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Abstract

Amphibole and pyroxenes are the main reservoirs of rare earth elements (REEs) in the lithospheric 
mantle that has been affected by hydrous metasomatism. In this study, we developed semi-empirical 
models for REE partitioning between orthopyroxene and amphibole and between clinopyroxene 
and amphibole. These models were formulated on the basis of parameterized lattice strain models 
of mineral-melt REE partitioning for orthopyroxene, clinopyroxene, and amphibole, and they were 
calibrated using major element and REE data of amphibole and pyroxenes in natural mantle samples 
from intraplate settings. The mineral-melt REE partitioning models suggest that amphibole is not in 
equilibrium with coexisting pyroxenes in the mantle samples and that the amphibole crystallized at 
a lower temperature than that of the pyroxenes. We estimated the apparent amphibole crystallization 
temperature using major element compositions of the amphibole and established temperature- and 
composition-dependent models that can be used to predict apparent pyroxene-amphibole REE parti-
tion coefficients for amphibole-bearing peridotite and pyroxenite from intraplate lithospheric mantle. 
Apparent pyroxene-amphibole REE partition coefficients predicted by the models can be used to infer 
REE contents of amphibole from REE contents of coexisting pyroxenes. This is especially useful when 
the grain size of amphibole is too small for trace element analysis.

Keywords: Amphibole, clinopyroxene, orthopyroxene, peridotite, pyroxenite, REE partitioning, 
temperature, mineral composition

Introduction

The lithospheric mantle is composed mainly of nominally 
anhydrous minerals, including olivine, orthopyroxene, clinopyrox-
ene, spinel, and garnet. Hydrous minerals, such as amphibole and 
phlogopite, are also present in regions that have been affected by 
modal metasomatism. Amphibole can be formed by the interaction 
between peridotite and hydrous melts (e.g., Sen and Dunn 1995; 
Rapp et al. 1999; Wang et al. 2021) and is stable in the lithospheric 
mantle at temperatures and pressures up to 1150 °C and 3.8 GPa 
(e.g., Green 1973; Wallace and Green 1991; Niida and Green 1999; 
Fumagalli et al. 2009; Mandler and Grove 2016). Under these 
conditions, particularly within the spinel stability field, amphibole 
and pyroxene are the main reservoirs of incompatible elements. 
The trace element contents of pyroxene and amphibole have been 
used to infer geochemical and petrologic processes that occur in 
the lithospheric mantle. However, amphibole typically occurs as 
interstitial grains in mantle rocks. Their small sizes often make 
trace element analysis challenging, and consequently, concentra-
tions of trace elements in amphibole have not been frequently 
reported alongside those of coexisting pyroxenes (e.g., Liu et al. 
2010; Matusiak-Małek et al. 2017; Aradi et al. 2020; Zhang et al. 
2022). The objective of the present study is to provide an interim 
solution to this problem by developing semi-empirical models for 

the distribution of rare earth elements (REEs) between amphibole 
and pyroxenes.

In general, the partitioning of trace elements between a mineral 
and its coexisting melt depends on pressure, temperature, and 
mineral and melt composition. The effects of mineral and melt 
compositions on REE partitioning between pyroxene and melt and 
between amphibole and melt have been studied using data from 
laboratory partitioning experiments and the lattice strain model 
(e.g., Klein et al. 1997, 2000; Gaetani et al. 2003; Adam and Green 
2003, 2006; Gaetani 2004; Sun and Liang 2012, 2013; Yao et al. 
2012; Shimizu et al. 2017). The effects of temperature and mineral 
composition on REE partitioning between orthopyroxene and 
clinopyroxene have also been investigated using the lattice strain 
model (e.g., Stosch 1982; Hellebrand et al. 2005; Witt-Eickschen 
and O’Neill 2005; Lee et al. 2007; Witt-Eickschen et al. 2009; 
Yao et al. 2012; Liang et al. 2013; Sun and Liang 2014). Yao et al. 
(2012), Liang et al. (2013), and Sun and Liang (2014) constructed 
an orthopyroxene-clinopyroxene REE partitioning model from the 
pyroxene-melt REE partitioning models. Their model suggested 
that REE partitioning between the two pyroxenes is sensitive 
to temperature and pyroxene composition and can be used as a 
thermometer. For two pyroxene-bearing rocks that experienced 
cooling, the temperatures derived from the REE-in-two-pyroxene 
thermometer (Liang et al. 2013) are generally higher than tempera-
tures derived from Ca-Mg-Fe based two-pyroxene thermometers 
(Wells 1977; Brey and Köhler 1990; Putirka 2008) because REEs 
diffuse more slowly than major elements in pyroxene (Van Orman 
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et al. 2001, 2002; Dimanov and Wiedenbeck 2006; Cherniak and 
Liang 2007; Müller et al. 2013).

Amphibole has more structural sites and a larger range of 
chemical compositions than pyroxene (e.g., Leake et al. 1997; 
Hawthorne et al. 2012). The composition of amphibole varies 
with physical conditions and compositions of the metasomatic 
melt and peridotite in the lithospheric mantle (e.g., Niida and 
Green 1999; Coltorti et al. 2007; Mandler and Grove 2016; Wang 
et al. 2021). Variations in the physical conditions and chemical 
compositions lead to the difference in compositions between 
amphibole from the supra-subduction zone [S-amphibole of 
Coltorti et al. (2007)] lithospheric mantle and amphibole from 
the intraplate [I-amphibole of Coltorti et al. (2007)] lithospheric 
mantle. In general, the S-amphibole has a higher Mg# [100 × Mg/
(Mg + Fe), atomic ratio] and lower Ti, Na, and K contents than 
the I-amphibole (Coltorti et al. 2007) (Fig. 1). According to the 
lattice strain model of Shimizu et al. (2017), amphibole-melt REE 
partition coefficients increase with increasing Ti and decreasing 
Na, K, and Mg contents of amphibole.

REE partitioning between pyroxene and amphibole likely 
depends on physical conditions and mineral compositions. Klein 
et al. (1997) compared the parameters of the lattice strain model 
for clinopyroxene-melt REE partitioning with those for amphi-
bole-melt REE partitioning. They concluded that similarities in 
Young’s moduli between the M4 site in amphibole and the M2 
site in clinopyroxene result in nearly identical clinopyroxene and 
amphibole REE partition coefficients at given physical conditions, 
and thus subparallel clinopyroxene and amphibole REE patterns. 
By comparing the REE contents of coexisting clinopyroxenes 
and amphiboles in mantle xenoliths from West Eifel, Germany, 
Witt-Eickschen and Harte (1994) and Witt-Eickschen and O’Neill 
(2005) inferred that clinopyroxene-amphibole REE partition coef-
ficients are controlled by REE ionic radius and Na content of the 
clinopyroxene.

Although significant progress has been made in quantifying 
REE partitioning in amphibole, there is no predictive model for 
pyroxene-amphibole REE partition coefficients. In this study, we 
develop temperature- and mineral composition-dependent models 
for REE partitioning between clinopyroxene, orthopyroxene, and 
amphibole in mantle rocks. These semi-empirical models are based 
on lattice strain models of REE partitioning between pyroxene, 
amphibole, and silicate melt (Sun and Liang 2012, 2013; Yao et 
al. 2012; Shimizu et al. 2017) and are calibrated using natural 
amphibole-bearing mantle xenoliths. Because amphibole generally 
crystallized later than pyroxene in the lithospheric mantle, REE 
partition coefficients obtained from the semi-empirical models 
are apparent partition coefficients. Nonetheless, the apparent 
pyroxene-amphibole REE partition coefficients obtained from 
our models are useful for estimating the REE concentrations of 
amphibole from the REE contents of pyroxene, especially when 
the grain size of amphibole is too small for trace element analysis.

Theoretical basis

Parameterized mineral-melt REE partitioning models
The theoretical basis of this study is the lattice strain model 

for partitioning of a REE i between a mineral and its coexisting 
melt (Brice 1975; Blundy and Wood 1994; Wood and Blundy 
1997, 2003), which can be written as:

   2 3min-melt 0A
0 0 0

4 1exp
R 2 3i i i

rEND D r r r r
T

           
	(1)

where D0 is the partition coefficient for strain-free substitution; r0 
is the optimum radius for the lattice site; E is the apparent Young’s 
modulus for the lattice site; ri is the ionic radius of the REE; T is 
the temperature in K; R is the gas constant; and NA is Avogadro 
constant. In general, the lattice parameters D0, r0, and E depend 
on temperature, pressure, and mineral and melt compositions.

Parameterized lattice strain models for amphibole-melt, 
orthopyroxene-melt, and clinopyroxene-melt REE partitioning 
were developed by Shimizu et al. (2017), Yao et al. (2012), and 
Sun and Liang (2012), respectively. These models show that 
mineral-melt REE partition coefficients depend on temperature 
and mineral chemistry. With decreasing temperature, mineral-melt 
REE partition coefficients increase. In the amphibole model of Shi-
mizu et al. (2017), D0 is positively correlated with Ti in amphibole 
but negatively correlated with Mg, Na, and K in amphibole, r0 is 
negatively correlated with the ferromagnesian content of the M4 
site in amphibole (XFm

M4), and E is a constant. In the low-Ca pyrox-
ene model of Yao et al. (2012), D0 is positively correlated with Ca 
content of the M2 site (XCa

M2) and Al content of the tetrahedral site 
(XT

Al) in the pyroxene, and in the clinopyroxene model of Sun and 
Liang (2012), D0 is positively correlated with XT

Al and Mg content 
of the M2 site (XMg

M2) in the pyroxene. The values of r0 and E in the 
two pyroxene models also depend on pyroxene composition. The 
lattice strain parameters of the three mineral-melt REE partitioning 
models are summarized in Online Materials1 Appendix A.

The amphiboles used to calibrate the partitioning model 
of Shimizu et al. (2017) were produced at 780–1100 °C and 
0.2–2.5 GPa through laboratory experiments. Oxygen fugacities 
of these experiments are –2 to +3.2 logarithmic units from the 
quartz-fayalite-magnetite buffer, which covers a large range of 
oxygen fugacities calculated for spinel peridotite from different 
tectonic settings (Frost and McCammon 2008). The experimental 
amphiboles contain 0.73–6.35 wt% TiO2, 1.20–4.04 wt% Na2O, 
and 0.03–2.77 wt% K2O, and have Mg#s ranging from 36 to 100 
(Fig. 1). Their compositions overlap with a majority (81%) of 
I-amphiboles but only a small portion (15%) of S-amphiboles 
from mantle rocks reported in the literature. The latter has lower 
TiO2 and Na2O but higher SiO2 and Mg# than amphiboles from 
the partitioning experiments (Figs. 1a–1c). The Mg#s of clinopy-
roxenes and low-Ca pyroxenes from the partitioning experiments 
for calibrating the parameterized models of Sun and Liang (2012, 
2013) and Yao et al. (2012) are 54–100 and 70–100, respectively, 
covering the main range of pyroxene compositions in mantle rocks.

Pyroxene-amphibole REE partitioning models
When two minerals (α and β) and the melt are in thermody-

namic equilibrium, it is possible to calculate the mineral–mineral  
REE partition coefficients by taking the ratio of the two  
mineral–melt partition coefficients, viz.,
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Figure 1. Compositions of amphiboles (oxides in wt%, on volatile-free basis) from amphibole-bearing mantle rocks. Red and blue plus signs 
are intraplate (I)-amphiboles and supra-subduction (S)-amphiboles, respectively, classified after Coltorti et al. (2007). Green dots are amphiboles 
from the amphibole-melt REE partitioning experiments used to calibrate the model of Shimizu et al. (2017). Closed symbols are amphiboles in 
mantle samples that have compositions within the range of those used for calibration. The calculation of chemical formulas and the compositional 
boundaries in e follow those of Leake et al. (1997). Tr = tremolite; Ath = anthophyllite; Fac = ferro-actinolite; Gru = grunerite. (Color online.)
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Yao et al. (2012), Liang et al. (2013), and Sun and Liang (2014) 
demonstrated that Equation 2 reproduces the measured orthopyrox-
ene-clinopyroxene REE partition coefficients in well-equilibrated 
peridotites and can be used under magmatic and subsolidus condi-
tions. The REE-in-two-pyroxene thermometer of Liang et al. (2013) 
was developed by rearranging Equation 2. Temperatures obtained 
from the REE thermometer (TREE) for well-equilibrated peridotites 
are similar to those obtained from major element-based pyroxene 
thermometers such as those of Wells (1977), Brey and Köhler 
(1990), and Putirka (2008) (gray fields in Fig. 2).

Applying Equation 2 to the mineral pairs of pyroxene 
and amphibole, we have the orthopyroxene-amphibole and  
clinopyroxene-amphibole REE partitioning models:
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where Pyx is either orthopyroxene (Opx) or clinopyroxene (Cpx), 
and the lattice strain parameters are presented in Online Materials1 
Appendix A. Equation 3 is valid so long as pyroxene and amphi-
bole are in chemical equilibrium.

Major element and REE data of pyroxenes and amphibole in 
amphibole-bearing mantle rocks from the literature can be used 
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Figure 2. Correlations of temperature derived from the REE-in-two-pyroxene thermometer of Liang et al. (2013) (TREE) with those from the 
major element-based two-pyroxene thermometers of Brey and Köhler (1990) (TBKN), Wells (1977) (TW77), Putirka (2008) (his Eq. 37, TP37), and 
average of the three (Tavg) for the amphibole-bearing mantle rocks. Symbols are the same as in Figure 1. Error bars are 1σ uncertainties in TREE. The 
solid gray lines in denote the 1:1 correlation, and the dashed gray lines denote the ±100 °C deviations. Gray fields show the ranges of temperatures 
of well-equilibrated peridotite xenoliths from Liang et al. (2013). (Color online.)
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to test pyroxene-amphibole REE partitioning models (e.g., Witt-
Eickschen and Harte 1994; Grégoire et al. 2000; Witt-Eickschen 
and O’Neill 2005; Ishimaru et al. 2007; Xu et al. 2010; Bénard 
and Ionov 2013, 2021; Zhou 2014; Pintér et al. 2015; Matusiak-
Małek et al. 2017; Aradi et al. 2020; Belousov et al. 2021; Nishio 
et al. 2022). To apply these models, a mantle sample must meet 
the following two requirements: (1) amphibole and pyroxene 
compositions are within the calibration ranges of the mineral-
melt partitioning models, and (2) amphibole and pyroxenes 
crystallized from the same melt, i.e., formed from the same 
metasomatic event. The calibration ranges of pyroxene-melt 
partitioning models of Sun and Liang (2012, 2013) and Yao et 
al. (2012) cover pyroxene compositions of mantle rocks, includ-
ing the amphibole-bearing samples in this study. Twenty-eight 
of the amphibole-bearing mantle rocks from the literature cited 
above have amphibole compositions within the calibration range 
of amphibole-melt partitioning model of Shimizu et al. (2017). 
They include 26 samples with I-amphibole from Western Pan-
nonian Basin, Hungary (Aradi et al. 2020), Nyos Lakes, Cam-
eroon (Pintér et al. 2015), Wilcza Góra, Southwestern Poland 
(Matusiak-Małek et al. 2017), Huadian, northeastern China (Xu, 
unpublished), and two samples with S-amphibole from Laiwu, 
North China Craton (Zhou 2014).

To check if requirement 2 is met, we examined the texture 
and mineral chemistry for the 28 samples (see Text S1 of Online 
Materials1 Appendix C for details.) Among these samples, two 
peridotites with I-amphibole from Western Pannonian Basin and 
the two websterites with S-amphibole from Laiwu show significant 
disequilibrium textures. Additionally, their constituent pyroxenes 
have significantly higher Mg#s (by 3.5–8.1 units) than amphibole 
Mg#s (Fig. 3a; Online Materials1 Table S1). These samples were 
excluded from the test. The remaining 24 samples all contain 
I-amphibole. Their orthopyroxene Mg#s are similar to the clino-
pyroxene Mg#s, but both pyroxene Mg#s are slightly higher (by 
1.0–3.0 units) than amphibole Mg# (Fig. 3b; Online Materials1 
Table S1). Figure 2 compares the temperatures calculated using 
the REE-in-two-pyroxene thermometer (TREE, Liang et al. 2013) 

with those calculated using the major-element-based two-pyroxene 
thermometers of Wells (1977, TW77), Brey and Köhler (1990, TBKN), 
and Putirka (2008, his Equation 37, TP37), and an average of the 
three temperatures (Tavg) for the 24 amphibole-bearing mantle 
rocks. Temperatures of these samples are mostly within the range 
of well-equilibrated mantle xenoliths, suggesting that the REEs 
(at least the heavy REEs) and major elements in orthopyroxene 
are in equilibrium with those in clinopyroxene (Liang et al. 2013).

Figure 4a shows the inversion diagram based on the REE-in-
two-pyroxene thermometer of Liang et al. (2013) for an amphibole-
bearing lherzolite from Wilcza Góra, SW Poland [Matusiak-Małek 
et al. (2017), sample WLK30]. Using the inverted temperature 
(TREE = 1010 ± 14 °C), the mineral–mineral REE partitioning 
model of Equation 2 well-reproduced orthopyroxene–clinopy-
roxene partition coefficients for most of the REEs (Fig. 4b). The 
exceptions are La and Ce, which may be attributed to their higher 
closure temperatures (Liang 2015).

Interestingly, the pyroxene-amphibole REE partition coef-
ficients calculated using Equation 3, TREE, and major element 
compositions of the amphibole and pyroxenes differ markedly 
from the measured values (Figs. 4c and 4d). The isotherms estab-
lished by the orthopyroxene-amphibole REE partitioning model 
indicate that orthopyroxene and amphibole would be equilibrated 
at a lower temperature (between 750 and 925 °C, Fig. 4c). In ad-
dition, the model-derived clinopyroxene–amphibole REE parti-
tion coefficients are well above the measured values, suggesting 
REEs in amphibole and clinopyroxene are not in equilibrium at 
any temperature (Fig. 4d). A likely explanation is that amphibole 
crystallized at a temperature lower than TREE and that chemical 
equilibrium between amphibole and the pyroxenes was not es-
tablished. This is consistent with the observation from hydrous 
melt–peridotite reactive crystallization experiments of Wang et 
al. (2021), where the interstitial and overgrowth occurrences of 
amphibole in the product peridotite and pyroxenite suggest a later 
crystallization of amphibole than pyroxenes. Below, we present a 
semi-empirical model that can be used to estimate the crystalliza-
tion temperature of amphibole in mantle rocks.
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Figure 3. Comparisons of amphibole Mg# with orthopyroxene and clinopyroxene Mg#s for the amphibole-bearing mantle samples. Symbols 
with a cross denote samples that display obvious textual and compositional disequilibrium. See text for details. (Color online.)
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Semi-empirical models for crystallization temperature of 
amphibole

Since the amphibole crystallizes later than the pyroxenes, the 
pyroxene–melt and amphibole–melt REE partition coefficients 
are defined at their crystallization temperatures (T Pyx and TAmp, 
respectively). Taking the ratio of DPyx–melt at TPyx and DAmp–melt at 
TAmp, we have, from the lattice strain model (Eq. 1), the pyroxene-
amphibole apparent partition coefficient:
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where meltPyx and meltAmp are melts in equilibrium with pyroxene 
and amphibole, respectively, and Ci

meltPyx/Ci
meltAmp is the ratio of 

melt REE concentrations at the two equilibrium temperatures. 
Given the generally small amount of amphibole crystallized after 
pyroxenes in the mantle samples and the moderate incompatibility 
of REEs in amphibole (partition coefficients mostly 0.1–1) at a 
range of temperatures (780–1100 °C) (Shimizu et al. 2017), we 
infer that the ratio Ci

meltPyx/Ci
meltAmp is on the order of one, and thus 

ln(Ci
meltPyx/Ci

meltAmp) is negligible compared to contributions from 
lattice strains in pyroxenes and amphibole. Hence, Equation 4 
can be simplified as:
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Figure 4. (a) Inversion diagram for the REE-in-two-pyroxene temperature (TREE) of an amphibole-bearing lherzolite [sample WLK30 from 
Wilcza Góra, SW Poland (Matusiak-Małek et al. 2017)]. (b–d) Comparisons of the measured orthopyroxene–clinopyroxene and pyroxene-amphibole 
REE partition coefficients (solid red patterns) with those calculated using the mineral-mineral REE partitioning model of Equation 2 at the inverted 
TREE (solid blue curves). Partition coefficients calculated at 750, 925, and 1100 °C are also shown for comparison (dashed blue isotherms). The 
partition coefficients are plotted against eightfold ionic radii of REEs from Shannon (1976). (Color online.)
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where TAmp is the apparent amphibole–melt REE partitioning 
temperature or amphibole crystallization temperature while 
neglecting the difference in melt REE concentration [ln(Ci

meltPyx/
Ci

meltAmp) in Eq. 4]. Rearranging Equation 5, we have:

lnDi
Pyx–Amp = Ai

Pyx,Amp + (Bi
Amp/TAmp).	 (6)

The terms Ai
Pyx,Amp and Bi

Amp are presented in Online Materials1 
Appendix B. Equation 6 can be written in the linear form:

Bi
Amp = TAmp (lnDi

Pyx–Amp – Ai
Pyx,Amp). 	 (7)

In the absence of additional information, we can approximate 
TPyx using the temperature derived from the REE-in-two-pyroxene 
thermometer of Liang et al. (2013) (TREE). The apparent amphibole 
temperature can be calculated using an inversion diagram con-
structed by plotting (lnDi

Opx–Amp – Ai
Opx,Amp) or (lnDi

Cpx–Amp – Ai
Cpx,Amp) 

against Bi
Amp. The slope of regression line passing through the 

origin in the diagram is the apparent temperature.
Figures 5a and 5b display the inversion diagrams of the appar-

ent amphibole temperatures for the amphibole-bearing lherzolite 
shown in Figure 4 [sample WLK30 from Matusiak-Małek et al. 
(2017)]. Using a robust linear least-squares regression method, 
we fit a line through the origin and data in the diagram and obtain 
the temperature from the slope of this line. Similar apparent tem-
peratures are obtained from the orthopyroxene-amphibole REE 
partitioning data (TAmp,Opx–Amp = 856 ± 10 °C) and the clinopyrox-
ene-amphibole REE partitioning data (TAmp,Cpx–Amp = 861 ± 5 °C). 
In Figures S1–S24 of Online Materials1 Appendix C, we present 
the TAmp inversion diagrams for the 24 mantle samples included in 
this study. For most of the samples, data of light and some middle 
REEs are off the regression line, and these outliers were excluded 
from the inversion. Most of these elements are also outliers in the 
inversion diagrams when applying the REE-in-two-pyroxene ther-
mometer of Liang et al. (2013). This is attributed in part to the low 
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analytical precision for the depleted light REEs (Liang et al. 2013) 
and their higher closure temperatures (Liang 2015). Substituting 
the inverted amphibole temperature (856 or 861 °C) and TREE 
(1010 °C) into Equation 5, we obtain orthopyroxene-amphibole 
and clinopyroxene-amphibole REE partition coefficients. These 
partition coefficients reproduce the measured values for sample 
WLK30 (Figs. 5c and 5d). The inverted amphibole temperatures 
for the amphibole-bearing mantle xenoliths range from 754 °C to 
959 °C, which are 69–205 °C lower than TREE values (Online Ma-
terials1 Figs. S1–S24). The amphibole temperatures inverted from 
the orthopyroxene-amphibole model (TAmp,Opx–Amp) and those from 
the clinopyroxene-amphibole modal (TAmp,Cpx–Amp) are generally 
in agreement with each other (Online Materials1 Figs. S1–S24), 
suggesting the internal consistency of our semi-empirical models.

Partition coefficients of ree between 
pyroxene and amphibole

T-X-dependent pyroxene-amphibole REE partition 
coefficients

To predict pyroxene-amphibole partition coefficients through 
temperature (T) and mineral major element composition (X), we 

need the amphibole crystallization temperature (TAmp) without 
relying on its REE data. For this purpose, we fit the inverted TAmp 
(average value of TAmp,Opx–Amp and TAmp,Cpx–Amp) with amphibole 
major element compositions for the 24 samples using the least- 
squares method, and obtain the empirical expression:

TAmp(°C) = 258(±33)XSi + 822(±134)XTi – 743(±208)XNa – 		
	 507(±213)XK + 755(±131)XF

M4
m – 273.15. 	 (8)

The amphibole components are calculated using the method 
of Shimizu et al. (2017), which is described in Text S2 of Online 
Materials1 Appendix C. Numbers in parentheses are the standard 
error of the coefficients. We also attempted to include pyroxene 
components in the regression, such as Al, Mg, Ca, and Na. The 
prediction is not significantly improved, and large uncertainties 
are introduced. The TAmp calculated using Equation 8 is gener-
ally within ±50 °C deviation from the TAmp inverted using the 
partitioning models of Equaton 7 (Fig. 6a). The calculated TAmp 
are commonly lower than temperatures calculated from the two-
pyroxene thermometers (TREE, TBKN, TW77, and TP37, Figs. 6b–6f). 
The empirical Equation 8 for TAmp allows us to predict DOpx–Amp and 
DCpx–Amp for amphibole-bearing mantle samples using Equation 5.
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Figure 7. Comparison between the measured pyroxene-amphibole REE partition coefficients with those predicted using the partitioning models 
of Equation 5 and TAmp calculated using Equation 8. The solid gray lines in a and c denote the 1:1 correlation, and the dashed gray lines denote the 
1:2 and 2:1 correlations. Data in a and c are color-coded with eightfold ionic radii of REEs from Shannon (1976). (Color online.)
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Figure 7 compares the predicted pyroxene-amphibole REE 
partition coefficients with measured values for the amphibole-
bearing mantle rocks. TAmp in the models is calculated using 
Equation 8. The models are capable of reproducing the partition 
coefficients of Dy-Lu and Y. The orthopyroxene-amphibole model 
underestimates some of the La-Tb partition coefficients (Figs. 
7a and 7b). Out of 341 orthopyroxene-amphibole REE partition 
coefficients, 78 (mostly La-Sm) plot below the 1:2 correlation 
line (Fig. 7a). These outliers are also the outliers on the inversion 
diagrams for TREE and TAmp (Online Materials1 Figs. S1–S24). The 
clinopyroxene-amphibole model does a better job for reproduc-
ing REE partition coefficients for the mantle samples than the 
orthopyroxene-amphibole model (Figs. 7c and 7d). Out of 356 
orthopyroxene-amphibole REE partition coefficients, 20 (mostly 
La-Nd) plot above the 2:1 correlation line, and 94% of the data 
plot between the 1:2 and 2:1 correlation lines (Fig. 7c).

Effect of amphibole crystallization temperature
We have demonstrated that in the pyroxene-amphibole REE 

partitioning models the amphibole temperature (TAmp) is generally 
lower than T Pyx (Fig. 6). To test the effect of amphibole crystal-
lization temperature on pyroxene-amphibole REE partitioning, 
we calculated pyroxene-amphibole REE partition coefficients for 
the lherzolite from Wilcza Góra [Matusiak-Małek et al. (2017), 
sample WLK30] and a lherzolite from the Western Pannonian 
Basin, Hungary [Aradi et al. (2020), sample AUB1407], using 
the models presented above and assuming TAmp values that are 
50–300 °C lower than T Pyx (assigned as TREE). Although major 
element compositions and modal mineral abundances vary during 
cooling, no model is available to account for these changes, and 
we neglected these variations for the purpose of this exercise. 

As shown in Figure 8, the calculated pyroxene-
amphibole REE partition coefficients decrease 
systematically with increasing deviation of TAmp 
from T Pyx. This is attributed to the negative cor-
relation of amphibole–melt REE partition coeffi-
cients with temperature (Shimizu et al. 2017). In 
addition, with increasing deviation of TAmp from 
T Pyx, the pyroxene-amphibole mid-REE partition 
coefficients decrease more dramatically than heavy 
and light REE partition coefficients. Since amphi-
bole generally crystallizes after pyroxenes during 
hydrous melt-peridotite reactions (e.g., Wang et 
al. 2021), the preceding exercise underscores the 
importance of crystallization sequence on the REE 
distributions between pyroxenes and amphibole.

Field applications

Conditions of application and a program for 
calculation

The semi-empirical partitioning models presented in the preced-
ing sections (Eqs. 5–8) can be used to calculate apparent pyroxene-
amphibole REE partition coefficients for amphibole-bearing mantle 
rocks that have mineral compositions comparable to those from 
experiments used to calibrate the mineral-melt REE partitioning 
models (Sun and Liang 2012, 2013; Yao et al. 2012; Shimizu et al. 
2017). The pyroxene–melt models cover the main range of pyroxene 
compositions in mantle rocks, whereas the amphibole–melt model 
covers mostly the I-amphiboles (Fig. 1). Hence it is important to 
check amphibole chemistry before an application. Another caveat 
is that the constituent amphibole and pyroxenes were formed or 
affected by the same metasomatic event. This can be assessed from 
texture and mineral composition (e.g., Mg#s). As we have shown in 
Figure 2b, the amphibole Mg# is slightly lower than the pyroxene 
Mg#s, and the differences between pyroxene Mg#s and amphibole 
Mg# in samples for calibration are less than three units.

In the Online Materials1 Appendix D, we provide an Excel 
worksheet that can be used to calculate pyroxene-amphibole 
REE partition coefficients for amphibole-bearing mantle rocks. It 
requires inputs of pyroxene and amphibole major element compo-
sitions and TPyx. The pyroxene temperature can be estimated using 
the REE-in-two-pyroxene thermometer of Liang et al. (2013). For 
mantle rocks from well equilibrated lithospheric mantle, major 
element-derived temperatures are similar to TREE (Fig. 2). Tem-
peratures calculated using pyroxene thermometers such as TBKN, 
TP37, and TW77 can also be used as TPyx when TREE is inaccessible.

Applications
To test and validate the pyroxene–amphibole REE partition-

ing models, we calculate the REE contents of amphibole-bearing 
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Figure 8. Patterns of pyroxene-amphibole REE 
partition coefficients calculated from the partitioning 
model of Equation 5 with TAmp assumed to be 50–300 °C 
lower than the T Pyx (assigned as TREE) for the lherzolites 
WLK30 from Wilcza Góra (Matusiak-Małek et al. 2017) 
and AUB1407 from the Western Pannonian Basin, 
Hungary (Aradi et al. 2020). See text for discussions. 
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Figure 9. Chondrite-normalized REE 
patterns of amphiboles calculated using the 
semi-empirical pyroxene-amphibole REE 
partitioning models and REE contents in 
the coexisting pyroxenes for amphibole-
bearing peridotite xenoliths (a) WG5 and 
WG6 from Wilcza Góra (Matusiak-Małek 
et al. 2017), (b) KPFS0402 and PST1403 
from Western Pannonian Basin (Aradi 
et al. 2020), and (c) H71 and (d) H69 
from Cameroon volcanic line (Puziewicz 
et al. 2023). Gray patterns in d were 
calculated using TAmp inverted from 
Equation 7, which testifies the effect of 
heating. Also plotted for comparison are 
measured REE patterns of amphiboles 
in the Wilcza Góra xenoliths genetically 
related to WG5 and WG6 (Matusiak-
Małek et al. 2017), Western Pannonian 
Basin xenoliths genetically related to 
KPFS0402 and PST1403 (Aradi et al. 
2020), and Cameroon xenoliths H71 and 
H69 (Puziewicz et al. 2023). The chondrite 
REE abundances are from Anders and 
Grevesse (1989). (Color online.)
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mantle xenoliths and compare them with the measured amphibole 
REE contents. [Additional tests of the models on peridotite 
xenoliths from Eifel, western Germany (Witt-Eickschen and 
Harte 1994; Eickschen and O’Neill 2005) are presented in Online 
Materials1 Text S3 of the Online Appendix C.]

The harzburgite xenoliths WG5 and WG6 from Wilcza Góra, 
Poland (Matusiak-Małek et al. 2017), consist of coarse grains 
of olivine, orthopyroxene (±clinopyroxene), and fine-grained 
intergranular aggregates. The aggregates contain secondary 
amphibole and clinopyroxene (±phlogopite). Matusiak-Małek et 
al. (2017) reported major element and REE compositions of the 
orthopyroxenes for WG5, clinopyroxenes for WG6, and major 
element compositions of amphiboles for both samples. Mg#s in 
pyroxene and amphibole are similar (91 in orthopyroxene and 
89 in amphibole for WG5, and 88 in clinopyroxene and 85 in 
amphibole for WG6). They calculated pyroxene temperatures 
using the Al-in-orthopyroxene thermometer of Witt-Eickschen 
and Seck (1991) for WG5 (990 °C) and the REE-in-two-pyroxene 
thermometer of Liang et al. (2013) for WG6 (1023 °C). Using 
the available data and our models, we obtained TAmps for WG5 
(888 °C) and WG6 (852 °C), and calculated pyroxene-amphibole 
REE partition coefficients and REE contents of the amphiboles. 
The chondrite-normalized REE patterns are presented in Figure 
9a. The calculated amphibole REE patterns of samples WG5 
and WG6 are similar to those of the genetically related samples 
(Matusiak-Małek et al. 2017). The predicted REE contents of the 
amphibole in WG5 are higher than those of the other samples, 
and the predicted REE pattern for the amphibole in WG6 shows 
less fractionation between light and heavy REEs than those of 
the other samples [pink field in Fig. 9a; Matusiak-Małek et al. 
(2017)]. These are consistent with differences in the REE pat-
terns of the pyroxene in WG5 and WG6, and in the other samples 
[Figs. 6c and 7e in Matusiak-Małek et al. (2017)].

Another set of examples is the lherzolite xenoliths KPFS0402 

and PST1403 from the Western Pannonian Basin, Hungary 
(Aradi et al. 2020). KPFS0402 has a protogranular texture and 
contains 0.2% amphibole, and PST1403 has a porphyroclastic 
texture with 0.02% amphibole. The amphibole crystals in both 
xenoliths grew on the rims of clinopyroxene and spinel grains. 
The two samples have uniform orthopyroxene, clinopyroxene, 
and amphibole Mg#s (90/89/88 and 91/91/89). Using the reported 
mineral compositional data, we calculated TREE (1025 and 1018 
°C) and TAmp (927 and 929 °C) for the two samples, as well as 
the pyroxene-amphibole REE partition coefficients. The REE 
contents of amphibole in the two samples were calculated using 
the partition coefficients and the measured clinopyroxene and 
orthopyroxene REE data are plotted in Figure 9b. The amphibole 
REE patterns are comparable to measured patterns of amphiboles 
in xenoliths that have similar petrologic features and sample loca-
tions [green field in Fig. 9b; Aradi et al. (2020)]. Amphibole REE 
patterns calculated from orthopyroxene-amphibole partitioning 
are perturbed for REEs from La to Gd. This perturbation is in 
correspondence with those in the orthopyroxene REE patterns 
(Aradi et al. 2020), which is likely a result of the low concentra-
tions of the light to middle REEs in orthopyroxene relative to 
the analytical precision.

Recently, Puziewicz et al. (2023) reported two amphibole-
bearing lherzolites from the Cameroon volcanic line. Sample 
H71 has a porphyroclastic texture, and small amphiboles (1%) 
are dispersed among olivine and pyroxene grains. It has similar 
TREE (901 °C) and TBKN (911 °C). Orthopyroxene, clinopyroxene, 
and amphibole have similar Mg#s (90, 92, and 89). Using the 
reported mineral major element data and TREE, we calculated TAmp 
(778 °C) and pyroxene-amphibole REE partition coefficients. 
The predicted REE patterns are compared with the measured 
pattern in Figure 9c. The models mimic middle to heavy REE 
pattern of the amphibole but slightly overestimate concentrations 
of light REEs. The elevated La, Ce, and Pr in amphibole follow 
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that of orthopyroxene REEs.
The other Cameroon lherzolite (sample H69 from Puziewicz 

et al. 2023) has a sheared texture and contains more abundant 
amphibole (3.9%). The amphibole forms asymmetric aggregates 
around spinels and is unevenly distributed in the sample. TBKN 
(952 °C) of this sample is considerably higher than TREE (872 °C), 
which suggests a possible heating event after the formation of 
pyroxenes. TAmp obtained from Equation 8 are 652 °C. Our models 
overestimate amphibole REE contents, even for the heavy REEs 
(Fig. 9d). This suggests that Equation 8 is not capable of estimat-
ing amphibole temperature from compositions of pyroxene and 
amphibole that experienced heating. TAmp is likely higher than the 
calculated values since DPyx-Amps increase with decreasing differ-
ence between TPyx and TAmp (Fig. 8). This can be evidenced by the 
inverted TAmp using the REE partitioning models of Equation 7. 
Both the orthopyroxene-amphibole and clinopyroxene-amphibole 
models yield an TAmp of 745 °C (Fig. 9d).

Implications

The temperature- and composition-dependent REE partition-
ing models presented in this study make it possible to estimate 
REE concentrations in amphibole in mantle rocks using REE 
contents of coexisting orthopyroxene or clinopyroxene. The 
new partitioning models require major element compositions 
of amphibole and pyroxenes and the temperature at which the 
pyroxenes equilibrated. This temperature can be obtained from 
pyroxene thermometers, including those of Wells (1977), Brey 
and Köhler (1990), Putirka (2008), and Liang et al. (2013).

The amphibole crystallization temperature has been quanti-
fied using thermometers based on amphibole composition, the 
coexisting melt composition, or a combination of the two (e.g., 
Ridolfi and Renzulli 2012; Molina et al. 2015; Putirka 2016). 
However, these thermometers were not designed for mantle 
rocks. The REE partitioning models (Eq. 7) or the empirical 
Equation 8 that are calibrated for mantle rocks can be used 
to invert or calculate amphibole crystallization temperature. 
Hence, the semi-empirical and empirical models for amphibole 
crystallization temperature presented in this study have poten-
tial implications for constraining the thermal property of the 
amphibole-bearing lithospheric mantle.
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