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ABSTRACT
Scienti�c software development demands robust solutions to meet
the complexities of modern scienti�c systems. In response, we pro-
pose a paradigm-shifting Neuro-Symbolic Approach to Certi�ed
Scienti�c Software Synthesis. This innovative framework integrates
large language models (LLMs) with formal methods, facilitating
automated synthesis of complex scienti�c software while ensuring
veri�ability and correctness. Through a combination of technolo-
gies including a Scienti�c and Satis�ability-Aided Large Language
Model (SaSLLM), a Scienti�c Domain Speci�c Language (DSL), and
Generalized Planning for Abstract Reasoning, our approach trans-
forms scienti�c concepts into certi�ed software solutions. By lever-
aging advanced reasoning techniques, our framework streamlines
the development process, allowing scientists to focus on design
and exploration. This approach represents a signi�cant step to-
wards automated, certi�ed-by-design scienti�c software synthesis,
revolutionizing the landscape of scienti�c research and discovery.

CCS CONCEPTS
• Software and its engineering! Formal software veri�ca-
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1 INTRODUCTION
In today’s era of rapid scienti�c advancement, software plays a cru-
cial role in facilitating research and innovation. From multi-scale
analysis to predictive modeling, scienti�c software serves as the
backbone of modern scienti�c exploration. However, the develop-
ment of such software presents numerous challenges, including
ensuring correctness, veri�ability, and adaptability to emerging
architectures [5, 9, 17]. Such software must leverage secure, fault-
tolerant, high-performance computing (HPC) solutions at scales of
hundreds of exa�ops to enable rapid prototyping, simulation, and
big data analysis. The software stack of these systems relies on nu-
merous programming frameworks and libraries, requiring program-
mers to have extensive knowledge for design decisions, trade-o�
analyses, and system con�guration. Without adequate automation
and tool support, these tasks become tedious, code becomes in-
creasingly complex, and developer productivity declines [7, 10]. As
scienti�c problems grow more complex, there is an urgent need for
innovative approaches to e�ectively address these challenges.

Despite many advances in the use of large language models
(LLMs) for code generation, current state-of-the-art techniques fall
short in synthesizing code for entire scienti�c software stacks. They
do not fully exploit emerging architectures nor provide proof that
the synthesized code accurately implements the desired scienti�c
concepts. These problems are recognized as crippling challenges
in software development for complex HPC, scienti�c, and control
systems [1, 3, 11, 13, 15–17, 20].

Motivated by the pressing demand for reliable and e�cient sci-
enti�c software solutions, we introduce a groundbreaking Neuro-
Symbolic Approach to Certi�ed Scienti�c Software Synthesis. Our
motivation stems from the recognition that existing methodologies
often fall short in providing scalable, veri�able, and automated so-
lutions for complex scienti�c software development. Traditional
approaches [14, 24, 25] rely heavily on manual intervention, leading
to errors, ine�ciencies, and delays in the software development
lifecycle. Moreover, as scienti�c research pushes the boundaries of
computational capabilities, there is a growing need for software
that can harness the full potential of emerging architectures, such
as high-performance computing (HPC) solutions.

Against this backdrop, our objectives are twofold: �rstly, to
streamline the process of scienti�c software development by lever-
aging cutting-edge technologies such as large language models
(LLMs) [8, 28] and formal methods; and secondly, to ensure the
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correctness, veri�ability, and scalability of synthesized software
across diverse scienti�c domains. By combining the power of arti�-
cial intelligence with rigorous formal reasoning, our approach aims to
revolutionize the way scienti�c software is conceptualized, designed,
and implemented.

In this paper, we present the foundational principles of our
Neuro-Symbolic Approach and outline its key components. We
demonstrate how this approach empowers scientists to focus on
conceptual design and exploration, while automated reasoning
agents handle the intricacies of software synthesis. By embracing
the concept of certi�ed-by-design software, we aim to propel sci-
enti�c research forward, unlocking new possibilities for discovery
and innovation.

2 RELATEDWORK
In the domain of software certi�cation there has been a growing
recognition of the limitations of traditional process-oriented stan-
dards, particularly in sectors where software plays a predominant
role. While standards like those outlined by regulatory bodies such
as the U.S. Food and Drug Administration (FDA) emphasize the
use of speci�c development and testing processes, their e�cacy in
guaranteeing system safety and reliability, especially in software-
intensive environments, has been called into question [27]. The
discrepancy between adherence to process-oriented standards and
actual system performance has been evident in numerous instances,
such as the recurring recalls of medical devices due to software
quality issues, highlighting the need for alternative certi�cation ap-
proaches [26]. Consequently, product-based or case-based certi�ca-
tion methodologies [18], centered on the construction of assurance
cases, have gained traction among researchers and practitioners.
These methodologies pivot towards explicit documentation of argu-
ments substantiated by evidence, aiming to demonstrate that a sys-
tem satis�es its critical requirements. However, challenges persist in
these approaches, including the informal nature of argumentation,
the lack of rigor in evidence provision, and the absence of support
for software evolution and incremental updates, underscoring the
imperative for advancements in certi�cation methodologies. These
challenges are more signi�cant for AI enabled software products.

Existing research endeavors have sought to address the short-
comings of current certi�cation paradigms by exploring avenues
for formal tool support and automation in assurance case develop-
ment [4, 21–23]. Pernsteiner et al. introduced a formal assurance
case for a radiotherapy system, leveraging veri�cation and analysis
tools to provide evidence supporting safety requirements [22]. Simi-
larly, Near et al. developed a formal assurance case for a proton ther-
apy system, employing custom-tailored code analysis tools to verify
code-level properties [21]. While these e�orts represent strides to-
wards formalization and automation in assurance case construction,
the process of developing assurance cases and selecting appropri-
ate evidence-generating tools remains largely manual. Moreover,
a body of prior work has focused on speci�cation inference and
extensible type systems to synthesize operational speci�cations and
facilitate the application of multiple type systems within a single
language [2, 12]. These endeavors, while valuable, underscore the
need for further advancements in automated analysis synthesis
frameworks, like the proposed NS-CSD approach, to enhance the

rigor, e�ciency, and scalability of software certi�cation processes
in scienti�c domains.

3 PARADIGM SHIFT: AUTOMATED
REASONING IN LLM-BACKED CERTIFIED
BY DESIGN SOFTWARE SYNTHESIS

Our Certi�ed by Design approach marks a departure from estab-
lished practices in scienti�c software development, ushering in a
new era where software engineering aligns closely with the prin-
ciples of true engineering. By leveraging formal methods, we aim
to shift the focus of scientists from manual coding to conceptual
design, creativity, and idea exploration. Central to our approach
is the creation of a mathematical model of architectural design,
allowing for the synthesis of solutions and rigorous validation.

Our approach, termed Neuro-Symbolic Methodology for Certi-
�ed Software Design (NS-CSD), integrates neuro-symbolic tech-
niques with formal methods to revolutionize the development of
scienti�c software. The NS-CSD framework aims to automate the
generation of complex scienti�c software while ensuring its cor-
rectness, security, and other quality attributes. Key components
include:

• Neuro-Symbolic Architecture: We envision a novel ar-
chitecture that combines the power of large language mod-
els (LLMs) with symbolic reasoning capabilities. This ar-
chitecture, named Scienti�c and Satis�ability-Aided Large
Language Model (SaSLLM), leverages advances in chain-of-
thought (CoT) reasoning to decompose complex scienti�c
concepts into veri�able hypotheses. SaSLLM uses Satis�abil-
ity modulo theories (SMT) solvers [6] facilitates automated
reasoning, veri�cation, and code synthesis.

• Scienti�c Domain Speci�c Language (DSL): this AIWare
relies on an automated approach to generate a DSL tailored to
represent scienti�c reasoning problems in a format accessible
to domain scientists. This DSL enables symbolic reasoning
and proof checking while maintaining interpretability for
non-experts.

• Generalized Planning for Abstract Reasoning: To ad-
dress feasibility analysis challenges, we employ a General-
ized Planning (GP) framework [19] for abstract reasoning. GP
solvers are utilized to model abstraction and scienti�c reason-
ing problems, allowing for e�cient and e�ective handling of
complex scienti�c concepts across disciplinary boundaries,
reasoning about the validity of scienti�c concepts while gen-
erating code.

• Certi�ed by Design Foundation: Our approach is rooted
in the Certi�ed by Design paradigm, shifting the focus of sci-
enti�c software development towards automated synthesis
and certi�cation. Through symbolic AI reluing on mathemat-
ical modeling and formal methods, we ensure the correct-
ness, security, and other quality attributes of the synthesized
software.

• Integration and Veri�cation: NS-CSD integrates LLMs,
symbolic reasoning, DSL, and GP solvers to transform scien-
ti�c concepts into veri�ed software. We employ automated
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veri�cation techniques to ensure the correctness of the syn-
thesized code and produce proofs of correctness for each
stage of the software development lifecycle.

By combining neuro-symbolic techniques with formal methods,
the NS-CSD approach o�ers a revolutionary way to synthesize and
certify scienti�c software, paving the way for enhanced reliability,
security, and innovation in scienti�c research and engineering.

4 EARLY DEMONSTRATION: APPLYING
NS-CSD TO CLIMATE MODELING

Scenario: A research institute aims to enhance its climate mod-
eling software to incorporate new scienti�c �ndings about cloud
feedback mechanisms rapidly. These mechanisms are critical for
understanding climate sensitivity to greenhouse gas emissions but
involve complex interactions that are di�cult to model. The goal
is to use the proposed framework to automate the generation of
updated simulation code that accurately re�ects the latest research
on cloud feedbacks.

In our framework, the Neuro-Symbolic Methodology for Cer-
ti�ed Software Design (NS-CSD), we follow a series of steps to
automate the synthesis of scienti�c software while ensuring its
correctness, security, and other quality attributes.

Step 1: Encoding Scienti�c Knowledge -We begin by formally
encoding the latest scienti�c theories and �ndings about cloud feed-
back mechanisms into a Scienti�c Domain Speci�c Language (DSL).
This DSL represents the reasoning problem in a format accessible
to domain scientists, making it suitable for symbolic reasoning and
proof checking.

Step 2: Symbolic Reasoning with SaSLLM - Next, we lever-
age our novel architecture, the Scienti�c and Satis�ability-Aided
Large Language Model (SaSLLM), to perform symbolic reasoning.
SaSLLM decomposes the encoded scienti�c concepts into veri�able
hypotheses using advances in chain-of-thought (CoT) reasoning.
This enables automated reasoning, veri�cation, and code synthesis.

Step 3: Generalized Planning for Abstract Reasoning - To
address feasibility analysis challenges, we employ a Generalized
Planning (GP) framework for abstract reasoning. GP solvers model
abstraction and reasoning problems, enabling e�cient handling of
complex scienti�c concepts across disciplinary boundaries.

Step 4: Automated Code Generation - Based on the decom-
posed scienti�c concepts and veri�ed hypotheses, the GP solvers
generate new or modi�ed code segments for the climate model
simulations. This includes integrating new equations, adjusting pa-
rameters, and ensuring that the generated code adheres to scienti�c
standards.

Step 5: Integration and Veri�cation - Finally, we integrate
the synthesized code segments into the existing climate modeling
software. Automated veri�cation techniques are then employed to
ensure the correctness of the synthesized code, producing proofs
of correctness for each stage of the software development lifecycle.

5 CONCLUSION
The paradigm shift towards automated reasoning in LLM-backed
Certi�ed by Design synthesis represents a transformative approach
to scienti�c software development. By leveraging neuro-symbolic
architectures, DSL, and generalized planning frameworks, this

methodology streamlines the transformation of scienti�c concepts
into robust software solutions. With a focus on veri�ability, scala-
bility, and e�ciency, this approach promises to revolutionize the
traditional practices of software engineering, empowering scien-
tists to concentrate on conceptual design and exploration of ideas.
As we continue to advance in this direction, the potential for accel-
erating scienti�c discovery and innovation is immense, promising
a future where the boundaries of possibility in software synthesis
are continually pushed forward.
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