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Simulating the dynamics of structural systems containing both stiff and flexible parts with a time inte-

gration scheme that uses a uniform time-step for the entire system is challenging because of the presence

of multiple spatial and temporal scales in the response. We present, for the first time, a multi-time-step

(MTS) coupling method for composite time integration schemes that is well-suited for such stiff-flexible

systems. Using this method, the problem domain is divided into smaller subdomains that are integrated

using different time-step sizes and/or different composite time integration schemes to achieve high accu-

racy at a low computational cost. In contrast to conventional MTS methods for single-step schemes, a

key challenge with coupling composite schemes is that multiple constraint conditions are needed to en-

force continuity of the solution across subdomains. We develop the constraints necessary for achieving

unconditionally stable coupling of the composite ρ∞-Bathe schemes and prove this property analytically.

Further, we conduct a local truncation error analysis and study the period elongation and amplitude decay

characteristics of the proposed method. Lastly, we demonstrate the performance of the method for linear

and nonlinear stiff-flexible systems to show that the proposed MTS method can achieve higher accuracy

than existing methods for time integration, for the same computational cost.

KEY WORDS: Time integration; Domain decomposition; Multi-time-step; Structural dynamics

1. INTRODUCTION

Simulating the dynamics of structural systems is often conducted by first discretizing the problem

domain in space and then using time integration methods to advance the state of the system from
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one time-step to the next (Bathe, 2016; Hughes, 1987; Zienkiewicz and Taylor, 2005). Most

commonly, a uniform time-step (UTS) is used for the entire structure where the time integration

scheme and the time-step are chosen judiciously to capture the relevant dynamics of the problem.

Additional background on UTS time integration schemes and their classification into single-step

(SS), Runge-Kutta (RK), and linear multi-step (LMS) schemes is provided in Section 2.1. For

multi-scale structures containing both, stiff and flexible components, however, UTS-SS schemes

often lead to stability issues and/or spurious oscillations (Bathe and Noh, 2012; Noh and Bathe,

2018). On the other hand, UTS-RK methods, such as the composite ρ∞-Bathe method (Bathe and

Baig, 2005; Noh and Bathe, 2019a), can be configured to achieve accurate solutions to stiff-flexible

problems, albeit at a higher computational cost than UTS-SS schemes. Detailed formulation and

stability characteristics of the ρ∞-Bathe method are provided in Section 2.2.

Further, the response of multi-scale structural systems containing both stiff and flexible parts

usually spans multiple spatial and temporal scales, making the choice of a single UTS scheme that

can capture the system response across all scales very challenging. For such problems, one may

employ a domain decomposition (DD) approach to divide the problem into multiple subdomains

that can be solved individually and coupled together to obtain the global solution (Dolean et al.,

2015; Fragakis and Papadrakakis, 2003, 2004; Toselli and Widlund, 2006). The DD approach

enables use of multi-time-step (MTS) methods, as shown in Fig. 1 for instance, where stiff parts

of the system are solve with a fine resolution in space and time whereas flexible parts may be

simulated with a coarser discretization to save computational time without loss of accuracy. This

approach is sometimes also referred to as subcycling or heterogeneous time integration or asyn-

chronous methods (Daniel, 1997; Gravouil et al., 2015; Prakash and Hjelmstad, 2004). Additional

background on DD and MTS methods is provided in Section 2.3.

The DD-MTS approach also lends itself naturally to parallelization where subdomains are
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solved on different processors simultaneously to reduce the total runtime of the simulation. How-

ever, for large problems, of the order of millions of degrees of freedom (DOFs), ensuring scala-

bility (i.e. the rate of reduction of computational time as number of processors are increased) is

crucial for efficient parallel computation (Glusa et al., 2020; Keyes, 1998). For DD-based MTS

methods, scalability can be achieved by balancing the computational load of the solving individ-

ual subdomains among processors (accounting for their different time-steps) and by designing a

scalable solver for coupling the subdomain solutions together (Farhat et al., 2000; Jamal et al.,

2017).

Despite the superior performance of UTS-RK schemes for stiff-flexible systems and the com-

putational advantages of the DD-MTS approach for multi-scale problems, currently there is no

MTS method available in the literature that allows coupling of UTS-RK schemes with different

time-steps. In this paper, we develop the first MTS method for an RK scheme for second-order

ODEs, namely the composite ρ∞-Bathe method. First, we formulate the MTS-Bathe method in

Section 3. We prove that enforcing the continuity of velocities across the interface between the

stiff and flexible subdomains leads to an unconditionally stable method in Section 4. We conduct a

local truncation error (LTE) analysis in Section 5 and show that the MTS-Bathe method preserves

the order of LTE of the underlying ρ∞-Bathe method for displacement and velocity. However, due

to the presence of Lagrange multipliers, the LTE for accelerations is found to be lower than that

of displacements and velocities. Finally, in Section 6, we present several numerical examples of

linear and nonlinear structural dynamics to compare the performance of the proposed MTS-Bathe

method to the existing methods for stiff-flexible systems. We show that existing MTS methods for

SS schemes (such as the MTS-Newmark method) do not perform well for stiff-flexible systems and

can lead to unexpectedly large errors (see Section 6.4.2 for details). We also demonstrate the ad-

vantage of the proposed MTS-Bathe method over the UTS-Bathe method and the MTS-Newmark

method when comparing computational cost and accuracy.
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2. BACKGROUND

In this section, we provide the necessary background for key ideas relevant to this article, namely

UTS time integration methods, the composite ρ∞-Bathe method, and using DD in conjunction

with MTS.

2.1 Time integration with uniform time-step (UTS) methods

The governing system of ordinary differential equations (ODEs) for structural dynamics is given

by:

Ma(t) +Dv(t) +Kd(t) = f(t) (1)

where matrices M , D, and K denote the mass, damping and stiffness, respectively and vectors a,

v, d, and f denote the acceleration, velocity, displacement, and external force, respectively. Upon

time discretization with a time step ∆t, we obtain:

Man+1 +Dvn+1 +Kdn+1 = fn+1 (2)

where the subscript denotes the instant of time and vn+1 and dn+1 are approximated with difference

equations specific to a time integration scheme. UTS time integration schemes, as shown in Fig. 2,

are largely classified into three categories, namely single-step (SS) methods, Runge-Kutta (RK)

methods, and linear multi-step (LMS) methods.

SS methods employ known state vectors from the current time step to advance the solution to

the next time step, without using multiple intermediate stages. SS methods are the most widely

used class of methods which include Newmark-β (Newmark, 1959) (including central differ-

ence and trapezoidal rule), three-parameter method (Shao and Cai, 1988) (or equivalently, CH-α

(Chung and Hulbert, 1993)), JWH-α (Jansen et al., 2000; Kadapa et al., 2017), HHT-α (Hilber

et al., 1977), U0-V0 (Zhou and Tamma, 2004), and numerous others (Bathe, 2016; Hughes, 1987;
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Wang et al., 2023; Zienkiewicz and Taylor, 2005).

RK methods are multi-stage methods that divide the time-step ∆t into multiple intermediate

stages and use the intermediate state vectors to advance the solution. In a similar way, composite

time integration methods (e.g. Bathe schemes (Bathe, 2007; Bathe and Baig, 2005)) also divide

the time-step into multiple stages and combine two or more different time integration schemes to

advance the solution as shown in detail in Section 2.2. Recently, Wang et al. (2023) showed that

most of the existing composite time integration schemes belong to the class of RK methods (Kutta,

1901; Runge, 1895). Historically, RK methods have been developed to solve first-order ordinary

differential equations (ODEs), while composite time integration schemes have usually been used

for second-order ODEs (e.g., structural dynamics).

With LMS schemes, simulations are advanced by using the known state vectors from several

previous time-steps. Well-known examples of LMS methods include Adams-Bashforth, Adams-

Moulton, and backward difference formulas (BDF) (Bashforth and Adams, 1883; Gear, 1971;

Moulton, 1926). Several LMS schemes, such as Park (1975), GBDF (Dong, 2010), and OALTS (Zhang,

2020), and RK schemes, such as Bathe (2007), Kim and Reddy (2017), and Kim and Choi (2018),

are able to achieve better performance over the SS schemes, such as Newmark and CH-α, in terms

of accuracy and stability, especially for nonlinear problems, as shown in Bathe (2007); Bathe and

Baig (2005); Dong (2010); Ji and Xing (2020); Kim (2020); Kim and Choi (2018); Kim and

Reddy (2017); Kwon and Lee (2017); Li et al. (2023); Li and Yu (2019); Park (1975); Zhang et al.

(2020); Zhang (2020).

2.2 The UTS-Composite ρ∞-Bathe scheme

In this article, since we develop the first MTS method for a composite time integration scheme

where the underlying UTS-Composite method is the ρ∞-Bathe scheme, we briefly review this
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composite time integration method here. The ρ∞-Bathe scheme followed a sequence of develop-

ments by Bathe and his co-workers. Inspired by the TRBDF2 scheme (Bank et al., 1985), Bathe

et al. (Bathe, 2007; Bathe and Baig, 2005) developed a composite time integration scheme that

uses two sub-steps within each time-step ∆t where the first sub-step uses the trapezoidal rule and

the second sub-step is advanced with the 3-point backward difference formula. Noh and Bathe

(2019a) proposed the ρ∞-Bathe scheme, which contains not only the standard Bathe and β1/β2-

Bathe schemes (Malakiyeh et al., 2019) but also the Newmark schemes and the trapezoidal rule

(Noh and Bathe, 2019b).

In the ρ∞-Bathe scheme, each time-step is divided into two sub-steps, as shown in Fig. 3,

tn → tn+γ and tn+γ → tn+1 where tn+γ = tn + γ∆t and γ is the splitting ratio. The ρ∞-Bathe

scheme (Noh and Bathe, 2019a) can then be written in the following form:

M1zn+γ = rn+γ − N1zn

M2zn+1 = rn+1 − N2zn+γ −O2zn

(3)

where

M1 =


M D K

−γ∆t
2 I I 0

0 −γ∆t
2 I I

 , M2 =


M D K

−s2∆tI I 0

0 −q2∆tI I



N1 =


0 0 0

−γ∆t
2 I −I 0

0 −γ∆t
2 I −I

 , N2 =


0 0 0

−s1∆tI 0 0

0 −q1∆tI 0



O2 =


0 0 0

−s0∆tI −I 0

0 −q0∆tI −I

 , z =


a

v

d

 , r =


f

0

0



(4)
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and s0, s1, s2, q0, q1, and q2 are Bathe parameters, and I is the identity matrix. Subscripts [ ]1 and

[ ]2 represent the first and second sub-steps, respectively, of the ρ∞-Bathe scheme.

The ρ∞-Bathe scheme is defined by two parameters, ρ∞ and γ, and leads to second- or third-

order accuracy with unconditional stability when the Bathe parameters are chosen as:

s1 = q1 =
ρ∞ + 1

2γ(ρ∞ − 1) + 4
;

s0 = q0 = (γ− 1)q1 +
1
2
; and s2 = q2 = −γq1 +

1
2

(5)

Values for ρ∞ can be chosen in the closed interval [−1, 1] and γ can take any value, including

complex values. Note that with ρ∞ = 0 this time stepping method reduces to the standard Bathe

scheme (also referred to as the γ-Bathe scheme). For ρ∞ ∈ [0, 1], one obtains identical effective

stiffness matrices for each sub-step for the following choice of γ0

γ0 =


2 −

√
2 + 2ρ∞

1 − ρ∞
for ρ∞ ∈ [0, 1)

0.5 for ρ∞ = 1

(6)

This choice leads to maximum amplitude decay and minimum period elongation (Noh and Bathe,

2019a), whereas for ρ∞ ∈ (−1, 1−
√

3], the scheme is third-order accurate for the following value

for γ (Kwon et al., 2021; Noh and Bathe, 2019b):

γp =
ρ∞ + 2 −

√
ρ2
∞ − 2ρ∞ − 2

3(ρ∞ + 1)
for ρ∞ ∈ (−1, 1 −

√
3] (7)

Note that ρ∞ is an algorithmic parameter and the spectral radius, ρ → |ρ∞| as ∆t → ∞ (Noh

and Bathe, 2019b). Thus, even negative values of ρ∞ ∈ [−1, 0] lead to unconditionally stable

methods. Note that the ρ∞-Bathe scheme is only A-stable and not BN-stable. It can achieve L-

stability when ρ∞ = 0 which is suitable for linear stiff problems (for details, see page 44 of the

text by Wanner and Hairer (1996)).
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On the other hand, the β1/β2-Bathe scheme is obtained for the following choice of parameters:

s0 = q0 = γ(1 − β1);

s1 = q1 = γ(β1 + β2 − 1) + 1 − β2; and s2 = q2 = (1 − γ)β2

(8)

The β1/β2-Bathe scheme is a three-parameter scheme. Malakiyeh et al. (2019) proposed using

γ = 0.5 along with the choice of β1 and β2 as either β2 = 1 − β1 or β2 = 2β1. Note that

the ρ∞-Bathe scheme with γ = 0.5 and β1/β2-Bathe scheme with β2 = 1 − β1 yield the same

characteristics (Kwon et al., 2020). The ρ∞-Bathe scheme for certain choice of parameters (see

Noh and Bathe (2019a,b) for details) has identical spectral properties to the two-step Newmark

method with α = 0.25(δ+ 0.5)2.

Table 1 lists common choices of the ρ∞-Bathe parameters and the associated characteristics

of the resulting schemes. In addition, unconditionally stable Bathe schemes that are first-, second-

or third-order accurate, depending on the values of the Bathe parameters, can also be designed

(Kwon et al., 2021). Further, optimal use of Bathe schemes was investigated for the solution of

transient wave propagation with linear finite elements (Kwon et al., 2020; Li et al., 2021) and

overlapping finite elements (Kim and Bathe, 2021), and optimal load selection at the sub-step

for Bathe schemes was identified (Kwon et al., 2021). In general, however, the choice of ρ∞-

Bathe parameters and the time-step ∆t is based on the dynamic characteristics of the problem at

hand. Table 1 and Noh and Bathe (2019a,b) may be used as a guideline for the selection of ρ∞-

Bathe parameters and for the time-step typically, one would use a value that is one-tenth of the

time period corresponding to the highest frequency of interest. For wave propagation problems,

the time-step for the Bathe method can be obtained from the Courant–Friedrichs–Lewy (CFL)

condition (Kwon et al., 2020; Noh et al., 2013).

Systems that are composed of mechanically stiff and flexible substructures, such as the one
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shown in Fig. 1 occur frequently in practice. The difference in stiffness of between the substruc-

tures may be physical (e.g. resulting from additional construction over an existing structure) or it

may be numerical (e.g. presence of penalty constraints, or rigid links connecting different com-

ponents, or contact with a large stiff body and similar other scenarios) – see Bathe (2016); Bathe

and Noh (2012); Noh and Bathe (2018) for details. While UTS-SS methods work well for most

problems in structural dynamics, one often encounters stability issues and/or spurious oscillations

when simulating such stiff-flexible systems with these methods (Bathe and Noh, 2012; Ji and

Xing, 2020; Kadapa et al., 2017; Kim, 2020; Kim and Choi, 2018; Kim and Reddy, 2017; Noh

and Bathe, 2018, 2019a,b, 2023; Zhang, 2020). In contrast, UTS-RK methods such as the compos-

ite ρ∞-Bathe method can achieve accurate solutions to stiff-flexible problems for certain choice of

parameters as listed in Table 1.

Finally, since we are developing a MTS method for the ρ∞-Bathe scheme, it is helpful to cast

it in a form which shows how the solution can be advanced by m time-steps from t0 to tm (or tn

to tn+m, in general). This is achieved by solving the following lower triangular system:

M1

N2 M2

N1 M1

O2 N2 M2

. . . . . . . . .

N1 M1

O2 N2 M2





zγ

z1

z1+γ

z2

...

zm−1+γ

zm



=



rγ − N1z0

r1 −O2z0

r1+γ

r2

...

rm−1+γ

rm



(9)

Since the system is lower triangular, it can be solved easily from top to bottom using forward

substitution. This is identical to conventional time stepping with a UTS method.

Stability of the ρ∞-Bathe scheme has been proven using a spectral analysis (Bathe and Noh,
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2012; Noh and Bathe, 2019a). However, to facilitate a proof of stability for the proposed MTS-

Bathe method (presented later in Section 4), we first derive an energy balance equation for the

UTS-Bathe scheme using the approach presented by Hughes et al. (Hughes, 1987; Hughes and

Liu, 1978b).

Using modal decomposition (Zienkiewicz and Taylor, 2005), the governing system of second-

order ODEs for structural dynamics shown in Eq. (1) for a multi-degree of freedom (MDOF)

system is decoupled into a number of scalar second-order ODEs governing the behavior of each

single-degree of freedom (SDOF) mode. This replaces matrices and vectors with their modal

scalar equivalents: M → 1; K → ω2
0; a → a; v → v; d → d; and f → r (where ω0 is the

modal natural frequency and r is the generalized force). Next, we define:

∆KE[a] = (a2
n+1 − a2

n)/2; ∆PE[v] = (v2
n+1 − v2

n)ω
2
0/2; (10)

as the change in kinetic and potential energies from tn to tn+1.

Note that stability requires that ∆KE[a] + ∆PE[v] ≤ 0 because that ensures that an+1 and

vn+1 will be bounded as long as an and vn are bounded. Consequently, from the governing Eq. (1),

dn+1 will also be bounded as long as dn is bounded. Expressing an+1 and vn+1 in terms of an, vn,

dn, rn+γ, and rn+1 using the relationships of the Bathe scheme and the time discretized equations

of motion (Eq. (3)), one can derive the following result:

∆KE[a] + ∆PE[v] = −D[∆a,∆v] + Eext[∆a,∆v,∆r,∆γr] (11)

where D and Eext represent numerical damping, and work due to external forces, respectively.
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These quantities are defined as:

D[∆a,∆v] =
(1 − ρ2

∞)γ2(1 − γ)2∆t2ω2
0

{
∆a2 +∆v2ω2

0

}
8(2 − γ(1 − ρ∞))2 + 2(1 − ρ∞)2γ2(1 − γ)2∆t2ω2

0
; (12)

Eext[∆a,∆v,∆r,∆γr] =
1
∆t

∆v∆r + ηρ[∆a,∆v](γ∆r −∆γr) (13)

where

ηρ[∆a,∆v] = (1 + ρ∞)
2(2 − γ(1 − ρ∞))∆a+ (1 − ρ∞)γ(1 − γ)∆tω2

0∆v

4(2 − γ(1 − ρ∞))2 + (1 − ρ∞)2γ2(1 − γ)2∆t2ω2
0

and the operators ∆ and ∆γ are defined as: ∆(·) = (·)n+1 − (·)n and ∆γ(·) = (·)n+γ − (·)n

respectively.

Since Eext has no impact on stability of time integration schemes (Liu and Belytschko, 1982),

stability condition is D ≥ 0. From Eq. (12), one may verify that the denominator is always

positive and the numerator will be non-negative as long as |ρ∞| ≤ 1. Therefore, the ρ∞-Bathe

scheme is unconditionally stable when |ρ∞| ≤ 1 for any value of γ. This is identical to stability

result derived from spectral radius of the amplification matrix in Noh and Bathe (2019a).

2.3 Domain decomposition and multi-time-step methods

We present the finite element tearing and interconnecting (FETI) method – a domain decompo-

sition method based on the dual-Schur complement approach – and discuss the use of multiple

time-steps in conjunction with it. The FETI method was proposed by Farhat and Roux (Farhat

et al., 1994a; Farhat and Roux, 1991, 1994) and uses element partitioning and Lagrange multi-

pliers to enforce kinematic continuity at the interface of shared nodes between the subdomains.

Using the FETI method, a problem domain Ω is decomposed into two subdomains ΩA and ΩB

with an internal boundary ΓI as shown in Fig. 1. Lagrange multipliers, λ, are used to impose
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the continuity of kinematic quantities, such as displacement, velocity, and acceleration, at the in-

ternal boundary (see Farhat and Roux (1991) for general framework). Gravouil and Combescure

(Combescure and Gravouil, 2002; Gravouil and Combescure, 2001) formulated a MTS method for

Newmark schemes and found that imposing continuity of velocities at the fine time-scale results in

a stable, but dissipative algorithm. Prakash and Hjelmstad (Prakash and Hjelmstad, 2004; Prakash

et al., 2014) proposed a modified MTS method imposing continuity of velocities at the coarse

time-scale to eliminate numerical dissipation and lower the computational cost. This method is

unconditionally stable and preserves the energy norms of individual subdomains. We refer to this

method as the MTS-Newmark method in this article and use it as a benchmark to compare the

performance of the proposed MTS-Bathe method.

For the MTS-Newmark method, the semi-discrete equations of motion of a decomposed sys-

tem, such as that shown in Fig. 1, are given as:

MAaA(t) +DAvA(t) +KAdA(t) +CAT

λ(t) = fA(t) (14)

MBaB(t) +DBvB(t) +KBdB(t) +CBT

λ(t) = fB(t) (15)

CAwA(t) +CBwB(t) = 0 (16)

where superscripts A and B denote the subdomain, λ is the Lagrange multiplier, and C represents

the Boolean connectivity matrix across the interface. In Eq. (16), w may be replaced by either

a, v, or d to enforce the continuity of accelerations, velocities, or displacements, respectively.

Lagrange multipliers, λ(t), represent the internal forces between the two subdomains. For further

details, see Prakash and Hjelmstad (2004).

In contrast to a UTS method, where one uses a uniform time-step for the entire problem do-

main, the MTS method uses two different time-steps for subdomains ΩA and ΩB. As shown in

Fig. 1, the flexible subdomain ΩA is advanced with a large time-step ∆T and the stiff subdomain
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ΩB is advanced with a small time-step ∆t. Note that ∆T = m∆t where m is the time-step ratio

between the two subdomains. The fully discrete equations of motion for advancing the solution

from t0 to tm are:

MAaA
m +DAvA

m +KAdA
m +CAT

λm = fA
m (17)

MBaB
j +DBvB

j +KBdB
j +CBT

λj = fB
j for j = 1, 2, ...,m (18)

CAwA
m +CBwB

m = 0 (19)

CAhA
j +CBhB

j = 0 for j = 1, 2, ..., (m− 1) (20)

where the subscripts refer to the time-step as depicted in Fig. 1 and vector h depends upon the

time integration method used and the coupling constraints chosen for the specific MTS method.

Together with the difference equations of the underlying time integration scheme, these equations

are used to advance the solution for the entire problem domain from t0 to tm. This process is called

block-time-stepping and can be repeated successively to advance the simulation.

One finds numerous MTS methods that combine different SS schemes in the literature leading

to different stability and accuracy characteristics. There are methods that enable coupling of im-

plicit and explicit schemes in different subdomains, but with a single time-step (Belytschko and

Mullen, 1976; Hughes and Liu, 1978a,b; Park, 1980) or methods that use different time-steps in

different subdomains (Belytschko et al., 1984, 1979; Daniel, 1997; Liu and Belytschko, 1982;

Smolinski, 1992). While these methods try to combine different time integration schemes, their

stability and accuracy, in general, is not guaranteed and is sometimes problem-dependent. More

recently, MTS methods for Newmark time integration schemes were developed by Gravouil and

Combescure (Combescure and Gravouil, 2002; Gravouil and Combescure, 2001) and modified

by Prakash and Hjelmstad (Prakash and Hjelmstad, 2004; Prakash et al., 2014) that provide ex-

cellent stability and accuracy behavior. Mahjoubi et al. (2011) proposed an energy conserving
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MTS method to couple the Simo, Krenk, Verlet, HHT-α as well as Newmark schemes. Brun et al.

(2015) formulated two MTS methods for Newmark and HHT-α, WBZ-α, and CH-α schemes. De-

spite the advantages of MTS methods that combine two or more SS schemes, there is currently no

work in the literature that formulates a MTS method to combine RK schemes or LMS schemes for

second-order ODEs. Some studies have developed DD and MTS methods to combine RK schemes

for first-order ODEs (Arrarás et al., 2014; Golbabai and Javidi, 2009; Javidi and Golbabai, 2009;

Liang et al., 2019; Nakshatrala et al., 2008, 2009), but not for second-order ODEs. This is a gap

in the current literature that the present article addresses.

While the total computational cost of a MTS method is usually lower than that of its un-

derlying UTS methods, ensuring scalability of the method is essential for realizing this gain in

performance. Usually, the solution of individual subdomains may be computed on different cores

independently of each other and scales well. However, coupling the subdomain solutions together

requires communication between the subdomains and is difficult to parallelize efficiently. To over-

come this challenge, Farhat and coworkers (Farhat et al., 1995, 2001; Farhat and Mandel, 1998;

Farhat et al., 1994b; Farhat and Roux, 1991) developed different implementations of the FETI

method where direct solvers are used to compute the solution for each subdomain and an itera-

tive preconditioned conjugate gradient (PCG) solver is used to couple the subdomains solutions.

Specifically, the FETI-DP implementation (Farhat et al., 2001) is shown to be scalable because the

matrix-vector products needed for the PCG method are readily computed using scalable parallel

subdomain solvers and it introduces a coarse problem on the interface to ensure that the number

of iterations needed for convergence remains relatively constant as the number of subdomains in-

creases. This approach is effective for static problems and for problems in which the dynamics can

be captured well using a UTS approach. However, for the MTS method, one must also account

for the difference in time-steps among the subdomains for effective computational load balance

between processors. Additionally, the condition number of the coupling operator may worsen as
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the ratio of maximum time-step to the minimum time-step increases. This may lead to an increase

in the number of iterations needed for convergence and cause loss of scalability. A detailed study

of the scalability that addresses these and other issues associated with DD-based MTS methods is

beyond the scope of this article and is left as future research.

3. THE MTS-BATHE COUPLING METHOD

In this section we develop a novel MTS method for ρ∞-Bathe schemes that allows one to de-

compose a problem domain into smaller subdomains and use different ρ∞-Bathe schemes and/or

different time-steps in each domain to solve problems with multiple temporal scales, such as the

stiff-flexible system depicted in Fig. 1. For ease of presentation, we only consider two subdomains

ΩA and ΩB. The method can be extended for multiple (more than two) subdomains in a manner

similar to the technique described by Jamal et al. (2017).

Based on Fig. 1, the time-steps ∆T and ∆t, and the Bathe parameters γA, γB, ρA
∞ and ρB

∞

for subdomains ΩA and ΩB should be chosen in accordance with their dynamic characteristics, as

one would do when selecting these algorithmic parameters for any UTS-Bathe scheme. A detailed

view of the time-steps shown in Fig. 1 is provided in Fig. 4, which illustrates the MTS-Bathe

method for one block-time-step from t0 to tm. In the derivation that follows, a superscript A or

B denotes the subdomain and the subscript denotes the instant of time within the interval t0 to

tm as shown in Fig. 4. To advance the solution by one block time-step, we need to compute the

state variables for subdomains ΩA and ΩB at all intermediate time-steps tj+1, sub-time-steps tj+γB

(where j = 0, 1, ...,m− 1), and tγAm.

First, we follow the notation of Sections 2.2 and 2.3 to write the fully discretized equations for
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ΩA and ΩB as:

MA
1 z

A
γAm + CAT

λγAm = rA
γAm − NA

1 z
A
0 (21)

MA
2 z

A
m + CAT

λm = rA
m − NA

2 z
A
γAm −OA

2 z
A
0 (22)

MB
1 z

B
j+γB + CBT

λj+γB = rB
j+γB − NB

1 z
B
j for j = 0, 1, ...,m− 1 (23)

MB
2 z

B
j+1 + CBT

λj+1 = rB
j+1 − NB

2 z
B
j+γB −OB

2 z
B
j for j = 0, 1, ...,m− 1 (24)

where CA =
[
CA, 0, 0

]
and CB =

[
CB, 0, 0

]
. Note that these equations advance subdomain ΩA

by ∆T and subdomain ΩB by m times ∆t. To aid the computation of the Lagrange multipliers, λk,

at the intermediate time-instants tk (where k = j + γB and j + 1), state variables for subdomain

ΩA at the same instants are obtained by piecewise linear interpolation and extrapolation as:

zA
k = c0,kz

A
0 + c1,kz

A
γAm + c2,kz

A
m (25)

where

For 0 < γA < 1 : c0,k =
γAm−k
γAm

; c1,k =
k

γAm
when k ≤ γAm

c0,k = 0; c1,k =
m−k

(1−γA)m
when k > γAm

For γA > 1 : c0,k =
m−k
m

; c1,k = 0 when k ≤ m

c0,k = 0; c1,k =
m−k

(1−γA)m
when k > m

For γA < 0 : c0,k =
γAm−k
γAm

; c1,k =
k

γAm
when k ≤ 0

c0,k =
m−k
m

; c1,k = 0 when k > 0

(26)

with c2,k = 1− c0,k− c1,k. Note that the time-instant tγAm need not coincide with any intermediate

time-step tk. However, in the case that some value of k is equal to γAm, Eqs. (26) still hold.

Next, we develop a relationship between the Lagrange multipliers at the intermediate time-

instants tk and the Lagrange multipliers at the end of the block time-steps, t0 and tm. This is
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achieved by restricting the equation of motion for subdomain ΩA at the interface for the interme-

diate time-instants tk as:

CA
[
MAaA

k +DAvA
k +KAdA

k +CAT

λk

]
= CAfA

k (27)

Noting that CACAT
= Iλ, which is an identity matrix of size of number of degrees of freedom on

the interface (Prakash and Hjelmstad, 2004), Eq. (27) can be rewritten as:

CAMAzA
k + λk = CAfA

k (28)

where CAMA = CA
[
MA,DA,KA

]
. Substituting Eqs. (21), (22) and (25) into Eq. (28) leads to

the following expression for the Lagrange multipliers at the intermediate time-instants λk:

λk = λ̃k + c1,kλγAm + c2,kλm (29)

where

λ̃k = CA
[
fA
k − c1,kf

A
γAm − c2,kf

A
m

]
− c0,kCAMAzA

0 (30)

Finally, using Eq. (29), equations of motion for subdomain ΩB (i.e. Eqs. (23) and (24)) can be

rewritten as:

MB
1 z

B
j+γB + c1,j+γBCBT

λγAm+c2,j+γBCBT

λm = (31)

rB
j+γB − NB

1 z
B
j − CBT

λ̃j+γB

MB
2 z

B
j+1 + c1,j+1CBT

λγAm+c2,j+1CBT

λm = (32)

rB
j+1 − NB

2 z
B
j+γB −OB

2 z
A
j − CBT

λ̃j+1

Thus, the final system of equations to be solved for block-time-stepping subdomains ΩA and

ΩB from t0 to tm are Eqs. (21), (22), (31), and (32). The only unknowns remaining in these
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equations are two Lagrange multipliers λγAm and λm across the interface between subdomains ΩA

and ΩB. The constraint conditions needed to compute these Lagrange multipliers are discussed

next.

3.1 Constraint conditions for computing Lagrange multipliers

Unlike the MTS method for Newmark schemes, which use a single constraint equation to enforce

continuity of velocities at the final time-step tm (Gravouil and Combescure, 2001; Prakash and

Hjelmstad, 2004), for composite time integration schemes, we need two constraint equations to

compute the two Lagrange multipliers, λγAm and λm. We evaluated the stability behavior of sev-

eral combinations of constraint conditions. We present three representative constraint conditions

here that show all three types of stability behavior: stable, conditionally stable, and unstable. The

following three cases describe these constraint conditions across the interface between subdomains

ΩA and ΩB:

- Case 1: displacement continuity at tm and linear interpolation for λγAm

- Case 2: velocity continuity at tm and linear interpolation for λγAm

- Case 3: acceleration continuity at tm and linear interpolation for λγAm

For all three cases, the constraint condition, at the final time-step tm can be written as:

BAzA
m + BBzB

m = 0 (33)

where the matrices BA and BB are defined as

BA ≡


[0, 0, CA] for case 1

[0, CA, 0] for case 2

[CA, 0, 0] for case 3

and BB ≡


[0, 0, CB] for case 1

[0, CB, 0] for case 2

[CB, 0, 0] for case 3

(34)
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In addition, Lagrange multipliers at the intermediate time-instant tγAm are obtained by linear in-

terpolation between t0 and tm:

λγAm = (1 − γA)λ0 + γAλm (35)

Thus, constraint equations (33) and (35) together with Eqs. (21), (22), (31), and (32) are the final

set of equations to be solved for block-time-stepping subdomains ΩA and ΩB from t0 to tm. To

solve these equations, we use a bordered solution procedure described in the next subsection.

To aid in the development of the bordered system of equations, we first write Eq. (35) in a

modified form as follows. Multiplying equations of motion for subdomain ΩB at t0 and tm by

(1 − γA) and γA, respectively, we obtain:

[
MB, DB, KB

] (
(1 − γA)zB

0 + γAzB
m

)
+CBT

λγAm = (1 − γA)fB
0 + γAfB

m (36)

Eliminating λγAm from Eqs. (21) and (36), we obtain:

(1 − γA)CBMBzB
0 + γACBMBzB

m − CAMAzA
γAm

= CB
(
(1 − γA)fB

0 + γAfB
m

)
−CAfA

γAm (37)

where CBMB = CB
[
MB,DB,KB

]
. Eq. (37) effectively replaces Eq. (35) in the final set of

equations to be solved for the proposed MTS method. Next, we describe the bordered solution

process for solving Eqs. (21), (22), (31)–(33) and (37) together.

3.2 Bordered solution procedure

Eqs. (21), (22), (31)–(33) and (37) form a linear system of equations that is solved to advance

subdomains ΩA and ΩB by one block time-step from the initial time-instant t0 to the final time-

instant tm while maintaining continuity of the solution across the interface between them. This
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system of equations is solved in a decoupled time-stepping manner for both subdomains ΩA and

ΩB using a bordered procedure (Prakash et al., 2014) by expressing them in the form of a saddle-

point problem (Benzi et al., 2005): M CT

B 0


 z

λ

 =

 r

s

 (38)

where,

M =



MB
1

NB
2 MB

2

. . . . . .

NB
1 MB

1

OB
2 NB

2 MB
2

MA
1

NA
2 MA

2



; z =



zB
γB

zB
1

...

zB
m−1+γB

zB
m

zA
γAm

zA
m



; (39)

CT =



c1,γBCBT
c2,γBCBT

c1,1CBT
c2,1CBT

...

c1,m−1+γBCBT
c2,m−1+γBCBT

c1,mCBT
c2,mCBT

CAT 0

0 CAT



; r =



rB
γB − NB

1 z
B
0 − CBT

λ̃γB

rB
1 −OB

2 z
B
0 − CBT

λ̃1

...

rB
m−1+γB − CBT

λ̃m−1+γB

rB
m − CBT

λ̃m

rA
γAm − NA

1 z
A
0

rA
m −OA

2 z
A
0



; (40)
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B =

0 0 · · · 0γACBMB −CAMA 0

0 0 · · · 0 BB 0 BA

 ; λ =

λγAm

λm

; (41)

s =

CB
(
(1 − γA)fB

0 + γAfB
m

)
−CAfA

γAm − (1 − γA)CBMBzB
0

0

 (42)

Note that when γA = γB = 1, the above equations are identical to the MTS-Newmark method for

the trapezoidal rule (MTS-TR method).

As bordered systems can be solved using the Schur complement method, the sub-matrix z is

represented as

z = z + z′ (43)

where z is the uncoupled-free part of the solution and z′ represents the coupled-link correction.

These quantities can be solved from Eq. (38) as:

z = M−1r (44)

z′ = −Yλ (45)

Y = M−1CT (46)

BM−1CTλ = BM−1r− s (47)

Using the uncoupled-free part z and coupled-link correction z′, the solution is updated at each

block time-step and we repeat this process for the next block time-step ∆T , as represented in

Fig. 5. In Algorithm 1, we summarize this procedure for the MTS-Bathe method for the ρ∞-

Bathe scheme in linear dynamics. Following the approach described in Prakash et al. (2014), the

proposed MTS-Bathe can also extended to solve non-linear problems.
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3.3 Computation of initial accelerations

Before the proposed MTS-Bathe method can be used, we need to compute initial accelerations in

subdomains ΩA and ΩB when initial displacements and velocities are given. To do so, first the

uncoupled initial accelerations are obtained as:

aA
0 = [MA]−1(fA

0 −DAvA
0 −KAdA

0 )

aB
0 = [MB]−1(fB

0 −DBvB
0 −KBdB

0 )
(48)

Next the Lagrange multipliers necessary to enforce continuity of the initial accelerations are com-

puted:

λ0 =
(
CA[MA]−1CAT

+CB[MB]−1CBT
)−1 (

CAaA
0 +CBaB

0

)
(49)

Lastly, the initial accelerations are updated as follows:

a′A
0 = −[MA]−1CAT

λ0, a′B
0 = −[MB]−1CBT

λ0

aA
0 = aA

0 + a′A
0 , aB

0 = aB
0 + a′B

0

(50)

Once the initial accelerations have been computed, the MTS-Bathe method can proceed.

Algorithm 1: Bordered solution procedure for the MTS-Bathe method in linear dynamics.

A. Initial calculation
1. Decompose problem domain into ΩA and ΩB, and select time-step size ∆t and ∆T

(here ∆T = m∆t, m is natural number) and parameters ρA
∞, γA, ρB

∞, γB.
2. Construct mass matrices MA, MB, stiffness matrices KA, KB, damping matrices

DA, DB, connectivity matrices CA, CB, and force vectors fA, fB, and initialize displace-
ments dA

0 , d
B
0 and velocities vA

0 , v
B
0 .

3. Compute initial accelerations aA
0 , a

B
0 from Eqs. (48)–(50)

4. Compute the interface matrix Y: Y = M−1CT from Eq. (46)
B. For each cycle of the block time-step ∆T (= m∆t)

1. Compute the uncoupled-free part z: z = M−1r from Eq. (44)
2. Compute the Lagrange multipliers λ: λ = [BY]−1(Bz− s) from Eq. (47)
3. Compute the coupled-link correction z′: z′ = −Yλ from Eq. (45)
4. Update the solutions: z = z + z′ from Eq. (43)
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4. STABILITY ANALYSIS

In this section, we first evaluate the stability of the proposed MTS-Bathe method with different

continuity constraints presented in Section 3.1. Next, we identify the specific constraint condition

that leads to unconditional stability and theoretically prove this property for coupling any ρ∞-

Bathe scheme with any time-step ratio.

4.1 Evaluation of Spectral stability

Stability characteristics are evaluated using a spectral analysis for a split SDOF problem, as pre-

sented in Prakash and Hjelmstad (2004); Prakash et al. (2014). In this problem, a SDOF system

given by:

Man+1 +Dvn+1 +Kdn+1 = fn+1 (51)

is decomposed into two SDOF systems, A and B:

MAaAn+1 +DAvAn+1 +KAdAn+1 + λn+1 = fA
n+1

MBaBn+1 +DBvBn+1 +KBdBn+1 − λn+1 = fB
n+1

wA
n+1 − wB

n+1 = 0

(52)

that are coupled together with the Lagrange multiplier λ to enforce the continuity of a kinematic

quantity w, which may be displacement, velocity or accelerations. The initial conditions of the

split SDOF system are inherited from the underlying undecomposed SDOF system:

d(0) = dA(0) = dB(0) = d0

v(0) = vA(0) = vB(0) = v0

(53)

Without loss of generality, we consider MA = MB = 1, DA = 2ζAωA
0 , DB = 2ζBωB

0 ,

KA = (ωA
0 )

2, and KB = (ωB
0 )

2, where ω0, and ζ denote the natural frequency and damping ratio,
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respectively. Note that for the underlying undecomposed SDOF problem, the natural frequency

ω0 and the corresponding natural period are given as:

ω0 =

√
(ωA

0 )
2 + (ωB

0 )
2

1 + 1
; T0 = 2π/ω0 (54)

To facilitate spectral analysis, the proposed MTS-Bathe method is written in a recursive form:zA
n+m

zB
n+m

 = A

zA
n

zB
n

+Ln (55)

where the matrix A and vector Ln are the amplification matrix and the load vector, respectively.

The procedure to obtain the amplification matrix A is described in Appendix A. Note that the

matrix A depends on the time-step ratio, m, and Bathe parameters, ρA
∞, ρB

∞, γA and γB. For

stability, the spectral radius of the amplification matrix should be less than or equal to 1. The

spectral radius of A is defined as:

ρ(A) = max
i

(|µi|) (56)

where µi(i = 1, 2, ..., 6) are roots of p(µ) = 0, where p(µ) is the characteristic polynomial of A.

The spectral radius of the MTS-Bathe method is computed for the three cases of constraint

conditions given in Section 3.1 for numerous combinations of the Bathe parameters ρ∞ and γ.

Fig. 6 shows a representative result for ρA
∞ = ρB

∞ = 0 (i.e. the γ-Bathe scheme) when ωB
0 /ω

A
0 = 1

and ζA = ζB = 0 (i.e. no damping). It is found that case 2 (continuity of velocities) exhibits

unconditionally stable behavior and thus we focus on this constraint condition henceforth.

4.2 Energy method of stability analysis for the proposed MTS-Bathe method

In this section, we prove that the proposed MTS-Bathe method with continuity of velocities at

the block time-step and linear interpolation of Lagrange multipliers is unconditionally stable for

International Journal for Multiscale Computational Engineering



Coupling schemes for multi-scale structural dynamics 25

any value of the time-step ratio, m. For MTS methods, the total energy balance equation (in the

absence of external forces) for both subdomains is written as:

∆KEA
m +∆PEA

m +
m∑
j=1

{
∆KEB

j +∆PEA
j

}
= −DA

m −
m∑
j=1

DB
j + Elink (57)

where Elink is the work done by the Lagrange multipliers. Note that since the underlying UTS-

Bathe schemes for subdomains ΩA and ΩB are stable, the stability of the proposed MTS-Bathe

method only depends on Elink.

It is known that Lagrange multipliers manifest as forces on the interface acting equal and

opposite on subdomains ΩA and ΩB as shown in Fig. 1 (see Farhat and Roux (1991); Prakash and

Hjelmstad (2004)). Consequently, Elink can be obtained from the definition of Eext in Eq. (13) by

replacing r with the effect of Lagrange multipliers on the two subdomains, as follows:

Elink =EA
ext,m

[
∆aA

m,∆vA
m,−CAT

∆λm,−CAT
∆γλm

]
(58)

+
m∑
j=1

EB
ext,j

[
∆aB

j ,∆vB
j ,−CBT

∆λj,−CBT
∆γλj

]

where ∆(·)m = (·)m−(·)0 and ∆γ(·)m = (·)γAm−(·)0 for subdomain ΩA, and ∆(·)j = (·)j−(·)j−1

and ∆γ(·)j = (·)j−1+γB − (·)j−1 for subdomain ΩB. Eq. (58) can be simplified to:

Elink = − 1
∆T

(
CA∆vA

m

)T
(λm − λ0)−

m∑
j=1

[
1
∆t

(
CB∆vB

j

)T
(λj − λj−1)

]
−
(
CAηA

ρ

)T (
γAλm − λγAm + (1 − γA)λ0

)
−

m∑
j=1

[ (
CBηB

ρ

)T (
γBλj − λj−1+γB + (1 − γB)λj−1

) ] (59)
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where

ηA
ρ = (1 + ρA

∞)
((

σA
1

)2
MA +

(
σA

2

)2
KA

)−1 (
σA

1 M
A∆aA

m + σA
2 K

A∆vA
m

)
(60)

ηB
ρ = (1 + ρB

∞)
((

σB
1

)2
MB +

(
σB

2

)2
KB

)−1 (
σB

1 M
B∆aA

j + σA
2 K

B∆vB
j

)
(61)

with σA
1 = 2(2 − γA(1 − ρA

∞)), σA
2 = (1 − ρA

∞)γA(1 − γA)∆T , σB
1 = 2(2 − γB(1 − ρB

∞)), and

σB
2 = (1 − ρB

∞)γB(1 − γB)∆t. From Eqs. (29) and (35), Elink can be further reduced as follows:

Elink = −

{
1

∆T
CA∆vA

m +
m∑
j=1

1
m∆t

CB∆vB
j

}
(λm − λ0)

= − 1
∆T

{
CA∆vA

m +CB

m∑
j=1

∆vB
j

}
(λm − λ0)

= − 1
∆T

{
CA

(
vA
m − vA

0

)
+CB

(
vB
m − vB

0

)}
(λm − λ0)

= 0

(62)

The result above shows that continuity of velocities (CAvA
m + CBvB

m = 0) leads to Elink = 0.

Thus, the proposed MTS-Bathe method does not add or remove energy at the interface and leads

to an unconditionally stable method.

5. ACCURACY ANALYSIS

In this section we evaluate the accuracy of the proposed MTS-Bathe method by first conducting a

truncation error analysis and then studying its characteristics of period elongation and amplitude

decay.

5.1 Truncation error analysis

In this section, we compute the local truncation errors (LTEs) in the solution obtained by the

proposed MTS-Bathe method by advancing from tn to tn+m. Without loss of generality, these
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can be taken as 0 and tn+m = ∆T respectively. First, we define the following LTEs in kinematic

quantities and Lagrange multipliers:

τA
z
γAm

= zA
γAm − zA(tγAm); τA

zm
= zA

m − zA(tm);

τB
z
j+γB

= zB
j+γB − zB(tj+γB); τB

zj+1
= zB

j+1 − zB(tj+1);

τλ
γAm

= λγAm − λ(tγAm); τλm = λm − λ(tm)

(63)

where zA(tγAm), zA(tm), zB(tj+γB), zB(tj+1), λ(tγAm), and λ(tm) represent the exact values

of these quantities at the noted time-instants. Note that the initial values of these quantities are

assumed to be exact i.e. zA(0) = zA
0 , zB(0) = zB

0 , and λ(0) = λ0. The exact values of these

quantities at later instants of time are obtained using a Taylor series expansion about t = 0:

z(tm) =
∞∑
k=0

∆T k

k!

dkz

dtk
(64)

Using the definitions above and Eqs. (21), (22), (31), (32), (33) and (35), the following equa-

tions can be obtained:

MA
1 τ

A
z
γAm

+ γACAT

τλm = gA
γAm (65)

MA
2 τ

A
zm

+ CAT

τλm = gA
m − NA

2 τ
A
z
γAm

(66)

MB
1 τ

B
z
j+γB

+
j + γB

m
CBT

τB
λm

= gB
j+γB − NB

1 τ
B
zj

(67)

MB
2 τ

B
zB
j+1

+
j + 1
m

CBT

τB
λm

= gB
j+1 − NB

2 τ
B
zB
j+γB

−OB
2 τ

B
zA
j

(68)

BAτA
zm

+ BBτB
zm

= 0 (69)
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where

gA
γAm =


−CAT

gλ
γAm

(γA∆T )3

12 äA
0 +O(∆T 4)

(γA∆T )3

12 ȧA
0 +O(∆T 4)

 ; gA
m =


0

(3sA1 (γA)2+3sA2 −1)∆T 3

6 äA
0 +O(∆T 4)

(3qA1 (γA)2+3qA2 −1)∆T 3

6 ȧA
0 +O(∆T 4)

 ;

gB
j+γB =


−CBT

gλ
j+γB

(γB∆t)3

12 äB
0 +O(∆t4)

(γB∆t)3

12 ȧB
0 +O(∆t4)

 ; gB
j+1 =


−CBT

gλj+1

(3sB1 (γB)2+3sB2 −1)∆t3

6 äB
0 +O(∆t4)

(3qB1 (γB)2+3qB2 −1)∆t3

6 ȧB
0 +O(∆t4)

 ;

gλ
γAm

= γA(1−γA)∆T 2

2 λ̈0 +
γA(1−(γA)2)∆T 3

6

...
λ 0 +O(∆T 4);

gλ
j+γB

= (j+γB)(m−(j+γB))∆t2

2 λ̈0 +
(j+γB)(m2−(j+γB)2)∆T 3

6

...
λ 0 +O(∆T 4);

gλj+1 =
(j+1)(m−(j+1))∆t2

2 λ̈0 +
(j+1)(m2−(j+1)2)∆t3

6

...
λ 0 +O(∆T 4)

(70)

where the overdot denotes time derivative, and ȧA
0 , äA

0 , ȧB
0 , äB

0 , λ̈0, and
...
λ 0 are the exact time

derivatives of these quantities at t = 0. Note that in Eq. (70), we consider linear, quadratic, and

cubic terms in the Taylor series. Similar to Section 3.2, this system can be expressed in the form

of a saddle-point problem and solved using a bordered procedure. Consequently, we will compute

the LTEs defined in Eq. (63) as a sum of uncoupled-free and coupled-link parts:

τzm = τzm + τz′m (71)

To keep the LTE analysis tractable, and without loss of generality, we compute LTEs for a split

SDOF system given by Eq. (52). Solving Eqs. (65)-(69) as a bordered system, we find that the

uncoupled-free LTEs in subdomains ΩA and ΩB, respectively, as:

τA
z̄m

∝ O(∆T 3), τB
z̄m

∝ O(∆T 3) (72)

This is consistent with the fact that the underlying UTS-Bathe schemes are at least second-order
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accurate. Next, to compute the coupled-link part of the LTEs, we first compute the LTE in matrix

Y for the bordered solve using Eq. (46) as:

Y A
τm

∝


1 +O(∆T )

O(∆T )

O(∆T 2)

 ; Y B
τm

∝


−1 +O(∆T )

O(∆T )

O(∆T 2)

 (73)

Thus, the LTE in the Lagrange multiplier is obtained as:

τλm =
τAv̄m − τBv̄m
Y A
τvm

− Y B
τvm

∝ O(∆T 2) (74)

Finally, combining Eqs. (72)–(74), LTEs in the kinematic quantities are obtained as:

τAam ∝ τBam ∝ O(∆T 3)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) · 1︸ ︷︷ ︸
coupled-link

∝ O(∆T 2);

τAvm = τBvm ∝ O(∆T 3)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) ·O(∆T )︸ ︷︷ ︸
coupled-link

∝ O(∆T 3);

τAdm ∝ τBdm ∝ O(∆T 3)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) ·O(∆T 2)︸ ︷︷ ︸
coupled-link

∝ O(∆T 3)

(75)

Since the lowest order of LTE among τλm , τam , τvm , and τdm is O(∆T 2), the overall rate of

convergence of the proposed MTS-Bathe method is one. We also point out that, despite this result

for the LTEs, global errors in all of the above quantities are found to be second-order accurate in

numerical examples (see Section 6).

In the special case, when γA = γA
p and γB = γB

p i.e. using third-order accurate UTS-Bathe
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schemes for the underlying subdomains, the following expressions for LTEs are found:

τA
z̄m

∝


∆T 3

6 ζAωA
0 λ̈0 +O(∆T 4)

−∆T 3

12 λ̈0 +O(∆T 4)

O(∆T 4)

 ; τB
z̄m

∝


−∆T 3

6 ζBωB
0 λ̈0 +O(∆T 4)

∆T 3

12 λ̈0 +O(∆T 4)

O(∆T 4)

 ;

Y A
τm

∝


1 − ζAωA

0 ∆T +O(∆T )

0.5∆T +O(∆T 2)

1
6∆T 2 +O(∆T 3)

 ; Y B
τm

∝


−1 + ζBωB

0 ∆T +O(∆T 2)

−0.5∆T +O(∆T 2)

−1
6∆T 2 +O(∆T 3)

 ;

τλ ∝ −1
6∆T 2λ̈0 +O(∆T 3)

(76)

Combining these expressions as before, LTEs in the kinematic quantities are found to be:

τAam ∝ τBam ∝ O(∆T 3)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) · 1︸ ︷︷ ︸
coupled-link

= O(∆T 2);

τAvm = τBvm ∝ O(∆T 3)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) ·O(∆T )︸ ︷︷ ︸
coupled-link

∝ O(∆T 4);

τAdm ∝ τBdm ∝ O(∆T 4)︸ ︷︷ ︸
uncoupled-free

−O(∆T 2) ·O(∆T 2)︸ ︷︷ ︸
coupled-link

∝ O(∆T 4)

(77)

It is found that the cubic terms in the LTE for velocities from uncoupled-free and coupled-link

parts cancel each other out, leading to an overall LTE of the order of ∆T 4. Note, again, that the

LTE in accelerations and Lagrange multipliers are still of the order of ∆T 2 and thus the overall

rate of convergence is still one. This is likely a consequence of the linear interpolation of Lagrange

multipliers used in the formulation of the proposed MTS-Bathe method.

To verify the theoretical LTEs found above, we compute LTEs for the split SDOF problem by

solving it using the proposed MTS-Bathe method for a single time-step and with the following

parametric choices: d0 = v0 = 1, ω0 = 2π, ζA = 0.2, and ζB = 0.1 for various values of

time-step ratio, m, and frequency ratios, ωB
0 /ω

A
0 . Note that the exact solution for the split SDOF

problem can be readily computed by solving the underlying undecomposed SDOF and thus the
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LTEs computed in this way are exact for the specific parameters chosen.

Fig. 7 shows that for γA = γB = 2−
√

2 (i.e. using the γ-Bathe scheme for both subdomains),

the convergence rate in LTEs for displacements and velocities for both subdomains is of order 3,

whereas that for accelerations and Lagrange multipliers is 2. Similarly, Fig. 8, shows that for the

ρ∞-Bathe scheme with γA = γA
p and γB = γB

p (i.e. using third-order accurate UTS-Bathe scheme

for both subdomains) leads to fourth-order LTE in displacements and velocities, and second-order

LTE in accelerations and Lagrange multipliers.

5.2 Period elongation and amplitude decay

In this section, we analyze accuracy characteristics for the proposed MTS-Bathe method and com-

pare them to the MTS-TR method (Prakash and Hjelmstad, 2004). For this analysis, a split SDOF

problem defined in Eq. (52) is solved with the following choice of problem parameters:

MA = MB = 1, DA = DB = 0, KA = (ωA
0 )

2, KB = (ωB)2,

fA(t) = fB(t) = 0, d0 = 0, and v0 = 1
(78)

The natural frequency and period of the undecomposed system are given by Eq. (54). The exact

solution for the split SDOF problems is given as: vA(t) = vB(t) = cos(ω0t). For accuracy

analysis, the effect of damping ratio ζ is neglected (Bathe, 2016).

Fig. 9 shows the period elongations, amplitude decays in velocity, and average drift in dis-

placement between subdomains ΩA and ΩB with the MTS-Bathe method for the γ-Bathe schemes

with parameters γA ∈ (0, 1) and γB ∈ (0, 1), ωB
0 /ω

A
0 = 1, and time-step ratio m ∈ {2, 5}. In

these plots, a total of 150 values for ∆T/T0 are chosen along the abscissa and the time-step ratio

m = ∆T/∆t is varied by changing the time-step for subdomain B i.e. ∆t. Note that when γA

or γB approach 0 or 1, then the period elongation is maximum and amplitude decay is minimum.

On the other hand, when (γA,γB) are chosen to be (γA
0 ,γ

B
0 ) or (0.5, 0.5), period elongation is
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minimized and amplitude decay is maximized. Both these characteristics are similar to those of

the underlying UTS-Bathe scheme (see Table 1 in Section 2.2). Similar trends are observed for

various combinations of the Bathe parameters for the split SDOF problem suggesting that the

MTS-Bathe method inherits the numerical characteristics of the underlying UTS-Bathe methods.

In Fig. 10, we compare the characteristics of different MTS-Bathe methods to the MTS-TR

method for ωB
0 /ω

A
0 = 2, 10, 100 and varying time-step ratios m = 1, 2, 5, 50. Again, larger

values of the time-step ratio m = ∆T/∆t are achieved by choosing progressively smaller values

of ∆t. Note that reducing ∆t, in general, leads to a smaller period elongation and amplitude

decay and hence a more accurate solution, not only in subdomain B, but also subdomain A.

For stiff-flexible problems, numerical damping can be helpful in attenuating spurious oscillations

(Bathe and Noh, 2012). Thus, methods with some amplitude decay and low period elongation are

well-suited for such problems and Fig. 10 indicates that MTS-Bathe methods with the following

parameters possess this property: (ρA
∞, ρB

∞,γA,γB): (0, 0,γA
0 ,γ

B
0 ), or (1, 1 −

√
3, 0.5,γB

p ), or

(1, 0, 0.5,γB
0 ). In general, even though the numerical damping leads to reduced accuracy, it can

help with stability in nonlinear problems (Bathe, 2007; Bathe and Baig, 2005). This is the case,

as we show later in Sections 6.3, 6.5, and 6.6, where the MTS-Bathe method with parameters

(0, 0,γA
0 ,γ

B
0 ) is used to achieve accurate solutions for linear and nonlinear stiff-flexible problems.

6. NUMERICAL EXAMPLES

In this section, we present six numerical examples to demonstrate the performance of the MTS-

Bathe method. We compare the solutions from the MTS-Bathe method and the MTS-TR method.

To quantify accuracy, we define four measures of error: the maximum local instantaneous error,

maxi,n e
n
i (x), maximum local cumulative error, maxn e

n(x), maximum global instantaneous error,

International Journal for Multiscale Computational Engineering



Coupling schemes for multi-scale structural dynamics 33

maxi ei(x), and global cumulative error, E(x):

eni (x) =
|xn

i − x̂n
i |

maxi,n x̂n
i −mini,n x̂n

i

; en(x) =
1
Ni

∑
i

eni (x);

ei(x) =
1
Nn

∑
n

eni (x); E(x) =
1
Ni

∑
i

ei(x) (79)

where i and n denote the time-step (i = 0, 1, 2, ..., Ni = T/∆T ) and degree of freedom (n =

1, 2, ..., Nn), respectively (where T is the time duration and Nn is the total number of degrees).

The variables xn
i and x̂n

i denote the numerical solution and a reference solution, respectively, at

a degree of freedom n at time ti. The reference solution is taken to be the exact solution, when

available. When the exact solution is not available, we specify how the reference solution is

obtained. The error measures in Eq. (79) are devised to quantify errors in both, space and time.

The terms local and global denote whether the error is being computed at a specific degree of

freedom n in the model or if it is an average error over all degrees of freedom. Similarly, the terms

instantaneous and cumulative refer to errors at a particular instant of time in contrast to an overall

error over the duration of the simulation.

6.1 Split single degree-of-freedom problem

In this section, we solve a split SDOF problem, as shown in Eq. (52), with the following problem

parameters: MA = 2 × 10−6, MB = 10−6, DA = DB = 0, KA = 3 × 104, KB = 2 × 104,

fA(t) = 3, and fB(t) = 1. We impose zero initial displacement and velocity, and solve for the

response over the time duration [0, T ] where T = 5T0 i.e. 5 time periods of the undecomposed

system.

We solve the split SDOF problem with the MTS-TR method and the four MTS-Bathe methods

listed in Table 2 with time-step ratios of m = 2 and m = 5. Here, the block time-step is ∆T =

4.87 × 10−6 for MTS-TR method (which is one-tenth of the time period i.e. ∆T/T0 = 0.1)
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and ∆T = 9.74 × 10−6 for MTS-Bathe method i.e. twice that of MTS-TR method. Note that

these values of ∆T for both methods ensure that the computational costs of the two methods

are equivalent because the MTS-Bathe method requires roughly twice the computational effort of

MTS-TR method for the same ∆T .

Fig. 11 compares the time-history of velocity and interface reactions obtained from the five

methods above. Computational costs of these methods are compared in Fig. 12 which shows the

wall-clock time taken by these methods averaged over 5000 runs. We observe that when the block

time-step for MTS-Bathe methods is chosen to be twice that of the MTS-TR method, then these

methods have similar computational costs. Note that as the time-step ratio between subdomains

ΩA and ΩB increases from 2 to 5, the computational cost does not increase proportionally. This is

because the computational time includes the cost of solving the two subdomains and computing

the Lagrange multipliers. In general, the computational cost does not increase linearly as the time-

step ratio increases. This is why MTS methods have a computational advantage over UTS methods

and this is even more apparent for MDOF systems.

Finally, Fig. 13 shows the global cumulative errors E(d), E(v), E(a), E(λ) for the MTS-TR

and MTS-Bathe methods computed according to Eq. (79). Note that, like the MTS-TR method,

the MTS-Bathe methods 1, 2, and 4 (i.e. with γ ̸= γp) are second-order accurate, whereas, the

truncation error analysis in Section 5.1 predicts only a first-order rate of convergence overall.

Similarly, MTS-Bathe 3 (i.e. with γ = γp) is observed to be third-order accurate in displacements

and velocities, and second-order accurate in accelerations and the Lagrange multiplier. In contrast,

theoretically one would expect a first-order rate of convergence. It is surprising that, for this

problem, we observe higher rates of convergence than what our analysis in Section 5.1 predicted.

This may be due to a cancellation of local truncation errors between different quantities that was

not captured in our theoretical analysis. This figure also shows that for the same block time-step

∆T , errors for the MTS-Bathe method are much lower than that of the MTS-TR method. Note,
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however, that if the block time-step ∆T for the MTS-Bathe methods is chosen to be twice that of

the MTS-TR method (for computational cost parity), then the errors for the MTS-TR and MTS-

Bathe with γ ̸= γp methods will be very similar.

6.2 Nonlinear split single degree-of-freedom problem with nonlinear inertial terms

We consider a SDOF van der Pol oscillator with a nonlinear inertial term as described by Semler

et al. (1996):

(1 + (dn+1)
2)an+1 + (c+ (dn+1)

2)vn+1 + dn+1 = 0 (80)

where c is a negative valued damping coefficient for which the system exhibits a supercritical

Hopf bifurcation. Such nonlinear inertial terms can result from geometric nonlinearities in fluid-

structure interaction problems (Robinson et al., 2020). Upon DD, the two nonlinear split SDOF

problems corresponding to Eq. (80) may be written as:

(1 + (dAn+1)
2)aAn+1 + (cA + (dAn+1)

2)vAn+1 + dAn+1 + λn+1 = 0

(1 + (dBn+1)
2)aBn+1 + (cB + (dBn+1)

2)vBn+1 + dBn+1 − λn+1 = 0
(81)

where cA and cB are negative damping coefficients such that c = (cA + cB)/2.

We solve Eq. (81) using the MTS-TR method, the MTS-γ-Bathe method with γ = γ0 and the

MTS-ρ∞-Bathe method with ρ∞ = 1 and γ = γ0, over the duration [0, 160] with a small initial

perturbation of d(t = 0) = −10−7 and v(t = 0) = 0. We choose cA = −2 and cB = −0.3 such

that subdomains ΩA and ΩB have slow and fast dynamic characteristics. A reference solution to the

original undecomposed nonlinear SDOF problem is obtained using the UTS-γ-Bathe scheme with

γ = γ0 and small time-step ∆t = 10−4. For each time-step, nonlinear iterations are conducted

until a tolerance of 10−7 and 10−12 is achieved for the absolute and relative residuals, respectively,

while limiting the maximum number of iterations to 1000. We use a time-step ratio of m = 6

for simulating this problem because the selection of cA = −2 and cB = −0.3 leads to periods of
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TA
0 ≈ 40 and TB

0 ≈ 7.5 (Kim and Choi, 2018; Semler et al., 1996). We consider five different

cases: ∆T = 0.05, 0.1, 0.2, 0.5, and 1 where ∆T is the block time-step for the proposed MTS-

Bathe method. For computational cost parity, the block time-step of the MTS-TR method is set to

∆T/2.

Fig. 14 compares the time history and phase space diagrams of displacement and velocity

obtained from the MTS-TR method and the proposed MTS-Bathe methods for ∆T = 0.5 (i.e.

TA
0 /∆T ≈ 80). One may note that while all three MTS methods are able to simulate this problem

with inertial nonlinearity, the MTS-γ-Bathe method has greater period error than the other two.

Fig. 15 presents the time history and Fourier spectrum of accelerations which show the presence

of spurious oscillations in accelerations, typically observed in numerical solution of stiff-flexible

systems. Interestingly, even though the MTS-γ-Bathe method has greater period error, the mag-

nitude of spurious oscillations it exhibits is lower. The frequency of these spurious oscillations

is found to be approximately 2 Hz for the MTS-TR method and 1 Hz for the MTS-Bathe meth-

ods, coincident with the frequency corresponding to the block time-steps used for these methods.

Finally, maximum errors in displacement, velocity, and acceleration max(E(d), E(v), E(a)) are

shown in Fig. 16 for five values of block time-step ∆T . As is evident, all three MTS methods are

able to achieve a convergence rate of 2, preserving the accuracy of their underlying UTS schemes.

6.3 Three degree-of-freedom problem including stiff and flexible parts

In this section, we consider a three degree-of-freedom (3-DOF) model shown in Fig. 17 decom-

posed into stiff and flexible sub-systems. This 3-DOF system is a benchmark problem to study

general stiff and flexible structures (Bathe and Noh, 2012; Noh and Bathe, 2018, 2019a). The sys-

tem is excited by specifying the displacement of mass m1 as a sinusoidal function with frequency

ωp. Further details of this 3-DOF model problem and comments on the importance of the problem

are given in Bathe (2016); Bathe and Noh (2012).
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As shown in Fig. 17, we can decompose the 3-DOF system into two subdomains linked by one

interface reaction λ, for which the governing equations are:mA
2 0

0 m3


aA2
a3

+

 k2 −k2

−k2 k2


dA2
d3

+

λ
0

 =

0

0

 (82)

mB
1 0

0 mB
2


a1

aB2

+

 k1 −k1

−k1 k1


d1

dB2

+

 0

−λ

 =

R1

0

 (83)

where R1 is the reaction at node 1. Since we prescribe the displacement at node 1, Eq. (83) can be

rewritten as:

mB
2 a

B
2 + k1d

B
2 − λ = k1d1 (84)

and the reaction R1 is computed as R1 = k1d1 − k1d
B
2 . The parameters chosen for this 3-DOF

system are: m1 = 0, m2 = m3 = 1, k1 = 107, k2 = 1 and ωp = 1.2. Initial conditions are

d2(t = 0) = d3(t = 0) = 0, v2(t = 0) = wp, and v3(t = 0) = 0. For the decomposed

system, mass of node 2 is divided equally: mA
2 = mB

2 = 0.5. For time integration of such stiff-

flexible problems, it is recommended to use ρ∞ = 0 (Kwon et al., 2020). Thus, the parameter set

(ρA
∞, ρB

∞) = (0, 0) is used for the MTS-Bathe method and all splitting ratios γ, γA, γB are taken to

be 0.5. The two natural periods of this system are 0.002 and 6.283, and in accordance with Bathe

and Noh (2012), we choose the time-steps for this problem as 0.2618 for the UTS-Bathe method

and the block time-step for the MTS-Bathe method. Similarly, for computational cost parity, we

choose half the value, 0.1309, as the time step for the UTS-TR method and the block time-step for

the MTS-TR method.

Fig. 18 shows numerical results for the 3-DOF stiff-flexible problem using various UTS and

MTS methods with a time-step ratio of m = 3. The solution obtained by mode superposition

Volume x, Issue x, 2025



38 Sun-Beom Kwon & Arun Prakash

is taken to be the ‘reference solution’ (Noh and Bathe, 2019a). As previously shown by Bathe

and Noh (2012), the UTS-TR method gives poor results for this stiff-flexible problem. Not sur-

prisingly, the MTS-TR method inherits this trait. Fig. 19 compares the errors in acceleration of

node 2 and the reaction at node 1 against computational cost (averaged over 100 runs) for the four

different UTS and MTS methods. It is also observed that the MTS-Bathe method for the γ-Bathe

scheme provides the best results – even when compared to the UTS-Bathe scheme for comparable

computational cost and should be the method of choice for such stiff-flexible systems.

6.4 Two-dimensional bi-material cantilever beam problem

In this section, we consider a two-dimensional (2D) bi-material beam in plane stress, shown in

Fig. 20. The bi-material beam is composed of subdomains ΩA and ΩB with mass densities ρA =

20ρB = 1.0 × 10−4, elastic modulus EA = EB/60 = 1.0 × 104, and Poisson’s ratio νA = νB =

0.3. Dirichlet boundary conditions on the left wall are dAx (t) = 0 at x = 0 and dAy (t) = 0 at

(x, y) = (0, 2).

6.4.1 Undamped beam with external force

First, we consider the beam to be undamped with zero initial displacement and velocity. A har-

monic external force is applied per unit length of the right edge as:

fA(t) = 0 ∀ x ∈ ΩA, fB(t) =


[0 2.25 sin(6000t)]T ∀ x = 20

0 otherwise
(85)

This structural dynamics problem is solved using the UTS-TR, MTS-TR, UTS-Bathe and

MTS-Bathe methods. For spatial discretization, we use an uniform mesh of four-node elements

with equally spaced nodes (∆x = ∆y = h = 0.5). A numerical solution using the UTS-Bathe

scheme with γ = γp and ∆t = 5×10−9 is taken to be a reference solution because the UTS-Bathe
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scheme with γ = γp leads to the third-order accuracy (Kwon et al., 2021). For computational cost

parity, the time-step size for the UTS-TR method and the block time-step size for the MTS-TR

method are chosen as half time-step for the UTS-Bathe method and the block time-step size for

the MTS-Bathe method. The time duration of the simulation is considered as [0, 0.0002].

Fig. 21 compares global cumulative errors against computational cost for the UTS-TR, UTS-

Bathe, MTS-TR, and MTS-Bathe methods for a time-step ratio m = 5. We observe that the

MTS-Bathe method with γ = γp yields the smallest errors. Note that, for a fixed computational

cost, the MTS-Bathe method provides more accurate results than the UTS-Bathe method. This

is the main benefit of MTS methods because they are able to maintain high accuracy in stiff

subdomains by using small time-steps and also keep computational cost low by using large time-

steps in flexible subdomains. Thus, the proposed MTS-Bathe method is better suited for large

stiff-flexible problems in structural dynamics than other methods in the literature.

6.4.2 Damped beam problem with a nonzero initial velocity condition

Next, we consider a cantilever beam with Rayleigh damping. No external force is applied, but a

zero initial displacement and a nonzero initial velocity is applied on the right edge as follows:

vA(t = 0) = 0 ∀ x ∈ ΩA, vB(t = 0) =


[0 1]T ∀ x = 20

0 otherwise
(86)

The problem is solved using the MTS-TR method and the MTS-Bathe methods with ρ∞ =

0, 0.65, 1 and γ = γ0 (see Table 1). The subdomains are assumed to have the same mass- and

stiffness-proportional Rayleigh damping coefficients of 2.0 × 10−4 and 8.0 × 10−4, respectively.

A regular mesh of four-node elements with equally spaced nodes (∆x = ∆y = h = 1) is used for

spatial discretization. Note that the P- and S-wave velocities are 20
√

3cAp = cBp = 3.6313 × 105

and 20
√

3cAs = cBs = 2.1483 × 105, respectively. Thus, for accuracy, one should pick a time-step
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∆t = 3 × 10−6 for subdomain ΩB and ∆T = 10−4 for subdomain ΩA.

A reference solution to this problem is obtained using the UTS-γ-Bathe scheme with γ = γ0

and ∆t = 1.0 × 10−7 because this method has been shown to produce accurate solutions to

stiff-flexible problems and wave propagation problems (Bathe and Noh, 2012; Kwon et al., 2020;

Noh and Bathe, 2018, 2019a). To compare the MTS-TR and MTS-Bathe methods using similar

computational costs, the block time-step for the MTS-TR method is set as ∆T/2, where ∆T =

1.0 × 10−5 is the block time-step chosen for the MTS-Bathe method. The time duration of the

simulation is [0, T ] where T = 0.0048 and the solution is obtained by using a time-step ratio of

m = 2 for both methods.

Fig. 22 shows plots of the normal stress σxx and the scaled deformed state of the beam at

t = 2.4 × 10−3. It is observed that the results of the MTS-Bathe methods with ρ∞ = 0 and

ρ∞ = 0.65 are similar to the reference solution. On the other hand, the MTS-TR method and

the MTS-Bathe method with ρ∞ = 1 give residual stress errors around the interface between

subdomains ΩA and ΩB. This is because, the Bathe scheme with ρ∞ = 1 and γ = γ0 has the same

properties as the two-step trapezoidal rule.

To quantify the errors due to these residual stresses, Fig. 23 shows the maximum local instan-

taneous errors of σxx. We note that for even values of the time-step ratio m, the MTS-TR method

leads to large errors in stress and observe that relative errors in stress are concentrated around

the interface between subdomains ΩA and ΩB (see Fig. 22). On the other hand, the MTS-Bathe

method works well for both odd and even time-step ratios and does not suffer from the peculiar

error characteristics of the MTS-TR method for even-valued time-step ratios.

Fig. 24 shows global cumulative errors in displacement and velocity using MTS-TR method

and MTS-Bathe methods for different values of the block time-step ∆T and for time-step ratios of

m = 2 and 5. We note that errors in displacement are similar for all the methods considered and

for the two different time-step ratios. On the other hand, while errors in velocity decrease with
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decreasing block time-step size ∆T and increasing time-step ratio m, the convergence rate for the

MTS-Bathe methods is markedly better than that of the MTS-TR method. This is due to the fact

that for stiff-flexible problems, the TR method (both UTS and MTS) exhibits spurious oscillations

and the effect of these oscillations is more pronounced in velocity and acceleration time-histories.

Thus, in general, for stiff-flexible problems, the proposed MTS-Bathe method gives more accurate

solutions compared to the MTS-TR method for similar computational effort.

6.5 Nonlinear two-story shear building

To demonstrate the stability characteristics of the MTS-Bathe method for nonlinear problems, we

consider a two-story shear building, as shown in Fig. 25. The nonlinear spring stiffness for each

story is given as:

kNL,i = ki(1 + δi(∆di)
2) for i = 1, 2 (87)

where ki is the initial stiffness and ∆di = di − di−1 is the story drift for story i. Note that

∆d1 = d1 because d0 is taken to be zero. We choose the following problem parameters: m1 = 103,

m2 = 104, k1 = 104, k2 = 103, δ1 = −1, δ2 = 5, f1(t) = f2(t) = 2500 sin(ωpt), and ωp = π/2

(corresponding forcing period is Tp = 4). Zero initial displacement and velocity are applied.

A reference solution to this nonlinear problem is obtained using the UTS-γ-Bathe scheme with

γ = γ0 and a small time-step ∆t = Tp/8000 = 5 × 10−4. Fig. 26 shows the time history, phase

plot, and Poincaré section of the reference solution depicting chaotic behavior of the system.

The system is partitioned into two subdomains, ΩA and ΩB, by dividing the mass of the bottom

story equally between the two subdomains. The decomposed equations of motion can be written
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as: 0.5m1 0

0 m2


aA1
aA2

+

 kNL,2 −kNL,2

−kNL,2 kNL,2


dA1
dA2

+

−λ

0

 =

0.5f1

f2

 (88)

0.5m1a
B
1 + kNL,1d

B
1 + λ = 0.5f1 (89)

The decomposed system is solved using the proposed MTS-Bathe method with γ = γ0 and the

MTS-TR method. We consider two cases: ∆T = Tp/4 = 1 and ∆T = Tp/400 = 0.01, where

∆T is the block time-step for the MTS-Bathe method. Again, the block time-step for the MTS-

TR method is set to ∆T/2 for computational cost parity. Figs. 27(a) and 28(a) show the time

history of displacement and phase space diagram of the bottom story obtained from these methods

when ∆T = 1 and m = 10. From Fig. 29(a), the primary frequency obtained using the proposed

MTS-Bathe method is found to be 0.25, which corresponds to the forcing frequency fp = ωp/2π.

Due to numerical damping of the MTS-Bathe method, however, the Fourier amplitude of higher

frequencies is diminished. Note that the MTS-TR method loses its stability, whereas the proposed

MTS-Bathe method remains stable, indicating that some numerical damping may be desirable in

a time integration method for stability in nonlinear structural dynamics. Nevertheless, as shown

in Figs. 27(b), 28(b), and 29(b), both methods give accurate solutions when a small time-step,

∆T = 0.01, is used.

6.6 Nonlinear multi-degree-of-freedom problem with stiff and flexible parts

In this section, we solve a 21-DOF nonlinear problem with a specified displacement of d0 =

sin(ωpt) at the 0th DOF, as shown in Fig. 30. Conceptually, this problem can be treated as a 21-

story shear building with the bottom 11 stories being stiff (ΩB) and the top 10 stories being flexible
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(ΩA). The nonlinear internal force pi between DOF i− 1 and DOF i is taken to be of the form:

pi = k1,i(di − di−1) + k3,i(di − di−1)
3 (90)

where k1,i and k3,i represent the linear and cubic internal force coefficients, respectively, for story

i. We decompose the problem domain into two subdomains by splitting it at DOF 11 and con-

necting the two subdomains with one Lagrange multiplier λ as shown in Fig. 30. Other problem

parameters are chosen as: mass of each story mi = 1 for i = 0, 1, 2, ..., 21, forcing frequency

ωp = 2π, linear internal force coefficients k1,i = 107 for ΩB (i = 1, 2, ..., 11), cubic internal

force coefficients k3,i = 103 for ΩB (i = 1, 2, ..., 11), linear and cubic internal force coefficients

k1,i = k3,i = 1 for ΩA (i = 12, 13, ..., 21). The system is assumed to be initially undeformed

i.e. di(t = 0) = 0 for i = 1, 2, ..., 21, but with a uniform initial velocity vi(t = 0) = ωp for

i = 1, 2, ..., 11, and zero initial velocity vi(t = 0) = 0 for i = 12, 13, ..., 21. This initial state

mimics a stiff-flexible structure undergoing sudden motion.

A reference solution to this problem is obtained using the UTS-γ-Bathe method with γ = γ0

and ∆t = 0.001. The problem is then solved using the MTS-Bathe method with γ = γ0 for

both subdomains. Two values of the block time-step for the MTS-Bathe method are considered:

∆T = 0.3 and ∆T = 0.05. Block time-step for the MTS-TR method is taken to be ∆T/2 for

computational cost parity. Time-step ratio is chosen as m = 6 for both MTS methods.

Fig. 31 compares the phase plane diagrams at nodes 5 and 12 obtained using the MTS-TR and

MTS-Bathe methods. At node 5, which is in the stiff subdomain, both MTS methods yield similar

results as the reference solution because the dominant frequency of this response is the forcing

frequency of the prescribed displacement (i.e. f = ωp/2π = 1) (see the corresponding Fourier

spectrum in Fig. 32). On the other hand, the response of node 12 has three dominant frequencies:

f1 = 0.3, f2 = 1, and f3 = 3 (with corresponding dominant periods of T1 ≈ 3.33, T2 = 1, and

T3 = 0.33). Thus, ∆T = 0.3 is too coarse for this problem (as T3/∆T = 1.1) and leads to poor
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results. On the other hand, with ∆T = 0.05, both MTS-TR and MTS-Bathe are able to capture

the dynamics of the system well.

Fig. 33 shows the time history of acceleration at nodes 5 and 12 in the duration [0, 10]. It is

observed that the MTS-TR method gives poor results at node 5 for large ∆T because it cannot

suppress spurious oscillations at high frequencies. For instance, as shown in Fig. 32, when ∆T =

0.3, Fourier amplitudes of acceleration at f = 17.8, 19.3, and 19.8 are not negligible. Even for

the small block time-step of ∆T = 0.05, there is a peak at f = 57.5 in the Fourier spectrum

obtained from MTS-TR. On the other hand, the MTS-Bathe method gives an accurate solution

owing to numerical dissipation at high frequencies. Thus, in general, MTS-Bathe performs better

than MTS-TR for both, linear and nonlinear stiff-flexible problems – a characteristic that these

methods share with their underlying UTS schemes.

Finally, Table 3 shows the computational costs and the total number of nonlinear iterations

conducted in solving this problem using the two MTS methods. Even though the overall compu-

tational cost of the MTS-Bathe method is more than the MTS-TR method, we note from Fig. 34

that the MTS-Bathe method has lower error than MTS-TR method for comparable computational

cost. The MTS-Bathe method has a slightly larger total computational cost for this problem than

the MTS-TR method because, for nonlinear problems, one must recompute the Y matrices from

Eq. (46) for every nonlinear iteration whereas, for linear problems, the Y matrix can be computed

in advance of the time-stepping loop and does not change for the duration of the simulation. This

example shows that, for comparable computational cost, the proposed MTS-Bathe method gives

more accurate result than the MTS-TR method, especially for stiff-flexible problems in structural

dynamics.
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7. CONCLUDING REMARKS

In the present study, a multi-time-step (MTS) method for the composite ρ∞-Bathe time integration

schemes is presented for simulating the dynamics of stiff-flexible structural systems. The proposed

MTS-Bathe method uses two novel constraint conditions that are necessary for achieving uncon-

ditional stability and high accuracy at a low computational cost. This is achieved by investigating

the response of a split SDOF system for several different constraint conditions numerically. It is

found that imposing the continuity of velocity at every block time-step and linearly interpolating

the Lagrange multipliers for the sub-steps leads to unconditional stability. An analytical proof of

stability using the energy method is given in Section 4 showing that the proposed MTS method is

unconditionally stable.

A local truncation error (LTE) analysis of the proposed MTS-Bathe method is carried out to

show that the method preserves the order of LTEs in displacements and velocities, while the or-

der of LTEs in accelerations and Lagrange multipliers is lower in comparison to the underlying

UTS-Bathe schemes. Surprisingly however, from numerical examples, the rate of convergence of

the proposed MTS method was observed to be better than what is predicted by the LTE analysis.

Next, a split SDOF system is used to compare numerical characteristics such as period elongation

and amplitude decay for velocities, and also to quantify the average drift in displacements be-

tween subdomains for the proposed MTS-Bathe method. We show that the proposed MTS-Bathe

method inherits the property of the underlying UTS-Bathe schemes to dissipate spurious oscilla-

tions encountered with stiff-flexible systems and since it uses different time-steps in the stiff and

flexible parts of the problem, it is also able to reduce the computational cost while maintaining

high accuracy.

Finally, computational performance of the proposed MTS-Bathe method is compared by nu-

merically solving several linear and nonlinear problems in structural dynamics with stiff and flex-

ible parts. Error vs. computational cost curves for the proposed MTS-Bathe method are compared
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to those of existing methods for several different combinations of algorithmic parameters and time-

steps. It is shown that the MTS-Bathe method has lower errors for the same computational cost, or

conversely, has lower computational cost for similar levels of error. Thus, we believe that the pro-

posed MTS-Bathe method is better suited for simulating the structural dynamics of stiff-flexible

systems than other methods in the literature.
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A. AMPLIFICATION MATRIX A OF THE MTS-BATHE METHOD

Here, we describe the procedure to obtain the amplification matrix A defined in Eq. (55). The

state variables are decomposed into free part and link correction:zA
m

zB
m

 =

zA
m

zB
m

+

z′A
m

z′B
m

 (A1)

Uncoupled-free part

For the uncoupled-free part, it holds thatzA
m

zB
m

 =

AAA
A

AB

A
BA

A
BB


zA

0

zB
0

 (A2)
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From Mz = r, the state variables for the uncoupled-free part can be expressed as

zA
γAm = AA

TRz
A
0 , zA

m = AA
Bathez

A
0

zB
m =

(
AB

Bathe

)m
zB

0 +
m−1∑
j=0

(
AB

Bathe

)m−j−1
AB

0,j+1z
A
0 (A3)

where AB
0,j+1 = −

(
LB

a c0,j+γB +LB
b c0,j+1

) [
1, 2ζAωA

0 , (ω
A
0 )

2
]
. ATR is the amplification matrix

for the UTS-trapezoidal rule when time-step is γ∆t (see Appendix B), and ABathe, La, and Lb are

the amplification matrix and load vectors for the UTS-Bathe scheme (see Appendix A in Ref. Noh

and Bathe (2019a)) when time-step is ∆t with a particular subdomain denoted by its superscript.

Thus,

A
AA

= AA
Bathe, A

AB
= 0,

A
BA

=
m−1∑
j=0

(
AB

Bathe

)m−j−1
AB

0,j+1, A
BB

=
(
AB

Bathe

)m
(A4)

Interface

From MY = CT, the interface matrices are:

Y A1
γAm = LA

TR, Y A1
m = LA

a , Y A2
γAm = 0, Y A2

m = LA
b ,

Y B1
m =

m−1∑
j=0

(AB
Bathe)

m−j−1AB
1,j+1, Y B2

m =
m−1∑
j=0

(AB
Bathe)

m−j−1AB
2,j+1 (A5)

where AB
1,j+1 = −

(
LB

a c1,j+γB +LB
b c1,j+1

)
and AB

2,j+1 = −
(
LB

a c2,j+γB +LB
b c2,j+1

)
.

From [BM−1CT]λ = BM−1r − s, the Lagrange multipliers are computed from the previous

state variables for the both subdomains.

Aλ

λγAm

λm

 = Bλ

zA
0

zB
0

 (A6)
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where

Aλ =

− [
1, 2ζBωB

0 , (ω
B
0 )

2
]
γAY B1

m −
[
1, 2ζAωA

0 , (ω
A
0 )

2
]
Y A1

γAm BAY A1
m +BBY B1

m

−
[
1, 2ζBωB

0 , (ω
B
0 )

2
]
γAY B2

m −
[
1, 2ζAωA

0 , (ω
A
0 )

2
]
Y A2

γAm BAY A2
m +BBY B2

m


T

Bλ =

− [
1, 2ζBωB

0 , (ω
B
0 )

2
]
γAA

BA −
[
1, 2ζAωA

0 , (ω
A
0 )

2
]
AA

TR BAA
AA

+BBA
BA

−
[
1, 2ζBωB

0 , (ω
B
0 )

2
] (

(1 − γA)I + γAA
BB

)
BBA

BB


T

and BA ≡ [0, 1, 0] and BB ≡ [0, −1, 0].

Coupled-link correction

From z′ = −Yλ, at the final time-step, the state variables of the link correction arez′A
m

z′B
m

 = −

Y A1
m Y A2

m

Y B1
m Y B2

m


λγAm

λm

 = −

Y A1
m Y A2

m

Y B1
m Y B2

m

A−1
λ Bλ

zA
0

zB
0

 (A7)

Amplification matrix

From Eqs. (A1), (A2), and (A7), we obtain the amplification matrix of the MTS-Bathe method:

A =

AAA
A

AB

A
BA

A
BB

−

Y A1
m Y A2

m

Y B1
m Y B2

m

A−1
λ Bλ (A8)

B. AMPLIFICATION MATRIX AND LOAD VECTOR FOR THE UTS-TRAPEZOIDAL

RULE WITH TIME-STEP SIZE γ∆T

ATR =


−β

4 − κ − 1
γ∆t

(β+ 2κ) − β
(γ∆t)2

γ∆t
2

(
1 − β

4 − κ
)

1 − β
2 − κ − β

2γ∆t

(γ∆t)2

4

(
1 − β

4 − κ
)

γ∆t
(
1 − β

4 − κ
2

)
1 − β

4

 ; LTR =


β

ω2
0(γ∆t)2

β

2ω2
0γ∆t

β

4ω2
0

 (B1)
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where

β =

(
1

ω2
0(γ∆t)2 +

ζ

ω0γ∆t
+

1
4

)−1

, κ =
ζβ

ω0γ∆t
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TABLE 1: ρ∞-Bathe parameters and their characteristics
ρ∞ γ Characteristics
0 0.5 or γ0 Standard Bathe scheme. Dissipative scheme with low dispersion. As

∆t → ∞, spectral radius, ρ → 0. Used for stiff-flexible systems and
wave propagation problems with CFL = 1.0 and a consistent mass matrix.

1 γ0 (= 0.5) Non-dissipative scheme. As ∆t → ∞, spectral radius, ρ → 1. Gives
spurious oscillations for stiff-flexible systems.

0.65 γ0 Dissipative scheme with low dispersion. As ∆t → ∞, spectral radius,
ρ → 0.65. Used for wave propagation problems with a consistent mass
matrix. Maximizes CFL number (1.25).

1 −
√

3 1.3 Large numerical dissipation. May be used for wave propagation problems
with CFL = 1.5 and a lumped mass matrix.
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TABLE 2: Parameters chosen for the MTS-Bathe method to solve the split SDOF problem
(ρA

∞, ρB
∞,γA,γB) Accuracy of underlying UTS-Bathe

MTS-Bathe 1 (0, 0,γA
0 ,γ

B
0 ) 2nd-order

MTS-Bathe 2 (1, 1, 0.5, 0.5) 2nd-order
MTS-Bathe 3 (1 −

√
3, 1 −

√
3,γA

p ,γ
B
p ) 3rd-order

MTS-Bathe 4 (1, 0, 0.5,γB
0 ) 2nd-order
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TABLE 3: Computational costs and number of iterations in the duration [0, 10] in the Duffing
MDOF system

Method ∆T = 0.3 ∆T = 0.05
Block Computational Number of Maximum Block Computational Number of Maximum

time-step time (sec) iterations error (%) time-step time (sec) iterations error (%)
MTS-TR 0.15 0.178 161 9.26 0.025 0.586 755 0.65
MTS-Bathe 0.30 0.234 92 2.48 0.050 0.712 400 0.43
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FIG. 1: Stiff-flexible system decomposed into subdomains and solved with multi-time-step method.
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FIG. 2: Classification of uniform time-step (UTS) methods.



FIG. 3: Representation of two sub-steps for the UTS-ρ∞-Bathe method.
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FIG. 4: Representation of two different time-steps for the MTS-Bathe method.



FIG. 5: Flowchart of the proposed MTS-Bathe method
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(a) Displacement continuity (b) Velocity continuity (c) Acceleration continuity

FIG. 6: Spectral radius of the MTS-Bathe method with ρA∞ = ρB∞ = 0 (γ-Bathe) for various values of γA and γB with time-step
ratio m = 1 and m = 2 without damping and ωB
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0 /ωA

0 = 103

FIG. 7: LTEs using the proposed MTS method for the γ-Bathe scheme with γA = γB = 2 −
√

2 when d0 = v0 = 1, ω0 = 2π,
ζA = 0.2, and ζB = 0.1.



(a) m = 1 and ωB
0 /ωA

0 = 2 (b) m = 2 and ωB
0 /ωA

0 = 10 (c) m = 4 and ωB
0 /ωA

0 = 103

FIG. 8: LTEs using the proposed MTS method for the ρ∞-Bathe scheme with ρA∞ = ρB∞ = 1 −
√

3 and γA = γB = γA
p = γB

p

when d0 = v0 = 1, ω0 = 2π, ζA = 0.2, and ζB = 0.1.



(a) Period elongation when m = 2 (b) Period elongation when m = 5

(c) Amplitude decay when m = 2 (d) Amplitude decay when m = 5

(e) Average drift when m = 2 (f) Average drift when m = 5

FIG. 9: Accuracy analysis of the MTS-Bathe method for the γ-Bathe scheme for different values of γA and γB when ωB
0 /ωA

0 =
1.
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(a) ωB
0 /ωA

0 = 2

(b) ωB
0 /ωA

0 = 10

(c) ωB
0 /ωA

0 = 100
FIG. 10: Accuracy analysis of the MTS-TR method and MTS-Bathe methods.



(a) Velocity

(b) Interface reaction
FIG. 11: Time history of (a) the velocities and (b) interface reactions using the MTS-TR and MTS-Bathe methods for the split
SDOF problem. MTS-TR method uses a block time-step of ∆T = 4.87×10−6 and the MTS-Bathe method uses a block time-step
of ∆T = 9.74 × 10−6 for two different time-step ratios: m = 2, 5.
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FIG. 12: Comparison of computational costs of the MTS-TR and MTS-Bathe methods for the split SDOF problem. Block time-
step for the MTS-TR method is 4.87 × 10−6 and for the MTS-Bathe methods is 9.74 × 10−6.



(a) Error in velocity for ΩA and ΩB (b) Error in interface reactions

(c) Error in displacement for ΩA (d) Error in acceleration for ΩA

(e) Error in displacement for ΩB (f) Error in acceleration for ΩB

FIG. 13: Global cumulative errors for the MTS-TR and MTS-Bathe methods for the split SDOF problem showing rates of con-
vergence of these methods are 2 and 3.
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Reference MTS-TR (ΩA) MTS-γ-Bathe (ΩA) MTS-ρ∞-Bathe with ρ∞ = 1 (ΩA)
MTS-TR (ΩB) MTS-γ-Bathe (ΩB) MTS-ρ∞-Bathe with ρ∞ = 1 (ΩB)

(a) Time history of displacement (b) Time history of velocity

(c) Phase space diagram (displacement-velocity)
FIG. 14: Time history and phase space diagram of displacement and velocity for MTS methods with ∆T = 0.5 and m = 6.



Reference MTS-TR (ΩA) MTS-γ-Bathe (ΩA) MTS-ρ∞-Bathe with ρ∞ = 1 (ΩA)
MTS-TR (ΩB) MTS-γ-Bathe (ΩB) MTS-ρ∞-Bathe with ρ∞ = 1 (ΩB)

(a) Time history of acceleration

(b) Fourier spectrum of acceleration
FIG. 15: Time history and Fourier spectrum of acceleration for MTS methods with ∆T = 0.5 and m = 6
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FIG. 16: Maximum global cumulative errors in MTS methods with time-step ratio m = 6.



FIG. 17: 3-DOF stiff-flexible system and its decomposition into subdomains ΩA and ΩB .
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(a) Acceleration of node 2

(b) Reaction of node 1
FIG. 18: Acceleration of nodes 2 and reaction of node 1 for various UTS and MTS methods when m = 3. Computational cost is
1.118, 1.177, 1.313, and 1.399 ms for UTS-TR, UTS-Bathe, MTS-TR, and MTS-Bathe methods, respectively.



(a) Acceleration of node 2

(b) Reaction of node 1
FIG. 19: Global cumulative errors in acceleration of nodes 2 and reaction of node 1 for various UTS and MTS methods when
m = 3. The 16 points on each curve correspond to different time-step sizes ∆T ∈ [100, 10−3] at intervals of log10 ∆T = 0.2 with
increasing computational costs from left to right. Time-steps for UTS- and MTS-TR methods and UTS- and MTS-Bathe methods
are set as ∆T/2 and ∆T , respectively.
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FIG. 20: 2D bi-material cantilever beam problem.



(a) Error in Displacement

(b) Error in Velocity
FIG. 21: Global cumulative errors for the UTS-TR, UTS-Bathe, MTS-TR, and MTS-Bathe methods with a time-step ratio of
m = 5. The 6 points on each curve correspond to different ∆T ∈ [10−6, 10−7] at intervals of log10 ∆T = 0.2 with increasing
computational costs from left to right. Time-steps for UTS- and MTS-TR methods are set as ∆T/2 and those for UTS- and MTS-
Bathe methods are set as ∆T for computational cost parity.
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(a) Reference

(b) MTS-TR method

(c) MTS-Bathe method with ρ∞ = 0

(d) MTS-Bathe method with ρ∞ = 0.65

(e) MTS-Bathe method with ρ∞ = 1

FIG. 22: Normal stress in the x-direction σxx and deformation plots at t = 2.4 × 10−3 (Deformation scale factor is 5000). 



(a) MTS-TR (b) MTS-Bathe (ρ∞ = 0)
FIG. 23: Maximum local instantaneous errors for the normal stress in the x-direction σxx for various values of ∆T and m =
1, 2, ..., 10. The block time-step for MTS-TR and MTS-Bathe methods is set as ∆T/2 and ∆T , respectively, for computational
cost parity.
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(a) Error in Displacement (m = 2) (b) Error in Displacement (m = 5)

(c) Error in Velocity (m = 2) (d) Error in Velocity (m = 5)
FIG. 24: Maximum local instantaneous errors in displacement and velocity for MTS-TR and MTS-Bathe methods with time step
ratios of m = 2 and 5. The 16 points on each curve correspond to different ∆T ∈ [10−3, 10−6] at intervals of log10 ∆T = 0.2
with increasing computational costs from left to right. The block time-step for MTS-TR method is set as ∆T/2 and that for MTS-
Bathe method is set as ∆T for computational cost parity.



FIG. 25: Two-story shear building with two subdomains.
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(a) Time history of displacement (b) Phase space (c) Poincaré section
FIG. 26: Time history of displacement, phase space diagram, and Poincaré section of the bottom story from the reference solution.
Note that for phase space diagram and Poincaré section, we consider the simulation duration [0, 100] and [0, 4000], respectively.



Reference MTS-TR (ΩA) MTS-Bathe for γ-Bathe (ΩA)
MTS-TR (ΩB) MTS-Bathe for γ-Bathe (ΩB)

(a) ∆T = 1 (b) ∆T = 0.01
FIG. 27: Time history of displacement of the bottom top story when m = 10 m = 2. Block time-step ∆T for MTS-Bathe method
is taken to be twice that of MTS-TR method.
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Reference MTS-TR MTS-Bathe for γ-Bathe

(a) ∆T = 1

(b) ∆T = 0.01

FIG. 28: Phase space diagram of the bottom story in subdomain ΩB when m = 10.



Reference MTS-TR (ΩA) MTS-Bathe for γ-Bathe (ΩA)
MTS-TR (ΩB) MTS-Bathe for γ-Bathe (ΩB)

(a) ∆T = 1

(b) ∆T = 0.01
FIG. 29: Fourier spectrum of displacement of the bottom story when m = 10.
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FIG. 30: Decomposition of a MDOF Duffing system into stiff  (ΩB) and flexible (ΩA) parts.



Reference MTS-TR (ΩA) MTS-γ-Bathe (ΩA)
MTS-TR (ΩB) MTS-γ-Bathe (ΩB)

(a) ∆T = 0.3 (b) ∆T = 0.05
FIG. 31: Phase plane diagrams at nodes 5 and 12 with m = 6.
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Reference MTS-TR (ΩA) MTS-γ-Bathe (ΩA)
MTS-TR (ΩB) MTS-γ-Bathe (ΩB)

(a) At node 5 when ∆T = 0.3 (b) At node 12 when ∆T = 0.3

(c) At node 5 when ∆T = 0.05 (d) At node 12 when ∆T = 0.05
FIG. 32: Fourier spectrum of acceleration at nodes 5 and 12 with m = 6.



Reference MTS-TR (ΩA) MTS-γ-Bathe (ΩA)
MTS-TR (ΩB) MTS-γ-Bathe (ΩB)

(a) At node 5 when ∆T = 0.3 (b) At node 12 when ∆T = 0.3

(c) At node 5 when ∆T = 0.05 (d) At node 12 when ∆T = 0.05
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FIG. 33: Time history of acceleration at nodes 5 and 12 with m = 6



FIG. 34: Maximum value of global cumulative errors in displacement, velocity, and acceleration using the MTS-TR and MTS-
Bathe methods when m = 6. The 4 points on each curve correspond to different ∆T = 0.3, 0.2, 0.1, and 0.05 with increasing
computational costs from left to right.




