Translation Titans, Reasoning Challenges: Satisfiability-Aided
Language Models for Detecting Conflicting Requirements

Mohamad Fazelnia
University of Hawaii at Manoa
Honolulu, USA, mfazel@hawaii.edu

ABSTRACT

Detecting conflicting requirements early in the software develop-
ment lifecycle is crucial to mitigating risks of system failures and
enhancing overall reliability. While Large Language Models (LLMs)
have demonstrated proficiency in natural language understanding
tasks, they often struggle with the nuanced reasoning required for
identifying complex requirement conflicts. This paper introduces a
novel framework, SAT-LLM, which integrates Satisfiability Modulo
Theories (SMT) solvers with LLMs to enhance the detection of con-
flicting software requirements. SMT solvers provide rigorous formal
reasoning capabilities, complementing LLMs’ proficiency in natural
language understanding. By synergizing these strengths, SAT-LLM
aims to overcome the limitations of standalone LLMs in handling
intricate requirement interactions. The early experiments provide
empirical evidence supporting the effectiveness of our SAT-LLM
over pure LLM-based methods like ChatGPT in identifying and
resolving conflicting requirements. These findings lay a foundation
for further exploration and refinement of hybrid approaches that
integrate NLP techniques with formal reasoning methodologies to
address complex challenges in software development.

CCS CONCEPTS

« Software and its engineering — Traceability; - Computing
methodologies — Knowledge representation and reasoning.

KEYWORDS

Software Requirements Conflict, Large Language Models, Formal
Reasoning, Satisfiability, SMT, Conflict Detection, LLMs, Reasoning

ACM Reference Format:

Mohamad Fazelnia, Mehdi Mirakhorli, and Hamid Bagheri. 2024. Transla-
tion Titans, Reasoning Challenges: Satisfiability-Aided Language Models
for Detecting Conflicting Requirements. In Conference, Preprint. ACM, New
York, NY, USA, Article 111, 5 pages. https://doi.org/10.1145/3691620.3695302

1 INTRODUCTION

In contemporary software development, ensuring the coherence
and consistency of requirements is paramount to achieving suc-
cessful system outcomes [5, 20, 34]. A thorough analysis of the
diverse stakeholder-proposed requirements is crucial to uncover

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conferenc 24, 2024, New York, NY, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695302

Mehdi Mirakhorli
University of Hawaii at Manoa
Honolulu, USA, mehdi23@hawaii.edu

Hamid Bagheri
University of Nebraska-Lincoln
Lincoln, USA, bagheri@unl.edu

contradictions or incompatibilities. Conflicting requirements, if left
undetected, can precipitate critical failures upon deployment, jeop-
ardizing reliability and user satisfaction [1, 15, 17, 32]. Therefore,
robust methodologies for identifying and resolving such conflicts
are indispensable.

Recent advancements in Natural Language Processing (NLP), par-
ticularly with Large Language Models (LLMs) such as OpenAI's GPT
series, have significantly enhanced various aspects of requirements
analysis [25]. These models excel in tasks such as requirements
classification [16, 39] and requirement information retrieval [41],
leveraging their extensive training on diverse linguistic datasets.

Despite their success, LLMs are prone to generating inaccurate
outputs, known as hallucination, particularly in scenarios requir-
ing nuanced reasoning and comprehension beyond surface-level
semantics [2, 4, 21, 26, 29]. This limitation poses challenges in ac-
curately detecting and resolving complex conflicts arising from
multiple, interacting requirements.

Existing studies have primarily focused on pairwise conflict
detection using techniques such as natural language inference
(NLI) [14, 16]. These approaches typically involve evaluating the
relationship between pairs of requirements to determine if they
are conflicting or compatible. While effective for simple conflicts
involving two requirements, these methods often fall short when
confronted with more intricate conflicts arising from the interac-
tion of three or more requirements. Such complex conflicts require
a deeper level of reasoning and analysis that goes beyond the capa-
bilities of conventional LLM-based approaches.

To address this state of affairs, this paper explores a novel inte-
gration of LLMs with Satisfiability Modulo Theories (SMT) solvers,
termed SAT-LLM, to enhance the detection of conflicting software
requirements. SMT solvers are renowned for their prowess in com-
putational logic, adeptly identifying logical inconsistencies and
discrepancies within formal specifications. Our hybrid approach
aims to leverage the linguistic proficiency of LLMs for natural lan-
guage understanding and translation tasks, complemented by the
rigorous reasoning capabilities of SMT solvers for ensuring logical
consistency and detecting conflicts, to address the limitations of
standalone LLMs in handling intricate requirement conflicts. Specif-
ically, SAT-LLM endeavors to synergize these strengths to improve
the accuracy and effectiveness of requirement conflict identification
in software engineering contexts.

In our early experiments, we utilized the conflicting requirement
dataset proposed by Fazelnia et al. [16], focusing on software re-
quirements for a Broker system. The dataset is originally composed
of 45 requirements with various types of inconsistencies including
Composite-Negation, Forbid-Stop, Input-Output, Output-Output,
Start-Forbid, Two Frequencies, and Negation. We expanded the


https://doi.org/10.1145/3691620.3695302
https://doi.org/10.1145/3691620.3695302

Conferenc "24, 2024, New York, NY, USA

R_i: Admin shall approve the transactions.

R_j: Approval of transactions requires access to the CMT database.

R_k: .Admin shall not have access to the CMT database.
A prmmmmmmm————————— ‘
! | ChatGPT @ FoL

Formalization
Revision | Protocol ] = toooooooooooo

R_i: Vt, Approve(admin,t)
R_j: Vx,Vy, Approve(x,y) — Access(x,CMT_database)
R_k: ~Access(admin,CMT_database)

A
'
'
|

Conflicting Requirements: x Unsatisfiable @ J
{R_iRj,R K 2 5 o

Satisfiable

No Conflicts “

Figure 1: An overview of the proposed SAT-LLM model to
detect software inconsistencies

dataset by adding 10 additional requirements, deliberately intro-
ducing three new Composite-Negation conflict sets, each involving
three or more conflicting requirements. These enhancements were
aimed at providing a robust framework for evaluating SAT-LLM’s
efficacy in identifying and resolving diverse conflict types within
software requirements, advancing hybrid approaches in this do-
main.

The empirical evidence derived from our experiments strongly
supports the efficacy of our SAT-LLM approach compared to pure
LLM-based methods like ChatGPT in identifying and resolving con-
flicting software requirements. SAT-LLM demonstrates superior
performance, achieving a precision of 1.00, recall of 0.83, and an
F1 score of 0.91, highlighting its ability to accurately detect con-
flicting requirement sets. In contrast, ChatGPT shows moderate
precision (0.85), low recall (0.31), and an F1 score of 0.46, indicating
limitations in handling complex conflict detection scenarios. These
findings not only establish SAT-LLM’s capability to accurately iden-
tify and resolve conflicts but also set a foundation for refining
hybrid approaches that integrate advanced NLP techniques with
formal reasoning methodologies to effectively address complexities
in software development.

2 SAT-LLM METHODOLOGY FOR ENHANCED
CONFLICT DETECTION IN SOFTWARE
REQUIREMENTS

This section introduces the SAT-LLM methodology, designed to
enhance the detection and resolution of conflicting software require-
ments by integrating LLMs with SMT solvers. SAT-LLM leverages
the strengths of NLP in text understanding and formal methods in
logical reasoning, aiming to address challenges posed by ambiguous
or complex requirement specifications.

As depicted in Figure 1, the model initially receives a set of
requirements. These inputs are processed by LLMs to interpret
and translate the requirements from natural language into formal

Fazelnia, Mirakhorli, Bagheri

logic, which are then passed to the Z3[11] module for reasoning.
We detail each step in the remainder of this section.

2.1 Formalization Protocol

By utilizing First-Order Logic (FOL), SAT-LLM can express com-
plex relationships and dependencies among requirements. FOL
extends propositional logic by introducing quantifiers (3 and V)
for statements about objects, predicates for describing properties
or relations, and functions for mapping within a defined domain.
Logical connectives (A, V, =, —) further enable the formulation and
analysis of intricate requirement specifications, facilitating precise
conflict detection and resolution.

Natural language sentences can have several non-equivalent
translations in FOL, as NL often incorporates nuances and contex-
tual elements that can be interpreted and formalized in multiple
valid ways within FOL.

Through our experimentation, we observed that when instruct-
ing ChatGPT to translate NL into FOL, it may struggle to grasp the
underlying information in each NL requirement. For example, it
tends to interpret different terminologies and actions inconsistently,
using terms such as ‘allow’, ‘permit’, or ‘stop’ interchangeably with-
out recognizing their specific implications. Similarly, it may fail to
recognize that actions like ‘modify’, ‘add’, ‘remove’, and ‘update’
can often be grouped under a single, more general action term
without guidance, leading to unnecessary complexity and potential
errors in the translated logic.

Central to SAT-LLM is the Formalization Protocol, which stan-
dardizes the translation of natural language requirements into FOL.
Specifically, we conducted several experiments to identify the in-
consistencies within the translation and developed a protocol for
translating NL into FOL. We identified four primary factors con-
tributing to these inconsistencies, which are detailed in Table 1.

This protocol systematically addresses these nuances by stan-
dardizing terminology, consolidating actions, decomposing complex
requirements, and streamlining function definitions. These efforts
reduce ambiguity and enhance the consistency of FOL translations
generated by ChatGPT. The protocol, along with the requirements,
is provided to ChatGPT to guide the translation into FOL.

2.2 Identifying Conflicts within the Formal
Specification

These generated FOL expressions are then submitted to the Z3 SMT
solver. The role of the Z3 solver is crucial in this context: it analyzes
the set of FOL expressions to determine if they are collectively
satisfiable or if there are logical inconsistencies (unsatisfiability)
among them.

If Z3 determines that the set of FOL expressions is satisfiable
(SAT), it indicates that there are no contradictions or inconsistencies
among the requirements. This outcome suggests that all specified
conditions can coexist without conflict, thereby meeting the sys-
tem’s logical criteria.

However, if Z3 finds the set of FOL expressions to be unsatisfiable
(UNSAT), it means that there exist conflicting requirements within
the set. When faced with an unsatisfiable set, Z3 employs an algo-
rithm, such as the one proposed by Liffiton et al. [28], to pinpoint



Translation Titans, Reasoning Challenges: Satisfiability-Aided Language Models for Detecting Conflicting Requirements

Conferenc "24, 2024, New York, NY, USA

Table 1: Factors Contributing to Inconsistencies in NL Requirements to FOL Constraints Translation

l Category ‘ Definition (D) and Example (E) ‘
Terminology (D) Grouping similar actions under a unified term to avoid inconsistencies, and using negation for antonyms. (E)
Consistency Allow/Permit: Use “allow”, Stop / Prevent: use “Not(allow)”, Revise/Modify/Change: Modify
Action (D) Using broder action when certain actions are subset of more general actions. In such cases, both specifications
Consolidation shall be expressed. (E) Use “modify” to encompass “add”, “remove”, and “update”

Requirement (D) Break down complex requirements involving multiple subjects or actions into simpler, separate statements to

Decomposition clarify. (E) Instead of “X and Y shall have access to the system”, use “X shall have access to the system” and “Y shall
have access to the system”.

Function (D) Simplify function definitions by using only the main verb as the function name. (E) Use “access(system, X)”

Streamlining instead of creating overly specific functions like “haveSystemAccess(X)”.

Minimal Unsatisfiable Subsets (MUSes) and Minimal Satisfiable
Subsets (MSSes).

The algorithm used typically involves two main components: the
MapSolver and the SubsetSolver. The MapSolver identifies unique
atomic predicates to prevent the inclusion of supersets of existing
unsatisfiable cores and subsets of satisfying assignments. It strate-
gically adds clauses to enforce or avoid specific conditions based
on the logical structure of the requirements.

Conversely, the SubsetSolver receives these clauses from the
MapSolver. Its role is to evaluate whether these clauses are infeasi-
ble (contributing to the unsatisfiability) or if they can potentially
be extended or adjusted to form a satisfying set (contributing to
satisfiability).

Once the algorithm completes its evaluation, Z3 returns the
identified MUSes. These MUSes are subsets of requirements that,
when considered together, form a core contradiction within the
set. Each MUS represents a minimal group of requirements whose
conjunction leads to logical inconsistency.

These identified MUSes are then communicated back to the de-
velopment team. Their role is crucial for further analysis and action:
they highlight specific points of conflict within the requirements.
The development team can use this information to revise, refine,
or prioritize changes to the requirements to resolve the identified
conflicts effectively.

3 PRELIMINARY EXPERIMENTS AND
FINDINGS IN INCONSISTENCY
IDENTIFICATION

Our initial experiments focus on two key research questions:

e RQ1: How effective is ChatGPT in identifying conflicting
requirements?

e RQ2: How does integrating Satisfiability Techniques with
ChatGPT improve the effectiveness of conflict detection in
software requirements?

3.1 Experimental Setup

We conducted our experiments using the conflicting dataset pro-
posed by [16]. This dataset comprises software requirements for
a Broker system, encompassing seven types of inconsistencies:
Composite-Negation, Forbid-Stop, Input-Output, Output-Output,
Start-Forbid, Two Frequencies, and Negation. Initially containing
45 requirements and 12 conflicting subsets, we expanded the dataset

by adding 10 requirements, specifically targeting three Composite-
Negation conflicting sets. As a result, the final dataset comprised
55 requirements distributed across 15 subsets of conflicting require-
ments. Among these subsets, four subsets involve complex compos-
ite conflicts (conflicts that occur among three or more requirements),
while the others consist of pairs of conflicting requirements.

As for the experimental setup, for translating natural language to
FOL, we employed ChatGPT based on the GPT-4 model. Similarly,
we used the same model for benchmark tasks where we directly
queried ChatGPT to identify conflicting requirements.

We also consider the following evaluation metrics: True Posi-
tive (TP): The number of conflicting requirements correctly identi-
fied along with their conflicting counterparts. False Positive (FP):
The number of non-conflicting requirements incorrectly identified
as conflicting. True Negative (TN): The number of non-conflicting
requirements correctly identified as such. False Negative (FN):
The number of conflicting requirements incorrectly identified as
non-conflicting.

These metrics are defined and computed as:
— TP+TN
Accuracy = Tprp TN FN

Precision = TP+FP

_ TP
Recall = TPiFN

_ PrecisionxRecall
Fl-score =2 x Precision+Recall o o )
To fully leverage ChatGPT’s potential in identifying inconsis-

tencies, we conducted several experiments to determine the most
effective prompt. The prompt plays a crucial role when working
with LLMs [37]. Therefore, the final version includes detailed task
instructions along with examples.

3.2 Preliminary Results and Analysis

Our experiments revealed that ChatGPT detected 33% of conflict-
ing requirement sets, performing better with direct conflicts than
hidden-complex ones. It accurately identified 36% of direct conflicts
(two requirements) and 25% of composite-complex conflicts (three
or more requirements). Additionally, it mistakenly classified two
non-conflicting requirements as conflicting, indicating a need for
improvement in its detection capabilities.

Results for RQ1: ChatGPT identified 33% of the conflicting
sets. Overall, it achieved the following scores: Precision of 0.85,
Recall of 0.31, and an F1 score of 0.46. ChatGPT demonstrated




Conferenc "24, 2024, New York, NY, USA

lower performance in identifying conflicts that are hidden or
span across multiple requirements.

The interpretation of the obtained results highlights that ChatGPT
struggles to find hidden and composite conflicts, especially when
they involve a larger number of requirements, i.e., three or more
requirements forming the conflict. Moreover, the occurrence of
false positives indicates that ChatGPT may identify a subset of
requirements as conflicting when no conflict actually exists, which
can be considered a hallucination case. These finding suggest the
shortcomings of relying solely on ChatGPT to accurately detect
and resolve complex conflicts within the requirements.

On the other hand, we observed that SAT-LLM is able to detect
80% of conflicts correctly. Specifically, SAT-LLM identified 73% of
conflicting pairs and 100% of composite-complex conflicting sets.
Furthermore, our method did not produce any false positives, which
underscores both the accuracy and reliability of the approach in
correctly identifying conflicts.

Results for RQ2: SAT-LLM successfully identified 80% of
the conflicting sets. Overall, it achieved the following scores:
Precision of 1.00, Recall of 0.83, and an F1 score of 0.91. These
results highlight the effectiveness of combining ChatGPT with
formal reasoning methodologies in identifying conflicting re-
quirements.

We observed that the cases where SAT-LLM couldn’t detect the
conflict belong to «Forbid - Stop» and «Output - Output» categories
of inconsistencies. The former occurs “When the same operation is
stopped under a certain condition event and at the same time, is
unconditionally forbidden in another requirement,” and the latter
occurs “ if one requirement alters the result (output) or part of
another requirement” This underscores the challenges SAT-LLM
faces with complex dependencies and nuanced interactions between
requirements.

4 RELATED WORK

The identification and management of conflicting requirements in
software engineering have been extensively studied, employing var-
ious methodologies [19]. Early approaches [20, 24, 35] explored the
use of NLP and SMT solvers for detecting inconsistencies among
stakeholder requirements and prioritizing them, respectively. Fil-
ipovikj et al. [18] introduced automated consistency checking using
pattern-based formalization with the Z3 SMT solver, while Brito
et al. [6] proposed conflict resolution techniques for diverse stake-
holder requirements. These studies primarily focused on direct
conflicts, which occur between two requirements [16], or employed
traditional methods without leveraging the advanced language un-
derstanding capabilities of LLMs. Instead, they involved manual or
semi-automated translation of requirements from natural language
into formal specifications, a process that is often time-consuming,
labor-intensive, and highly susceptible to human error and over-
sight [7, 12].

The emergence of LLMs has sparked interest in their potential
applications within the software engineering community [3, 22],
particularly in requirements engineering tasks. Fazelnia et al. [16]

Fazelnia, Mirakhorli, Bagheri

demonstrated that formulating classification as an entailment prob-
lem enables smaller LLMs, such as RoBERTa [30], to outperform
larger ones such as ChatGPT, while their approach revealed lim-
itations in effectively identifying composite conflicts within the
requirements. Zhang et al. [40] and Carvallo et al. [8] investigated
ChatGPT’s effectiveness in requirements information retrieval and
various requirements engineering tasks, respectively. Luitel et al.
[31] studied the potential of LLMs for detecting incompleteness in
software requirements. Fantechi et al. [14] specifically examined
ChatGPT’s ability to identify inconsistencies in requirements but
noted limitations in handling complex, composite conflicts. While
studies have shown that LLMs excel in tasks like translation and
classification of requirements [13, 23], they are also susceptible to
issues like hallucination [4, 27, 33]. Wang et al. [38] demonstrated
that ChatGPT struggles to maintain logical consistency, highlight-
ing potential issues with reasoning capabilities.

For the translation tasks, in the past few years LLMs have been
widely studied. Endres et al. investigated ChatGPT’s translation
abilities to transform natural language intent into formal method
postconditions [13]. Cosler et al. [10] proposed nl2spec to interac-
tively translate unstructured natural language into temporal logic
using GPT models. NL2TL [9] transformed natural language into
temporal logic and investigated the performance of different lan-
guage models including T5 [36] and OpenATl’s GPT models.

5 CONCLUSION AND FUTURE WORK

In this work, we propose SAT-LLM, a novel framework that inte-
grates the linguistic capabilities of LLMs with the rigorous logical
reasoning of SMT solvers to improve the detection and resolution of
complex, composite conflicts in software requirements. By extend-
ing requirement analysis beyond pairwise evaluations, SAT-LLM
enhances the accuracy and comprehensiveness of conflict detection,
handling nuanced requirement interactions more effectively than
previous methods. Through empirical validation and comparative
analysis, we demonstrate the operational advantages of our ap-
proach and highlight its potential for improving the reliability and
accuracy of software development processes.

For future work, we plan to focus on improving our model’s
ability to better understand the semantics needed for seamless
and accurate translation from natural language to FOL. We will
also extend SAT-LLM’s capabilities to address even more intricate
interactions and composite conflicts. Given the limited availability
of data on conflicting requirements, we have already expanded
our dataset to include more complex conflicts. Our future efforts
will involve further expanding this dataset to thoroughly evaluate
the effectiveness of our methodology in identifying and resolving
conflicts in real-world software development scenarios.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable comments.
This work was supported in part by National Science Foundation
awards CCF-2139845, CCF-2124116, and CCF-1943300.

REFERENCES

[1] Khlood Ahmad, Muneera Bano, Mohamed Abdelrazek, Chetan Arora, and John
Grundy. 2021. What’s up with requirements engineering for artificial intelligence
systems?. In 2021 IEEE 29th International Requirements Engineering Conference
(RE). IEEE, 1-12.



Translation Titans, Reasoning Challenges: Satisfiability-Aided Language Models for Detecting Conflicting Requirements

(2]

o
&

=

[10]

[11]

[12

[13

[14]

[15]

[16

[17

[18

[19]

[20

[21

[22]

[23]

[24

Mohannad Alhanahnah, Md Rashedul Hasan, and Hamid Bagheri. 2024. An
Empirical Evaluation of Pre-trained Large Language Models for Repairing Declar-
ative Formal Specifications. CoRR abs/2404.11050 (2024). https://doi.org/10.
48550/ARXIV.2404.11050 arXiv:2404.11050

Mohannad Alhanahnah, Md Rashedul Hasan, and Hamid Bagheri. 2024. An
Empirical Evaluation of Pre-trained Large Language Models for Repairing Declar-
ative Formal Specifications. arXiv preprint arXiv:2404.11050 (2024).

Hamid Bagheri, Mehdi Mirakhorli, Mohamad Fazelnia, Ibrahim Mujhid, and
Md Rashedul Hasan. 2024. Neuro-Symbolic Approach to Certified Scientific
Software Synthesis. In Proceedings of the 1st ACM International Conference on
AlI-Powered Software. 147-150.

Brian Berenbach, Daniel Paulish, Juergen Kazmeier, and Arnold Rudorfer. 2009.
Software & systems requirements engineering: in practice. McGraw-Hill, Inc.
Isabel Sofia Brito, Ana Moreira, Rita A Ribeiro, and Jodo Araujo. 2013. Han-
dling conflicts in aspect-oriented requirements engineering. Aspect-Oriented
Requirements Engineering (2013), 225-241.

Luiz Carvalho, Renzo Gaston DEGIOVANNI, Matias Brizzio, Maxime Cordy,
Nazareno Aguirre, Yves Le Traon, and Mike Papadakis. 2023. Acore: Automated
goal-conflict resolution. In 26th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE), Vol. 13991.

Juan Pablo Carvallo and Lenin Erazo-Garzon. 2023. On the use of ChatGPT
to support requirements engineering teaching and learning process. In Latin
American Conference on Learning Technologies. Springer, 328—342.

Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. 2023. NI2tl: Trans-
forming natural languages to temporal logics using large language models. arXiv
preprint arXiv:2305.07766 (2023).

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Car-
oline Trippel. 2023. nl2spec: Interactively translating unstructured natural lan-
guage to temporal logics with large language models. In International Conference
on Computer Aided Verification. Springer, 383-396.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Renzo Degiovanni, Facundo Molina, German Regis, and Nazareno Aguirre. 2018.
A Genetic Algorithm for Goal-Conflict Identification. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 520-531. https:
//doi.org/10.1145/3238147.3238220

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K Lahiri.
2023. Formalizing Natural Language Intent into Program Specifications via Large
Language Models. arXiv preprint arXiv:2310.01831 (2023).

Alessandro Fantechi, Stefania Gnesi, Lucia Passaro, and Laura Semini. 2023.
Inconsistency Detection in Natural Language Requirements using ChatGPT: a
Preliminary Evaluation. In 2023 IEEE 31st International Requirements Engineering
Conference (RE). IEEE, 335-340.

Mohamad Fazelnia, Igor Khokhlov, and Mehdi Mirakhorli. 2022. Attacks, de-
fenses, and tools: A framework to facilitate robust AI/ML systems. arXiv preprint
arXiv:2202.09465 (2022).

Mohamad Fazelnia, Viktoria Koscinski, Spencer Herzog, and Mehdi Mirakhorli.
2024. Lessons from the Use of Natural Language Inference (NLI) in Requirements
Engineering Tasks. In 2024 IEEE 32nd International Requirements Engineering
Conference (RE). 103-115. https://doi.org/10.1109/RE59067.2024.00020
Mohamad Fazelnia, Ahmet Okutan, and Mehdi Mirakhorli. 2022. Supporting Ar-
tificial Intelligence/Machine Learning Security Workers Through an Adversarial
Techniques, Tools, and Common Knowledge Framework. IEEE Security & Privacy
21, 1 (2022), 37-48.

Predrag Filipovikj, Guillermo Rodriguez-Navas, Mattias Nyberg, and Cristina
Seceleanu. 2017. SMT-based consistency analysis of industrial systems require-
ments. In Proceedings of the Symposium on Applied Computing. 1272-1279.
Matthias Galster, Mehdi Mirakhorli, Jane Cleland-Huang, Janet E. Burge, Xavier
Franch, Roshanak Roshandel, and Paris Avgeriou. 2013. Views on software
engineering from the twin peaks of requirements and architecture. SIGSOFT
Softw. Eng. Notes 38, 5 (aug 2013), 40-42. https://doi.org/10.1145/2507288.2507323
Vincenzo Gervasi and Didar Zowghi. 2005. Reasoning about inconsistencies in
natural language requirements. ACM Transactions on Software Engineering and
Methodology (TOSEM) 14, 3 (2005), 277-330.

Md Rashedul Hasan, Jiawei Li, Iftekhar Ahmed, and Hamid Bagheri. 2023. Auto-
mated Repair of Declarative Software Specifications in the Era of Large Language
Models. CoRR abs/2310.12425 (2023). https://doi.org/10.48550/ARXIV.2310.12425
arXiv:2310.12425

Md Rashedul Hasan, Jiawei Li, Iftekhar Ahmed, and Hamid Bagheri. 2023. Auto-
mated Repair of Declarative Software Specifications in the Era of Large Language
Models. arXiv preprint arXiv:2310.12425 (2023).

Tobias Hey, Jan Keim, Anne Koziolek, and Walter F Tichy. 2020. Norbert: Transfer
learning for requirements classification. In 2020 IEEE 28th international require-
ments engineering conference (RE). IEEE, 169-179.

Viktoria Koscinski, Celeste Gambardella, Estey Gerstner, Mark Zappavigna, Jen-
nifer Cassetti, and Mehdi Mirakhorli. 2021. A Natural Language Processing
Technique for Formalization of Systems Requirement Specifications. In 2021

[25

[26

[27

[28

[29

[30

w
—

(32]

[33

(34

[35

&
2

[37

[38

(39]

[40

[41

Conferenc "24, 2024, New York, NY, USA

IEEE 29th International Requirements Engineering Conference Workshops (REW).
350-356. https://doi.org/10.1109/REW53955.2021.00062

Viktoria Koscinski, Sara Hashemi, and Mehdi Mirakhorli. 2023. On-Demand Se-
curity Requirements Synthesis with Relational Generative Adversarial Networks.
In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
1609-1621. https://doi.org/10.1109/ICSE48619.2023.00139

Jack Lanchantin, Shubham Toshniwal, Jason Weston, Sainbayar Sukhbaatar, et al.
2024. Learning to reason and memorize with self-notes. Advances in Neural
Information Processing Systems 36 (2024).

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2023.
Halueval: A large-scale hallucination evaluation benchmark for large language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. 6449-6464.

Mark H Liffiton and Ammar Malik. 2013. Enumerating infeasibility: Finding
multiple MUSes quickly. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems: 10th International Confer-
ence, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings 10.
Springer, 160-175.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic,
and Hao Su. 2024. Deductive verification of chain-of-thought reasoning. Advances
in Neural Information Processing Systems 36 (2024).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Dipeeka Luitel, Shabnam Hassani, and Mehrdad Sabetzadeh. 2024. Improving re-
quirements completeness: Automated assistance through large language models.
Requirements Engineering 29, 1 (2024), 73-95.

Dewi Mairiza and Didar Zowghi. 2010. An ontological framework to manage
the relative conflicts between security and usability requirements. In 2010 Third
International Workshop on Managing Requirements Knowledge. IEEE, 1-6.
Timothy R McIntosh, Tong Liu, Teo Susnjak, Paul Watters, Alex Ng, and Malka N
Halgamuge. 2023. A culturally sensitive test to evaluate nuanced gpt hallucination.
IEEE Transactions on Artificial Intelligence (2023).

Mehdi Mirakhorli and Jane Cleland-Huang. 2013. Traversing the Twin Peaks.
IEEE Software 30, 2 (2013), 30-36. https://doi.org/10.1109/MS.2013.40

Francis Palma, Angelo Susi, and Paolo Tonella. 2011. Using an SMT solver for
interactive requirements prioritization. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Machinery,
New York, NY, USA, 48-58. https://doi.org/10.1145/2025113.2025124

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Journal of machine
learning research 21, 140 (2020), 1-67.

Alberto D Rodriguez, Katherine R Dearstyne, and Jane Cleland-Huang. 2023.
Prompts matter: Insights and strategies for prompt engineering in automated
software traceability. In 2023 IEEE 31st International Requirements Engineering
Conference Workshops (REW). IEEE, 455-464.

Boshi Wang, Xiang Yue, and Huan Sun. 2023. Can ChatGPT Defend its Belief in
Truth? Evaluating LLM Reasoning via Debate. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 11865-11881.
https://doi.org/10.18653/v1/2023.findings-emnlp.795

Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt.
2024. Chatgpt prompt patterns for improving code quality, refactoring, require-
ments elicitation, and software design. In Generative Al for Effective Software
Development. Springer, 71-108.

Jianzhang Zhang, Yiyang Chen, Chuang Liu, Nan Niu, and Yinglin Wang. 2023.
Empirical Evaluation of ChatGPT on Requirements Information Retrieval Under
Zero-Shot Setting. In 2023 International Conference on Intelligent Computing and
Next Generation Networks (ICNGN). IEEE, 1-6.

Jianzhang Zhang, Yiyang Chen, Nan Niu, and Chuang Liu. 2023. A preliminary
evaluation of chatgpt in requirements information retrieval. arXiv preprint
arXiv:2304.12562 (2023).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009


https://doi.org/10.48550/ARXIV.2404.11050
https://doi.org/10.48550/ARXIV.2404.11050
https://arxiv.org/abs/2404.11050
https://doi.org/10.1145/3238147.3238220
https://doi.org/10.1145/3238147.3238220
https://doi.org/10.1109/RE59067.2024.00020
https://doi.org/10.1145/2507288.2507323
https://doi.org/10.48550/ARXIV.2310.12425
https://arxiv.org/abs/2310.12425
https://doi.org/10.1109/REW53955.2021.00062
https://doi.org/10.1109/ICSE48619.2023.00139
https://doi.org/10.1109/MS.2013.40
https://doi.org/10.1145/2025113.2025124
https://doi.org/10.18653/v1/2023.findings-emnlp.795
https://www.researchgate.net/publication/383395498

	Abstract
	1 Introduction
	2 SAT-LLM Methodology for Enhanced Conflict Detection in Software Requirements
	2.1 Formalization Protocol
	2.2 Identifying Conflicts within the Formal Specification

	3 Preliminary Experiments and Findings in Inconsistency Identification
	3.1 Experimental Setup
	3.2 Preliminary Results and Analysis

	4 Related Work
	5 Conclusion and Future Work
	References

