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A B S T R A C T   

Understanding the petrological and geochemical processes shaping the Moho transition zone (MTZ) is crucial for 
advancing our knowledge of thermal and chemical exchanges between the oceanic crust and the residual upper 
mantle. In this study, we systematically investigate the MTZ outcropped within the Zedong ophiolite, located in 
the eastern part of the Yarlung-Tsangpo Suture Zone (YTSZ), with the aim of at reconstructing the magmatic 
processes responsible for generating the petrological Moho. The Zedong MTZ comprises a sequence of dunite, 
wehrlite, pyroxenite, and gabbro, with frequent occurrences of clinopyroxene-rich lithologies. Cyclicity within 
the MTZ sequences is characterized by the recurrence of olivine-rich intervals and the presence of zig-zag pat
terns in both major and trace elements of clinopyroxenes. Zircon U–Pb dating on the Zedong gabbros supports 
the coeval formation of the Zedong ophiolite with other YTSZ ophiolites. Clinopyroxene in the Zedong MTZ 
follows a differentiation sequence characterized by an increase in contents of Al2O3 and TiO2, coupled with a 
decrease in Mg#. This differentiation sequence along with frequent occurrences of amphibole suggest the evo
lution of a primitive hydrous melt depleted in Al2O3, TiO2, and Na2O. The depleted Nd–Hf isotopes and rare 
earth element patterns of the MTZ rocks indicate that their parental magmas originated from fluid-enhanced re- 
melting of a previously depleted mantle. Additionally, we proposed that the initiation of a new subduction zone 
results in the re-melting of the mantle peridotite, leading to the formation of primitive hydrous basaltic melts. 
The variable lithologies observed in the Zedong MTZ arise from fractional crystallization and repeated replen
ishment of hydrous melts.   

1. Introduction 

The Moho Transition Zone (MTZ) serves as a critical interface be
tween the upwelling mantle and accreting crust. Within this zone, pe
ridotites are associated with mafic and ultramafic rocks, forming the 
harzburgite-dunite-gabbro sequence, with varying proportions of 
wehrlite and pyroxenite (Boudier and Nicolas, 1995), as observed at the 
mid-Atlantic ridge (e.g., Drouin et al., 2009; Kelemen et al., 2007; 
Takazawa et al., 2007), the East Pacific Rise (e.g., Arai and Takemoto, 
2007; Dick and Natland, 1996; Girardeau and Francheteau, 1993), the 
Parece Vela back-arc basin (Sanfilippo et al., 2013), and in numerous 

ophiolites (e.g., Akizawa and Arai, 2009; Akizawa et al., 2012; Batanova 
et al., 2005; Ceuleneer and Le Sueur, 2008; Koga et al., 2001; Koepke 
et al., 2009; Sano and Kimura, 2007). The occurrence and abundance of 
the MTZ lithologies vary significantly on both regional and local scales 
(e.g., Ceuleneer and Le Sueur, 2008; Dick et al., 2010; Jousselin et al., 
2021; Kelemen et al., 2007; Rospabé et al., 2019; Tamura et al., 2008). 

Although the origin of the MTZ has not been fully resolved and is 
likely case-dependent, it generally involves melts extracted from the 
mantle aggregate, circulating, reacting with peridotite, and partially 
crystallizing, before feeding the overlying crust (e.g., Abily and Ceule
neer, 2013; Boudier and Nicolas, 1995; Jousselin et al., 2021; Karson 
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et al., 1984; Nicolle et al., 2016). Among the diverse MTZ lithologies, the 
most enigmatic rocks are clinopyroxene-rich wehrlite and pyroxenite, 
which are primarily composed of olivine and clinopyroxene. They 
typically form at low crystallization pressures and often exhibit a 
characteristic cumulate texture, suggesting that these rocks were formed 
by accumulation of olivine and clinopyroxene in a shallow crustal 
magma chamber. Given that plagioclase is stable in mid ocean ridge 
systems at shallow pressures (e.g., Grove et al., 1992; Villiger et al., 
2007), the questions arise which mechanism is responsible for the sup
pression of plagioclase crystallization. Two major processes have been 
proposed for the formation of wehrlite and pyroxenite in the MTZ: (1) 
The presence of water in basaltic systems prevented the crystallization of 
plagioclase. This model could account for many wehrlites and clino
pyroxenites occurring in the crust of subduction zone-related ophiolites, 
where a hydrous melt is derived from subduction processes (e.g., Bağci 
et al., 2005; Batanova et al., 2005; Ceuleneer and Le Sueur, 2008). (2) 
Melt-peridotite reaction between the anhydrous mid ocean ridge basalt 
(MORB) and peridotite, followed by subsequent cooling at low pres
sures, could also generate wehrlite and pyroxenite within the MTZ (e.g., 
Abily and Ceuleneer, 2013; Benn et al., 1988; Girardeau and Franche
teau, 1993; Nicolle et al., 2016; Saper and Liang, 2014). 

The present study focuses on the MTZ within the Zedong ophiolite, 
which is located on the at the eastern segment of the Yarlung-Tsangpo 
suture Zone (YTSZ). Previous studies have investigated the structural, 
petrological, and geochemical features of mantle peridotites and the 
mafic dikes intruding the mantle peridotites (e.g., Lai et al., 2015; Xiong 
et al., 2016, 2017). However, very little attention has been paid to the 
MTZ at the Zedong ophiolite. The Zedong MTZ are separated from 
ophiolitic sections of the mantle peridotites and mélanges by thrust 
faults, featuring a continuous section with thickness ranging from ~50 
to 1000 m. Compared to the MTZ sequences from the Luobusa and Oman 
ophiolite, the Zedong MTZ appears to be partly dismembered, with 
notable absence of lower oceanic crust and thick dunite layers (e.g., 
Jousselin et al., 2021; Zhou et al., 2005). Here, we present, for the first 

time, a detailed petrological and geochemical study of dunite-wehrlite, 
pyroxenite, and gabbro within the Zedong MTZ, which enable us to 
systematically investigate the magmatic processes leading to the for
mation of the MTZ and the nature of their mantle source. We demon
strate that the Zedong MTZ originated through a process involving 
fractional crystallization and repeated replenishments of hydrous melts 
in an initial subduction zone at the beginning of the interoceanic 
thrusting. 

2. Geological setting and sample description 

2.1. Geological setting 

The Yarlung-Tsangpo Suture Zone (YTSZ) demarcates the Indian 
plate to the south and the Eurasian plate to the north, along which the 
Yarlung-Tsangpo ophiolites (YTO) are discontinuously outcropped. The 
YTO represent remnants of the Neo-Tethyan oceanic lithosphere, which 
extends in an almost east-west orientation from the Ladakh region in the 
west to the Namche Barwa syntaxis in the east (Fig. 1a). Geologically, 
the YTO are sandwiched between the Tethyan Himalayan unit in the 
south, and the Luobusa conglomerate belt and the Xigaze forearc basin 
in the north (Fig. 1b). Two nearly W-E trending Cenozoic thrust systems, 
i.e., the S-dipping Renbu-Zedong Thrust system and the N-dipping 
Gangdese Thrust system, localize the YTSZ between the northern margin 
of the India plate and the Gangdese Arc lying on the Lhasa Block (e.g., 
Liang et al., 2011; Yin, 2000). Compared to the Penrose-type ophiolites, 
the YTO commonly have very thin sections of cumulus gabbros, with a 
thickness much <3 km (Girardeau et al., 1985; Liu et al., 2020a; Nicolas 
et al., 1981). Multiple gabbroic and diabasic dykes with ages of 
~130–120 Ma crosscut both the mantle and crust sections (e.g., Liu 
et al., 2016; Zhang et al., 2016a; Zhang et al., 2016b; Zhang et al., 
2023a). Mélanges comprising of amphibolites and garnet-amphibolites 
commonly occur underneath the mantle section of the YTO, with pro
tolith U–Pb ages of 125–124 Ma and 40Ar–39Ar cooling ages of ~123 

Fig. 1. (a) Sketch map of the Tibetan Plateau, modified after (Guilmette et al., 2009), illustrating the spatial distributions of key suture zones and tectonic units. KSZ: 
Kunlun suture zone, BNSZ Bangong-Nujiang suture zone, and YTSZ: Yarlung-Tsangpo suture zone. (b) Geological sketch map of the Zedong ophiolite, adapted from 
(Xiong et al., 2016), featuring three designated sample localities. 
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Ma (Guilmette et al., 2012; Zhang et al., 2019). The tectonic context of 
the YTO remains controversial, with three main hypotheses: (1) a Mid- 
Ocean Ridge (MOR; e.g., Li et al., 2022; Liu et al., 2014; Liu et al., 
2022; Xiong et al., 2022; Zhou et al., 2023), (2) a Supra-Subduction Zone 
(SSZ) setting (e.g., Dai et al., 2013; Lian et al., 2016; Xiong et al., 2016, 
2017; Yang et al., 2024), and (3) a multi-stage model where the YTO was 
initially generated in a MOR setting and subsequently modified in a SSZ 
(e.g., Hébert et al., 2012; Liu et al., 2010; Zhou et al., 2005). 

2.2. Sample descriptions 

The Zedong ophiolite is situated between the Triassic Langjiexue 
flysch in the south and the Jurassic Zedong arc complex (part of the 
Gangdese arc) in the north (Fig. 1b; Zhang et al., 2014). The Zedong 
ophiolitic massif is subdivided into three sub-units separated by thrusts, 
which, include the peridotite massif, the mélange with mafic blocks 
within serpentinites, and the MTZ containing predominantly clinopyr
oxenite with occasional layers of dunite, wehrlite, and gabbro (Fig. 2a). 
Within the clinopyroxenite section, coarse-grained clinopyroxenites (C- 
Cpxnite) occur as lenses within a fine-grained olivine-clinopyroxenite 
(F-Cpxnite) matrix (Fig. 2c and d). Magmatic layering is defined by 
variations in relative abundance and/or grain sizes (~2–15 mm) of the 

clinopyroxene, olivine, and plagioclase (Fig. 2). Foliations observed in 
the magmatic layers of various lithologies within the MTZ are nearly 
perpendicular to foliations of peridotites in the mantle section (Fig. 2c 
and e-g). 

We sampled three subunits in the Moho Transition Zone within the 
Zedong ophiolite: the Jinlu (JL), Jieni (JN), and Jiaregang (JRG) within 
the Zedong ophiolite (Fig. 1b). The rock associations within the Zedong 
MTZ undergo severe serpentinization (Fig. 2 and Appendix 1). Specif
ically, nearly all olivines have undergone complete alteration to 
serpentine, while clinopyroxenes remain relatively fresh (Appendix 1). 
The pyroxenites, containing 59–98 vol% clinopyroxene, range from 
olivine clinopyroxenite to clinopyroxenite (Table S1). These pyroxenites 
can be categorized into two groups based on contrasting sizes of euhe
dral to subhedral clinopyroxene grains: C-Cpxnite, characterized by 
grains exceeding 5 mm in width, and F-Cpxnite, characterized by grains 
approximately 2–5 mm in width. Both F-Cpxnite and C-Cpxnite display 
polygonal, equigranular, and adcumulate textures (Fig. 3a). Small 
amounts of olivine-orthopyroxene-clinopyroxene matrix (< 1 mm in 
width) occur along grain boundaries of clinopyroxenes (Fig. 3b–d). It is 
worth noting the absence of plagioclase in the C-Cpxnite and F-Cpxnite 
sections. We selected three wehrlite samples (18JRG5–1, 23JRG1–2-1, 
and 23JRG1–2-2) for detail study. The textures of these three samples 

Fig. 2. (a) Schematic pseudostratigraphic diagram depicting the reconstructed lithospheric architecture along the Jiaregang profile (A-A’) within the Zedong 
ophiolite. (b) Sharp contact between intruding diabase dike and the gabbroic host. (c-d) Coarse-grained olivine clinopyroxenite vein intruding into fine-grained 
clinopyroxenite. (e) Alternating layers of dunite (dark black) and clinopyroxenite (grey) with delineated interfaces (red lines). (f) Interbedded gabbros and fine- 
grained olivine clinopyroxenite. (g) Sharp contact between serpentine and clinopyroxenite. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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closely resemble those of F-Cpxnite, distinguished primarily by a higher 
modal abundance of olivine (Figs. S1.4 and S1.7 in Appendix 1, 
Table S1). 

The websterite sample 18JRG04 was located in the upper part of the 
JRG MTZ (Fig. 2a), characterized by an equigranular texture consisting 
of 67 vol% clinopyroxene and 33 vol% orthopyroxene (Fig. S1.7 in 
Appendix 1). For completeness, we also selected three (olivine-) gabbros 
and one plagioclase-clinopyroxenite that are interbedded with olivine- 
clinopyroxenites (Fig. 2a). These three samples all display adcumulate 
textures with fine-grained clinopyroxene that are partly altered to 
amphibole. All of the olivine and plagioclase within these three samples 
are totally altered to serpentine and chlorite + prehnite, respectively 
(Appendix 1). Finally, the olivine gabbro 18JRG02 contains fine-grained 
clinopyroxene (39 vol%), completely altered plagioclase (29 vol%), and 
severely serpentinized olivine (31 vol%, Table S1 and Appendix 1). 

3. Analytical methods 

All measurements in this study were conducted at the Institute of 
Geology and Geophysics, Chinese Academy of Science, Beijing, China. 
Thin-section micro X-ray fluorescence mapping measurements were 
performed using a Bruker M4 Tornado PLUS spectrometer (Bruker Nano 
GmbH, Berlin, Germany). Bulk rock major and trace element concen
trations were obtained using X-ray fluorescence spectroscopy and 
inductively coupled plasma mass spectrometry (ICP-MS), respectively. 
Mineral major element and trace element abundances were determined 
using a Cameca SX Five electron microprobe and a laser ablation 
inductively coupled plasma mass spectrometry (LA-ICP-MS), respec
tively. Neodymium and hafnium isotopic compositions were obtained 
using the isotope dilution method and subsequently measured using a 

Thermo Fisher Neptune plus multi-collector mass spectrometer. Detailed 
analytical procedures, precision, and accuracy of our measurements are 
provided in the online supplementary materials (Appendix 2 and 
Table S1–S6). 

4. Results 

4.1. Whole rock major and trace elements 

Whole rock major and trace element abundances are listed in 
Table S2, which are consistent with their rock types and primarily reflect 
modal variations (Fig. 4a). Here we will highlight several key observa
tions. The loss on ignition (LOI) fall within the range of 0.90 wt% to 4.72 
wt%, primarily reflecting the degree of serpentinization in the samples. 
Thirteen (olivine-) clinopyroxenite and websterite samples display large 
variations in their Mg# [=100 × Mg/(Mg + Fe), all in molar fractions], 
ranging from 83 to 91 (Fig. 4a). These samples have notably low con
centrations of Al2O3 (1.13–2.95 wt%), TiO2 (0.06–0.33 wt%) and Na2O 
(0.03–0.22 wt%) (Figs. 4b, c, and Table S2). Two gabbroic samples 
display distinct major element compositions, with Mg# values falling 
between 73 and 83, Al2O3 ranging from 8.72 to 19.92 wt%, and total 
alkali (Na2O + K2O) contents varying from 0.23 to 6.03 wt% (Figs. 4b, c, 
and Table S2). 

In the primitive mantle normalized spider diagram, the Zedong py
roxenite and gabbro show consistently depleted patterns in light rare 
earth elements (LREE) and relatively flat patterns in middle to heavy 
REE (Fig. 5). Additionally, the Zedong MTZ samples demonstrate sig
nificant enrichments in large ion lithophile elements (LILE), such as Rb 
and Ba. Most of the samples show positive anomalies of Sr. The excep
tion is the websterite (18JRG02) that displays a negative Sr anomaly. 

Fig. 3. Photomicrographs of (olivine-) clinopyroxenite samples from the Zedong ophiolite. (a) Co-crystallization of olivine and clinopyroxene in the coarse-grained 
olivine clinopyroxenite (18JL09). (b) Flame-like occurences of orthopyroxene and clinopyroxene in the interstitial regions of clinopyroxenite 18JL05. (c-d) Partially 
serpentinization of interstitial olivine and orthopyroxene within clinopyroxenite 18JL04, with an amphibole and magnetite mainly concentrated at the clinopyroxene 
margins or along orthopyroxene exsolution lamellae. 
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Nearly all of the studied samples contain notably negative anomalies in 
Nb, Zr, and Hf, along with weakly negative anomalies in Ta and Ti 
(Fig. 5). The Zedong pyroxenitic samples exhibit analogous trends in 
MREE–HREE and high field strength elements (HFSE), with the patterns 
being subparallel to those found in Zedong gabbros. These pyroxenitic 
samples display more pronounced depletion in LREE compared with the 
Zedong gabbro (Fig. 5). Lastly, trace element patterns of websterite and 
gabbros from the Zedong MTZ fall within the range of the Zedong 
gabbros (Fig. 5). 

4.2. Zircon SIMS U–Pb ages of the Zedong gabbro 

Zircons were only separated from one gabbroic sample 13ZD47. The 
CL images and U–Pb dating results of 22 zircon grains are shown in 
Fig. S2.1 and listed in Table S2, respectively. These zircons display long- 
prism shapes and homogeneous internal textures, with weak to no 
oscillatory zoning (Fig. S2.1). Thorium and Uranium contents of these 
zircons are variable, with Th/U ratios higher than 0.1 (Fig. S2b), which 
is diagnostic of their magmatic origin (e.g., Grimes et al., 2009). In the 
Tera-Wassenburg Inverse Concordia diagrams, the analytical data yield 
a lower intercept age and weighted average 207Pb-corrected 206Pb/238U 
age of 131.6 ± 0.9 Ma and 131.7 ± 0.9 Ma (MSWD = 0.5), respectively 
(Fig. 6). 

4.3. Mineral major element compositions 

Clinopyroxene is the dominant mineral phase in the Zedong pyrox
enites and gabbros (Table S1). They exhibit primitive compositions 
characterized by high Mg# values (83–93), low Al2O3 contents 
(0.85–3.00 wt% for pyroxenites, 3.82 wt% for the olivine gabbro), TiO2 
(0.04–0.34 wt% for pyroxenites and 0.37 wt% for the olivine gabbro), 
and Na2O (0.12–0.37 wt% for pyroxenites and 0.51 wt% for the olivine 
gabbro) (Fig. 7). The inverse correlations observed between Mg# and 
Al2O3, TiO2, and Na2O in clinopyroxene resemble the crystallization 
trend of a primitive melt before plagioclase saturation (e.g., Jagoutz 
et al., 2007; Koepke et al., 2009). Three samples of olivine clinopyrox
enite (18JL04, 18JL06, and 18JL09) contain two families of clinopyr
oxenes with distinct compositions. One family features high Mg# values, 
and the other displays lower Mg# values (indicated by black dashed 
arrows in Fig. 7, and Table S1). Furthermore, most clinopyroxenes 
within the Zedong MTZ samples display normal zoning in major ele
ments with cores having higher Mg# values alongside lower concen
trations of Al2O3, Cr2O3, TiO2, and Na2O compared to their rims 
(Figs. S4.4 and Table S4). Such zoning patterns are indicative of frac
tional crystallization trend (e.g., Drouin et al., 2009; Zhang et al., 2021). 
The exception is that some clinopyroxenes within the websterite 
18JRG04 present a contrasting zoning pattern, characterized by slightly 
lower core Mg# values (84.6 as opposed to 85.2 in, Figs. S4.5). 

Olivine and orthopyroxene are present as interstitial phases within 
clinopyroxenites, except for the websterite 18JRG04. Due to severe 
secondary alteration, we only measured olivine relics within pyroxenites 
(Figs. S4.1c, d). They are characterized by high forsterite (Fo) contents 
(82–90) and low NiO contents (0.15–0.20 wt%) (Fig. S4.1c). Ortho
pyroxene is a minor phase among samples in this study, they have 
variable Mg# values and exhibit low contents of Al2O3 (1.09–2.09 wt%) 
and CaO (0.67–1.09 wt%) (Fig. S4.1a and Table S4). 

In terms of aluminum-rich phases, both spinel and plagioclase are 
nearly absent in the pyroxenites (Table S1). Spinel is only found in four 
olivine-clinopyroxenite samples (18JL09,18JRG5–2, 23JRG1–1, and 
23JRG5–1). Their spinel exhibits a Cr# value of 38–54 and a TiO2 
content of 0.14–0.84 wt%, which falls within the Zedong peridotite 
range (Table S4; e.g., Xiong et al., 2017). Plagioclase in the gabbros is 
completely altered (Appendix 1), which is further supported by their 
major element compositions (Table S4). 

Within the pyroxenites, we observed scattered diopside grains along 
the grain boundaries, which have variable Mg# values (78–90) and 
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extremely low concentrations of Al2O3 (0.42–1.07 wt%), Cr2O3 
(0.02–0.21 wt%), TiO2 (0.02–0.06 wt%), and Na2O (0.04–0.30 wt%) 
(Table S4). Amphiboles are commonly identified in fine-grained clino
pyroxenites and gabbros (Fig. 3d). In one clinopyroxenite (18JL06), the 
amphiboles are identified as tremolite or actinolite. They display Mg# 
values ranging from 77 to 90 and variable Al2O3 (0.21–1.73 wt%), Cr2O3 
(0–0.24 wt%), TiO2 (0.04–0.1 wt%), and Na2O (0.06–0.23 wt%) 
(Fig. S4.2 and Table S4). Amphiboles in other clinopyroxenites and 
gabbros exhibit a trend from pargasite to magnesium-hornblende 
(Fig. S4.2). They feature low contents of SiO2 (43.57–49.05 wt%), 
high Mg# (82–90) values, and high contents of Al2O3 (7.88–12.09 wt%), 
TiO2 (0.34–1.44 wt%), and Na2O (1.20–2.62 wt%) (Table S4). 

4.4. Mineral trace element compositions 

As depicted in Fig. 8, clinopyroxenes found in the Zedong MTZ 
display similar trace element patterns. They are characterized by 
depleted LREE and flat patterns in MREE to HREE (Fig. 8). These cli
nopyroxenes do not display any Eu anomalies relative to Sm and Gd, but 
have pronounced negative anomalies in Nb, Zr, Hf, and Ti (Fig. 8). 
Clinopyroxenes within the dunite-wehrlite, websterite, and gabbro 
exhibit elevated concentrations of trace elements (Fig. 8b) in compari
son to those observed in clinopyroxenites (Fig. 8a). Additionally, cli
nopyroxene commonly display strong compositional zoning in trace 
elements with increasing contents of incompatible trace elements from 
their cores to rims (Figs. S4.6). Such a zonation is independent of 
compatibilities of different trace elements. In contrast, the clinopyrox
ene in the clinopyroxenite (18JN06) exhibit a reverse zoning (Fig. S4.7). 

Due to small grain sizes of orthopyroxene, we were only able to 
measure orthopyroxenes in three samples. These orthopyroxenes exhibit 
LREE-depleted patterns without obvious Eu anomalies, except for the 
clinopyroxenite 18JN05 (Fig. S5.1a). In the primitive mantle normalized 
diagram, they display a positive Ti anomaly and mild positive Sr and Hf 
anomalies (Fig. S5.1b). 

The trace element pattern of magnesio-hornblende mirrors that of 
clinopyroxene in the olivine clinopyroxenite 18JL04, but with overall 
abundances that are 2 to 3 times higher (Fig. S5.1c, d). Amphibole in this 
sample exhibits a depleted LREE and flat MREE to HREE pattern 
(Fig. S5.1c). In the spider diagram, it exhibits a strongly negative Zr 
anomaly and a mild negative Hf anomaly (Fig. S5.1d). 

4.5. Cryptic variations of the Zedong MTZ 

We conducted sampling along an NNE-SSW transect from the JRG 
massif along, aiming to explore cryptic variations, which indicate 
changes in mineral composition relative to stratigraphic position 
(Pallister and Hopson, 1981). This transect is perpendicular to the foli
ations of the magmatic layers, encompassing its entire structural thick
ness and constituting lithologies (Figs. 1b, c, and 9a). For this 
investigation, clinopyroxenes from the 16 samples, including pyroxe
nite, dunite, wehrlite, and gabbro, were analyzed for major and trace 
element concentrations (Fig. 9a). Vertical level is estimated from the 
distance to the section of mantle peridotite and is listed in Table S1. The 
JRG MTZ profile reveals at least two units of fractional crystallization 

Fig. 5. Primitive mantle normalized trace element patterns of bulk rock compositions of clinopyroxenites, websterite, and gabbros from the Zedong ophiolite (Palme 
and O’Neill, 2014). Normal mid ocean ridge basalt (N-MORB) is included for reference (Sun and McDonough, 1989). Additionally, basalt, diabase, and gabbro data 
from the Zedong ophiolite are also shown for comparison (Liu et al., 2020b; Xiong et al., 2016; Zhang, 2014). 
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and replenishment, as evidenced by the zig-zag normal and reverse 
cryptic variation differentiation trends, and corresponding recurrence of 
dunite-wehrlite associations (Fig. 9). Within each magmatic unit, cli
nopyroxenes exhibit a decline in Mg# values and an increase in Al2O3, 
TiO2, and incompatible trace elements (Figs. 9b–f). A notable exception 
is the coarse-grained clinopyroxenite 23JRG5 which has high Mg# and 
high Al2O3 contents (Fig. 9c). In summary, the Zedong pyroxenitic MTZ 
section displays episodic chemical variations and distinct breaks down- 
section in the major and trace element compositions of clinopyroxene 
(Fig. 9). 

4.6. Temperature estimates for the Zedong clinopyroxenites 

The estimation of closure temperatures was solely conducted for the 
Zedong F-Cpxnite samples due to the absence of orthopyroxene in both 
the C-Cpxnite and gabbroic samples. Assuming a pressure of 0.3 GPa, the 
determination of closure temperatures was based on the methods of 
Mg–Fe exchange between coexisting clinopyroxene and orthopyrox
ene, as well as the Ca solubility in orthopyroxene (Brey and Köhler, 
1990). As a prerequisite for these thermodynamic calculations, the 
chemical equilibrium of an element of interest between the two pyrox
enes was tested first. In Fig. S4.3, Fo values of olivine, Mg# values of 
orthopyroxene and amphibole were plotted against Mg# of clinopyr
oxene. Nearly all of our samples were plotted along the chemical equi
librium lines, suggesting Mg–Fe exchange equilibrium was established 
between these minerals. Similarly, the REE partition between the 
coexisting orthopyroxene and clinopyroxene were examined for the 
three samples (18JL04, 18JN05, and 18JRG04). We note the obvious 
disequilibrium REE distribution between clinopyroxene and orthopyr
oxene in the clinopyroxenite 18JN05, as evidenced by its distinct 
orthopyroxene REE pattern (Fig. S5.1a). 

By excluding the sample 18JN05 (Fig. S4.1), the REE-based closure 
temperatures (Liang et al., 2013) of the Zedong MTZ samples span the 
range of 1165–1192 ◦C (n = 2), notably surpassing the closure tem
perature derived from major elements (TBKN = 839–942 ◦C, n = 7; TCa =

903–1023 ◦C, n = 7). Detailed results are provided in Table S1. 

4.7. Nd and Hf isotopic compositions 

We conducted Neodymium and Hafnium isotopic analyses of 16 
samples and 1 clinopyroxene separate, and the results are listed in 
Table S6. All of the samples display limited variations in 147Sm/144Nd 
(0.218–0.376), 143Nd/144Nd (0.513041–0.513196), 176Lu/177Hf 
(0.058–0.119), and 176Hf/177Hf (0.283194–0.283434). We calculated 
the initial 143Nd/144Nd and 176Hf/177Hf ratios, εNd(t) and εHf(t) values at 
130 Ma, which corresponds to the formation age of both the Zedong 
ophiolite and other ophiolites along the YTSZ. Specifically, these values 
varied from 0.512813 to 0.512907 for 143Nd/144Nd (εNd(t) = +6.60 to 
+8.43) and 0.283051 to 0.283173 for176Hf/177Hf (εHf(t) = +12.77 to 
+16.26) (Fig. 10). The Nd–Hf isotopic compositions of the Zedong MTZ 
rocks are more depleted than the range defined by typical of mafic rocks 
of from the YTO (Fig. 10). 

5. Discussion 

5.1. Geochronology of the Zedong gabbro 

In this study, one gabbro (13ZD47), interbedded with fine-grained 
clinopyroxenite located at the top of the MTZ in the Jinlu profile 
(Fig. 1b), yielded an early Cretaceous age of 131.6 ± 0.9 Ma (Fig. 4). 
This age aligns with that of dolerite and gabbroic dikes intruding into 
the Zedong mantle peridotite (~ 130–128 Ma) (e.g., Chen et al., 2015; 
Xiong et al., 2016). Furthermore, a prior study on the zircon U–Pb ages 
of the Luobusa metamorphic sole has determined an age of 131.0 ± 1.2 
Ma (Fig. 1a, Zhang et al., 2016a, 2016b), which is identical within un
certainty to the age of intruding dikes in the Zedong ophiolite. 
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Consequently, we infer that the MTZ within the Zedong ophiolite was 
formed between 132 and 128 Ma, consistent with the age range of 
132–120 Ma established in previous geochronological works in other 
YTSZ ophiolites (e.g., Liu et al., 2016; Liu et al., 2022). 

In addition, the bulk rock trace element patterns of the Zedong MTZ 
rocks differ from those of the Zedong arc complex (Fig. 1b). The latter is 
characterized by LREE enriched patterns and older formation ages 
(~160–155 Ma, Zhang et al., 2014). Therefore, there is no genetic 
relationship between the Zedong MTZ and the Zedong arc complex 
(Fig. 1b). 

5.2. Differentiation sequence of the Zedong pyroxenitic MTZ 

The Zedong MTZ associations are characterized by the prevalence of 
clinopyroxene-rich lithologies, including clinopyroxenites, wehrlites, 
and websterites. The textures of the Zedong MTZ samples, displaying 
adcumulate to orthocumulate textures (Table S1), closely resemble 
those of crustal wehrlites observed in the Oman ophiolite (e.g., Akizawa 
et al., 2012; Koepke et al., 2009; Koga et al., 2001; Nicolle et al., 2016; 
Pallister and Hopson, 1981). These crustal wehrlites and pyroxenites are 
commonly interpreted as products of melt accumulation and/or melt- 
peridotite reaction at pressures near or below the plagioclase stability 
field (e.g., Benoit et al., 1999; Clénet et al., 2010; Nicolle et al., 2016). 

Within the Zedong MTZ, we observed several continuous lithological 
variations, encompassing dunite, wehrlite, (olivine-) clinopyroxenite, 
websterite, and gabbro from the bottom to the top (Fig. 9a). The pres
ence of olivine-rich intervals suggests the early crystallization of olivine. 
The limited occurrence of orthopyroxene and nearly absence of 
plagioclase in the MTZ sections, coupled with significantly decreasing 
Mg# values from clinopyroxenites towards websterite and gabbros 
(Fig. 7), indicate that orthopyroxene and plagioclase are late crystal
lizing phases. Consequently, the crystallization sequence within the 
Zedong MTZ follows the order of olivine, olivine + clinopyroxene, 
olivine + clinopyroxene +orthopyroxene/plagioclase. Amphibole rep
resents the latest crystallizing phase in the clinopyroxenites and gab
bros. This is evident from their peritectic relationships with 
clinopyroxenes (Fig. S1-S3 in Appendix 1), where clinopyroxenes react 
with the percolating melt to form amphiboles (e.g., Gillis and Meyer, 
2001). 

The crystallization sequence observed in the Zedong MTZ is not 
consistent with the fractionation of a dry MORB melt at MTZ pressures. 
At pressures prevalent at the MTZ (0.3–0.5 GPa), MORB is not expected 
to crystallize clinopyroxene until significant olivine and plagioclase 
have crystallized (e.g., Grove et al., 1992). Clinopyroxene in the Zedong 
MTZ display an increase in the contents of Al2O3 and TiO2, coupled with 
a decrease in Mg# (Figs. 7a, b, and c). Similarly, olivine in the Zedong 

Fig. 8. Primitive mantle (Palme and O’Neill, 2014) normalized trace element patterns of clinopyroxenes from clinopyroxenites (a), websterite, dunite-wehrlite 
associations, and gabbros (b). 
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MTZ exhibits decrease in NiO and increase in MnO (Fig. S4.1c, d). These 
chemical evolution trends, combined with the consistently high Mg# 
values in clinopyroxene and high Fo contents in olivine, indicate that the 
Zedong MTZ was formed by differentiation of a primitive melt. In terms 
of Anorthite (An)-Diopside-Forsterite ternary phase diagram, the prim
itive melt should be plotted in the An-poor part of the olivine primary 
phase field, below the eutectic point (Hess, 1992). Such a depleted melt 
could be formed by partial melting of a clinopyroxene-poor lherzolite or 
harzburgite (e.g., Weaver et al., 2011). Moreover, presence of water 
delays plagioclase crystallization (e.g., Feig et al., 2006; Koepke et al., 
2021; Nandedkar et al., 2014; Neave et al., 2019). Given the frequent 
presence of magmatic amphiboles in the studied samples (Figs. S1.1 to 
1.3 and S4.2), we infer that the primary melt could be a hydrous melt 
depleted in Al2O3, TiO2, and Na2O. This hypothesis will be further tested 
in the following section using trace element data. 

5.3. Nature of the parental melts 

The Zedong MTZ samples consistently display LREE-depleted REE 
patterns for both bulk rock (Fig. 5) and clinopyroxene compositions 
(Fig. 8), suggesting they were derived from a depleted mantle source. In 
addition, the studied samples exhibit relatively uniform Nd–Hf isotopic 
compositions that are slightly displaced towards to a more depleted 
component compared to those of MORB and crustal rocks (i.e., basalts, 
diabases, and gabbros) from the whole YTSZ (Fig. 10). These observa
tions strongly support the inference that the parental melt of the Zedong 

MTZ was formed by re-melting of a depleted source. 
To further delve into the characteristics of the parental melts, we 

calculated the trace element patterns of the equilibrium melts. Here, we 
focused on Nb, Sr, REE, Zr, Hf and Ti contents in the calculated melts in 
equilibrium with clinopyroxene, orthopyroxene, and amphibole. Ele
ments that could potentially have been altered by secondary processes 
were excluded from our analysis (U, Pb, Rb, and Ba; please refer to 
Figs. S3 for detailed information). Additionally, elements with concen
trations falling below the detection limit (Th and Ta) were not consid
ered (Table S5). The mineral-melt partition coefficients are from 
parameterized lattice models based on major element compositions of 
clinopyroxene, orthopyroxene, and amphibole (Shimizu et al., 2017; 
Sun and Liang, 2012, 2014; Sun, 2014). The modeling results and hy
drous mineral-melt partition coefficients used in this study are provided 
in Table S7. Several conclusions can be drawn from the modeling results. 
Firstly, the calculated melts in equilibrium with clinopyroxenes are 
characterized by nearly flat REE patterns, gradually depleted patterns 
from HREE to MREE, strong depletion in Zr and Hf, and mild positive 
enrichments in Ti (Fig. 11a). These trace element patterns are different 
from those of the bulk rock compositions of the Zedong crustal rocks 
(Fig. 11a). Specially, negative anomalies of Zr and Hf were frequently 
observed in both bulk rocks and clinopyroxenes within the Zedong 
harzburgites and lherzolites (Xiong et al., 2016; Xiong et al., 2017). 
Partial melting of such Zr- and Hf-depleted peridotites in the Zedong 
ophiolite can produce melts with notable negative anomalies of Zr and 
Hf. Secondly, the trace element patterns of the calculated melts in 
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equilibrium with clinopyroxene exhibit a distinct pattern compared to 
forearc basalts and boninites, suggesting a distinct origin for the Zedong 
MTZ in comparison to forearc basalts and boninites (Fig. 11b). Thirdly, 
the calculated melts in equilibrium with orthopyroxene in the clino
pyroxenite 18JN05 and websterite 18JRG04 display enriched LREE 
patterns (Fig. 11c), which contrasts with the melts in equilibrium with 
clinopyroxene in the same sample. This suggests that orthopyroxenes 
within these two samples crystalized from more evolved melts. 

Based on these observations, we infer that the infiltrating melts that 
form the Zedong MTZ could result from partial melting of a residual 
peridotite that is depleted in Al2O3, TiO2, and Na2O but with typical 
Nd–Hf isotopic ratios and trace element patterns similar to MORB. To 
further explore the characteristics of the mantle source, we employed a 
two-porosity melting model described in Liang and Parmentier (2010) to 
calculate trace element patterns in the aggregated melt that extracted 
through high-porosity channels towards the MTZ. For purpose of 
demonstration, we assume that the trace element concentrations of the 
starting peridotite are the same as the average concentrations in the 
depleted harzburgites and lherzolites from the region (Xiong et al., 
2016, 2017; Zhang et al., 2014). This choice of the starting mantle is 
note unique, but it is adequate to represent the trace element patterns of 
the local mantle source. The partition coefficients under hydrous con
ditions and other modeling parameters are listed in Table S7. Fig. 10d 
displays the trace element concentrations of aggregated melts generated 
by 0–6% near fractional melting of the initial mantle peridotite. These 
aggregated melts have trace element patterns nearly identical to the 
most primitive melts in equilibrium with clinopyroxenes in the Zedong 
MTZ. The negative anomalies of Zr and Hf in the melt in equilibrium 

with clinopyroxene appear to have been inherited from a mantle source 
that is itself depleted in Zr and Hf. 

5.4. Formation mechanism and broader implications of the Zedong MTZ 

The Zedong pyroxenitic MTZ exhibits consistent evolutionary trends 
in major and trace element, where the contents of Al2O3, TiO2, Na2O, 
and incompatible trace elements in clinopyroxene increase with 
decreasing clinopyroxene Mg# (Figs. 7 and 12). These chemical varia
tion trends are commonly attributed to fractional crystallization of a 
melt. However, the fractional crystallization process alone cannot 
explain the following observations: (1) the interbedded layers of clino
pyroxenite, wehrlite, and dunite (Fig. 2), (2) the re-occurrences of 
olivine-rich layers across the MTZ profile (Fig. 9), and (3) existence of 
two families of clinopyroxenes with distinct compositions within the 
three samples (Fig. 7). Therefore, additional melt-rock reaction pro
cesses are needed to explain the observed evolutionary trends in major 
and trace elements within the Zedong MTZ. 

To further explore the effect of fractional crystallization and melt- 
rock reaction on the chemical composition of the MTZ, we utilized the 
thermodynamic software AlphaMELTS 2 to investigate these processes 
(Ghiorso and Sack, 1995; Smith and Asimow, 2005). Fractional crys
tallization (FC) of a primitive melt and the other is the assimilation- 
fractional crystallization (AFC). In the AFC scenario, the primitive 
melt assimilates an evolved crystal mush in terms of trace element (i.e., 
10% olivine +90 clinopyroxene, Table S7) while undergoing fractional 
crystallization. Employing the parameterized lattice modes for REE, Zr, 
Hf, and Ti (Sun, 2014) along with major element compositions obtained 
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Zhang et al., 2016a; Zhang et al., 2016b; Zhang et al., 2023b), pyroxenite veins from the YTSZ (Zhang et al., 2022), and the mantle array with 2 S.E. presented in blue 
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from the modeling results, we can obtain the variations of major and 
trace elements in the cumulus phases. The bulk composition of a prim
itive melt can be approximated by using the most primitive basaltic lava 
found in the Zedong ophiolite, with an adjustment of MgO from 9.8 wt% 
to 12.0 wt%. This adjustment raised the Mg# of the melt from 68 to 75, 
situating it at the Mg-rich end of the spectrum of experimentally 
determined parental melts for Mid-Ocean Ridge Basalts (MORBs) 
(Table S7). The calculated liquidus temperature is ~1232 ◦C. Under a 
pressure of 0.3 GPa, fractional crystallization follows the sequence of 
olivine (Fo = 88–86), followed by olivine (Fo = 86–71) and clinopyr
oxene (Mg# = 90–79). The co-crystallization of olivine and clinopyr
oxene occurs at a decreasing temperature from 1184 ◦C to 1033 ◦C, with 
95–49% melt remaining (Table S7 and Fig. 12). This temperature in
terval of coexistence of olivine and clinopyroxene is consistent with the 
REE closure temperature of the clinopyroxenites and websterites 
(Table S1). 

Fractional crystallization successfully reproduces the subparallel 
trace element patterns depicted in Fig. 12a and the Mg#-Al2O3 diagram 
in Fig. 12c. However, it fails to capture the co-variation trends of Mg# 
and trace element contents in clinopyroxenes (Figs. 12d-f). Hence, we 
performed an AFC process at a pressure of 0.3 GPa and temperatures 
decreasing from 1233 to 1133 ◦C. Utilizing the same initial melt as in the 
FC modeling, we assumed the assimilation of 2 g/◦C of olivine clino
pyroxenite with evolved compositions (10% olivine and 90% clinopyr
oxene, Table S7). During the temperature decreasing, the primitive melt 

fractionates olivine and clinopyroxene with a high assimilation-to- 
crystallization ratio (r = 0.8). In comparison to the elemental evolu
tion trends from the FC process (r = 0), the AFC process can accelerate 
the rate of melt enrichment in Al2O3 and trace elements (Fig. 12). This 
acceleration primarily depends on the on the compositions of the 
assimilated material. Assuming 25% fractionation of the melt, the AFC 
processes could account for both the subparallel trace element patterns 
(Fig. 12b) and the co-variation trends of Mg# and trace element contents 
in clinopyroxene (Figs. 12d-f). 

Cryptic variations of the JRG stratigraphic section also support that 
both fractional crystallization and reaction between infiltrating melt and 
pre-existing crystal mush play an import role in building the formation 
of the MTZ. As shown in the Fig. 9, although the data is patchy, the 
variations of Mg#, Al2O3, and trace element contents in clinopyroxene 
from the JRG profile encompass the entire ranges defined by the Zedong 
MTZ (Figs. 9 and 12). Hence, the chemical variations along the profile 
are significant, which are likely characterized by zig-zag patterns, 
comprising both normal and reverse differentiation segments. The 
normal cryptic trends are characterized by a concurrent decrease in 
Mg# and increase in the contents of Al2O3, TiO2, Na2O, and trace ele
ments (Fig. 9). These trends can be attributed to the fractionation of a 
primitive melt. A similar conclusion can also be drawn from the common 
occurrences of normal core-to-rim compositional zoning in clinopyrox
ene (Figs. S4.5 and 4.7). Notably, these normal cryptic trends, spanning 
approximately 35 m, exhibit a quite small scale compared with those of 
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the Oman ophiolite, which extends over hundreds of meters (Rospabé 
et al., 2019). This discrepancy implies the Zedong MTZ was formed 
through crystallization of relatively small volumes of primitive magma. 
The emergence of reverse differentiation cryptic variation trends is 
sometimes related to recurrent olivine-rich intervals (i.e. clinopyroxene- 
bearing dunite 23JRG09 in Fig. 9), which could result from the 
replenishment of the primitive melt. Such a replenishment process likely 
involves melt-rock reaction between the primitive melts and pre-existing 
melt mush. The reactive nature of interstitial orthopyroxene- 
clinopyroxene-amphibole (Fig. 3b-d) and the coexistence of clinopyr
oxenes of contrasting Mg# values within the three samples (Fig. 7) can 
potentially be explained by the reaction between the intruding primitive 
melt (high Mg# melt) and the evolved, preexisting clinopyroxene-rich 
melt mush (low Mg# clinopyroxene). In addition, the limited occur
rences of clinopyroxenes with reversal chemical zoning patterns also 
support this hypothesis (Figs. S4.4 and S4.6). 

In summary, the present study highlights that the lithological and 
chemical variations of Zedong MTZ samples can be explained by 
episodic differentiation and replenishment of hydrous basaltic melts. 
This formation mechanism could account for a wide array of 
clinopyroxene-rich MTZ sequences in numerous ophiolites (e.g., Aki
zawa et al., 2012; Ceuleneer and Le Sueur, 2008; Karson et al., 1984; 
Koepke et al., 2009; Sano and Kimura, 2007) and ultramafic massifs 
around the world (e.g., Bouilhol et al., 2015; Jagoutz et al., 2007). In 
addition, the hydrous melts that building the Zedong MTZ were gener
ated by re-melting previously depleted peridotites. This re-melting 
process can be reconciled by either a subduction initiation model (e. 
g., Dai et al., 2013; Xiong et al., 2016, 2017) or a subduction re-initiation 
model (e.g., Liu et al., 2022; Zhang et al., 2019). To further explore the 
tectonic settings, more structural, petrological, and geochemical studies 
on the Zedong ophiolite are necessary. 

6. Conclusion 

The comprehensive examination of the MTZ in the Zedong ophiolite, 
combining structural, petrological, and geochemical analyses, reveals 

the following key observations: (1) the chemical evolution trends 
documented in the clinopyroxene results from multiple stages of melt 
replenishments and fractional crystallization; (2) the parental melts of 
the MTZ samples are hydrous and contain low contents Al2O3, TiO2, and 
Na2O; (3) both the bulk rock Nd–Hf isotopic compositions and clino
pyroxene trace element patterns suggest that the mantle source of the 
Zedong MTZ has experienced re-melting processes in a newly-forming 
subduction zone. 

We proposed that both “subduction initiation” and “subduction re- 
initiation” models can account for these characteristics. The initiation of 
a subduction zone triggers the re-melting of previously depleted mantle 
peridotite, resulting in the formation of primitive hydrous basaltic melts. 
The diverse lithologies observed in the Zedong MTZ are attributed to 
fractional crystallization and repeated replenishment of these hydrous 
melts. Consequently, the architecture of the Zedong MTZ offers valuable 
lithological and chemical insights into the MTZ accretion processes at a 
paleo-spreading center. 
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crystallization (AFC) processes. The parameter ‘r’ represents the assimilated to crystallized mass ratio, and ‘F’ represents fractions of the remaining magma. 
Colored symbols correspond to those in Figs. 7–9. See text for details. 
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