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Nature of molybdenum carbide surfaces for catalytic hy-
drogen dissociation using machine-learned potentials: an
ensemble-averaged perspective†
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Molybdenum carbides with an electronic structure similar to noble metals have gained attention as a
promising low-cost catalyst for biomass valorization and the hydrogen evolution reaction. However,
our fundamental understanding of the catalyst surface and how different phases of these catalysts
behave at varying reaction conditions is limited to ground state density functional theory calculations
as ab initio molecular dynamics (AIMD) is computationally prohibitive at relevant length and time
scales. In this work, we train a multi-atomic cluster expansion (MACE) machine-learned interatomic
potentials (MLIP) to study hydrogen dissociation and dynamics over Mo, δ -MoC, α-Mo2C, and
β -Mo2C surfaces at varying temperatures and hydrogen partial pressures. Our simulations identify
unique and different molecular and atomic hydrogen adsorption sites on different surfaces that do
not depend on the temperature. At low hydrogen pressures, the surface coverage is monolayer,
which transitions to two-layer adsorption at higher pressures. We find that atomic hydrogen diffu-
sion and recombinations are preferred over molybdenum atom hollow sites, while the diffusion over
carbon-terminated facets was negligible, signifying particularly strong C–H interactions. In contrast,
molecular hydrogen adsorption occurs mostly atop Mo or the bridging sites. At a comparable hydro-
gen loading, β -Mo2C (001) is the most active surface for hydrogen dissociation reaction. This work
provides insights into the dynamic nature of the hydrogen dissociation chemistry and the diversity of
hydrogen adsorption sites on molybdenum carbides.

1 Introduction
A significant challenge facing biomass valorization is lowering
the oxygen content of bio-oil. A high oxygen content in bio-oil
is detrimental as it increases viscosity due to enhanced hydro-
gen bonding and reduces its lifetime due to oxidative reactions
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which can occur at ambient conditions1–3. Noble metal catalysts
have been shown to cleave the oxygen-carbon bonds in biomass
thereby reducing its oxygen content, as well as enable hydrogena-
tion reactions to convert reactive ketones and aldehydes to less-
reactive alcohols or other compounds.4–8. However, the scarcity
of noble metal catalysts makes this an economically infeasible op-
tion for biomass valorization. A similar problem exists for the
hydrogen evolution reaction (HER), where platinum is regarded
as one of the best catalysts for the reaction9–11. However, due to
high cost and lack of availability, finding alternative catalysts with
performance similar to platinum and other noble metal catalysts
is an active research area in the catalysis community.

A possible alternative for noble metal catalysts is transition
metal carbides (TMCs). TMCs consist of interstitial carbon atoms
in the lattice of pure metals like tungsten or molybdenum12–14.
The resulting material has metallic and covalent bonding charac-
ter. By adjusting the doping of carbon atoms and the phase of
the material, the electronic structure of the metal can be tuned
to be like that of a noble metal catalyst and have similar cat-
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Fig. 1 Active sites on Mo (110), α-Mo2C (101), β -Mo2C (001), δ -MoC Mo-(111), and δ -MoC C-(111).

alytic performance as shown originally by Levi and Boudart in
their pioneering work with tungsten carbide15. Because of this,
transition metal carbides have gained attention as a catalyst for
biomass valorization16–21 and deoxygenation22–24, CO2 conver-
sion25–28, the HER29–32, and other reactions33–42. While these
materials show promise from an electronic structure perspective,
specific challenges must be resolved for wider adoption. TMCs
are prone to deactivation via coking, hydrogen and oxygen can
either facilitate reactions or poison the catalyst, and depending
on the synthesis conditions, they can form various phases with
different stoichiometry. Therefore, a fundamental understanding
of the physical structure of the surface and phases of these cat-
alysts at synthesis and reaction conditions is necessary to design
processes that maximize their lifetime and performance.

Ab initio molecular dynamics (AIMD) has had significant
success in modeling reactive systems in catalysis including
zeolites43–47, transition metals8,48, and homogeneous cataly-
sis49–51. However, modeling reactive systems at length and
time scales relevant to catalysis can become computationally pro-
hibitive. It is especially true for transition metal catalysis where,
due to the number of electrons and the numerical difficulties of
solving the Kohn-Sham equations with d-block elements, mod-
els are limited to the simplest systems that either neglect envi-
ronmental effects such as coverage or solvation entirely or only
include those effects with short AIMD simulations8,46,47 or a
QM/MM based approach.52–55. However, even with these meth-
ods and approximations, such calculations still require significant
computational resources to sample with MD and obtain a statisti-
cally significant trajectory. Recently, machine-learned interatomic
potentials (MLIPs) trained on density functional theory data from
both single-point calculations and AIMD trajectories have shown
success in modeling catalysis with molecular dynamics56–61, en-
hanced sampling62,63, and global optimizations64.

In this work, we simulate the hydrogen dissociation reaction
over molybdenum and molybdenum carbide catalysts using reac-

tive molecular dynamics (MD) simulations with MLIPs developed
with MACE65,66, an equivariant message passing neural network.
Hydrogen dissociation is integral to biomass valorization reac-
tions and the HER, with molybdenum carbides gaining significant
attention as promising catalysts. We study systems with differing
initial hydrogen molecules in the vapor phase and at a range of
temperatures to capture both hydrogen partial pressure and tem-
perature effects. We also simulate different catalyst surfaces made
of pure Mo, δ -MoC, α-Mo2C, and β -Mo2C to capture phase and
composition effects. The message-passing formalism and local
models are inherently challenged when describing atomic envi-
ronments for systems with low densities where atoms are outside
the cutoff distance to determine neighbors. To circumvent this,
we utilize a fixed grid of ghost atoms to facilitate message passing
to atoms outside the cutoff radius to determine atomic neighbors
but within the effective cutoff radius of the MACE model. Evalu-
ation of the models is done by post-processing of MD trajectories
with active learning, and in cases where the error in energy uncer-
tainty becomes larger than 43 meV (1 kcal/mol and the threshold
for chemical accuracy) or if the MD was unstable, we ran addi-
tional short AIMD simulations from those frames and updated our
existing model.

2 Methods

2.1 System details

Crystal structures for Mo, δ -MoC, α-Mo2C, and β -Mo2C were ob-
tained from the Materials Project database67. Two naming con-
ventions are often used when describing the different phases of
molybdenum carbides: an early definition by Christensen68 or
the notation defined by the Joint Committee on Power Diffrac-
tion Standards (JCPDS) data files69. In this work, we followed
the JCPDS convention where β -Mo2C is the orthorhombic phase
of Mo2C. More details about the crystal symmetries and lattice
parameters of Mo, δ -MoC, α-Mo2C, and β -Mo2C are presented in
Table 1 to eliminate any confusion for what phase of molybdenum
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Table 1 Crystal symmetry, facets, and supercell dimensions of molybdenum and molybdenum carbides and the initial number of H2 molecules in the
vapor phase simulated with AIMD

Material Materials Project ID Crystal System Space Group Facet Supercell Layers H2 Loadings
Mo 129 Cubic Im3m (110) 5 x 6 6 25, 29, 61, 85

δ -MoC 2746 Cubic Fm3m (111) 4 x 4 6 23, 29, 83, 124
α-Mo2C 1221498 Trigonal P3m1 (101) 6 x 6 3 25, 30, 90
β -Mo2C 1552 Ortho. Pbcn (001) 4 x 4 6 29, 34, 75, 107

carbides we are studying. To orient the readers unfamiliar with
the surface topology of molybdenum carbides, we illustrate in
Fig. 1 different active sites on Mo (110), α-Mo2C (101), β -Mo2C
(001), δ -MoC Mo-(111), and δ -MoC C-(111). We will refer to
these different active sites throughout the article.

After obtaining the lattice parameters and coordinates for each
crystal from the Materials Project67, we performed a cell opti-
mization enforcing crystal symmetry with CP2K using the level
of DFT theory described in the next section. Optimized lattice
vectors are presented in Table S1. After cell optimization, we cre-
ated surfaces with specific Miller indices and dimensions shown
in Table 1. We selected these facets based on the dominant peaks
in the XRD patterns available at the Materials Project67 and what
other scientists have used in the literature18,19,29–32,39,40,42,70–73.

Each surface had a vacuum layer of 30 Å to give sufficient space
to add H2 molecules (see Fig. 2). We created systems with differ-
ent initial hydrogen loadings in the vapor phase to run ab ini-
tio and large-scale reactive MD with the machine-learned inter-
atomic potential to capture the effect of different hydrogen par-
tial pressures. In this work, we aimed to investigate how the ad-
sorption, diffusion, and dissociation reaction varies across these
phases of molybdenum carbide compared to pure molybdenum
at different hydrogen loadings and temperatures. Unfortunately,
choosing a priori hydrogen loadings, which will lead to identical
pressures across all four materials considered in this work, is dif-
ficult. Thus, we approximate the vapor pressure of H2 for each
catalyst and hydrogen loading during the production run of our
simulations. Pressure is calculated using the ideal gas law con-
sidering the number of H2 molecules 10 Å away from the surface
and is reported in Table S3 of the SI†. We note that the (111)
facet of δ -MoC leads to two different surface terminations: a
molybdenum terminated facet (Mo-(111)) where hollow sites are
present with a subsurface molybdenum atom and three molybde-
num atoms coordinate the site and a carbon terminated facet (C-
(111)) where carbon atoms occupy the hollow sites and protrude
from the catalyst surface. Since these two surface terminations
can occur on the same (111) facet, we investigate their differ-
ences in this work. We acknowledge that previous work by Li and
Reuter74 and separately by Wang et al.72 investigated the surface
stability and reconstruction of molybdenum carbides with ab ini-
tio thermodynamics, and the most thermodynamically favorable
surface appears to have a mix of Mo and C surface terminations
for the (111) facet. However, in this work, we chose to study
surfaces with molybdenum-only or carbon-only terminations.

2.2 Ab initio molecular dynamics

We performed cell optimizations and AIMD simulations
with CP2K75,76 (v2022.1) to model hydrogen dissocia-
tion/recombination over molybdenum and molybdenum
carbide catalysts. QUICKSTEP77, the density functional theory
module of CP2K, implements the Gaussian-plane wave method,
which transforms the density matrix obtained from a Gaussian
basis set to a plane-wave representation via fast Fourier trans-
form to solve the long-range electrostatic term in the Kohn-Sham
Hamiltonian. It enables tractable AIMD simulations of large
systems with moderate computational resources. We use PBE
with Grimme’s D3 empirical dispersion correction (PBE+D3) for
the exchange-correlation functional. The double ζ molecular
optimized basis set78 (DZVP-MOLOPT) with an auxiliary plane
wave kinetic energy cutoff of 600 Ry and a relative cutoff of
60 Ry was used to model the valence electrons of C and H.
In contrast, the short-range variant with less diffuse functions
(DZVP-MOLOPT-SR) was used for Mo. Core electrons were
modeled with the dual space pseudopotentials of Goedecker,
Teter, and Hutter79 optimized with PBE (GTH-PBE). The orbital
transform (OT) algorithm80 was used to minimize each SCF
cycle to a convergence threshold of 10−5 a.u. While OT has poor
convergence for metallic systems, after trial and error, we found
that turning off the always-stable-predictor-corrector81 (ASPC)
algorithm of CP2K to predict the next wavefunction in favor of
simply starting the SCF cycle with the wavefunction from the last
MD step improved convergence speed significantly even after the
MD had progressed. An example input file we used to perform
AIMD with CP2K is provided in the SI† in Code Listing S1.

Born-Oppenheimer MD was performed in the canonical (NVT)
ensemble with a time step of 0.5 fs and a Nose-Hoover chains
thermostat82 at 1000 K. Running the AIMD simulations at such
a high temperature increases the chance of observing rare events
like hydrogen surface diffusion and dissociation/recombination.
We ran ab initio MD for at least 4,000 steps (2 ps) for each hy-
drogen loading and material studied.

2.3 Machine learned interatomic potential training and
model evaluation

For each catalyst surface, we trained one machine-learned inter-
atomic potential using the AIMD trajectory for the specific catalyst
facet with the MACE equivariant message passing neural network
architecture65,66. MACE, or multi-atomic cluster expansion, em-
beds atomic environments with invariant and equivariant features
and constructs high body order messages passed from atom to
atom in the spirit of the atomic cluster expansion83. MACE has
been previously shown to be able to make accurate force predic-

Journal Name, [year], [vol.], 1–13 | 3



Fig. 2 Visualization of systems considered in the present work. The snapshot of each catalyst surface with the highest hydrogen loading. The magenta,
white, and grey spheres represent molybdenum, hydrogen, and carbon, respectively.

tions for a wide range of materials, molecules, and systems in vac-
uum and the condensed phase60,84. MACE models were trained
with 2 message passing layers (Nlayers), a maximum body cor-
relation (ν) of 2, a maximum spherical harmonics degree (lmax)
of 1, a neighbor distance cutoff (rcut) of 5 Å, and 128 features
(N f eat). This combination of hyperparameters includes up to 7
body order interactions. To evaluate hyperparameter sensitivity,
we also trained models with (ν , lmax,N f eat) equal to (3, 0, 128),
(3, 0, 256), and (3, 1, 128) keeping the number of layers and
distance cutoff fixed at 2 and 5Å, respectively. An example shell
script for the MACE models we trained is provided in the SI† in
Code Listing S2.

One unique feature of message-passing neural networks com-
pared to local models is the receptive field or effective cutoff ra-
dius. The effective cutoff is the number of layers of the network
multiplied by the distance cutoff used to determine if atoms are
neighbors:

re f f = Nlayers ∗ rcut (1)

While atoms are only considered neighbors and directly pass mes-
sages to each other if they are within a distance r ≤ rcut , messages
can be passed to atoms up to a distance re f f from each other by
proxy due to having multiple layers of message passing. This is
an advantage for message-passing neural networks in that atoms
can interact with each other up to distances that are compara-
ble with traditional classical potentials. However, this relies on at
least one other atom being within a distance rcut to pass messages
up to a distance re f f , and it can be detrimental for less dense sys-
tems where often no atoms might be present within the rcut dis-
tance. In these cases, as far as the model is concerned, the atom is
isolated in a vacuum. This will become problematic for the treat-
ment of gas-phase heterogeneous catalysis, where long-range ef-
fects are an important consideration, as atoms and molecules can
be influenced by a catalyst surface several nanometers away from
the surface. A similar phenomenon was observed by Kovács et
al. when modeling a bucky-ball catcher system, a 2-layer 3 Å
cutoff predicted the system dissociating into the bucky-ball and
the catcher, whereas a single layer 6 Å cutoff network predicted
a bound state84. Both networks had the same effective cutoff

radius of 6 Å, but only the latter neural network could predict
the bound state due to the bucky-ball being 3.5 Å away from the
catcher.

To circumvent this issue, we utilize a ghost atom grid whose
only function is to facilitate message passing from the surface to
the molecules in the gas phase or molecules within the gas phase.
These ghost atoms are fixed in space and do not affect the dynam-
ics of the system other than serving as extra nodes for messages to
pass. An example code for generating an equidistant ghost atom
grid and adding it to a database of XYZ coordinates is provided in
the SI† in Code Listing S3. In short, the user sets a target resolu-
tion specifying the spacing between atoms on the grid. Then, for
each frame of the database, points are evenly spaced from [0,1)
in scaled coordinates along each lattice vector at the grid resolu-
tion specified by the user. After generating these points, a mesh
grid is created, and after converting from scaled coordinates to
cartesian coordinates, these points serve as the locations for the
ghost atoms. We acknowledge that it is possible to design algo-
rithms and assign grid points in a more elegant manner where
points are not included in dense regions, like the inside of the
catalyst, where message-passing facilitation is not necessary, and
points are only included in less dense regions. While this would
improve time-to-solution by increasing training speed and MD ef-
ficiency, in this work, we only explore using an equidistant grid
with a target grid resolution of 5 Å as it is the rcut distance we use
in our MACE model. We concede that grid optimization strategies
could be a topic for a future study. A graphic illustrating the need
for the ghost atom grid and what the grid looks like for δ -MoC
with 124 H2 molecules is shown in Fig. S1 of the SI†. We cau-
tion readers about this approach, as singularities can occur when
calculating atomic environments where an atom has the same co-
ordinates as a ghost atom grid point. However, the probability of
this occurring in an MD simulation representing coordinates with
double-precision floating point numbers is negligible, and we did
not experience this in our simulations.

The accuracy of the MLIP is determined using the root mean
squared errors (RMSE) for energy (E) and relative root mean
squared error (RRMSE) for the force (F). RMSE is calculated
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as the square root of the average value of the residuals between
the actual ground truth value and the predicted value from the
machine learning model.

E RMSE =

√√√√ 1
N

N

∑
i=1

(Ei − Êi)2 (2)

where N is the total number of observations, Ei is the DFT energy
of training frame i, and Êi is the energy predicted by the model.
In contrast, RRMSE is the RMSE normalized by the square root of
the mean value of target observations squared:

F RRMSE =

√
1
N ∑

N
i=1(Fi − F̂i)2√

1
N ∑

N
i=1(F̂i)2

∗100% (3)

RRMSE has an advantage over RMSE as it normalizes the error
with the average force acting on the atoms.

2.4 Large scale reactive molecular dynamics

Reactive molecular dynamics with the MACE MLIPs was done
with the MD library in the Atomic Simulation Environment85

(ASE) at 450, 525, 600, 750, 825, and 900 K. A Langevin ther-
mostat86,87 with a 0.5 fs time step and friction coefficient of
0.01 fs−1 was used to integrate Newton’s equations of motion
for 1,000,000 steps (500 ps). MD was done with the same sys-
tems that we had trained our MLIPs on described in Table 1, ex-
cept for each surface, we also ran additional simulations with a
single adsorbed hydrogen atom to study surface diffusion at the
limit of low coverage, and another simulation consisting of 53 H2

molecules in the vapor phase for δ -MoC to test force-field trans-
ferability. Snapshots of the last MD frame of each surface with
the highest hydrogen loading studied are depicted in Fig. 2.

In each of these MD simulations, we included the ghost atom
grid used in the training and kept it fixed throughout the sim-
ulation. An example Python script for utilizing the ghost atom
grid during an MD simulation is provided in the SI† in Code List-
ing S4. We did encounter instances when some trajectories ex-
perienced run-away temperatures resulting in unphysical confor-
mations, likely caused by insufficient training of ’high-energy’ or
’repulsive’ configurations that were absent in the training data.
During post-processing with active learning, these frames were
identified as high-uncertainty frames and were used to initiate
additional short AIMD simulations. These calculations were then
used to supplement the training dataset, and the MD simulations
were restarted from the beginning. The final datasets we used to
train our MACE models are provided along with the SI†.

All analyses in the following subsections consider only the
last 200 ps of the trajectory, as at this point, the hydrogen
dissociation-recombination reaction had reached a steady state
for all systems.

Table 2 MACE root mean squared error for energy, E (meV/atom), and
relative root mean squared error for forces, F (%) and MD efficiency
reported in wall time/ps (s) for δ -MoC with and without the ghost atom
grid on a node utilizing 1 NVIDIA H100 GPU

(ν , lmax, N f eat) Grid E RMSE F RRMSE Walltime/ps
(2, 1, 128) Yes 1.8 8.1 85.8
(2, 1, 128) No 3.2 9.2 79.7
(3, 0, 128) Yes 1.6 8.9 76.3
(3, 0, 128) No 3.1 10.5 54.8
(3, 0, 256) Yes 1.8 7.5 82.4
(3, 0, 256) No 3.0 8.7 64.8
(3, 1, 128) Yes 2.0 7.6 93.2
(3, 1, 128) No 3.3 8.6 76.6

Fig. 3 The energy and force parity plots for a MACE model trained on
test data with a ghost-atom grid for δ -MoC.

3 Results and discussion

3.1 MLIP efficiency, accuracy, and hyperparameter sensitiv-
ity

The RMSE for energy (E) and the RRMSE for the force (F) predic-
tions for the δ -MoC system and MD efficiency reported as com-
pute time (wall time) for 1 ps on a node with a single NVIDIA
H100 GPU for a system containing 124 H2 molecules over δ -MoC
is shown in Table 2.

We also show how including the ghost atom grid
(Grid=Yes/No) affects the root mean squared errors and
MD efficiency. For each MACE model trained with and without
the ghost atom grid, we obtain energy percent errors within the
threshold of chemical accuracy (below 43 meV = 1 kcal/mol),
and F RRMSE are comparable to relative mean absolute errors
for force that Owen et al. reported for bulk transition metals
with a vacancy defect88 where forces were obtained using the
NequIP framework59,89, another equivariant message passing
neural network architecture. With the ghost atom grid, energy
predictions are improved between 30 - 55 % depending on which
set of hyperparameters are used, whereas the RRMSE on forces
improves by approximately 1 percent. We also observe that the
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ghost atom grid increases the wall time/ps and worsens MD
efficiency by 8-39 % depending on the hyperparameter set used.
Despite the ghost atom grid reducing MD efficiency with only a
small gain in force accuracy, we still feel it is necessary to include
it for these systems because of the significant improvement to en-
ergy predictions and to help avoid situations for sparse hydrogen
loadings wherein atoms just outside the 5 Å cutoff radius would
be treated as isolated atoms in a vacuum. In this work, we chose
to run molecular dynamics with (Nlayers,rcut ,ν , lmax,N f eat) equal
to (2, 5 Å, 2, 1, 128) with the ghost atom grid as it balances
both accurate force and energy predictions with reasonable MD
efficiency.

Energy and force parity plots on the test data for δ -MoC are
shown in Fig. 3, and the plots for α-Mo2C, β -Mo2C, and Mo are
given in the SI† in Fig. S2, S3, and S4, respectively. The neu-
ral networks model, with the ghost atom grid approach, demon-
strates remarkable energy and force parity when compared to
DFT. Unsurprisingly, Mo is the most difficult atom type for force
evaluation, given that it is a d-block transition metal, whereas
H is the easiest. Regardless, we are still able to reliably predict
forces on Mo with a R2 value of 0.949 over a range of hydrogen
loadings.

As a final test to validate our force fields, we trained two ad-
ditional MACE models with different random number seeds. We
performed active learning by evaluating all three MLIPs on each
MD trajectory, predicting the energy. In active learning, an en-
semble of neural networks is used to assess which frames in a
dataset are unlike others on which the models have been trained
by calculating variance in the energy prediction of each network.
When the energy predictions between the models diverge and the
variance is high, the frame has high uncertainty and needs to be
included in the training set. Plots of the energy variance for 53
H2 molecules over δ -MoC at each temperature studied are shown
in Fig. 4, and plots for α-Mo2C, β -Mo2C, δ -MoC, and Mo at each
hydrogen loading studied are provided in the SI† in Figs. S5-S19.
Over the simulation trajectory, the variance for each system and
process condition simulated stays below the threshold of chemical
accuracy. We also note that the 53 H2 over δ -MoC system was not
included in the AIMD training data. It demonstrates the transfer-
ability of the MACE MLIPs we have trained and implies that we
can use these force fields to study other hydrogen loadings we did
not include in the training data.

3.2 Effect of surface type on reaction and diffusion energet-
ics

The simulation setup allows us to directly observe (and count)
the dissociation and association events occurring on the catalytic
surface as a function of time to calculate reaction rates56. For the
equilibrium reaction:

H2 ·S+S ⇀↽ 2H ·S (4)

where S denotes an active site, and the dot denotes hydrogen
adsorbed to a particular site, the forward reaction is hydrogen
dissociation, and the reverse reaction is recombination. Counting
reactive events is facilitated by keeping track of the coordination

Fig. 4 The evolution of variance in energy prediction as a function of
simulation time using post-process active learning on a MD trajectory of
53 H2 molecules over δ -MoC.

number of hydrogen atoms at every time step. If the coordina-
tion number is equal to 1 for a given hydrogen atom, then that
hydrogen atom is bound to one other hydrogen and is part of a
hydrogen molecule. In contrast, a coordination number of 0 indi-
cates that hydrogen is atomic. We used a distance cutoff criterion
of 0.992 Å to determine if two hydrogen atoms were bonded to
one another. This cutoff distance ensured that molecular hydro-
gen bond vibrations in the gas phase were not counted as reactive
events. Between two MD frames, if the difference in coordination
number for a given hydrogen atom is equal to 0, then no reac-
tion occurred. Otherwise, if the difference equals +1 or -1, a
recombination or dissociation reaction occurred, respectively. Af-
ter counting the number of reactions that occur as a function of
simulation time, the reaction rate can be determined from the
slope of the line. From equation 4, the forward reaction rate law
is:

−rH2·S = k f CH2·SCS (5)

whereas for the reverse:

−rH·SH = krC2
H·S (6)

where k f and kr are the rate constants, and C denotes the surface
concentration of either an adsorbed species or a vacant adsorp-
tion site. Once the reaction rate and all surface concentrations
are known for a range of temperatures, using the well-known Ar-
rhenius relationship:

k = Aexp(−Ea/kBT ) (7)

the apparent activation energy (Ea) and Arrhenius pre-
exponential factor (A) for the reaction can be computed via linear
regression. To estimate CH·S and CH2·S, we average the number of
adsorbed species during the production run of the simulations af-
ter equilibrium is reached. The number of vacant sites can be
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Fig. 5 The number of hydrogen recombination (solid lines and triangles pointing up) and dissociation (dotted lines and triangles pointing down) over
the course of the MD simulation (a) and the corresponding Arrhenius analysis (b) for 53 H2 molecules over δ -MoC Mo-(111). The inset (c) refers to
the number of reactions that take place over the C-(111) surface. For readability, the number of dissociation reactions has been shifted by 100 and
10 for the Mo-(111) (a) and C-(111) (c) facets, respectively.

calculated from the site balance equation:

CS =CTotal −CH2·S −CH·S (8)

where CTotal is the total number of active sites. The total number
of active sites depends on the catalyst surface. For our calcula-
tions, we count per periodic surface the number of atop Mo and
3-fold Mo sites for α-Mo2C (101), atop Mo and short bridge sites
for β -Mo2C (001), atop Mo and 3-fold (Mo) sites for δ -MoC Mo-
(111), atop C and 3-fold (C) for δ -MoC C-(111), and atop Mo and
3-fold (Mo) sites for Mo (110) to estimate the value of CTotal . The
reason for choosing these sites as opposed to the others shown in
Figure 1 is discussed in more detail in Section 3.3.

A similar procedure can also be used to calculate diffusion bar-
riers. The diffusion coefficient of hydrogen can be calculated by
first calculating the mean squared displacement MSD:

MSD(τ) = ⟨|r(τ)− r(0)|2⟩. (9)

where r(τ) is the coordinates of the hydrogen atom at a correla-
tion depth τ and r(0) is the initial coordinates of the hydrogen
atom. Then, the diffusion coefficient can be calculated via the
Einstien relationship:

D =
1

2d
lim

τ→∞

d
dτ

MSD(τ) (10)

where d is the dimensionality of the system (here d = 3 as the
hydrogen atom is allowed to move in the x, y, and z directions).
By calculating the diffusion coefficient at different temperatures,
we can then apply an Arrhenius relationship to calculate the acti-
vation energy barrier of diffusion:

lnD = lnD0 −Ea/kBT (11)

Diffusion calculations were done at the low coverage limit, where
only one hydrogen atom was adsorbed onto the surface simu-
lated. We acknowledge that this approach neglects the environ-
mental effects of molecular hydrogen in the vapor phase and cov-
erage effects of other hydrogen atoms and molecules adsorbed on
the surface, but this approach isolates diffusion rare events from
reactions and enables studying hydrogen transport across the sur-
face without the possibility of it reacting with another hydrogen
atom and moving into the vapor phase.

A plot of the cumulative number of dissociation and recom-
bination reactions over the course of the simulation for δ -MoC,
Mo-(111) and C-(111) with 53 H2 molecules and the correspond-
ing Arrhenius analyses are given in Fig. 5. The MSD and their
corresponding Arrhenius analysis for other systems considered in
this work are presented in Figs. S20-S24. For δ -MoC C-(111),
we observe frequent dissociation and recombination reactions at
higher temperatures, whereas the reaction rate at the lower tem-
peratures is negligible. Furthermore, at higher temperatures, it is
also clear, based on the number of reactions that occur, that the
Mo-(111) facet is much more active than the C-(111) facet for
δ -MoC. We observe this same behavior overall hydrogen loadings
studied for δ -MoC Mo-(111) and C-(111).

In Fig. 6, we summarize the activation energy barriers for dif-
fusion and the dissociation and recombination reaction reaction
for all surfaces and loadings studied. Numerical values for the
reaction rates as well as the activation energy barriers and pre-
exponential factors are given in the SI in Tables S3-S7. Unfortu-
nately, we do not have enough reactive events to estimate the ac-
tivation energy barrier reliably for some simulations with smaller
hydrogen loadings at lower temperatures. In these scenarios, the
surface diffusion of atomic hydrogen becomes the rate-controlling
step. The δ -MoC C-(111) system presents the most extreme case,
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Fig. 6 The activation energy barrier for hydrogen dissociation (a) and recombination (b) is shown for cases with sufficient reactive events in the 500
ps trajectory to evaluate statistical averages and the activation energy barrier for diffusion (c) for each system studied. Error bars show 1 standard
deviation.

Fig. 7 Density profile of hydrogen over δ -MoC as a function of H2 loading at 600 K (a), as a function of temperature with 124 H2 molecules (b), and
a simulation snapshot of the last frame of 124 H2 over δ -MoC at 900 K (c).

where regardless of H2 loading, the activation energy barrier can-
not be reliably estimated. Also, the diffusion barrier of δ -MoC
C-(111) cannot be computed since the MSDs have a slope of 0
(see Fig. S23 in the SI†) as the interaction between under coordi-
nated carbon atoms on the surface is particularly strong leading
to non-diffusive behavior of the hydrogen on this facet.

As hydrogen loading is increased for δ -MoC, the activation en-
ergy barrier for recombination decreases, whereas for dissocia-
tion, the barrier is largely unaffected (except at the lowest two
loadings). However, it can be argued that this decrease for δ -
MoC we observe due to an increase in the number of hydrogen
molecules is not significant as these data points lie within a 95%

confidence interval (1.96 times the standard deviation). Also, in-
cluding carbon atoms in the molybdenum crystal lattice dramati-
cally reduces the activation energy barrier of recombination from
0.68 eV to 0.05-0.23 eV depending on the H2 loading and phase
of molybdenum carbide. Interestingly, the diffusion and recom-
bination barriers appear to have an inverse relationship. Mo has
the smallest diffusion barrier but the largest combination reaction
energy barrier, whereas β -Mo2C has the smallest reaction energy
barrier but the largest diffusion barrier. This is further elaborated
in the next section.
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Fig. 8 The adsorption probabilities for molecular hydrogen (depicted in orange) and atomic hydrogen (depicted in green) mapped onto the δ -MoC
Mo-(111) surfaces with 124 hydrogen molecules.

3.3 Preferential adsorption sites and diffusion paths on dif-
ferent surfaces

Carbon atoms in MoxCy catalysts lead to heterogeneous surface
sites with a different affinity towards molecular or atomic hydro-
gen. In this Section, we examine the nature of surface coverage
(monolayer vs. multilayer adsorption), preferential adsorption
sites, and surface diffusion characteristics for atomic hydrogen.
Density profiles as a function of the z-coordinate normal to the
catalyst surface reveal that hydrogen adsorption increases as the
H2 loading increases and a second adsorption layer is formed.
Fig. 7 shows the density profile of hydrogen over δ -MoC as a
function of loading and temperature. Figs. S25-S27 show the
same data for the other catalyst surfaces studied here. A com-
mon behavior we see among all catalyst surfaces is the formation
of a 2nd monolayer above the catalyst surface. As expected, the
density of this layer increases with increasing hydrogen loading.
However, we do not see an increase in the density in the 1st layer
at a given temperature, indicating that we have 100 % coverage
on the catalyst surface. With increased temperatures, we see a
sharp decrease in the density of the 1st adsorbed layer. We also
see a decrease in the height of the peak corresponding to the
2nd layer, albeit not as significant as the decrease in the first ad-
sorbed layer. It is expected that the temperature increase will
lead to increased diffusivity and activity, leading to a decrease in
the structure in the first adsorbed layer. Interestingly, except for
the C-(111) facet of δ -MoC, all catalyst surfaces studied demon-
strated this behavior. The C-(111) facet of δ -MoC shows no pro-
nounced 2nd layer. At the highest temperature, the peak splits,
and another peak closer to the interface appears. It results from
molecular hydrogen from the first monolayer dissociating on the
surface of the surface-exposed carbon atoms. This implies that
dissociation and adsorption of atomic hydrogen on this facet only
occur at higher temperatures and high H2 pressures.

From the hydrogen-hydrogen coordination numbers used to

calculate the hydrogen dissociation-recombination reaction, we
can also compute where atomic and molecular hydrogen prefers
to adsorb on the catalyst surface by building a histogram of the x
and y coordinates for atoms adsorbed on the catalyst surface. A
2 Å cutoff was used from the average z-coordinate of surface Mo
atoms to define whether or not hydrogen was adsorbed on the
surface. The choice of 2 Å was made by observing the width of
the density profiles in Figs. 7 and S26-28.

Fig. 8 shows atomic and molecular hydrogen adsorption heat
maps for the highest hydrogen loading studied for each catalyst at
900 K. Heatmaps at the highest hydrogen loading studied for the
catalysts as a function of temperature are provided in the SI† in
Figs. S28-S32. When available, atomic hydrogen prefers to bind
to 3-fold Mo sites regardless of temperature and the catalyst sur-
face. An exception is α-Mo2C (101), where hydrogen prefers the
3-fold hollow site. However, even on this surface, we observe hy-
drogen at the 3-fold Mo site at higher temperatures. In the case
of β -Mo2C (001), where there are no 3-fold sites, atomic hydro-
gen prefers to adsorb on the bridge sites. For the δ -MoC C-(111)
facet, when atomic hydrogen is present on the surface, it binds ex-
clusively atop C atoms, while molecular hydrogen is observed at
the 3-fold site. Our simulation results agree with prior computa-
tional work based on single-point DFT calculations. For example,
Matanovic et al. report that for δ -MoC (111), the threefold Mo
site is the most stable for atomic H adsorption32. Furthermore,
similar to our δ -MoC C-(111) facet, uncoordinated C atoms on
the surface are the preferred site for the H atom adsorption.37,73

For the molecular hydrogen, it is most likely to be found atop
molybdenum atoms for Mo (110), α-Mo2C (101), and δ -MoC Mo-
(111). We do not observe any molecular hydrogen atop Mo for
β -Mo2C (001) and δ -MoC C-(111). A unique feature of β -Mo2C
(001) compared to every other surface studied here is that there
are several pits on the surface between surface carbon atoms and
rows of Mo atoms connected by bridge sites, and it’s at these pits
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Fig. 9 The trajectories of surface adsorbed hydrogen at the limit of low coverage for each surface studied at 900 K. Blue depicts initial positions,
while red depicts final positions of adsorbed hydrogen.

we see molecular hydrogen instead of atop Mo. It indicates that
this is the only site where the dissociation-recombination reaction
occurs on β -Mo2C (001).

To help explain why we observe these interesting phenomena
for adsorption and the dissociation-recombination reactions, we
visualize the trajectory of the hydrogen atom from the diffusion
simulations on each surface at 900 K in Fig. 9. In addition to this
figure, we also provide animations of these graphs along with the
SI†.

For δ -MoC Mo-(111) and Mo (110), the hydrogen atom is ob-
served to freely move across the surface. It also agrees with the
Arrhenius analysis from Fig. 6, where these surfaces had the low-
est activation energy. Interestingly, for δ -MoC C-(111), we do not
see the hydrogen atom diffuse across the surface at the temper-
atures studied. Instead, we see it adsorb to and simply vibrate
on the carbon atom on which it was initially placed. Hydrogen
also has an interesting diffusion trajectory on α-Mo2C (101) and
β -Mo2C (001) moving along active sites connected by Mo atoms
and does not diffuse across surface-exposed carbon atoms. From
these simulations and considering that Mo (110) has an order of
magnitude lower activation energy barrier of diffusion (0.07 eV)
compared to the molybdenum carbides studied, we conclude that
surface carbon atoms inhibit diffusion with molybdenum carbides
but can significantly lower the energy barrier for the dissociation-
recombination reaction.

Conclusions
In this work, we have trained an equivariant message-passing
neural network model to learn interatomic potentials with the
MACE architecture for the hydrogen dissociation-recombination
reaction over pure molybdenum and molybdenum carbides. To
facilitate message passing for less dense systems, we utilize
a ghost-atom grid approach, which improved the accuracy of
energy and force predictions for the machine-learning inter-

atomic potential. The kinetics and energetics of the hydrogen
dissociation-recombination reaction, the diffusion of atomic hy-
drogen, and the adsorption of atomic and molecular hydrogen
were studied with reactive molecular dynamics at time scales sta-
tistically relevant to catalysis. We found that atomic hydrogen
prefers to diffuse along and adsorb at sites coordinated by mul-
tiple Mo atoms. Molecular hydrogen, on the other hand, prefers
to adsorb atop Mo atoms or in the pit sites of β -Mo2C (001). We
also observe that surface carbon atoms impede diffusion and raise
the diffusion barrier for hydrogen. In the case of δ -MoC on the
C-(111) facet where carbon atoms protrude from the surface, the
reaction only occurs at high temperatures, and hydrogen does not
diffuse from one site to the next. Furthermore, carbon atoms limit
diffusion pathways and force the reaction to occur on select sites
of the molybdenum carbide surfaces. In contrast, for pure molyb-
denum, hydrogen can diffuse easily across the surface. Among the
facets considered in our work, at a comparable hydrogen loading,
β -Mo2C (001) is the most active surface for hydrogen dissociation
reaction. We also observe that surfaces with carbon termination
are not an active site for this reaction, and their exposure could
have a deleterious effect on the chemical kinetics. This work pro-
vides unique insights into the hydrogen reaction dynamics on the
surface for several phases of molybdenum carbide compared to
pure molybdenum.
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