
A Dynamic Duo of Finite Elements and Material Points

Xuan Li
UCLA
USA

xuan.shayne.li@gmail.com

Minchen Li
Carnegie Mellon University

USA
minchernl@gmail.com

Xuchen Han
Toyota Research Institute

USA
xuchen.han@tri.global

Huamin Wang
Style3D Research

USA
wanghmin@gmail.com

Yin Yang
University of Utah

USA
yin.yang@utah.edu

Chenfanfu Jiang
UCLA
USA

chenfanfu.jiang@gmail.com

Figure 1: Multi-Material Simulations using Dynamic Duo. From left to right: ametal boat propelling throughwater; multicolored

sand passing through holes in fabric; honey interacting with a textile surface; and a disaster caused by a debris �ow. Each scene

highlights the intricate interaction between di�erent materials and structures, emphasizing the �delity and adaptability of our

coupled FEM-MPM simulator.

ABSTRACT

This paper presents a novel method to couple Finite Element Meth-

ods (FEM), typically employed for modeling Lagrangian solids

such as �esh, cloth, hair, and rigid bodies, with Material Point

Methods (MPM), which are well-suited for simulating materials un-

dergoing substantial deformation and topology change, including

Newtonian/non-Newtonian �uid, granular materials, and fracturing

materials. The challenge of coupling these diverse methods arises

from their contrasting computational needs: implicit FEM integra-

tion is often favored to enjoy stability and large timesteps, while

explicit MPM integration bene�ts from its allowance for e�cient

GPU optimization and �exibility of applying di�erent plasticity

models, which only allows for moderate timesteps. To bridge this

gap, a mixed implicit-explicit time integration (IMEX) approach is

proposed, utilizing principles from time splitting for partial di�eren-

tial equations and optimization-based time integrators. This method

adopts incremental potential contact (IPC) to de�ne a variational

frictional contact model between the two materials, serving as the

primary coupling mechanism. Our method enables implicit FEM
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and explicit MPM to coexist with signi�cantly di�erent timestep

sizes while preserving two-way coupling. Experimental results

demonstrate the potential of our method as a strong foundation for

future exploration and enhancement in the �eld of multi-material

simulation.
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1 INTRODUCTION

The Finite Element Method (FEM) has achieved notable success in

animating elastic objects, such as solids, shells, and rods [Bergou

et al. 2008; Grinspun et al. 2003; Teran et al. 2005]. Despite its advan-

tages, FEM encounters challenges with severe deformations, often
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resulting in an ill-conditioned system due to its total Lagrangian na-

ture where the reference con�guration is always at the initial time

step. Furthermore, handling topology changes, particularly those

induced by plasticity, remains a signi�cant hurdle. To overcome

these issues, researchers have proposed sophisticated re-meshing

techniques [Bargteil et al. 2007; O’brien et al. 2002]. In contrast,

the Material Point Method (MPM) employs a particle-based spa-

tial discretization, simplifying the handling of topology changes.

The auto-remeshing e�ect provided by the updated Lagrangian na-

ture of MPM helps maintain a well-conditioned system even under

severe deformations, where the reference con�guration is at the

previous time step. Additionally, MPM’s ‘plug-and-play’ plasticity

handling revolutionizes the animation of materials that undergo

plastic deformations, such as snow, sand, foam, and fractures [Klár

et al. 2016; Ram et al. 2015; Stomakhin et al. 2013; Wolper et al.

2019]. However, MPM requires a super-high resolution of particles

to represent �ne-detailed geometry, making it less e�cient for sim-

ulating purely elastic objects than FEM, where adaptive meshing

can be more e�ective.

This contrast between FEM and MPM underscores the need

for their coupling in complex simulations, combining FEM’s preci-

sion in geometry and elastic behavior with MPM’s robustness in

handling topological changes and plastic deformations. However,

this coupling is not without challenges. FEM typically employs

implicit time integration for stability, while explicit integration is

favored in MPM, particularly for its ease in implementing plasticity

models and because the computational cost of each matrix-vector

multiplication in matrix-free implicit MPM is comparable to that

of each explicit integration step. The time step sizes in these two

integration methods can vary signi�cantly, often by several orders

of magnitude. Consequently, asynchronous coupling becomes es-

sential to maintain their respective e�ciencies. Another critical

challenge is contact handling between the two domains. Contact

force modeling is pivotal for two-way coupling, as it is the primary

means of communication between the FEM and MPM domains.

To address these challenges, we propose a novel method to cou-

ple FEM and MPM. Our approach incorporates an asynchronous

time splitting of FEM elasticity, MPM elastoplasticity, and inter-

domain frictional contact forces, leveraging the state-of-the-art

Incremental Potential Contact (IPC) model [Li et al. 2020] to resolve

contact forces between FEM surface triangles and MPM particles.

Due to the high sti�ness of the contact barrier in IPC, we couple

FEM elasticity and inter-domain contact together by implicit inte-

gration under a large time step size. Observing the independent

interaction of each particle with FEM bodies in this stage, we �lter

out non-colliding particles and apply a two-stage Newton’s method,

where elements are frozen once its solution accuracy is achieved,

followed by the resolution of per-particle subproblems. After the

implicit coupling, MPM elasticity is then explicitly integrated with

a smaller time step size and can be combined with various plasticity

models. In this stage, contact forces are treated as constant external

forces, and friction integration is stabilized using Coulomb’s friction

law applied in each substep of MPM based on the current relative

tangential velocity. We provide techniques to control penetrations

due to time splitting and leverage a closest penetration-free state

that is guaranteed to exist for visualization.

In summary, our technical contributions include:

• A novel framework for two-way coupling between meshed

�nite elements in arbitrary codimensions and meshless ma-

terial points with arbitrary elastoplastic models.

• An asynchronous time-splitting scheme that e�ectively in-

tegrates implicit FEM and explicit MPM under signi�cantly

di�erent time step sizes.

• Numerical treatments to accelerate particle-triangle contact

resolutions within the implicit coupling step.

• An IPC-basedMPMgrid frictionmodel that adheres to Coulomb’s

friction law.

• Techniques to reduce penetrations from splitting and guar-

antee penetration-free visualizations.

We demonstrate the e�ectiveness of our framework by simulating

the coupling between FEM soft bodies, rigid bodies, and cloth with

a wide range of MPM elastoplastic materials including water, sand,

snow, and mud.

2 RELATED WORK

2.1 Finite Element Method

Pioneered by Terzopoulos et al. [1987], FEM has established itself

as a fundamental technique for modeling elastic bodies in computer

graphics. In recent physics-based animation research, robustness

and e�ciency have been critical. On the local level, robust con-

stitutive models have been explored [Irving et al. 2004, 2006; Kim

et al. 2019; Smith et al. 2018]. These models accommodate extreme

deformations by allowing inverted or degenerated elements. On the

global level, advancements have focused on developing new solvers

for the governing nonlinear systems. Teran et al. [2005] introduced

a method to project local Hessians to positive de�nite, thus greatly

enhancing the stability of Newton’s method. Gast et al. [2015] re-

formulated the nonlinear system into an optimization problem,

enabling the use of line search for guaranteed convergence and

allowing frame-rate time step sizes. Bouaziz et al. [2014]; Overby

et al. [2017] solved the time integration through a local-global al-

ternating minimization while maintaining a �xed global system

Hessian. Trusty et al. [2022] employed a mixed variational �nite-

element formulation and proposed an e�cient solver. The domain

decomposition technique has also been explored [Li et al. 2019;

Wu et al. 2022]. On the other hand, FEM discretization has been

successfully applied to co-dimensional objects, such as cloth [Bara�

and Witkin 1998], shells [Chen et al. 2023; Grinspun et al. 2003],

and rods [Bergou et al. 2008], and has been utilized to simulate rigid

body dynamics through high-sti�ness elasticity [Lan et al. 2022].

Flow-like and brittle materials can also be modeled [Bargteil et al.

2007; O’brien and Hodgins 1999; Wojtan and Turk 2008], though

frequent remeshing is required to prevent locking artifacts and

support topology changes. A fundamental problem in modeling

FEM object interactions is contact handling. The state-of-the-art

method, Incremental Potential Contact (IPC) [Li et al. 2020], uses

a contact barrier to ensure interpenetration-free simulations. This

method has been extended to simulate co-dimensional objects [Li

et al. 2021]. IPC plays a vital role in our method to resolve FEM

self-collisions and FEM-MPM inter-domain collisions.
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2.2 Material Point Method

MPM is a hybrid simulation method that combines Lagragian parti-

cles and Eulerian grids. Since its introduction to computer graphics

[Hegemann et al. 2013; Stomakhin et al. 2013], it has revolutionized

simulations involving large deformations and frequent topology

changes. Researchers have focused on designing diverse plasticity

models to simulate a variety of dynamic behaviors, including snow

[Stomakhin et al. 2013], sand [Daviet and Bertails-Descoubes 2016;

Klár et al. 2016], foam [Ram et al. 2015; Yue et al. 2015], viscoelastic

rubber [Fang et al. 2019], phase changes [Stomakhin et al. 2014; Su

et al. 2021], and damage [Fan et al. 2022; Wolper et al. 2020, 2019].

To overcome the limitations of Eulerian grids to represent detailed

geometries, MPM can also be combined with meshes along with

specially designed constitutive models [Fei et al. 2018, 2019, 2017;

Han et al. 2019; Jiang et al. 2017]. In parallel, signi�cant e�orts have

been made to enhance the e�ciency of MPM. Fang et al. [2018]

explored time-step adaptivity and optimized particle-grid trans-

fers on sparse grids. Gao et al. [2017] introduced adaptive grids.

Further optimizations of MPM on GPUs and distributed systems

have been achieved by Fei et al. [2021]; Gao et al. [2018]; Qiu et al.

[2023]; Wang et al. [2020b]. While implicit MPM o�ers guaranteed

stability for frame-rate time integration, it requires sophisticated

acceleration algorithms, such as multi-grid methods, to tackle the

challenges posed by large-scale implicit nonlinear systems with

large stencils [Wang et al. 2020a]. Additionally, the return mapping

generally results in an asymmetric force Jacobian. This asymmetry

necessitates intensive, model-by-model mathematical derivations

to develop integrable equivalent force formulations [Li et al. 2022b]

for robust implicit time integration.

2.3 FEM-MPM Coupling

The coupling between FEM and MPM has been extensively stud-

ied within the mechanical engineering community, driven by a

shared motivation with this paper: to combine FEM’s e�ciency in

modeling small deformations due to its use of adaptive meshing

and MPM’s suitability for simulating large deformations, including

fractures. A common approach involved embedding FEM nodes

into the MPM grid [Lian et al. 2011b]. However, this technique

often leads to sticky contact at the FEM-MPM interface, a limita-

tion inherited from MPM. To address this issue, Lian et al. [2011a]

developed a separate grid contact model speci�cally for the inter-

face. Another challenge arises from the requirement for consistent

resolutions between the FEM discretization and the MPM grid.

The particle-to-surface contact model emerged as an e�ective solu-

tion for this issue [Chen et al. 2015]. Despite these advancements,

most of these coupling techniques rely on explicit time integra-

tion, requiring tiny step sizes for stability and thus overlooking the

inherent e�ciency of implicit FEM. This limitation has curtailed

applications in computer graphics. Alternatively, Li et al. [2022a] ex-

plored particle-to-surface IPC to couple implicit FEM with implicit

MPM in a monolithic manner. However, this method is con�ned

to elastic objects, diminishing the necessity for coupling, and its

computational e�ciency is constrained by the implicit MPM bottle-

neck. Extending it to support general plasticity encounters similar

challenges as those faced by implicit MPM. In contrast, our pro-

posed mixed implicit-explicit time integration not only harnesses

the optimal e�ciencies of both FEM and MPM but also maintains

the �exibility to apply a diverse range of plasticity models.

3 GOVERNING EQUATIONS AND
ASYNCHRONOUS TIME SPLITTING

The dynamics of a continuum ¬ can be characterized by a time-

dependent deformation �eld ¨(Ĕ , Ī) from the material spaceĔ ∈ ¬
to its current world space Į ∈ ¬Ī at time Ī . This map is governed

by conservation laws, including mass conservation and momentum

conservation:

Ď(Ĕ , Ī) Ć (Ĕ , Ī) = Ď(Ĕ , 0), Ď(Ĕ , 0) ĉĒ
ĉĪ
(Ĕ , Ī) = Ĝ (Ĕ , Ī), (1)

where Ď(Ĕ , Ī) is the mass density �eld, Ć (Ĕ , Ī) = det∇Ĕ¨(Ĕ , Ī) is
the Jacobian determinant �eld, Ē (Ĕ , Ī) = ĉ¨(Ĕ ,Ī )

ĉĪ is the velocity

�eld, and Ĝ (Ĕ , Ī) is the force density �eld. Here, we focus on two

kinds of internal forces: elastic force, which is de�ned on the in-

domain deformation gradient Ă = ∇Ĕ¨(Ĕ , Ī) and frictional self-

contact, which is de�ned on the domain boundary ĉ¬, and omit

external force for simplicity.

To illustrate the asynchronous time splitting techniques for mul-

tiple domains, we assume the continuum consists of two disjoint

connected components: ¬ = ¬A ∪ ¬B . Each domain has its own

internal force �eld ĜA and ĜB (including elasticity and self-contact).

We denote the inter-domain frictional contact force �eld as ĜAB .
We note that the time splitting is actually used to serialize the ac-

tion of di�erent forces on the whole domain ¬, so we extend the

de�nition of these forces to the entire domain with zero values.

From ĪĤ to ĪĤ+1, we would like to use di�erent time integration

schemes (and di�erent spatial discretizations, which will be dis-

cussed later) for two elastic force �elds: backward Euler for ĜA and

forward Euler for ĜB . For stability consideration, the time integra-

tion of the frictional contact ĜAB is bundled with ĜA . This leads to
the following semi-discrete scheme for momentum conservation:

Ď0 (Ē̂Ĥ+1 − ĒĤ) = ℎ(Ĝ̂Ĥ+1A + Ĝ̂Ĥ+1AB) (backward Euler), (2a)

Ď0 (ĒĤ+1 − Ē̂Ĥ+1) = ℎĜĤB (forward Euler), (2b)

where the superscript stands for the discrete time step,Ď0 = Ď(Ĕ, 0),
ℎ = ĪĤ+1 − ĪĤ is the time step size and Ē̂Ĥ+1 is an intermediate state.

Note that Equation (2b) has no impact on ¬A , so we have ĒĤ+1A =

Ē̂Ĥ+1A , meaning that there is no extra time integration process on

¬A . And the equation is simpli�ed to:

Ď0B (Ē
Ĥ+1
B − Ē̂Ĥ+1B ) = ℎĜĤB . (3)

On the other hand, there is only contact force ĜAB acting on ¬B
in Equation (2a), which leads to

Ď0B Ē̂
Ĥ+1
B = ℎĜ̂Ĥ+1AB + Ď

0
BĒ

Ĥ
B . (4)

Then Equation (2b) can be rewritten as

Ď0B (Ē
Ĥ+1
B − ĒĤB) = ℎ(Ĝ̂Ĥ+1AB + Ĝ

Ĥ
B). (5)

Intuitively, the above equation can be understood that Ĝ̂Ĥ+1AB from

Equation (2a) is treated as a constant external force in Equation (2b).

However, forward Euler usually requires much smaller time step

sizes compared with backward Euler for stability considerations.

This motivates us to use asynchronous time splitting. Assume ℎ̃ =

ℎ/Ċ is the time step size required by stability. The one-step forward
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MPM Particle
MPM Grid
Contact
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Figure 2: Illustration of the Dynamic Duo. We couple FEM-

MPM inter-domain contact with FEM elasticity by implicit

integration. This contact force is then applied as a constant

external Lagrangian force on MPM particles throughout Ċ

substeps of explicit MPM integration.

Euler time integration eq. (5) on ¬B can be further decomposed into

N substeps, leading to the following asynchronous time-splitting

scheme:

Ď0 (Ē̂Ĥ+1 − ĒĤ) = ℎ(Ĝ̂Ĥ+1A + Ĝ̂Ĥ+1AB), (6a)

ĒĤ+1A = Ē̂Ĥ+1A , (6b)

Ď0 (ĒĤ,Ġ+1B − ĒĤ,ĠB ) =
ℎ

Ċ
(Ĝ̂Ĥ+1AB + Ĝ

Ĥ,Ġ
B ), Ġ = 0, 1, 2, ..., Ċ − 1, (6c)

ĒĤ+1B = ĒĤ,ĊB , ĒĤ,0B = ĒĤB . (6d)

4 DYNAMIC DUO

In this section, we illustrate how two di�erent spatial discretizations,

the Finite Element Method (FEM) and the Material Point Method

(MPM), work together seamlessly. We show the time-stepping

pipeline in Algorithm 1 and in Figure 2. Following the convention

above, we discretize ¬A with FEMmeshes and ¬B withMPM parti-

cles. The inter-domain frictional contact forces are de�ned between

the FEM mesh surface and MPM particles using the Incremental

Potential Contact (IPC) method [Li et al. 2020]. The signi�cant ad-

vantage of explicit MPM, and the primary motivation behind this

work, is that explicit MPM can be highly optimized for e�ciency

and can incorporate di�erent plasticity models without the need

for tediously deriving integrable plastic forces [Li et al. 2022b].

4.1 Notations

Let Į★, Ĭ★ with ★ ∈ {Ă,ĉ} be the nodal positions and velocities of

FEM/MPM bodies. Here, {ĮĂ , ĬĂ } are de�ned on FEMmesh vertices,

and {Įĉ , Ĭĉ } are de�ned on MPM particles. Į = [ĮĂ , Įĉ ], Ĭ =

[ĬĂ , Ĭĉ ] are their concatenations. A superscript Ĥ can be appended

to distinguish di�erent time steps. Viewing the initial positions

Ĕ = Į0 as the material space, ĮĤ is the approximation of ¨(Ĕ , ĪĤ),
and ĬĤ is the approximation of ĉ

ĉĪ ¨(Ĕ , ĪĤ). Letĉ = Diag(ĉĂ ,ĉĉ )
be the global diagonal lumped mass matrix formed by integrating

Ď(Ĕ, Ī) over individual FEM elements or MPM particles, {Į̂, Ĭ̂}
be the intermediate penetration-free state from the coupling step

guaranteed by IPC, and ℎĉ , ℎ = Ċℎĉ be the time step sizes for

MPM and FEM, respectively. We distinguish Į̂ and Į because, after

the MPM integration, Įĉ may penetrate into ĮĂ , as discussed in

Section 4.4. In addition, Į̂ serves as a feasible initial guess for the

coupling step and the state at which to evaluate friction basis in

the IPC model.

4.2 Implicit Coupling Step

In this step, we conceptualizeMPMparticles as discrete rigid spheres

with radius Ĩ excluding self-contact. The contact acts in a thin layer

enveloping the sphere [Li et al. 2021]. We take Ĩ = �Į/ 3
√
PPC where

�Į is the spacing of the MPM background grid, and PPC stands for

particle number per cell. This allows overlaps between particles

to prevent unrealistic penetrations of sharp FEM parts into MPM

bodies. After spatial discretization, the elastic and contact forces in

the momentum equation (Equation (6a)) are de�ned w.r.t. the posi-

tions of vertices and particles, necessitating a time discretization of
ĉ
ĉĪ Ā(Ĕ , Ī) = Ē (Ĕ , Ī). Employing the backward-Euler method, the

spatially integrated governing equations are discretized as follows:

ĉ (Ĭ̂Ĥ+1 − ĬĤ) = ℎ(Ĝā (Į̂Ĥ+1Ă ) + Ĝ
ďÿ (Į̂Ĥ+1Ă ) + Ĝ

ÿ (Į̂Ĥ+1) +ĉĝ),
Į̂Ĥ+1 = ĮĤ + ℎĬ̂Ĥ+1 .

(7)

Here, the elasticity force Ĝā is represented by the negative gradient

of elastic strain energies. This includes various forms of energy:

volumetric elasticity energy on tetrahedra for modeling soft bodies;

membrane and bending energies on triangles for thin shells; and

rigidity energy de�ned per body to model nearly rigid objects [Lan

et al. 2022]. The self-contact Ĝďÿ and the inter-domain contact Ĝÿ ,

de�ned among MPM particles and FEM surfaces, are derived from

the negative gradients of frictional contact potentials [Li et al. 2020].

Following [Li et al. 2020], the governing nonlinear equation

system can be integrated into an optimization problem w.r.t. nodal

positions:

Į̂Ĥ+1 = argminĮ
1

2
∥Į − Į̃Ĥ+1∥2ĉ +ℎ

2 («(ĮĂ ) +þ(Į) − Į¦ĉĝ). (8)

Here, Į̃Ĥ+1 = ĮĤ + ĬĤℎ represents the predictive position under

inertia, « denotes the elastic potential of FEM bodies, and þ is the

frictional contact potential. Notably, after the MPM step in the pre-

vious time step, there might be slight penetrations in ĮĤ . So we use

Į̂Ĥ instead of ĮĤ as the starting con�guration for the optimization.

After solving this optimization, the positions and velocities of FEM

vertices are updated accordingly to ĮĤ+1
Ă

= Į̂Ĥ+1
Ă

, ĬĤ+1
Ă

= Ĭ̂Ĥ+1
Ă

. It is

important to note that MPM particles are not advected in this step

to avoid inconsistencies between tracked deformation gradients

and particle positions. This optimization problem is solved using

Newton’s method with a backtracking line search, where the initial

step size is determined by continuous collision detection (CCD)

to prevent penetration during the optimization process [Li et al.

2020]. When assembling the global Hessian matrix, local Hessians

are projected to be semi-positive de�nite to guarantee an energy-

decreasing direction. The linear system is solved by the Conjugate

Gradient (CG) method preconditioned by the 3 × 3 diagonal blocks.

Non-colliding Particle Filtering. Due to the inherent nature of

MPM, the number of MPM particles signi�cantly exceeds the num-

ber of FEM vertices. However, a large proportion of particles do

not even collide with FEM bodies during a time step. For these

non-colliding particles, their next state of non-penetration, Į̂Ĥ+1,
can be analytically determined as Į̃Ĥ+1, and they do not interfere
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Algorithm 1 Dynamic Duo Time Stepping

Scale MPM particle masses by 2Ċ
Ċ+1 ; // Section 4.4

Implicit coupling; // Section 4.2

Update FEM states;

Restore MPM particle masses;

// Explicit MPM step (Section 4.3):

Evaluate particle contact forces (ĜÿĊ , ĜÿĐ ) and basis velocity

Ĭþ ;

for j = 1, 2, ..., N do

Particle-to-grid transfer of mass, velocity, elasticity, contact,

friction, and basis velocity;

Update grid velocity by explicit integration of elasticity and

contact;

Apply Coulumb’s friction law to grid velocity;

Grid-to-particle transfer to update MPM states;

end for

with other particles or FEM bodies. To optimize computational

resources, we can safely exclude these non-interacting degrees of

freedom in Equation (8). To do the �ltering, we only keep parti-

cles that have potential collisions as the scene moves from ĮĤ to

ĮĤ + 2ℎ(ĬĤ + ĝℎ). The collisions are detected by checking overlaps

between trajectories’ bounding boxes.

Two-stage Newton’s Method. To further accelerate convergence,

we employ a two-stage Newton’s method. In the �rst stage, we

solve the full nonlinear optimization until the residual on FEM

DOFs reaches the desired tolerance. We then freeze FEM bodies

and continue to optimize the particle DOFs. A key observation is

that once the FEM domain is �xed, the entire optimization problem

can be e�ectively divided into independent sub-problems for each

particle. However, direct per-particle optimization is not trivial to

implement on a GPU since the contact pairs may vary over time.

Instead, we still simultaneously search for all particles, but with

several acceleration techniques:

• The system matrix is now 3 × 3 block-diagonal, consisting
only of the diagonal mass matrix and the diagonal blocks of

the barrier Hessian. The inverse of the Hessian can then be

e�ciently evaluated per diagonal block.

• For the backtracking line search, we perform CCD to clamp

the search directions per particle and then only halve per-

particle step sizes on energy-increasing particles.

• We continue to freeze particles that reach the desired accu-

racy because of the independence of particles.

4.3 Explicit MPM Step

Due to the asynchronous time splitting, each time step comprises

Ċ sub-steps of explicit MPM integration. At the end of the coupling

step, the IPC forceĜÿ is evaluated on particles, which is decomposed

as the sum of a normal contact force ĜÿĊ and a tangential friction

force ĜÿĐ . ĜÿĊ is then treated as a constant Lagrangian external

force applied to the particles. ĜÿĐ , requiring special consideration,

will be discussed in a separate section. We follow MLS-MPM [Hu

et al. 2018] for our explicit MPM sub-stepping. Each particle’s state

is described by a four-tuple (ĮĦ , ĬĦ , ÿĦ , ĂāĦ ): ĮĦ denotes the par-

ticle position, ĬĦ the particle velocity, ĂāĦ the elastic deformation

gradient tracked on the particle, and ÿĦ the angular momentum

matrix [Jiang et al. 2015]. Time integration within MPM occurs on

a background grid. At each substep Ġ , from ĪĤ to ĪĤ+1, particle mass

and velocity are transferred to the grid:

ģ
Ġ
ğ =

∑

Ħ

ģĦĭ
Ġ
ğĦ , Ĭ

Ġ
ğ =

1

ģ
Ġ
ğ

∑

Ħ

ĭ
Ġ
ğĦģĦ (Ĭ ĠĦ + ÿ

Ġ
Ħ (Įğ − Į

Ġ
Ħ )), (9)

where Įğ is the position of grid node ğ ,ĭ
Ġ
ğĦ represents a quadratic

MLS basis de�ned at grid node ğ evaluated at Į
Ġ
Ħ ,ģ

Ġ
ğ is the trans-

ferred grid node mass, and Ĭ
Ġ
ğ is the transferred grid velocity. For

simplicity, we have omitted the superscript Ĥ in Equation (6c). The

discretized momentum equation on the grid, Equation (6c), is ex-

pressed as Ĭ
Ġ+1
ğ = Ĭ

Ġ
ğ + ℎĉĜ

Ġ
ğ /ģ

Ġ
ğ , where the grid Ĝ

Ġ
ğ is the sum of

the transferred normal contact force Ĝ
ÿĊ,Ġ
ğ =

∑
Ħ ĭ

Ġ
ğĦĜ

ÿĊ
Ħ , gravity

forceģ
Ġ
ğ ĝ and elasticity force Ĝ

ā,Ġ
ğ =

∑
Ħ Ē

0
Ħ Ā (Ă

ā,Ġ
Ħ )∇ĭ

Ġ
ğĦ , where Ā

is the Kirchho� stress. In MLS-MPM, the gradient of the weight

function is calculated as ∇ĭ Ġ
ğĦ =

4
�Į2ĭ

Ġ
ğĦ (Įğ − Į

Ġ
Ħ ). The updated

grid velocities are then transferred back to the particles, updating

their states:

Ĭ
Ġ+1
Ħ =

∑

ğ

Ĭ
Ġ+1
ğ ĭ

Ġ
ğĦ , Į

Ġ+1
Ħ = Į

Ġ
Ħ + ℎĉĬ

Ġ+1
Ħ ,

ÿ
Ġ+1
Ħ =

∑

ğ

Ĭ
Ġ+1
ğ ∇ĭ

Ġ,¦
ğĦ , Ă

ā,Ġ+1
Ħ = (ą + ℎĉÿ

Ġ+1
Ħ )Ă

ā,Ġ
Ħ .

(10)

Incorporating plasticity, at the end of eachMPM substep, we further

pull Ă
ā,Ġ+1
Ħ back into a prede�ned elastic region using the associated

return mapping Ă
ā,Ġ+1
Ħ ←Z(Ăā,Ġ+1Ħ ) [Jiang et al. 2016].

MPM Friction. In accordance with physical principles, the fric-

tion force should always oppose the relative tangential velocity

without altering its direction. Naively applying the evaluated tan-

gential friction force ĜÿĐ on particles can easily violate this law,

causing high-frequency vibration of MPM objects that should re-

main stationary. To stabilize friction integration, we transfer the

basis velocity (de�ned as the nearby FEM surface velocity) onto

the grid. This basis velocity is estimated at the coupling solve’s

convergence by interpolating the velocities of the friction basis

onto MPM particles and then transferred onto grid to serve as the

basis velocity for grid nodes:

ĬþĦ =

∑
ġ∈Đ Čġ,ĦĬġ∑
ġ∈Đ Čġ,Ħ

, Ĭ
þ,Ġ
ğ =

∑
Ħ ĭ

Ġ
ğĦĬ

þ
Ħ

∑
Ħ,ĜÿĐ

Ħ ≠0ĭ
Ġ
ğĦ

. (11)

Here Đ is the set of contact pairs contributing to friction, Čġ,Ħ
denotes the magnitude of the normal contact force, and Ĭġ is the

velocity at the closest point to particle Ħ on the contacting triangle.

The need for interpolation arises from the presence of multiple

contact pairs that collectively contribute to the total friction force

ĜÿĐ on particle Ħ . Note that this averaging process only includes

particles experiencing nonzero friction force, and we skip node ğ if

the denominator is zero. We de�ne the tangential relative velocity

on the grid as:

Ĭ
rel, Ġ+1
ğ = (ą − ĤĤ¦) (Ĭ Ġ+1ğ − Ĭþ,Ġğ ), (12)
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where Ĥ is the normalized Ĝ
ÿĊ,Ġ
ğ and Ĭ

Ġ+1
ğ is the velocity after

applying elasticity and normal contact. The �nal grid velocity, as

adjusted by Coulomb’s friction model, is given by:

Ĭ
Ġ+1
ğ ← Ĭ

Ġ+1
ğ −min{∥�ĬÿĐ,Ġğ ∥, ∥Ĭrel, Ġ+1ğ ∥}Ĭrel, Ġ+1ğ /∥Ĭrel, Ġ+1ğ ∥, (13)

where �Ĭ
ÿĐ,Ġ
ğ = Ĝ

ÿĐ,Ġ
ğ ℎĉ/ģğ is the velocity increment resulting

from ĜÿĊğ if treated as an external force. Note that the friction

coe�cients are already utilized to evaluate ĜÿĐ , which may be

assembled from interfaces with di�erent friction coe�cients. The

projection can be understood that the application of Ĝ
ÿĐ,Ġ
ğ , clamped

by ∥Ĭrel, Ġ+1ğ ∥. This approach e�ectively ensures that the friction

force opposes the relative velocity direction and does not change

it. Our handling of friction represents a balance between conserv-

ing momentum and maintaining stability, with the latter being

more crucial for visual e�ects. Note that the above friction-related

quantities on particles are evaluated at Į̂ .

4.4 Reducing Penetrations from Splitting

Using a �rst-order scheme, such as symplectic Euler and backward

Euler, the integration of Ā
ĀĪ Ē (Ĕ , Ī) = ė with a constant accelera-

tion ė will yield the same velocity despite varying time step sizes.

However, this consistency does not extend to the integration of
Ā
ĀĪ Ā(Ĕ , Ī) = Ē (Ĕ , Ī). It is a common observation that, under con-

stant gravity acceleration and using a �rst-order scheme, objects

fall faster with larger time step sizes. This mismatch contributes to

the penetrations of MPM particles into FEM bodies. Higher-order

schemes may be employed to reduce this mismatch, but they com-

plicate the implementation. Instead, we stick to backward Euler

and symplectic Euler coupling for implementation simplicity but

propose methods to reduce penetrations due to splitting.

Let the evaluated contact acceleration on a particle be ė at cou-

pling step convergence. Ignoring elasticity, from ĪĤ to ĪĤ+1, the trial
velocity and the �nal velocity are the same: Ĭ̂Ĥ+1 = ĬĤ+1 = ĬĤ + ℎė.
However, this does not apply to positions. After implicit time in-

tegration, the penetration-free position is Į̂ = ĮĤ + ℎĬĤ + ℎ2ė. In
contrast, using symplectic Euler (ignoring elasticity) with a time

step of ℎ
Ċ , the �nal position is ĮĤ+1 = ĮĤ + ℎ

Ċ

∑Ċ
Ġ=1 (ĬĤ +

Ġℎ
Ċ ė) =

ĮĤ + ℎĬĤ + Ċ+1
2Ċ ℎ2ė.

One e�ective way to reduce the mismatch is to decrease ℎ, as

the error is ċ (ℎ2). The error order might be slightly lower in prac-

tice due to the splitting of MPM elasticity and smoothing from

particle-grid transfers. Additionally, we employ a plug-and-play

mass scaling mechanism and visualize the closest non-penetration

states to eliminate penetration artifacts.

Mass Scaling. The principle behind this mechanism is to slightly

increase the contact force, repelling MPM solids further away from

FEM solids. To reduce penetrations in ĮĤ+1, we can scale the contact
force Ĝ by 2Ċ

Ċ+1 in the MPM step, to align new ĮĤ+1 with before-

scaling Į̂ . However, scaling Ĝ during the implicit coupling is also

necessary to ensure FEM receives an equivalent momentum correc-

tion. This is challenging since Ĝ is an implicit force in the coupling

step. A solution comes from our discovery that a particle’s contact

force at equilibrium is approximately proportional to its mass. We

scale the particle masses by 2Ċ
Ċ+1 when solving the implicit coupling,

and then restore the original masses during MPM integration. Note

Figure 3: MPM Friction. MPM Play-Dohs with di�erent fric-

tion coe�cients on an incline conveyor.

that the contact force is still an internal force, not interfering with

the total momentum. With this scaling, there will be a greater gap

between two domains in Į̂ , leading to fewer penetrations in ĮĤ+1.

Non-penetration External State. To visually address penetrations,

we use a separate external state of particles Įĥ,Ĥ+1
ĉ

solely for ren-

dering purposes. Į̂Ĥ+1
ĉ

lags one time step behind the current state,

while the current state ĮĤ+1
ĉ

may have penetrations. So we visualize

Įĥ,Ĥ+1
ĉ

by freezing FEM solids and performing a per-particle CCD

from Į̂Ĥ+1
ĉ

to ĮĤ+1
ĉ

to �nd a closest non-penetration state. We only

compute an external state per frame for visualization because this

state is not used in time stepping.

5 EVALUATION

We implemented our framework on a workstation with an NVIDIA

RTX 6000 Ada GPU and an Intel Core i9-10920X CPU. The relative

error of CG is set to 10−3. We stop Newton’s method if the Ĉ∞ norm

of the search direction reaches below 10−2ℎ m.

5.1 Ablation Studies and Unit Tests

MomentumConservation.

The system’s linear mo-

mentum is conserved in

the absence of friction and

external forces. To demon-

strate this, we conduct an

experiment involving two

cubes with identical prop-

erties but di�erent discretizations. These cubes collide under the

same velocity magnitudes. As shown on the right, the total linear

momentum remains consistently zero. However, we note that the

linear momentum under friction will not be conserved due to our

friction clamping mechanism, and the angular momentum is not

conserved due to the choice of backward Euler.

①

②

②①

Reducing Penetrations. Our

mass scaling mechanism

can e�ectively reduce the

penetration of the MPM in-

ternal state into FEM bod-

ies. In a 2D experiment, an

elastic cube is allowed to

free fall from a height of

1 meter onto the ground with a relatively large time step size,

ℎ = 10−2s. As depicted in the inset �gure, we compare scenarios

with and without mass scaling. The results reveal the mechanism’s
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e�cacy in reducing penetration. Additionally, a notable side ef-

fect of mass scaling is its contribution to stabilizing objects on the

ground.

20 22 24 26 28

N (ℎ = 0.04/# s)

10−4

10−3

10−2

10−1

P
en
et
ra
ti
o
n
(m

)

Furthermore, reducing

the time step size is an-

other e�ective way to mit-

igate penetrations. Under

the same experimental setup

above, we progressively re-

�ned the time step size by

a factor of 2. The inset plot

demonstrates that penetration can e�ectively converge to zero with

this continuous re�nement of the time step size.

w/ grid projection w/o grid projection

MPM Friction. We conduct a

2D experiment to validate our

friction projection on the MPM

grid. A rectangular elastic object

is placed on a horizontal plane

under downward gravity. Despite

utilizing a small time step size

(ℎ = 10−3s), the object vibrates on the plane if we directly ap-

ply friction as a constant external force, as shown on the right in

the inset �gure. However, by applying our projection on the MPM

grid, we e�ectively address this issue, shown on the left of the inset

�gure.

Analytical

To further assess the

accuracy of our friction

model, we conduct an ex-

periment where a con-

veyor with an inclined an-

gle ĉ = arctan(0.6) tries
to move 4 MPM Play-Dohs

upward, as shown in Fig-

ure 3. Each body, with von

Mises plasticity, is assigned a distinct friction coe�cient (č = 0.4, 0.5,

0.6, 0.7). The experiment con�rms that our model can resolve both

static and dynamic friction even on moving interfaces. The inset

plot reveals that the accelerations from the dynamic friction align

with the analytical solution ĝ(sinĉ∗−č cosĉ∗) (downward positive
direction, ĉ∗ = arctan č). We successfully capture the transition

from dynamic to static friction when č = 0.7 as the relative velocity

vanishes.

FEM Boundary in MPM.

In traditional MPM, bound-

ary conditions are typically

enforced via fuzzy, grid-

based collision detection,

which may overlook �ne

geometrical details close to

the grid resolution. In con-

trast, CCD in our method can resolve collisions with objects of any

thickness, independent of the MPM grid resolution. Illustrated in

the inset �gure, we compare our approach with traditional MPM in

a scenario where a mass of viscous �uid falls onto a thin wire mesh.

With our method, the �uid successfully adheres to the wires due to

Figure 4: Boat. An FEM boat’s progression through MPM

water.

friction, whereas traditional MPM fails to capture the interaction

between the �uid and the wire mesh.

5.2 Multi-Material Simulation

ℎ (s) ℎĉ (s) s/step #P (×106) #V (×103)
Boat 2e-3 5e-5 3.81 3.12 10.2

Ruts 2e-3 2e-5 3.70 2.80 38.0

Dough 2e-5 2e-5 0.67 0.727 10.7

Snowball 5e-3 5e-5 2.22 2.14 2.66

Honey 2e-3 1e-5 1.72 1.19 29.2

Colored Sand 2e-3 2e-5 11.7 5.57 38.4

Debris Flow 5e-3 5e-5 6.71 1.47 236

In this section, we conduct

a comprehensive evalua-

tion of the Dynamic Duo

on its performance in two-

way coupled simulations

involving a diverse set of

FEM elastic solids, such as

soft bodies, rigid bodies,

cloth, and various MPM elastoplastic materials, including �uid,

sand, snow, and debris �ow. Detailed simulation statistics can be

found in the inset table. The average timing per step is reported.

The last two columns are the particle count and the vertex count.

Boat. In Figure 4, we demonstrate the use of a�ne body dy-

namics [Lan et al. 2022] to simulate the movement of a rigid boat

through a tank �lled with J-based MPM �uid [Jiang et al. 2015].

The propeller is attached to the shaft through contact. Buoyancy

keeps the boat a�oat. The interaction between the propeller and

the water generates forward thrust by pushing the water backward.

The propeller is not controlled by Dirichlet boundary conditions.

Instead, the e�ect of motor power on the propeller is mimicked by

a balanced rotational external force �eld to generate a naturalistic

interaction between the propeller and the boat.

Ruts. In Figure 8, we present an experiment, inspired by Zhao

et al. [2023a], to demonstrate our Dynamic Duo’s potential appli-

cations in geotechnical engineering, particularly in analyzing soil

interactions. We simulate a scenario of a NASA Mars rover’s wheel
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Figure 5: Dough. A rolling pin rolls out an MPM dough. Con-

tact force is visualized on particles by a color gradient ranging

from blue (low) to red (high).

traversing granular soil modeled using MPM with Drucker-Prager

plasticity, thus leaving deep ruts. Similar to the previous example,

the wheel’s movement is driven by a balanced rotational external

force �eld. Notably, we haven’t introduced additional friction be-

tween the soil and the wheel; instead, the thrust is generated solely

through the friction amongst the soil grains themselves.

Dough. In Figure 5, we simulate a common kitchen task to demon-

strate the application of rigid bodies in soft body manipulation,

inspired by [Huang et al. 2021]. A rolling pin �attens MPM dough

with von Mises plasticity. The rolling pin’s handle follows a prede-

�ned path, while the roller is attached around it by contact, free to

rotate. The two-way interaction is indicated by the rotation driven

by friction between the dough and the roller.

Grad/Energy (0.4%)
Collision Detection (2.2%)
Linear System (4.5%)

Hessian (5.7%)

Grid Allocation (9.8%)

G2P (10.1%)
P2G (67.3%)

Snowball. In Figure 7,

we drop an MPM snow ball

modeled with Cam-Clay

plasticity [Gaume et al.

2018] onto soft FEM mush-

rooms. The two-way im-

pact smashes the snowball

and also deforms the elas-

tic mushrooms. Addition-

ally, due to friction, portions of the snow adhere to the tops of the

mushrooms. Notably, as detailed in the inset pie chart, the compu-

tational cost of contact handling (red) in this scenario is relatively

moderate compared to MPM time integration (blue).

Honey. In Figure 6, we present a simulation where honey is

poured over pieces of cloth, each having di�erent friction coe�-

cients. The dynamics of the cloth are captured using ARAP mem-

brane energy and dihedral bending energy [Grinspun et al. 2003],

and the honey is modeled as MPM J-based �uids with viscosity. The

varying magnitudes of friction result in distinct buckling patterns

on the cloth.

Colored Sand. In Figure 9, we showcase a simulation where a

pile of colored sand, modeled using Drucker-Prager plasticity, is

scooped up by a cloth. The sand grains slowly trickle out through

small, pre-opened holes. Subsequently, the sand is released, burying

De
cre

asi
ng

Figure 6: Honey. Di�erent buckling patterns of honey on a

piece of cloth with di�erent friction coe�cients.

a corner of the cloth. The rich collisions between the cloth and sand

grains demonstrate the robustness of our coupling framework.

Debris Flow. In our �nal example, depicted in Figure 10, we sim-

ulate a large-scale natural disaster involving a debris �ow. The

�ow, modeled using von Mises plasticity with softening [Zhao et al.

2023b], cascades down a terrain of complex geometry. The tremen-

dous kinetic energy of the debris �ow not only causes signi�cant

deformation of trees but also washes rocks down the valley.

6 CONCLUSION

We introduced the Dynamic Duo, a novel framework designed to

integrate �nite elements and material points seamlessly. The IMEX

framework combines the optimal performance of implicit FEM and

the �exibility of explicit MPM in applying various plasticity models.

We achieve this through an asynchronous time-splitting scheme,

where IPC is applied to model inter-domain frictional contact be-

tween FEM and MPM. The Dynamic Duo is not only pivotal for

creating complex multi-material animations but also holds potential

in inverse applications such as shape optimization, robot learning,

and disaster prediction and prevention. However, our framework

also presents certain limitations that warrant further research. For

instance, friction clamping can underestimate the friction forces

on MPM bodies. Tracking momentum loss and applying correc-

tion impulses to FEM could be explored. Moreover, completely

eliminating the penetration issue in an e�cient way is yet to be

achieved. Future developments could explore alternating FEM and

MPM integrations to incrementally resolve residual penetrations.

Additionally, optimizing the coupling step is another avenue for

improvement, possibly through more e�cient Hessian assemblies

and linear solvers.
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Figure 7: Snow. Soft FEM mushrooms undergoing elastic deformations by the impact of a falling MPM snowball.

Figure 8: Ruts. The wheel of a Mars rover navigates through

the soil and leaves deep ruts in its path. We also visualize the

contact force on soil particles, indicated by a color gradient

ranging from blue (low) to red (high).

Figure 9: Colored Sand. A pile of MPM sand grains is scooped

up by a piece of FEM cloth with holes.



A Dynamic Duo of Finite Elements and Material Points SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Figure 10: Debris Flow. A large-scale natural disaster caused

by debris �ow cascading down the valley.
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