-
ment of such software presents numerous challenges, including
ensuring correctness, verifiability, and adaptability to emerging
architectures [5, 9, 17]. Such software must leverage secure, fault-
tolerant, high-performance computing (HPC) solutions at scales of
hundreds of exaflops to enable rapid prototyping, simulation, and
big data analysis. The software stack of these systems relies on nu-
merous programming frameworks and libraries, requiring program-
mers to have extensive knowledge for design decisions, trade-off
analyses, and system configuration. Without adequate automation
and tool support, these tasks become tedious, code becomes in-
creasingly complex, and developer productivity declines [7, 10]. As
scientific problems grow more complex, there is an urgent need for
innovative approaches to effectively address these challenges.

Despite many advances in the use of large language models
(LLMs) for code generation, current state-of-the-art techniques fall
short in synthesizing code for entire scientific software stacks. They
do not fully exploit emerging architectures nor provide proof that
the synthesized code accurately implements the desired scientific
concepts. These problems are recognized as crippling challenges
in software development for complex HPC, scientific, and control
systems [1, 3, 11, 13, 15-17, 20].

Motivated by the pressing demand for reliable and efficient sci-
entific software solutions, we introduce a groundbreaking Neuro-
Symbolic Approach to Certified Scientific Software Synthesis. Our
motivation stems from the recognition that existing methodologies
often fall short in providing scalable, verifiable, and automated so-
lutions for complex scientific software development. Traditional
approaches [14, 24, 25] rely heavily on manual intervention, leading
to errors, inefficiencies, and delays in the software development
lifecycle. Moreover, as scientific research pushes the boundaries of
computational capabilities, there is a growing need for software
that can harness the full potential of emerging architectures, such
as high-performance computing (HPC) solutions.

Against this backdrop, our objectives are twofold: firstly, to
streamline the process of scientific software development by lever-
aging cutting-edge technologies such as large language models
(LLMs) [8, 28] and formal methods; and secondly, to ensure the


https://orcid.org/0000-0001-6686-466X
https://orcid.org/0000-0003-3470-6856
https://orcid.org/0000-0002-6152-5308
https://orcid.org/0009-0006-4181-7051
https://orcid.org/0009-0009-3417-4352
https://doi.org/10.1145/3664646.3664776
https://doi.org/10.1145/3664646.3664776
https://doi.org/10.1145/3664646.3664776

Conference, 2024,

correctness, verifiability, and scalability of synthesized software
across diverse scientific domains. By combining the power of artifi-
cial intelligence with rigorous formal reasoning, our approach aims to
revolutionize the way scientific software is conceptualized, designed,
and implemented.

In this paper, we present the foundational principles of our
Neuro-Symbolic Approach and outline its key components. We
demonstrate how this approach empowers scientists to focus on
conceptual design and exploration, while automated reasoning
agents handle the intricacies of software synthesis. By embracing
the concept of certified-by-design software, we aim to propel sci-
entific research forward, unlocking new possibilities for discovery
and innovation.

2 RELATED WORK

In the domain of software certification there has been a growing
recognition of the limitations of traditional process-oriented stan-
dards, particularly in sectors where software plays a predominant
role. While standards like those outlined by regulatory bodies such
as the U.S. Food and Drug Administration (FDA) emphasize the
use of specific development and testing processes, their efficacy in
guaranteeing system safety and reliability, especially in software-
intensive environments, has been called into question [27]. The
discrepancy between adherence to process-oriented standards and
actual system performance has been evident in numerous instances,
such as the recurring recalls of medical devices due to software
quality issues, highlighting the need for alternative certification ap-
proaches [26]. Consequently, product-based or case-based certifica-
tion methodologies [18], centered on the construction of assurance
cases, have gained traction among researchers and practitioners.
These methodologies pivot towards explicit documentation of argu-
ments substantiated by evidence, aiming to demonstrate that a sys-
tem satisfies its critical requirements. However, challenges persist in
these approaches, including the informal nature of argumentation,
the lack of rigor in evidence provision, and the absence of support
for software evolution and incremental updates, underscoring the
imperative for advancements in certification methodologies. These
challenges are more significant for Al enabled software products.
Existing research endeavors have sought to address the short-
comings of current certification paradigms by exploring avenues
for formal tool support and automation in assurance case develop-
ment [4, 21-23]. Pernsteiner et al. introduced a formal assurance
case for a radiotherapy system, leveraging verification and analysis
tools to provide evidence supporting safety requirements [22]. Simi-
larly, Near et al. developed a formal assurance case for a proton ther-
apy system, employing custom-tailored code analysis tools to verify
code-level properties [21]. While these efforts represent strides to-
wards formalization and automation in assurance case construction,
the process of developing assurance cases and selecting appropri-
ate evidence-generating tools remains largely manual. Moreover,
a body of prior work has focused on specification inference and
extensible type systems to synthesize operational specifications and
facilitate the application of multiple type systems within a single
language [2, 12]. These endeavors, while valuable, underscore the
need for further advancements in automated analysis synthesis
frameworks, like the proposed NS-CSD approach, to enhance the

Bagheri and Mirakhorli, et al.

rigor, efficiency, and scalability of software certification processes
in scientific domains.

3 PARADIGM SHIFT: AUTOMATED
REASONING IN LLM-BACKED CERTIFIED
BY DESIGN SOFTWARE SYNTHESIS

Our Certified by Design approach marks a departure from estab-
lished practices in scientific software development, ushering in a
new era where software engineering aligns closely with the prin-
ciples of true engineering. By leveraging formal methods, we aim
to shift the focus of scientists from manual coding to conceptual
design, creativity, and idea exploration. Central to our approach
is the creation of a mathematical model of architectural design,
allowing for the synthesis of solutions and rigorous validation.

Our approach, termed Neuro-Symbolic Methodology for Certi-
fied Software Design (NS-CSD), integrates neuro-symbolic tech-
niques with formal methods to revolutionize the development of
scientific software. The NS-CSD framework aims to automate the
generation of complex scientific software while ensuring its cor-
rectness, security, and other quality attributes. Key components
include:

e Neuro-Symbolic Architecture: We envision a novel ar-
chitecture that combines the power of large language mod-
els (LLMs) with symbolic reasoning capabilities. This ar-
chitecture, named Scientific and Satisfiability-Aided Large
Language Model (SaSLLM), leverages advances in chain-of-
thought (CoT) reasoning to decompose complex scientific
concepts into verifiable hypotheses. SaSLLM uses Satisfiabil-
ity modulo theories (SMT) solvers [6] facilitates automated
reasoning, verification, and code synthesis.

o Scientific Domain Specific Language (DSL): this ATWare
relies on an automated approach to generate a DSL tailored to
represent scientific reasoning problems in a format accessible
to domain scientists. This DSL enables symbolic reasoning
and proof checking while maintaining interpretability for
non-experts.

¢ Generalized Planning for Abstract Reasoning: To ad-
dress feasibility analysis challenges, we employ a General-
ized Planning (GP) framework [19] for abstract reasoning. GP
solvers are utilized to model abstraction and scientific reason-
ing problems, allowing for efficient and effective handling of
complex scientific concepts across disciplinary boundaries,
reasoning about the validity of scientific concepts while gen-
erating code.

o Certified by Design Foundation: Our approach is rooted
in the Certified by Design paradigm, shifting the focus of sci-
entific software development towards automated synthesis
and certification. Through symbolic Al reluing on mathemat-
ical modeling and formal methods, we ensure the correct-
ness, security, and other quality attributes of the synthesized
software.

e Integration and Verification: NS-CSD integrates LLMs,
symbolic reasoning, DSL, and GP solvers to transform scien-
tific concepts into verified software. We employ automated



Neuro-Symbolic Approach to Certified Scientific Software Synthesis

verification techniques to ensure the correctness of the syn-
thesized code and produce proofs of correctness for each
stage of the software development lifecycle.

By combining neuro-symbolic techniques with formal methods,
the NS-CSD approach offers a revolutionary way to synthesize and
certify scientific software, paving the way for enhanced reliability,
security, and innovation in scientific research and engineering.

4 EARLY DEMONSTRATION: APPLYING
NS-CSD TO CLIMATE MODELING

Scenario: A research institute aims to enhance its climate mod-
eling software to incorporate new scientific findings about cloud
feedback mechanisms rapidly. These mechanisms are critical for
understanding climate sensitivity to greenhouse gas emissions but
involve complex interactions that are difficult to model. The goal
is to use the proposed framework to automate the generation of
updated simulation code that accurately reflects the latest research
on cloud feedbacks.

In our framework, the Neuro-Symbolic Methodology for Cer-
tified Software Design (NS-CSD), we follow a series of steps to
automate the synthesis of scientific software while ensuring its
correctness, security, and other quality attributes.

Step 1: Encoding Scientific Knowledge - We begin by formally
encoding the latest scientific theories and findings about cloud feed-
back mechanisms into a Scientific Domain Specific Language (DSL).
This DSL represents the reasoning problem in a format accessible
to domain scientists, making it suitable for symbolic reasoning and
proof checking.

Step 2: Symbolic Reasoning with SaSLLM - Next, we lever-
age our novel architecture, the Scientific and Satisfiability-Aided
Large Language Model (SaSLLM), to perform symbolic reasoning.
SaSLLM decomposes the encoded scientific concepts into verifiable
hypotheses using advances in chain-of-thought (CoT) reasoning.
This enables automated reasoning, verification, and code synthesis.

Step 3: Generalized Planning for Abstract Reasoning - To
address feasibility analysis challenges, we employ a Generalized
Planning (GP) framework for abstract reasoning. GP solvers model
abstraction and reasoning problems, enabling efficient handling of
complex scientific concepts across disciplinary boundaries.

Step 4: Automated Code Generation - Based on the decom-
posed scientific concepts and verified hypotheses, the GP solvers
generate new or modified code segments for the climate model
simulations. This includes integrating new equations, adjusting pa-
rameters, and ensuring that the generated code adheres to scientific
standards.

Step 5: Integration and Verification - Finally, we integrate
the synthesized code segments into the existing climate modeling
software. Automated verification techniques are then employed to
ensure the correctness of the synthesized code, producing proofs
of correctness for each stage of the software development lifecycle.

5 CONCLUSION

The paradigm shift towards automated reasoning in LLM-backed
Certified by Design synthesis represents a transformative approach
to scientific software development. By leveraging neuro-symbolic
architectures, DSL, and generalized planning frameworks, this

Conference, 2024,

methodology streamlines the transformation of scientific concepts
into robust software solutions. With a focus on verifiability, scala-
bility, and efficiency, this approach promises to revolutionize the
traditional practices of software engineering, empowering scien-
tists to concentrate on conceptual design and exploration of ideas.
As we continue to advance in this direction, the potential for accel-
erating scientific discovery and innovation is immense, promising
a future where the boundaries of possibility in software synthesis
are continually pushed forward.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their valu-
able comments. This work was supported in part by awards CCF-
1755890, CCF-1618132, CCF-2139845, CCF-1943300 and CCF-2124116
from the National Science Foundation.

REFERENCES

[1] [n.d]. DOE Workshop report: The 2015 Cybersecurity for Scien-
tific Computing Integrity - Research Pathways and Ideas Workshop.
https://science.energy.gov/~{}/media/ascr/pdf/programdocuments/docs/
ASCR_Cybersecurity_20_Research_Pathways_and_Ideas_Workshop.pdf.
Accessed: 2019-04-28.

[2] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastin Uchitel. 2009. Learning
operational requirements from goal models. In Proceedings of the 31st International
Conference on Software Engineering (ICSE "09). IEEE Computer Society, USA,
265-275. https://doi.org/10.1109/ICSE.2009.5070527

[3] Rizwan A. Ashraf, Saurabh Hukerikar, and Christian Engelmann. 2018. Pattern-
based Modeling of Multiresilience Solutions for High-Performance Computing.
In Proceedings of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018. 80-87. https://doi.org/
10.1145/3184407.3184421

[4] Hamid Bagheri, Eunsuk Kang, and Niloofar Mansoor. 2020. Synthesis of assurance
cases for software certification. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and Emerging Results (Seoul, South
Korea) (ICSE-NIER °20). Association for Computing Machinery, New York, NY,
USA, 61-64. https://doi.org/10.1145/3377816.3381728

[5] David E. Bernholdt, Benjamin A. Allan, Robert C. Armstrong, Felipe Bertrand,

Kenneth Chiu, Tamara Dahlgren, Kostadin Damevski, Wael R. Elwasif, Thomas

Epperly, Madhusudhan Govindaraju, Daniel S. Katz, James Arthur Kohl, Manojku-

mar Krishnan, Gary Kumfert, Jay Walter Larson, Sophia Lefantzi, Michael J. Lewis,

Allen D. Malony, Lois C. McInnes, Jarek Nieplocha, Boyana Norris, Steven G.

Parker, Jaideep Ray, Sameer Shende, Theresa L. Windus, and Shujia Zhou. 2006.

A Component Architecture for High-Performance Scientific Computing. IJHPCA

20, 2 (2006), 163-202. https://doi.org/10.1177/1094342006064488

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of Systems,

14th International Conference, TACAS 2008, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,

March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963),

C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337-340. https://doi.org/

10.1007/978-3-540-78800-3_24

[7] Anshu Dubey and Lois Curfman McInnes. 2017. Proposal for a Scientific Software
Lifecycle Model. In Proceedings of the 1st International Workshop on Software
Engineering for High Performance Computing in Computational and Data-enabled
Science & Engineering (Denver, CO, USA) (SE-CoDeSE’17). ACM, New York, NY,
USA, 22-26. https://doi.org/10.1145/3144763.3144767

[8] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469-1481.

[9] Wolfgang Frings, Dong H. Ahn, Matthew LeGendre, Todd Gamblin, Bronis R. de

Supinski, and Felix Wolf. 2013. Massively Parallel Loading. In Proceedings of the

27th International ACM Conference on International Conference on Supercomputing

(Eugene, Oregon, USA) (ICS ’13). ACM, New York, NY, USA, 389-398. https:

//doi.org/10.1145/2464996.2465020

Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory L. Lee, Adam

Moody, Bronis R. de Supinski, and Scott Futral. 2015. The Spack Package Man-

ager: Bringing Order to HPC Software Chaos. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analy-

sis (Austin, Texas) (SC ’'15). ACM, New York, NY, USA, Article 40, 12 pages.

https://doi.org/10.1145/2807591.2807623

—_
S

[10


https://science.energy.gov/~%7B%7D/media/ascr/pdf/programdocuments/docs/ASCR_Cybersecurity_20_Research_Pathways_and_Ideas_Workshop.pdf
https://science.energy.gov/~%7B%7D/media/ascr/pdf/programdocuments/docs/ASCR_Cybersecurity_20_Research_Pathways_and_Ideas_Workshop.pdf
https://doi.org/10.1109/ICSE.2009.5070527
https://doi.org/10.1145/3184407.3184421
https://doi.org/10.1145/3184407.3184421
https://doi.org/10.1145/3377816.3381728
https://doi.org/10.1177/1094342006064488
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3144763.3144767
https://doi.org/10.1145/2464996.2465020
https://doi.org/10.1145/2464996.2465020
https://doi.org/10.1145/2807591.2807623

Conference, 2024,

[11] Joshua Garcia, Mehdi Mirakhorli, Lu Xiao, Sam Malek, Rick Kazman, Yuanfang

Cai, and Nenad Medvidovic. 2023. SAIN: A Community-Wide Software Architec-
ture INfrastructure. In 45th IEEE/ACM International Conference on Software Engi-
neering: ICSE 2023 Companion Proceedings, Melbourne, Australia, May 14-20, 2023.
IEEE, 336-337. https://doi.org/10.1109/ICSE-COMPANION58688.2023.00095
Dimitra Giannakopoulou, Corina S. P"s"reanu, and Howard Barringer. 2002.
Assumption Generation for Software Component Verification. In Proceedings of
the 17th IEEE International Conference on Automated Software Engineering (ASE
’02). IEEE Computer Society, USA, 3.

Michael A. Heroux. 2009. Software Challenges for Extreme Scale Computing:
Going From Petascale to Exascale Systems. The International Journal of High
Performance Computing Applications 23, 4 (2009), 437-439. https://doi.org/10.
1177/1094342009347711 arXiv:https://doi.org/10.1177/1094342009347711
Sheng-Kuei Hsu and Shi-Jen Lin. 2011. MACs: Mining API code snippets for
code reuse. Expert Systems with Applications 38, 6 (2011).

Saurabh Hukerikar and Christian Engelmann. 2017. Resilience Design Patterns:
A Structured Approach to Resilience at Extreme Scale. CoRR abs/1708.07422
(2017). arXiv:1708.07422 http://arxiv.org/abs/1708.07422

Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-Lezama. 2015.
JSketch: sketching for Java. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015. 934-937. https://doi.org/10.1145/2786805.2803189

D. S. Katz, L. C. McInnes, D. E. Bernholdt, A. C. Mayes, N. P. C. Hong, J. Duckles,
S. Gesing, M. A. Heroux, S. Hettrick, R. C. Jimenez, M. Pierce, B. Weaver, and N.
Wilkins-Diehr. 2019. Community Organizations: Changing the Culture in Which
Research Software Is Developed and Sustained. Computing in Science Engineering
21, 2 (March 2019), 8-24. https://doi.org/10.1109/MCSE.2018.2883051

T. Kelly and R. Weaver. 2004. The Goal Structuring Notation-A Safety Argument
Notation. In Dependable Systems and Networks (DSN) Workshop on Assurance
Cases.

Chao Lei, Nir Lipovetzky, and Krista A. Ehinger. 2024. Generalized Planning for
the Abstraction and Reasoning Corpus. arXiv:2401.07426 [cs.Al]

Patrick S. et al. McCormic. 2014. Exploring the Construction of a Domain-
Aware Toolchain for High-Performance Computing.. In 2014 Fourth International

Bagheri and Mirakhorli, et al.

Workshop on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing. 1-10.

J. P. Near, A. Milicevic, E. Kang, and D. Jackson. 2011. A Lightweight Code
Analysis and Its Role in Evaluation of a Dependability Case. In ICSE. ACM,
31-40.

S. Pernsteiner, C. Loncaric, E. Torlak, Z. Tatlock, X. Wang, M. D. Ernst, and J.
Jacky. 2016. Investigating Safety of a Radiotherapy Machine Using System Models
with Pluggable Checkers. In Proceedings of CAV. 23-41.

Rui Qiu, Corina S. Pasareanu, and Sarfraz Khurshid. 2016. Certified Symbolic Ex-
ecution. In Automated Technology for Verification and Analysis - 14th International
Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings (Lecture
Notes in Computer Science, Vol. 9938), Cyrille Artho, Axel Legay, and Doron Peled
(Eds.). 495-511. https://doi.org/10.1007/978-3-319-46520-3_31

Armando Solar-Lezama. 2009. The Sketching Approach to Program Synthesis. In
Proceedings of the 7th Asian Symposium on Programming Languages and Systems
(Seoul, Korea) (APLAS °09). Springer-Verlag, Berlin, Heidelberg, 4-13. https:
//doi.org/10.1007/978-3-642-10672-9_3

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster.
2011. Path-based Inductive Synthesis for Program Inversion. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Jose, California, USA) (PLDI '11). ACM, New York, NY, USA,
492-503. https://doi.org/10.1145/1993498.1993557

U.S. Food and Drug Administration (FDA). [n.d.]. List of Device Recalls. https:
/[www.fda.gov/medicaldevices/safety/listofrecalls. Accessed: 2018-11-14.

U.S. Food and Drug Administration (FDA). 2017. General principles of software
validation; final guidance for industry and FDA staff. https://www.fda.gov/
downloads/medicaldevices/.../ucm085371.pdf.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai
Liang, Ying Li, Qianxiang Wang, and Tao Xie. 2024. CoderEval: A Bench-
mark of Pragmatic Code Generation with Generative Pre-trained Models. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 37:1-37:12. https:
//doi.org/10.1145/3597503.3623316


https://doi.org/10.1109/ICSE-COMPANION58688.2023.00095
https://doi.org/10.1177/1094342009347711
https://doi.org/10.1177/1094342009347711
https://arxiv.org/abs/https://doi.org/10.1177/1094342009347711
https://arxiv.org/abs/1708.07422
http://arxiv.org/abs/1708.07422
https://doi.org/10.1145/2786805.2803189
https://doi.org/10.1109/MCSE.2018.2883051
https://arxiv.org/abs/2401.07426
https://doi.org/10.1007/978-3-319-46520-3_31
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/1993498.1993557
https://www.fda.gov/medicaldevices/safety/listofrecalls
https://www.fda.gov/medicaldevices/safety/listofrecalls
https://www.fda.gov/downloads/medicaldevices/.../ucm085371.pdf
https://www.fda.gov/downloads/medicaldevices/.../ucm085371.pdf
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://www.researchgate.net/publication/382156788

	Abstract
	1 Introduction
	2 Related Work
	3 Paradigm Shift: Automated Reasoning in LLM-backed Certified by Design Software Synthesis
	4 Early Demonstration: Applying NS-CSD to Climate Modeling
	5 Conclusion
	References

