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ABSTRACT

Viroids are single-stranded circular noncoding RNAs that mainly infect crops. Upon infection, nuclear-replicating viroids engage
host DNA-dependent RNA polymerase II for RNA-templated transcription, which is facilitated by a host protein TFIIIA-7ZF.
The sense-strand and minus-strand RNA intermediates are differentially localised to the nucleolus and nucleoplasm regions,
respectively. The factors and function underlying the differential localisation of viroid RNAs have not been fully elucidated. The
sense-strand RNA intermediates are cleaved into linear monomers by a yet-to-be-identified RNase III-type enzyme and ligated
to form circular RNA progeny by DNA ligase I (LIG1). The subcellular compartment for the ligation reaction has not been char-
acterised. Here, we show that LIG1 and potato spindle tuber viroid (PSTVd) colocalise near the nucleolar region in Nicotiana
benthamiana protoplasts. The colocalised region is also the highly condensed region of sense-strand PSTVd RNA, indicating that
PSTVd RNA and LIG1 form a biomolecular condensate for RNA processing. This finding expands the function of biomolecular

condensates to the infection of subviral pathogens. In addition, this knowledge of viroid biogenesis will contribute to exploring

thousands of viroid-like RNAs that have been recently identified.

Viroids, the smallest nucleic acid-based pathogens known
to date, are single-stranded circular noncoding RNAs that
mainly infect crops (Ma et al. 2023; Wang 2021; Ortol4d and
Daros 2023). There are two families of viroids, Pospiviroidae
and Avsunviroidae. Members of the two families differ by their
sites of replication, structural features and replication modes (Di
Serio et al. 2023). Members of Pospiviroidae (also termed nuclear-
replicating viroids) replicate in the nucleus. Upon infection, host
ViRP1 protein recognises the C-loop RNA motif in the viroid
genome, and the Importin alpha4 protein shuttles the viroid/
ViRP1 RNA-protein complex into the nucleus (Ma et al. 2022).
Within the nucleus, viroids, aided by a specific splicing variant
of TFIIIA protein (TFIIIA-7ZF), redirect host DNA-dependent
RNA polymerase II for de novo RNA-templated transcription
(Dissanayaka Mudiyanselage et al. 2022; Wang et al. 2016;

Rackwitz, Rohde, and Sanger 1981; Dissanayaka Mudiyanselage
and Wang 2020). Interestingly, there is an active shuttling pro-
cess to enrich sense-strand (+) viroid intermediates, but not the
minus-strand intermediates, to the nucleolar region (Qi and
Ding 2003). However, the exact nature and function of this con-
densed RNA region remain a mystery.

For members of Pospiviroidae, linear multimeric intermediates
are processed by a yet-to-be-identified RNase III-type enzyme
to become linear monomers (Gas et al. 2008), which are subse-
quentially circularised by host DNA ligase I (LIG1) during the
natural infection process (Nohales, Flores, and Daros 2012).
LIG1 recognises a conserved position in the viroid loop E motif
or equivalent positions in members of Pospiviroidae (Nohales,
Flores, and Daros 2012; Gas et al. 2007). This processing is
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FIGURE1 | DNA ligase 1 (LIG1)and PSTVd colocalised in the biomolecular condensate in Nicotiana benthamiana protoplasts. (A) An immuno-
blot shows the specificity of a-LIG1 primary antibody (ThermoFisherSci). (B) Test of the new method in combining immunofluorescence and RNA

PSTVd

LIG1

Merge

DAPI

fluorescence in situ hybridisation. DAPI (grey) stains the nucleus. Specific PSTVd riboprobe with Alexa Fluor 488 labelling only gave signals (green)
in PSTVd-infected cells. Alexa Fluor 594-conjugated secondary antibody only gave signals (magenta) in cells incubated with a-LIG1. Detailed pro-
tocol can be found in Ma et al. (2024). (C) Single channels and the merge of PSTVd and LIG1 of the bottom right image in (B). (D) A representative
z-stack series showing the colocalisation of PSTVd (green) and LIG1 (magenta). Scale bar, 5um.
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accompanied by a series of drastic RNA structural rearrange-
ments (Gas et al. 2007). Despite the importance of this process-
ing, the exact subcellular compartment for the ligation step has
not been elucidated (Ma et al. 2023).

In Arabidopsis, LIG1 is distributed throughout most of the nu-
cleus and is slightly enriched in the nucleolus (Li et al. 2015),
as observed by using immunofluorescence (IF). Although it is
convenient to observe LIG1 subcellular localisation using fluo-
rescent protein-based live cell imaging or immunofluorescence
(IF), it is technically challenging to simultaneously observe
protein and RNA in plant samples, particularly for those local-
ised in the nucleus. The MS2-MCP system has been useful to
track RNA localisation in live cells; it uses bacteriophage MS2
coat protein (MCP) tagged with green fluorescent protein (GFP)
to recognise a conserved RNA hairpin motif derived from the
bacteriophage genome (Syed and Lim 2024). However, this sys-
tem cannot be applied to viroids, because insertion of the MS2-
binding hairpin eliminates viroid infectivity. The procedures
of traditional IF and RNA fluorescence in situ hybridisation
(FISH) are generally incompatible, because formamide and
high temperature treatment in FISH denatures antibodies and
hampers antibody specificity (Meyer, Garzia, and Tuschl 2017).
To address this, we recently developed a new method that al-
lows simultaneous observation of protein and RNA in the nu-
cleus (Ma et al. 2024). In this method, we first incubate primary
and Alexa Fluor-conjugated secondary antibodies with freshly
prepared Nicotiana benthamiana protoplasts infected with po-
tato spindle tuber viroid (PSTVd). Protoplasts are then fixed and
treated with RNA FISH procedures (Qi and Ding 2002) before
observation under microscope.

By using a specific antibody against endogenous LIG1
(Figure 1A), we observed the distribution of LIG1 resembling
the previous report (Figure 1B). There was no signal in cells
treated with secondary antibody but without primary antibody
(Figure 1B), indicating that the IF result is specific. In addition,
only PSTVd-infected cells showed a positive signal (Figure 1B),
indicating the signal specificity of RNA FISH. Interestingly, we
found that LIG1 and PSTVd mostly colocalised near the nucle-
olar region (Figure 1B,C), which had the strongest (+) PSTVd
signal akin to the previously reported pattern of (+) PSTVd (Qi
and Ding 2003).

By observing the serial z-stack images obtained using a laser
scanning confocal microscope (Figure 1D), we further con-
firmed that LIG1 colocalises with (+) PSTVd only in the PSTVd-
enriched region that is near the nucleolar region, inferred by
the obvious hollow region in the DAPI staining. This pattern
was repeatedly observed in our samples. Therefore, the PSTVd-
enriched region is a highly organised of protein-RNA com-
plexes, which is a biomolecular condensate by definition (Miao,
Chodasiewicz, and Fang 2024; Banani et al. 2017). Given that
LIG1 is the known enzyme catalysing the ligation reaction, this
overlapping region is probably the viroid RNA ligation site. In
addition, we did notice that PSTVd was not completely colocal-
ised with LIG1 in the condensate, as indicated by the existence
of a few PSTVd green dots in the merge panel in addition to the
overlapping dots showing a pale white colour (Figure 1D), im-
plying the presence of additional factor(s).

Our discovery provides answers to the long-standing question
regarding the mysterious viroid enrichment near the nucleolar
region. This (+) viroid-enriched region is the biomolecular con-
densate that contains viroid RNA (probably the sense-strand
intermediates) and at least the ligation enzyme LIG1. Whether
any RNase I1I-type enzyme also resides in the biomolecular con-
densate for cleavage remains to be determined after the identifi-
cation of the enzyme. Interestingly, there appears to be only one
PSTVd-containing biomolecular condensate in infected cells, as
repeatedly observed in this study and in the previous report (Qi
and Ding 2003), suggesting some level of coordination of viroid
RNA processing and trafficking within the nucleus. It also ex-
plains why the minus-strand viroid RNA does not form a biomo-
lecular condensate (Qi and Ding 2003), because minus-strand
viroid RNA in the nucleus only serves as a template but is not
further processed like (+) viroid RNA intermediates. It is well
known that this viroid-containing biomolecular condensate is
close to, but has very limited overlap with, the nucleolus as indi-
cated by the localisation of PSTVd RNA and U3/U14 RNAs (Qi
and Ding 2003). The organisation of a viroid biomolecular con-
densate close to the nucleolus will possibility impact the func-
tion of the nucleolus, which has been implicated by the report
that viroid infection affects the 18S rRNA maturation process
(Cottilli et al. 2019).

The discovery of PSTVd-LIG1 biomolecular condensate expands
our understanding of pathogen-formed biomolecular conden-
sates, which is now confirmed to occur during the infection of
subviral pathogens. This supports the idea that formation of bio-
molecular condensates is a fundamental process to concentrate
protein and RNA for specific functions. In addition, knowledge
of viroid biogenesis will be useful for exploring recently discov-
ered thousands of viroid-like RNAs (Hao, Ma, and Wang 2024;
Navarro and Turina 2024).
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