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COGNITIVE NEUROSCIENCE

Domain-specific representation of social inference by
neurons in the human amygdala and hippocampus

Runnan Cao'*, Julien Dubois?, Adam N. Mamelak?, Ralph Adolphs3’41',

Shuo Wang11', Ueli Rutishauser®*+t+

Inferring the intentions and emotions of others from behavior is crucial for social cognition. While neuroimaging
studies have identified brain regions involved in social inference, it remains unknown whether performing social
inference is an abstract computation that generalizes across different stimulus categories or is specific to certain
stimulus domain. We recorded single-neuron activity from the medial temporal lobe (MTL) and the medial frontal
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cortex (MFC) in neurosurgical patients performing different types of inferences from images of faces, hands, and
natural scenes. Our findings indicate distinct neuron populations in both regions encoding inference type for
social (faces, hands) and nonsocial (scenes) stimuli, while stimulus category was itself represented in a task-
general manner. Uniquely in the MTL, social inference type was represented by separate subsets of neurons for
faces and hands, suggesting a domain-specific representation. These results reveal evidence for specialized social
inference processes in the MTL, in which inference representations were entangled with stimulus type as expected

from a domain-specific process.

INTRODUCTION

Inferring the latent mental states and intentions of other people
from observing their behavior is a critical human ability that is at
the core of what is often referred to as either “theory of mind”
(ToM), “mentalizing” (1, 2), or “social inference” (3, 4). Emerging
during early childhood, typically around the age of four (5), this
important skill relies on representing the beliefs, desires, intentions,
and feelings of others to make sophisticated social interactions
possible (6). Atypical social inference is thought to contribute to the
difficulties experienced in mental and neurological disorders, in-
cluding in autism (7, 8), schizophrenia (9), and Parkinson’s disease
(10, 11) [for review, see (12)]. Social inference has been an active
topic of study since the 1970s, ranging from developmental psychol-
ogy (13) to social neuroscience (14, 15) to philosophy of mind (16).
A wide range of tasks has been developed to study it, including the
false-belief task (17), pragmatic language comprehension (18), and
belief-desire reasoning (19). A key question in social inference work
is how the brain represents its own and other’s mental states at the
neuronal level (6).

Anatomically, a large number of brain regions have been associ-
ated with social inference, ranging from the cerebellum to the supe-
rior temporal sulcus to the frontal cortex (12, 20, 21), a list that
varies greatly depending on the exact task used [see (22, 23) for re-
views]. Three common sets of regions that stand out in the literature
are the temporo-parietal junction (TPJ) (24, 25), medial frontal cor-
tex (MFC) (21), and the medial temporal lobe (MTL), which to-
gether form important components of the “social brain” (26, 27).
The MFC contains several areas of interest to social inference, in-
cluding the supplementary motor area (SMA), the pre-SMA, the
anterior and middle cingulate cortex (ACC/MCC) (28), and the
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medial prefrontal cortex (mPFC) (29, 30). These subregions have
been broadly associated, to varying extents, with the inference
of different mental states (31), such as false beliefs (32), deception
(20), intentions (33), empathy (34), desires (24), and preferences
(35), indicating a prominent role for sectors of the MFC in specific
kinds of social inferences (36). The role of frontal regions in social
inference is dissociable from their role in “executive functions”
more broadly (37, 38), suggesting that social inference processes
are distinct specializations rather than reutilization of more general
executive processes.

By contrast, a broader role in making social inferences is sug-
gested for the MTL, notably including the amygdala (AMY) and
hippocampus (HIPP) (26, 27, 39). The MTL supports processes such
as recognition memory (40), social evaluations (27, 41), categoriza-
tion (42), facial emotion recognition (43, 44), relational processing
(45), and latent state inference (46) that are needed for social infer-
ence but are not specialized for doing so. The MTL is closely
connected both structurally and functionally with the MFC (47, 48),
suggesting that these two regions are two nodes in the social infer-
ence network.

Several important questions regarding the neural basis of social
inference remain open. First, while a wide set of brain regions have
been implicated in social inference, it remains unknown what spe-
cifically the neurons in these regions contribute functionally, a
question that neuroimaging studies alone cannot resolve. Second,
although many subregions of the MFC have been linked to social
inference, only the mPFC reached a high degree (90%) of reliability
of activation across different inference studies (36). It remains un-
clear how other frontal brain regions, including pre-SMA and dor-
sal anterior cingulate cortex (dACC), contribute to social inference.
Third, while the MTL has been hypothesized to play an important
role in social inference (26), it is not typically identified as part of
the social inference network in imaging studies (36, 49). However,
lesion studies (e.g., impaired social inference function following
amygdala damage) (49-51) as well as prominent representations of
faces and judgments about faces at the single neuron level (52, 53)
suggest that the amygdala plays an important role in social infer-
ence. This discrepancy may be partly attributed to limitations such
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as poor signal-to-noise ratio (SNR) in subcortical areas with blood
oxygen level dependent (BOLD) functional magnetic resonance
imaging (fMRI), thus leaving the involvement of the MTL in social
inference unclear.

Last, it remains unclear whether the implementation of social in-
ference recruits specific brain regions dedicated to representing
mental states (54, 55). This question is part of a long standing debate
on the domain specificity of social processing in the brain, with
seminal debates historically focused on whether or not there are
regions specialized for processing faces (56). With respect to the
processes engaged in social inference, this important question re-
mains unresolved. On one hand, a recent nonhuman primate fMRI
study found that part of the MFC was exclusively activated during
social interactions (57), and lesion studies in the macaque have
found evidence for specifically social valuation in anterior cingulate
cortex (58). On the other hand, human studies suggested that the
MEC plays a more general role in subserving executive function-
related neural functions rather than social inference specifically
(54, 59, 60).

Here, we used single-neuron recordings to study social inference
using a well-validated and well-established ToM task. Our focus is
on the specific cognitive function of inferring the mental states of
others from observing human behavior. We previously developed
and validated with fMRI and behavior a task that contrasts physical
judgments about social images (“how” an action is being performed)
with social inferences about the mental states responsible (“why”
the person is performing that action) (61). We note that this task has
been adopted in the National Institute of Mental Health (NIMH)
Research Domain Criteria framework for the subconstruct of
“action perception” within the construct “perception and under-
standing of others” in the social processes domain of the framework
(www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/
constructs/action-perception) (62, 63). Given the importance of this
task, it is important to anchor its neural correlates in intracranial
electrophysiology. Here, we used this same task with intracranial re-
cordings in humans and asked whether social inference-related pro-
cesses are represented in the responses of single neurons within
parts of the MFC (the dACC and pre-SMA) and the MTL (amyg-
dala and hippocampus). The core analysis approach we took is to
contrast why with how questions for the very same images, thereby
differentiating the neural representations of social inference from
those of perceptual judgments (61).

RESULTS

Task and behavior

We used the validated “why/how” social inference task (61, 64, 65)
to probe the neural mechanisms of social inference in the human
brain. Patients were presented with naturalistic color images and
asked to answer questions about the stimuli that required perform-
ing social inference. We varied stimulus domains (hand actions
versus facial expressions versus nonsocial events) and the type of
inference required to answer a question (perceptual judgment of the
action probed by how questions (e.g., “is the person smiling?”)
versus social inference of the cause probed by why questions (e.g.,
“is the person admiring someone?”) in a blocked design (Fig. 1A
and see Materials and Methods for details). In each trial, patients
were first shown the question to be answered, then saw a single im-
age, and then made a “yes” or “no” decision. Our analysis generally
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used a two (inference type: why versus how) by two (category: faces
versus hands) by two (choice: yes versus no) factorial design. In 8 of
the 14 patients, we also included a third category of images: scenes
of natural events that contained neither a face nor hands. We refer to
face and hand images as social stimuli and to scene images as
nonsocial stimuli. In the latter subset of sessions, the paradigm was
a2 X 3 x2 design.

Patients’ responses were compared with normative data acquired
independently in (61). We used the data from this group of subjects
as the “ground truth” to calculate the accuracy of the judgments
made by the subjects in the present study. The patients performed
well on both why (Fig. 1, C and D; accuracy: 87.08 + 10.5% [mean +
SD]J; response time: 0.77 + 0.12 s [mean + SD]) and how ques-
tions (accuracy: 91.87 + 7.83% [mean + SD]; response time:
0.68 + 0.14 s [mean + SD]). The accuracy for why questions was
lower (two-tailed paired ¢ test: t;3 = 4.06, P = 0.0007), and the
response time for why questions was longer (two-tailed paired ¢
test: t13 = 5.05, P = 8.03 X 10™°) compared to how questions. This
is similar to the normative data (61) and is expected given the
additional inferential processing required for why blocks.

Neuronal correlates of social inference in the MTL and MFC
We isolated in total 726 single neurons from the amygdala, hippo-
campus, dACC, and pre-SMA across 19 sessions in 14 neurosurgical
patients (see Fig. 1B for example locations of the electrodes and ta-
ble S1 for a complete list; n = 236, 158, 141, and 191 neurons from
the AMY, HIPP, dACC, and pre-SMA, respectively). For brevity, we
refer to AMY and HIPP together as the MTL (n = 394 cells) and the
dACC and pre-SMA together as the MFC (n = 332 cells). Only neu-
rons with an average firing rate greater than 0.2 Hz (n = 683) were
included in subsequent analyses.

Answering why and how questions required different types of
inference for the very same images, thereby allowing us to isolate
signatures of inference controlling for sensory input (which is the
same). We first examined neural activity in a single 1-s long time
window following stimulus onset (200 to 1200 ms relative to stimu-
lus onset). A total of 17.9% of neurons in the MFC responded dif-
ferentially as a function of whether subjects were performing the
why or how task (“inference-type neurons”; see Fig. 2E for a sum-
mary of selected neurons in each subregion; Fig. 2, B and D shows
examples; 56 of 313, 16 in dACC and 40 in pre-SMA; binomial test,
P < 107%°; three-way analysis of variance (ANOVA); see Materials
and Methods). Similarly, 13.2% of MTL neurons differentiated be-
tween the two tasks following stimulus onset (Fig. 2, A and C show
examples; 49 of 370, 13.2%, 28 in AMY and 21 in HIPP; binomial
test, ). P = 2.58 x 107" The proportion of neurons doing so was not
significantly different between the MTL and MFC (17.9% versus
13.2%; x* test of proportion: P = 0.09). Among all inference-type
neurons, 60 of 105 (57.14%; see Fig. 2, A and B for examples and Fig.
2G for group results, and see fig. S1G for the proportions in each
area, respectively) showed higher activity in the why task (why-
preferring), and 45 (42.86%; see Fig. 2, C and D for examples and
Fig. 2H for group results) had a greater response in the how task
(how-preferring). The proportion of why- and how-preferring
inference-type neurons was similar across brain areas and hemi-
spheres (see fig. S1G and legend for details). As a control, we also
repeated the above analysis by selecting neurons with linear regres-
sion using response time as a nuisance regressor, with qualitatively
similar results (see the Supplementary Materials).
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Fig. 1. Task, electrode locations, and behavior. (A) Task paradigm. Each session consisted of 16 blocks of 8 trials, with 128 trials in total. In each block, a set of face im-
ages with emotional expressions or hand images depicting intentional actions were paired with questions about motive (why) and implementation (how). The blocks
alternated between why and how questions. Images of the same category were shown in neighboring blocks. Each block began with a short fixation and full question
presentation. A brief interstimulus interval (ISI) cue was presented as a reminder of the question between image presentations. Independently acquired normative data
are used to ensure that the selected images featuring unambiguous (i.e., consensus) response. Each block contained five images eliciting a yes response and three im-
ages eliciting a no response. The participants had up to 1.7 s to respond. The task advanced either 0.2 s after a response or when the response time limit was reached. The
block onsets were predesigned and fixed, although the block durations were contingent on response times. As a result, session durations of were approximately equal
across participants. (B) Example electrode locations are shown on an MNI152 template brain. Each dot indicates the location of a microwire bundle in one subject.
(€) Behavior performance. Accuracy was calculated by comparing the participants’ response to the normative response. Each dot represents a session. Only trials where

participants responded were included in the analysis. (D) Reaction time in why versus how trials. ****P < 0.0001.

In addition to the above effects following stimulus onset, inference-
type neurons also differentiated between task types during the inter-
stimulus interval period that preceded stimulus onset. This was
possible because the task is blocked (Fig. 1A; Fig. 2F shows an exam-
ple neuron; and Fig. 2, G and H shows the average firing rate during
the baseline period throughout the entire block for all inference-type
neurons; and fig. S1, A to F shows the temporal dynamics aligned to
trial onset).

We next investigated how the neural population as a whole rep-
resented different types of inference. We performed single-trial
population decoding on the firing rates following stimulus onset
(200 to 1200 ms) of all recorded neurons pooled across patients to
distinguish between inference types (why versus how). Decoding
accuracy was significantly above chance in both the MTL (Fig. 2[;
accuracy = 73.68 + 4.69% [mean + SD], P < 0.001, compared
against the empirical null distribution) and the MFC (accuracy =
86.39 + 3.67% [mean + SD], P < 0.001, compared against the em-
pirical null distribution). Decoding accuracy in the MFC was sig-
nificantly higher than that in the MTL (difference in accuracy:
12.72%, P = 0.04, compared against the difference of empirical null
distribution), suggesting that the MFC had a stronger association
with social inference at the population level (see Fig. 2K for the de-
coding performance in each subregion of the MTL and MFC). Sim-
ilar results were derived when we matched the number of neurons
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between the MTL and MFC. Inference type was decodable through
the whole trial including the pre-cue period (Fig. 2] and see fig. SIL
for decoding performance in the MTL and MFC separately). To-
gether, these data show that the type of inference is encoded in both
MFC and MTL.

Generalizability of inference encoding in the human

MTL and MFC

We next examined how the encoding of inference type (how versus
why) was modulated by other task variables. We first turned to the
visual category (i.e., face and hand), which is prominently encoded
across the ventral visual pathway (66-68) and the MTL (42, 69). In
the human MFC, on the other hand, representations of visual cate-
gory are task dependent in a manner that is little understood, with
encoding in some and weak encoding in other tasks (70).

We examined whether the selectivity of inference-type neurons
differed between images showing faces and hands. To do so, we se-
lected inference-type neurons separately in face and hand trials (us-
ing a paired t test). A significant number of inference-type cells (Fig.
3C and see fig. S2C for the proportions in each subregion) was iden-
tified for both face (45 of 370, 12.16% in the MTL; 45 of 313,
14.38% in the MFC) and hand stimuli (n = 31, 8.38% in the MTL
and n = 48, 15.34% in the MFC). Therefore, both the MTL and MFC
represented inference types during both face and hand stimuli.
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Fig. 2. Representation of inference type. (A to D) Example cells that discriminate between social (why) and perceptual (how) inference. [(A) and (C)] MTL. [(B) and (D)] MFC.
(E) Percentage of inference-type neurons in each brain area. Gray bars represent the percentage, and black circles indicate the chance level estimated by a permutation
test. (F) Average firing rate during the baseline period (—0.4 to 0 s relative to the stimulus onset) for each block for the cell shown in (D). Neighboring blocks for the same
condition were collapsed, resulting in 10 inference-alternating blocks. (G and H) Average normalized response in why versus how blocks for all inference selective neu-
rons. The responses were aligned to the onset of the first trial in each block. Shaded area denotes +SEM across neurons. A dot indicates a significant difference between
the conditions in that bin (P < 0.05, two-tailed t test, corrected by false discovery rate (90) for Q < 0.05, bin size = 500 ms, sliding window = 100 ms). (G) Inference-type
neurons (n = 60) that responded more strongly to social inference (why). (H) Inference-type neurons (n = 45) that had a stronger responses to perceptual judgment (how).
(land J) Population decoding of inference type. The central mark on each box indicates the median, and the top and bottom edges of the box represent the 75th and 25th
percentiles, respectively. “+" symbol indicates outliers. (I) Decoding with mean firing rate on all MTL neurons (n = 370) versus MFC neurons (n = 313). (J) Decoding with
a sliding time window on the whole population (n = 683; see Materials and Methods). AMY, amygdala; HIPP, hippocampus; ACC, anterior cingulate cortex; SMA, supple-
mentary motor area.

Strikingly, the inference-type neurons selected from trials in which
faces were shown were largely distinct from those selected in trials
in which hands were shown in the MTL (Fig. 3D; Chi-squared test
of independence, P = 0.82) and the MFC, although only marginally
so, indicating more overlap in the MFC compared to MTL (Fig. 3E;
Chi-squared test, P = 0.08). This result also held in all subregions
(Ps > 0.05) of the MTL and MEC (fig. S2C). Consistent results were
revealed at the single-trial level (fig. S2, A and B). Together, this
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single-neuron analysis indicates that inference-type signals may
generalize across face and hand stimuli in the MFC, particularly in
the pre-SMA. We next tested this prediction at the population level.

We next examined how inference type was represented at the
population level of all recorded neurons, with the ultimate goal of
examining whether representations generalize across hands and
face. We trained decoders to distinguish between how versus why
questions on one visual category (i.e., face) and then tested them on
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Fig. 3. Domain-specific inference type encoding. (A and B) Example inference-type cells. Inference type contrast was shown separately for face and hand stimuli, with
different colors (dark colors for face and light colors for hand). (A) An example cell in the MTL that did not generalize across face and hand stimuli. (B) An example cell in
the MFC that showed generalized effect across face and hand. (C) Proportions of inference-type neuron in the MTL and MFC. Yellow: selected with face stimuli; blue: se-
lected with hand stimuli; purple: overlapping for face and hand. (D and E) Distribution of inference-type cells selected using face and hand stimuli respectively in the MTL
(D) and MFC (E). (F) Population decoding of inference type using within-category decoder (i.e., train and test using either face or hand stimuli only) and cross-category
decoder (i.e, train with one category and test on the other). (G) Generalization index of inference decoding (see Materials and Methods for computation). The representa-
tion of inference generalized across face and hand in the MFC but not in the MTL. (H and 1) Scatter plot of the importance index (see Materials and Methods for details)
assigned by an inference-type decoder to each cell built with face stimuli (x axis) or hand stimuli (y axis). (H) MTL cells. (I) MFC cells. (J) Inference-type decoders trained and
tested within each category. Only cells (n = 281 in total) that collected in sessions where scene images presented in addition to face and hand images were included in
the analysis. Legend conventions as in (G). (K) Decoding performance of inference type from cross social-domain decoders: train on face and test on scene (yellow) or train
on hand and test on scene (blue). Legend conventions as in (G).
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the same visual category (within-category decoding, i.e., face) or the
other (cross-category decoding, i.e., hand). Confirming our earlier
finding (for which we pooled across hands and faces), inference type
was decodable using within-category decoders for both face and
hand stimuli in the MTL (Fig. 3F; face: 84.40 + 5.10% [mean + SD];
P < 0.001; hand: 68.48 + 5.91% [mean + SD]; P = 0.001) and the
MFC (face: 88.92 + 4.67% [mean + SD]; P < 0.001; hand: 86.48 +
4.94% [mean =+ SD]; P < 0.001). Decoding accuracy for face stim-
uli was higher than that for hand stimuli in the MTL (difference in
accuracy with face-hand: 15.92%, P = 0.01, compared against the
difference of empirical null distribution). This was the case in both
the AMY (difference in accuracy with face-hand: 7.23%, P = 0.01)
and HIPP (difference in accuracy with face-hand: 14.70%, P = 0.01;
fig. S2D).

By contrast, decoding accuracy was not significantly different in
the MFC (difference in accuracy with face-hand: 2.44%, P = 0.08).
However, there were notable differences when looking at dACC and
pre-SMA separately: Decoding accuracy was higher for face stimuli
(difference in decoding accuracy face-hand: 9.91%, P = 0.01) in the
dACC, whereas the pre-SMA had a higher decoding accuracy for
hand stimuli (difference in accuracy hand-face: 3.83%, P = 0.005).
We next turned to examine cross-condition generalization perfor-
mance (train on face, test on hand, and vice versa). This revealed
that, in the MFC, decoding generalized (train with faces and test
with hands: 68.05 + 4.43% [mean + SD], P < 0.001; train with hands
and test with faces: 67.22 + 4.73% [mean + SD], P < 0.001). In con-
trast, in the MTL, cross-condition generalization was not greater
than expected by chance (train with faces and test with hands:
53.25 + 4.37% [mean + SD], P = 0.17; train with hands and test with
faces: 52.78 + 4.75% [mean =+ SD], P = 0.23). This was also the case
separately in both AMY and HIPP. Quantifying this observation
with the generalization index (see Materials and Methods for the
definition) confirmed this observation (Fig. 3G and fig. S2E). Con-
sistently, face-selected inference-type neurons and hand-selected
inference-type neurons tended to contribute exclusively to the de-
coding of inference type for one category in the MTL (Fig. 3H; im-
portance index defined using weight in the decoder for each neuron)
but exhibited mixed effects in the MFC (Fig. 3I). These results indi-
cate that, in the MTL, social inference processes are coupled to
specific classes of stimuli and do not generalize across stimulus
categories (especially so for faces). In contrast, in the MFC, infer-
ence processes were domain-general across the two types of stimu-
lus categories (faces and hands).

Generalizability of inference representation between social
versus nonsocial world

While both MTL and MFC are implicated in social processing
(57, 71), they are also involved in the processing of general nonso-
cial objects (e.g., selectivity to different object categories) (69). This
thus raises the question of whether making inferences in the social
and nonsocial world share a common neural mechanism in these
brain areas—a question related to the long-standing question about
whether social processing is specialized in some way. To address this
question, we also included images of scenes showing nonhuman
natural events in the task in a subset of patients (n = 281 neurons
from nine sessions; see Materials and Methods for details). As be-
fore, we asked our patients, for the same image, to either judge its
perceptual properties (e.g., “is the photo showing rain?”) or make
inferences about the hidden states that caused what the image shows
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(e.g., “is it a result of thunderstorm?”). At the single-neuron level, a
significant number of neurons (fig. S3, C and D) discriminated why
versus how following the onset of scene images in both MTL (18 of
174, 10.34%, binomial P = 0.0012; 8.91% in AMY and 12.33% in
HIPP; see fig. S3A for an example) and MFC (18 of 107, 16.82%,
P =1.47 x 107% 13.95% in dACC and 18.75% in pre-SMA; see fig.
S3B for an example). Analysis of the single-trial response selectivity
index (RSI) confirmed that these neurons discriminated why versus
how questions for natural scene stimuli [fig. S3E; Kolmogorov-
Smirnov (KS) test: MTL, KS = 0.21, P = 0.59 x 10~"; MFC,
KS = 0.22, P = 0.02 x 10™"7]. At the population level, inference type
was decodable for scene images in both MTL (Fig. 3J; 63.50 + 4.76%
[mean + SDJ]; P = 0.004) and MFC (69.03 + 4.87% [mean + SDJ;
P = 0.004). These results suggested that the MTL and MFC repre-
sent inference type also for nonsocial images.

We next repeated the cross-condition generalization analysis for
the scene images. First, mirroring our earlier finding, inference-type
neurons selected using social stimuli were largely separate from
those selected using scene stimuli in both the MTL (3 of the 21 face-
selected and 3 of the 14 hand-selected inference-type neurons were
also selective for scene inference) and MFC (3 of the 19 face-selected
and 3 of the 16 hand-selected inference-type neurons were also se-
lective for scene inference). Second, single-trial RSI analysis con-
firmed this result by showing that the inference-type neurons in the
MTL selected with social images could not discriminate why versus
how conditions of scene stimuli (fig. S3, E and F). In line with indi-
vidual neuron level results, decoding did not generalize across cat-
egories (Fig. 3K; face versus scene and hand versus scene) in neither
the MTL (train with faces and test with scene: 49.87 + 4.84%
[mean + SD], P = 0.42; train with hands and test with scenes:
49.97 + 4.54% [mean + SD], P = 0.50) nor MFC (train with faces
and test with scene: 50.27 + 5.93% [mean + SD], P = 0.44; train with
hands and test with scenes: 50.07 + 5.43% [mean + SD], P = 0.54).

Together, our results suggest that the neural substrates in the
MTL and MFC for making inferences in the social versus nonsocial
domain are domain specific. In contrast, in the MFC, inference was
domain general between different subtypes of social domains (hands
and faces).

Representation of visual categories in the MTL and MFC

An open question is whether social inference processes share neural
substrates with other cognitive processes that involve the MTL and
MEC. Neurons in both areas prominently encode visual categories
(42, 69, 70, 72). We therefore started our analysis by examining the
encoding of visual category in our dataset. Note that we restricted
this analysis to the face and hand stimuli (scene stimuli were not
examined for this analysis). As expected, neurons were modulated
by visual category following stimulus onset (200 to 1200 ms) in both
the MTL (65 of 370, 17.57%, binomial P < 1072% 42 neurons in
AMY and 23 neurons in HIPP; see an example in Fig. 4A and group
results in Fig. 4C) and the MFC (48 of 286, 16.61%, binomial
P =9.70 x 10713, 20 neurons in dACC and 28 neurons in pre-SMA;
see an example in Fig. 4B and group results in Fig. 4C). We refer to
these neurons as category-selective (CS) neurons. Sixty-one of the
113 CS neurons (53.98%; see Fig. 4, D to F) showed higher activ-
ity for faces (face-preferring), with the remaining 52 (46.02%;
Fig. 4, D, G, and H) showing a greater response to hands (hand-
preferring). The proportions of the two types of neurons were
comparable (Fig. 4D) in HIPP (face-preferring: 10 of 23, 43.48% versus
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Fig. 4. Category selective neurons. (A and B) Two example neurons in the MTL (A) and MFC (B) discriminated between face and hand stimuli. Trials were grouped by category.
(Cand D) CS neuron percentages across the four recorded areas. (D) CS neurons that had a higher response to faces (yellow) and hands (purple) in each region. A x? test of proportion
was performed for CS percentages of face-preferring and hand-preferring neurons in each recorded area. **#*P < 0.001 and *P < 0.05. (E to H) Average normalized firing rate for
CS neurons. [(E) and (G)] Responses were aligned to the stimulus onset of each trial. [(F) and (H)] Responses were aligned to the stimulus onset of each block. [(E) and
(F)] Face-preferring neurons (i.e, neurons had greater activity to face stimuli). [(G) and (H)] Hand-preferring neurons (i.e,, neurons had greater activity to hand stimuli). (and J) Popu-
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hand-preferring: 13 of 23, 56.52%) and pre-SMA (face-preferring:
15 of 30, 50% versus hand-preferring: 15 of 30, 50%). In contrast, the
AMY had a higher proportion of face-preferring CS neurons (Fig.
4D; face-preferring: 29 of 42, 69.05%; hand-preferring: 13 of 42,
30.95%; 2 test of proportion: P = 0.0005) than hand-preferring CS
neurons. Consistently, population decoding of category achieved an
above-chance accuracy for each brain area (Fig. 4I; AMY: 86.74 +
3.40% [mean + SD], P < 0.001; HIPP: 68.01 + 4.61% [mean + SD],
P <0.001; dACC: 73.29 + 4.57% [mean = SD], P < 0.001; pre-SMA:
85.66 + 4.36% [mean + SD], P < 0.001). MFC neurons, including
both dACC and pre-SMA, peaked earlier than the MTL neurons
after stimulus onset, with HIPP peaked at the latest latency (Fig. 4]).
In line with previous studies, our results confirmed that categorical
information is prominently represented at both the individual neu-
ron level and population level in both the MTL and MFC.

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

Specific representation of inference and category in the

MTL and MFC

To examine whether the representation of stimulus categories was
modulated by inference type, we first selected CS neurons (i.e., face
versus hand) in why and how trials separately (Fig. 5, A and B). The
proportion of CS neurons was similar in why (Fig. 5C; MTL: 46 of
370, percentage = 12.43%; MFC: 42 of 313, percentage = 13.42%)
and how trials (MTL: 58 of 370, percentage = 15.68%; MFC: 46
of 313, percentage = 14.70%). Neurons selected during why tri-
als were more likely to also be selected during how trials (Fig. 5D)
in both the MTL (y? test of the proportion of how-CS neurons
among why-CS neurons versus all neurons: P = 0.01) and MFC
(P = 0.0002). Similar results were revealed in subregions in the
MTL and MFC (fig. S5, A and B). We confirmed this conclusion
at the single-trial level: CS neurons selected during why trials

70f 14

$Z0T ‘10 YOIBJA UO S10°90UAIIS MMA//:SANY WOLf papeo[umo



SCIENCE ADVANCES | RESEARCH ARTICLE

MTL cell #658 MFC cell #782
ﬁ . B c D MTL MFC
5120- \ 200 ;@15
gmol S @
] S 1 21
2 80 K g 50 510
g a c
60F "turit T 100 =
% PRI ! 2 . S 5 None
B A0LsN T s 8 = 2 n=280
@ : : e G 50 T 3 o
g 20 u\ © MTL MFC
}—
0 0 B Why-CS neuron W How-CS neuron Why and how
o :
4 M M 3 E MTL mrc  F ; MTL MFC
N N ~ ~ - »
<3 SV ! @ > /e v 2
o 0 ; 0 E‘ // //’ :2. /
© © 3 / / 3 /
o = Sosf /[ / o5
c4 €4 < / <]
= = o o
2 I%LC A\ e \V\/% 0 k= / =~ 0 /
N
00 =0 05 ; 0?/\0 05 \: -200 0 200-200 O 200 -2000 0 200 -200 0 200
Time from stim onset (s) Time from stim onset (s) Response index (%) Response index (%)
Face why Face how — Hand why Hand how
G — Train on why H g I
[ _ - - - T I'amonwhy . _ _ ____. 3
g 100 [ o T | = Train on how « 1 < > 83
g [BT T HE -7 m Witin condition S o8 * o 2
. o Q
g gob L & é i 1 é (=] Cross-cond!tlon = { é B CS neuron
é - P> 95th percentile of null .(% 0.6 3 95 None Inference-type neuron
g 60 > B> T > > > T % 0.4 2 n=483 / W Category and inference
-g ——————————— Chance o 02} M Trainonwhy S
<) 8 M Train on how
g 40 0
o MTL MFC MTL MFC
K 75th percentile
15
=210
e CS neuron o
Inference-type neuron ~ °
e Category and inference < °
None
0
0 2 4 6 x1073 0° 45° 902

Wlmerence

Ang |e (Wlnference WCategory)

Fig. 5. Independent representation of inference type and visual category. (A and B) Example CS neurons that responded differently to face versus hand stimuli re-
gardless of inference type. (C) Proportion of CS neurons in the MTL and MFC. (D) Distribution of CS neurons selected with why and how trials. (E and F) Single-trial RSI
discriminating between categories in why-CS neurons (E) and how-CS neurons (F). The RSI for why and how is shown separately. Dark colors indicate why condition. Light
colors indicate how condition. (G) Population decoding of category using within-inference decoder (i.e., train and test with why or how trials only) and cross-inference
decoder (i.e., train with one inference type and test on the other type). (H) Generalization index for the cross-condition decoders quantified the generalizability of the
cross-condition decoders of category. (I) Distribution of inference-type neurons and category neurons among the whole population. (J and K) Comparison of inference-
type and CS cells using assigned decoder weight. (J) Scatter plot of the importance index (see Materials and Methods for details) assigned by a decoder to each cell in
inference-type decoding (x axis) and category-decoding (y axis) of all cells. The features for the decoders are firing rates across the entire population in the MTL and MFC
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category; red: both). (K) Distribution of the weight vector angle for the top 25% of cells in either decoder (see Materials and Methods).

differentiated between faces versus hands also during how ques-
tions (Fig. 5E, light colors; KS test, MTL: K = 0.08, P = 0.84 x 107
MEC: K = 0.10, P = 0.13 x 1077), and vice versa (Fig. 5F; how,
MTL: K = 0.24, P < 1 X 10 MFC: K = 0.26, P = 0.80 X 10™>>;
why, MTL: K=0.09, P=0.12 x 10"% MFC: K=0.11, P=0.07 x 107%).
These results suggested that inference type did not modulate the

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

encoding of the category at the single-neuron level, indicating that
the two variables are independent.

To confirm this impression at the population level, we next ex-
amined whether a decoder trained to distinguish between faces and
hands when participants were making one type of inference would
generalize to the other type of inference. Decoding performance

8of 14

$Z0T ‘10 YOIBJA UO S10°90UAIIS MMA//:SANY WOLf papeo[umo



SCIENCE ADVANCES | RESEARCH ARTICLE

was similar when making different types of inferences (Fig. 5E, filled
bars; MTL: why: 88.90 +4.30% [mean + SD] and how: 91.02 +3.97%
[mean + SD]; MFC: why: 87.00 + 5.23% [mean + SD] and how:
88.19 + 4.24% [mean = SD]). In line with the single-neuron level
analysis, category decoding generalized between why and how
(Fig. 5E; train with why test on how: 79.72 + 4.91% [mean + SDJ;
P < 0.0001 against null distribution; train with how test on why:
73.20 + 5.85%) and MFC (train with why: 73.96 + 4.99% [mean +
SD], P < 0.0001; train with how: 73.25 + 5.65% [mean + SD],
P < 0.0001). More specifically, category decoding generalized well
across inference types in the AMY, dACC, and pre-SMA, but not in
the HIPP (fig. S5C). We further quantified the generalizability when
decoding categories across inference types using the generalization
index (Fig. 5H), which confirmed the above observations.

Above findings indicate that the representation of categories and
inference relied on different sets of neurons. To test this hypothesis,
we first examined the overlap between inference-type neurons and
CS neurons. The two neural populations were largely distinct (Fig.
5I and see fig. S4, A and C for separate results in the MTL and MFC).
This conclusion also held at the population level: Neurons that con-
tributed strongly to decoding in one of the tasks tended to not
strongly contribute to the other task and vice versa (Fig. 5, ] and K
and see fig. S4 B and E for results in the MTL and MFC separately;
Fig. 5K; Hartigan dip test: dip = 0.10, P < 0.0001). We observed
similar results in the MTL (fig. S4C) and MFC (fig. S4F) and a fur-
ther breakdown in the four subregions (fig. S5, D and E) separately.
Together, these results support the conclusion that the representa-
tion of inference and categorization was independent of each other,
with visual category represented in a domain-general manner.

DISCUSSION

We investigated the neuronal mechanisms underlying social infer-
ence in the human MTL and MFC by examining how neural activity
changed when participants made different types of inference. Con-
sistent with previous neuroimaging findings, we observed neural
representations of social inference type in the MFC. MTL neurons
also encoded social inference type and more strongly so for faces.
This finding is in contrast to neuroimaging studies that reveal no
significant differences in the MTL for the why-how contrast
(36, 49, 61). Furthermore, our results revealed a key difference
between the MFC and MTL. In the MFC, representations of infer-
ence type were domain general across the different social categories
(face versus hand), as shown by cross-condition generalization, but
were domain specific when comparing social versus nonsocial
domains (representations did not generalize across person versus
natural scene). On the other hand, in the MTL, the neural represen-
tations were highly specialized (domain specific), with no general-
ization between faces, hands, or scenes. The striking entanglement
of faces and hands, which are both social stimuli, with social infer-
ence in the MTL shows that, at least at this level of processing in the
brain, there is not an abstract social inference computation. Rather,
social inference is closely tied to the specific social stimulus category
in the MTL. In contrast, the encoding of visual categories itself (i.e.,
selectivity for faces or hands) was domain general across task condi-
tions in both brain areas. Together, our findings reveal that the MTL
encodes inference type in a domain-specific manner in both social
and nonsocial domains, indicating a fractionation of social infer-
ence processing that is tied to specific classes of social stimuli.

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

MTL is involved in social inference

Our finding that the MFC participates in social inference is consis-
tent with earlier neuroimaging findings in the same task (4, 61, 64).
Our contribution to this literature is that we reveal a single-neuron
substrate of this common neuroimaging finding.

A contribution we make is that we identify neurons in the amyg-
dala and hippocampus that fired differentially to different types of
inference in both social and nonsocial domains. This is in contrast
to neuroimaging work that shows no such differences at the fMRI-
BOLD level (49, 61). Our results support the hypothesis that the
amygdala and hippocampus, as critical components of the social
brain (27, 39, 71), are among the neurobiological bases of social
inference.

Although only a few fMRI studies have linked the amygdala to
social inference (73), the mixed results derived from studies of indi-
viduals with damaged amygdala (49-51) have led to debate about
the role that the MTL plays in social inference. While Stone and
colleagues (50) reported impaired performance of patients with bi-
lateral amygdala lesions in two social inference tasks (“recognition
of faux pas” and “reading the mind in the eyes”), a recent study sug-
gested that “amygdala is not a necessary component of the cortical
network for false-belief reasoning” (49). It is worth noting that in
the latter study, the authors observed that amygdala activation in a
false-belief task could only be revealed when a large number of par-
ticipants were included. The discrepancies among these studies
could potentially be explained by diversity in the tasks used and the
extent of the lesion. Our study used a well-established task and
found that the MTL exhibited a significant yet weaker representa-
tion compared to the MFC, providing evidence for the involvement
of the MTL in social inference.

Functional specialization of the social inference network

The topic of domain specificity in social inference has been widely
discussed given the diversity of stimulus categories and formats ap-
plied in past neuroimaging studies (36, 54). One of the debates is
whether the neural network commonly activated for social infer-
ence, including the MFC and TPJ, is used exclusively for social in-
ference or subserves other functions also. An fMRI study conducted
on nonhuman primates found that the pre-SMA and ACC were
exclusively activated by social interactions with other agents but
not for other stimulus conditions, including physical interaction,
agents’ actions, and faces (57). However, fMRI studies on humans
suggested that the MFC, which covers the pre-SMA and ACC as in
the present study, plays a more general role in multiple neural func-
tions (54, 59, 60). We found that the MFC represented inference
type and category information in a domain general manner, sup-
porting the hypothesis that the MFC is a central region for general
processing of social information rather than specifically only for
social inference.

Domain-specific inferences in the MTL and MFC

Did the inferences from our three types of stimuli (hands, faces, and
scenes) use a common neural mechanism in the human brain
(4, 64)? 1t is plausible that the different types of stimuli require dis-
tinct neural substrates as social and nonsocial inference is usually
implemented with input from distinguishable domains (people
versus scenes). Domain-specific processing of faces, bodies, places,
and objects has been proposed and indicated from numerous imag-
ing studies (66, 68, 74), which might be one of the reasons for the
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putative neural dissociation of social versus nonsocial inference that
we found. On the other hand, both social and nonsocial inference
necessarily demand semantic memory to understand the contents
of a visual scene and the possible hidden causes that explain what is
shown in the stimulus (64, 75). Therefore, making attributions of
different types of events might be expected to recruit a domain-
general process as well. This hypothesis was supported by previous
meta-analyses conducted over imaging studies across various social
inference tasks (23). A recent fMRI study also showed that the ma-
jority of the brain regions identified in social attributions were also
activated by nonsocial attributions (64).

The present study shows evidence for domain-specific process-
ing of inference information across different categories of stimuli
(face, hand, and scene) in the MTL. In contrast, the inference repre-
sentation in the MFC (and, particularly, in the pre-SMA) was par-
tially domain general. Social inference type was domain general
across different social stimuli (faces and hands), but not when com-
paring social versus nonsocial stimuli. This finding is compatible
with the interpretation that the processes in MTL remain domain
specific because it reads out information of faces, hands, and scenes
from different specific areas in the higher visual cortex that are also
domain specific (76). In contrast, the MFC is a central region that
plays an executive role in the use of world knowledge and domain-
specific information fed from the MTL. Hence, among the areas we
examined, only the MTL was found to contain specialized processes
for social inference from faces and hands.

Our results can also be understood from the point of view of
population-level coding. The absence of cross-condition general-
ization for inference type decoding between faces and hands in-
dicates that the two variables (inference type and face/hand) are
not represented independently in the MTL (Fig. 3) (46). Rather,
they are entangled (77). Category decoding had high cross-
condition generalization in the MTL (Fig. 5), indicating that it is
specifically the inference type variable that was entangled with
stimulus type.

Caveats and future direction

The current study has a number of caveats. First, we focused on in-
ference processes with participants engaged as observers only. While
sometimes overlapping, observing and performing actions might
rely on different neural substrates (78). Real interactions might rely
on different neural mechanisms (79, 80). Second, we provided ex-
plicit instructions. Spontaneous social inferences, which are com-
mon (81), might rely on different mechanisms. These caveats might
be addressed by using interactive paradigms, in which the partici-
pants act as agents and interact with other agents. Third, the frontal
recordings we examined were exclusively from two locations along
the medial wall. It remains an open question how related findings
made in the lateral frontal areas (82) and other parts of the medial
frontal wall that we did not sample. Fourth, we did not examine
other parts of the MTL, particularly the parahippocampal gyrus and
entorhinal cortex.

MATERIALS AND METHODS

Patients

We collected data in 19 sessions from 14 adult surgical epilepsy
patients (five males) (table S1). All participants provided written
informed consent using protocols approved by the Institutional
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Review Board of Cedars-Sinai Medical Center and the California
Institute of Technology.

Task and procedure

In this study, we used a why/how task established in previous fMRI
studies (61, 64). A sequence of naturalistic pictures was presented to
the patients using a block design. The task required patients to make
social inference about the intention (why the person does this) or
perceptual judgment about the action (how the person does this) of
the person displayed in the pictures. Hand and face stimuli were
evenly distributed across blocks (n = 8) and paired with one why or
how question (see table S2 for the block questions, n = 16 in total).
Each block contained eight different images from one category, re-
sulting in 32 trials for each category in each condition. A pre-block
cue (e.g., “is this person admiring someone?”) was displayed for 2.1's
at the beginning of each block. After each trial, a brief verbal cue
(e.g., “admiring?”) was displayed for 0.15 s (Fig. 1A). Participants
had a maximum of 1.7 s to respond after the stimulus onset. The task
advanced immediately once the answer was given, or the display du-
ration of the current stimulus reached 1.7 s. Each question was
paired with five pictures designed to elicit a yes response, and three
pictures designed to elicit a no response. No feedback was provided.
The task thus featured a two (categories: face/hand) by two (ques-
tions: why/how) by two (choices: “yes/no”) design, resulting in a
total of 128 trials. The onset of each block was fixed across subjects
and was designed to maximize the efficiency of separately estimat-
ing the contrast of interest (why versus how) for each of the two
image categories. A varied length of interblock interval was thus
implemented at the end of each block to keep the block onset syn-
chronized across subjects. Besides, the order of why and how blocks
were counterbalanced within each image category.

A subset of patients (n = 8; 9 sessions) completed an updated
version of the why/how task (64), which included scene photo-
graphs depicting natural events in addition to a new set of face and
hand images. In this version of the task, there were six blocks for
each image category, resulting in a total of 36 blocks also with
paired questions (see table S3 for the question list). Each block con-
tained nine different images from one of the three categories, result-
ing in 54 trials for each category for why and how, respectively. Each
question was paired with five pictures designed to elicit a yes re-
sponse, and four pictures designed to elicit a no response. Stimuli
were presented using MATLAB with the Psychtoolbox 3 (http://
psychtoolbox.org).

Electrophysiology

We recorded from the bilateral amygdala (AMY), hippocampus
(HIPP), dACC, and pre-SMA using implanted hybrid depth elec-
trodes with eight macro contacts and eight microwires (see Fig. 1B
for recording locations). The target locations in these recording sites
were determined based solely on clinical need by the neurosurgeon
and verified using post-implantation computed tomography and
magnetic resonance imaging. We recorded continuous extracellular
signals in the broadband range of 0.1 to 9000 Hz with a sampling
rate of 32 kHz (ATLAS System, Neuralynx Inc.).

Spike sorting and single-neuron analysis

The raw signal underwent filtering with a zero-phase lag filter with-
in the 300- to 3000-Hz band. Spike detection and sorting were per-
formed using a semi-automated template-matching algorithm (83).
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All peri-stimulus time histograms were computed using a 500-ms
window with a step size of 100 ms, and no smoothing was applied.
Neurons with an average firing rate greater than 0.2 Hz throughout
the entire trial were kept for analysis.

Electrode localization

Electrode localization was achieved through post-operative MRI
scans, which were registered to pre-operative MRI scans using
Freesurfer’s mri_robust_register (70, 84). This procedure ensured
accurate and subject-specific localization. To allow for comparabil-
ity across studies, we summarized the electrode positions across
subjects by aligning the locations to the MNI152-aligned CIT168
template brain (85) using an affine transformation followed by a
symmetric image normalization (SyN) diffeomorphic transform
(86). This method provided MNI coordinates for each recording
location in this study (Fig. 1B).

Selection of inference-type and CS neurons using

ANOVA model

Only trials with a response (96.38 + 5.90% [mean + SD]) were
included in further analysis. To identify neurons that discriminated
inference types or stimulus categories while taking into account all
possible contributing factors, we applied a three-way ANOVA on
each neuron. In the ANOVA model, we labeled each trial for dif-
ferent stimulus categories (face/hand), inference type (why/how),
and choice (yes/no). A neuron that had a significant main effect
(P < 0.05) on inference was defined as an inference-type neuron.
Similarly, a neuron that had a significant main effect on category
was identified as a CS neuron. A binomial test was conducted to
determine the significance of the number of the selected neurons.
A null distribution was created to further validate the significance
by randomly reshuftling the inference or category label 1000 times
and repeating the above selection procedure.

Selection of inference-type and CS neurons using t test

To check the modulation of one variable to another (i.e., category to
inference type), we used an unpaired f-test to select neurons with
one type of stimuli. For example, we selected inference-type neu-
rons using face and hand stimuli separately.

Selection of inference-type and CS neurons using a linear
mixed-effect model

To account for the effect of response time (RT), we selected the
inference-type and CS neurons using a linear mixed-effect model
[firing rate ~ category + inference + choice + (1|RT)], where RT was
considered as a random factor. A neuron was considered to be an
inference-type neuron if the fixed effect of inference passed P < 0.05.
Similarly, a neuron was considered to be a CS neuron if the fixed
effect of category passed P < 0.05. Neurons selected with this proce-
dure were then compared with that selected with ANOVA.

Population decoding

Single-trial population decoding was conducted on pseudo-random
population assembled across sessions to substitute for simultane-
ous recordings (87). We performed linear support vector machine
(SVM) decoding on two contrasts: (i) inference type: why versus
how, and (ii) category: face versus hand. As 22 more trials were
displayed for each condition (e.g., face images with why questions)
in the updated-version task (number of trials: n = 54; see the “Task
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and procedure” section), for these sessions, we split the trials in half
and estimated the mean between them to generate a similar number
of trials (n = 27) as the other sessions (1 = 32). To further match the
number of trials between different sessions, we excluded the first
trial of each block and the last trial of the last block, resulting in 27
trials in each condition for the original version of the task (10 ses-
sions). We randomly selected 75% of the whole neuron population
in each interested brain area on each iteration of the decoder. The
procedure was iterated for 500 times. To test the significance of
the decoding performance, a null distribution was estimated by
shuffling the labels of the conditions in each iteration. We then
compared the average performance of the observed decoding
performance with the null distribution (the P value was estimated
by the rate of the null decoding exceeding the observed decoding).
To compare the performance between different decoders, we con-
structed an empirical null distribution using paired differences of
performances obtained with shuffled labels. The significance of the
difference in performance between the two decoders was then
determined by comparing the observed difference against the null
difference distribution.

Upon feeding into the decoder, the data was first baseline cor-
rected using interblock interval and then normalized (z scored) to
account for any drift in the baseline period and the scale problem. A
10-fold cross-validation procedure was then performed to estimate
the decoding accuracy for each contrast. The analysis was done in
MATLAB by implementing the function “fitcsvm” with a kernel
scale equal to 1. Decoding accuracy was displayed either as a func-
tion of time or in a fixed time window. Time course decoding was
performed on the firing rate calculated in a 500-ms sliding window,
with a step of 100 ms. For fixed-window decoding, we used the
firing rate estimated in a time window from 200 to 1200 ms after
stimulus onset.

To perform within-condition decoding (e.g., within-category
decoding of inference), we trained and tested the decoder with
trials of one condition only. We used the same procedure as de-
scribed above.

To perform cross-condition decoding (e.g., cross-category de-
coding of inference), we trained the decoder with trials of one con-
dition and tested with trials of the other condition. We used the
same procedure as described above except that we only split the
training set and testing set in half rather than 10-folds.

Single-trial RSI

For each neuron, we quantified whether its response differed be-
tween contrasted conditions using a single-trial RSI (see Eqs. 1 and
2), which has been proven to be effective in previous single-neuron
studies (88, 89). We reported this measurement for both inference-
type and CS neurons, where we contrasted between why versus
how and face versus hand trials. Typically, the RSI facilitates group
analysis and comparisons between different types of cells (i.e., so-
cial inference preferring versus perceptual judgment preferring
cells in this study). The RSI quantifies the response during why tri-
als relative to the mean response during how trials and baseline.
The mean response and baseline were calculated individually for
each neuron

FR; — mean(FRtypel)

- 100
mean ( FRbaseline )

Cell type 1: RSI; = (1)
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FR; — mean(FRtypel)

Cell type 2: RSI; = — - 100

2
mean(FRbaseline) ( )

For each trial, i, RS is the baseline normalized mean firing rate
(FR) in a fixed time window from 200 to 1200 ms after stimulus
onset (the same time interval as cell selection). The baseline is the
mean firing rate estimated within the first 2 s before the onset of the
first trial in each block.

The cumulative distribution function (CDF) was constructed by
calculating for each possible value x of the RSI by counting how
many examples are smaller than x. That is, F(x) = P (X < x), where
X is a vector of all RSI values. The CDFs of different conditions (why
versus how; face versus hand) were compared using two-tailed two-
sample KS tests.

Generalization index
We defined a generalization index (Eq. 3) to compare the within-
condition decoding to the across condition generalization (70)

_ Cross — Chance
"~ Within — Chance

where “Within” indicates the decoding performance for within-
condition decoders (e.g., train on face and test on face), “Cross”
indicates the decoding performance for cross-condition decoders
(e.g., train on face and test on hand), and “Chance” indicates the
theoretical chance level of decoding performance for the variable of
interest (inference = 0.5, category = 0.5).

(©)

Normalized weight metric

[wh|
1

1 n

t
Dt

1

We further determined the extent of specialization of each neu-
ron using the angle between the vector of (w!nference, y,Category) yyith
respect to the x axis.

Statistical significance

Statistical significance for all tests was set at P < 0.05. We corrected
for multiple comparisons over time points by the false discovery rate
(see the description in Figs. 2G and 4G) method (90). For all other
tests, we adjusted the threshold of the P value for multiple compari-
sons, where appropriate, using the Holm-Bonferroni correction (91)
to control the family-wise error rate.

Supplementary Materials
This PDF file includes:
Supplementary Text

Tables S1to S3

Figs.S1to S5

REFERENCES AND NOTES
1. D.Premack, G. Woodruff, Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1,
515-526 (1978).
2. J.Call, M. Tomasello, Does the chimpanzee have a theory of mind? 30 years later. Trends
Cogn. Sci. 12,187-192 (2008).

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

16.
17.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

S. Ondobaka, J. Kilner, K. Friston, The role of interoceptive inference in theory of mind.
Brain Cogn. 112, 64-68 (2017).

. R.P.Spunt, R. Adolphs, The neuroscience of understanding the emotions of others.

Neurosci. Lett. 693, 44-48 (2019).

. H.M.Wellman, D. Cross, J. Watson, Meta-analysis of theory-of-mind development: The

truth about false belief. Child Dev. 72, 655-684 (2001).

. C. D. Frith, U. Frith, The neural basis of mentalizing. Neuron 50, 531-534 (2006).
. S.Baron-Cohen, A. M. Leslie, U. Frith, Does the autistic child have a“theory of mind”?

Cognition 21, 37-46 (1985).

. U. Frith, F. Happé, Autism: Beyond “theory of mind”. Cognition 50, 115-132 (1994).
. R. Corcoran, G. Mercer, C. D. Frith, Schizophrenia, symptomatology and social inference:

Investigating “theory of mind”in people with schizophrenia. Schizophr. Res. 17, 5-13
(1995).

. M. Alegre, J. Guridi, J. Artieda, The mirror system, theory of mind and Parkinson’s disease.

J. Neurol. Sci. 310, 194-196 (2011).

. M. Freedman, D.T. Stuss, Theory of mind in Parkinson’s disease. J. Neurol. Sci. 310,

225-227(2011).

. D.P.Kennedy, R. Adolphs, The social brain in psychiatric and neurological disorders.

Trends Cogn. Sci. 16, 559-572 (2012).

. A. Gopnik, L. Schulz, Mechanisms of theory formation in young children. Trends Cogn. Sci.

8,371-377 (2004).

. K.N. Ochsner, M. D. Lieberman, The emergence of social cognitive neuroscience.

Am. Psychol. 56, 717-734 (2001).

. T.Rusch, S. Steixner-Kumar, P. Doshi, M. Spezio, J. Glascher, Theory of mind and decision

science: Towards a typology of tasks and computational models. Neuropsychologia 146,
107488 (2020).

D. C. Dennett, Intentional Systems. J. Philos. 68, 87-106 (1971).

H. Wimmer, J. Perner, Beliefs about beliefs: Representation and constraining function of
wrong beliefs in young children’s understanding of deception. Cognition 13, 103-128
(1983).

. S. Baron-Cohen, M. O'Riordan, V. Stone, R. Jones, K. Plaisted, Recognition of faux pas by

normally developing children and children with Asperger syndrome or high-functioning
autism. J. Autism Dev. Disord. 29, 407-418 (1999).

. I A. Apperly, F. Warren, B. J. Andrews, J. Grant, S. Todd, Developmental continuity in

theory of mind: Speed and accuracy of belief-desire reasoning in children and adults.
Child Dev. 82,1691-1703 (2011).

G. Ganis, S. M. Kosslyn, S. Stose, W. L. Thompson, D. A. Yurgelun-Todd, Neural correlates of
different types of deception: An fMRI investigation. Cereb. Cortex 13, 830-836 (2003).

M. I. Gobbini, A. C. Koralek, R. E. Bryan, K. J. Montgomery, J. V. Haxby, Two takes on the
social brain: A comparison of theory of mind tasks. J. Cogn. Neurosci. 19, 1803-1814
(2007).

H. L. Gallagher, C. D. Frith, Functional imaging of ‘theory of mind_ Trends Cogn. Sci. 7,
77-83 (2003).

M. Schurz, J. Radua, M. Aichhorn, F. Richlan, J. Perner, Fractionating theory of mind:

A meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9-34
(2014).

R. Saxe, N. Kanwisher, People thinking about thinking people. The role of the
temporo-parietal junction in “theory of mind". Neurolmage 19, 1835-1842 (2003).

M. Aichhorn, J. Perner, B. Weiss, M. Kronbichler, W. Staffen, G. Ladurner, Temporo-parietal
junction activity in theory-of-mind tasks: Falseness, beliefs, or attention. J. Cogn. Neurosci.
21,1179-1192 (2009).

L. Brothers, The social brain : A project for integrating primate behavior and
neuropsychology in a new domain. Concepts Neurosci. 1, 27-51 (1990).

R. Adolphs, The social brain: Neural basis of social knowledge. Annu. Rev. Psychol. 60,
693-716 (2009).

Z.Fu, A. Sajad, S. P. Errington, J. D. Schall, U. Rutishauser, Neurophysiological mechanisms
of error monitoring in human and non-human primates. Nat. Rev. Neurosci. 24, 153-172
(2023).

A.de laVega, L. J. Chang, M. T. Banich, T. D. Wager, T. Yarkoni, Large-scale meta-analysis of
human medial frontal cortex reveals tripartite functional organization. J. Neurosci. 36,
6553-6562 (2016).

P. Silva Moreira, P. Marques, R. Magalhaes, Identifying functional subdivisions in the
medial frontal cortex. J. Neurosci. 36, 11168-11170 (2016).

P.C. Fletcher, F. Happe, U. Frith, S. C. Baker, R. J. Dolan, R. S. J. Frackowiak, C. D. Frith, Other
minds in the brain: A functional imaging study of “theory of mind”in story
comprehension. Cognition 57, 109-128 (1995).

H. L. Gallagher, F. Happe, N. Brunswick, P. C. Fletcher, U. Frith, C. D. Frith, Reading the mind
in cartoons and stories: An fMRI study of ‘theory of mind’in verbal and nonverbal tasks.
Neuropsychologia 38, 11-21 (2000).

E. Brunet, Y. Sarfati, M.-C. Hardy-Bayle, J. Decety, A PET investigation of the attribution of
intentions with a nonverbal task. Neurolmage 11, 157-166 (2000).

120f 14

$Z0T ‘10 YOIBJA UO S10°90UAIIS MMA//:SANY WOLf papeo[umo



SCIENCE ADVANCES | RESEARCH ARTICLE

34. B.A.Vollm, A. N. W.Taylor, P. Richardson, R. Corcoran, J. Stirling, S. McKie, J. F. W. Deakin,
R. Elliott, Neuronal correlates of theory of mind and empathy: A functional magnetic
resonance imaging study in a nonverbal task. Neurolmage 29, 90-98 (2006).

35. T.P.German, J. L. Niehaus, M. P. Roarty, B. Giesbrecht, M. B. Miller, Neural correlates of
detecting pretense: Automatic engagement of the intentional stance under covert
conditions. J. Cogn. Neurosci. 16, 1805-1817 (2004).

36. S.J.Carrington, A. J. Bailey, Are there theory of mind regions in the brain? A review of the
neuroimaging literature. Hum. Brain Mapp. 30, 2313-2335 (2009).

37. A.D.Rowe, P.R. Bullock, C. E. Polkey, R. G. Morris, ‘Theory of mind’impairments and their
relationship to executive functioning following frontal lobe excisions. Brain 124, 600-616
(2001).

38. C.M.Bird, F. Castelli, O. Malik, U. Frith, M. Husain, The impact of extensive medial frontal
lobe damage on ‘Theory of Mind’and cognition. Brain 127, 914-928 (2004).

39. A.Montagrin, C. Saiote, D. Schiller, The social hippocampus. Hippocampus 28, 672-679
(2018).

40. L.R.Squire, C.E. Stark, R. E. Clark, The medial temporal lobe. Annu. Rev. Neurosci. 27,
279-306 (2004).

41. R.Cao, C.Lin, J. Hodge, X. Li, A. Todorov, N. J. Brandmeir, S. Wang, A neuronal social trait
space for first impressions in the human amygdala and hippocampus. Mol. Psychiatry 27,
3501-3509 (2022).

42. G.Kreiman, C. Koch, I. Fried, Category-specific visual responses of single neurons in the
human medial temporal lobe. Nat. Neurosci. 3, 946-953 (2000).

43. U.Rutishauser, O.Tudusciuc, S. Wang, A. N. Mamelak, I. B. Ross, R. Adolphs, Single-neuron
correlates of atypical face processing in autism. Neuron 80, 887-899 (2013).

44. S.Wang, O.Tudusciuc, A. N. Mamelak, I. B. Ross, R. Adolphs, U. Rutishauser, Neurons in the
human amygdala selective for perceived emotion. Proc. Natl. Acad. Sci. U.S.A. 111,
E3110-E3119 (2014).

45. A.O.Constantinescu, J. X. O'Reilly, T. E. J. Behrens, Organizing conceptual knowledge in
humans with a gridlike code. Science 352, 1464-1468 (2016).

46. H.S. Courellis, J. Minxha, A. R. Cardenas, D. Kimmel, C. M. Reed, T. A. Valiante, C. D.
Salzman, A. N. Mamelak, S. Fusi, U. Rutishauser, Abstract representations emerge in
human hippocampal neurons during inference behavior. bioRxiv 566490 [Preprint]
(2023). https://doi.org/10.1101/2023.11.10.566490.

47. J.S.Simons, H. J. Spiers, Prefrontal and medial temporal lobe interactions in long-term
memory. Nat. Rev. Neurosci. 4, 637-648 (2003).

48. J. A.Gordon, Oscillations and hippocampal-prefrontal synchrony. Curr. Opin. Neurobiol.
21,486-491 (2011).

49. R.P.Spunt, J.T. Elison, N. Dufour, R. Hurlemann, R. Saxe, R. Adolphs, Amygdala lesions do
not compromise the cortical network for false-belief reasoning. Proc. Natl. Acad. Sci. U.S.A.
112, 4827-4832 (2015).

50. V.E.Stone, S. Baron-Cohen, A. Calder, J. Keane, A. Young, Acquired theory of mind
impairments in individuals with bilateral amygdala lesions. Neuropsychologia 41,
209-220 (2003).

51. P.Shaw, E. J. Lawrence, C. Radbourne, J. Bramham, C. E. Polkey, A. S. David, The impact of
early and late damage to the human amygdala on ‘theory of mind’ reasoning. Brain 127,
1535-1548 (2004).

52. U.Rutishauser, O. Tudusciuc, D. Neumann, A. N. Mamelak, A. C. Heller, I. B. Ross,

L. Philpott, W. W. Sutherling, R. Adolphs, Single-unit responses selective for whole faces in
the human amygdala. Curr. Biol. 21, 1654-1660 (2011).

53. S.Wang, R.J. Yu, J. M. Tyszka, S. S. Zhen, C. Kovach, S. Sun, Y. Huang, R. Hurlemann,

I. B. Ross, J. M. Chung, A. N. Mamelak, R. Adolphs, U. Rutishauser, The human amygdala
parametrically encodes the intensity of specific facial emotions and their categorical
ambiguity. Nat. Commun. 8, 14821 (2017).

54. R.P.Spunt, R. Adolphs, A new look at domain specificity: Insights from social
neuroscience. Nat. Rev. Neurosci. 18, 559-567 (2017).

55. D.Kliemann, R. Adolphs, The social neuroscience of mentalizing: Challenges and
recommendations. Curr. Opin. Psychol. 24, 1-6 (2018).

56. N.Kanwisher, Domain specificity in face perception. Nat. Neurosci. 3, 759-763 (2000).

57. J.Sliwa, W. A. Freiwald, A dedicated network for social interaction processing in the
primate brain. Science 356, 745-749 (2017).

58. P.H.Rudebeck, M. J. Buckley, M. E. Walton, M. F. S. Rushworth, A role for the macaque
anterior cingulate gyrus in social valuation. Science 313, 1310-1312 (2006).

59. K.R.Ridderinkhof, S. Nieuwenhuis, T. S. Braver, Medial frontal cortex function: An
introduction and overview. Cogn. Affect Behav. Neurosci. 7, 261-265 (2007).

60. P.A.Kragel, M. Kano, L. Van Oudenhove, H. G. Ly, P. Dupont, A. Rubio, C. Delon-Martin,

B. L. Bonaz, S. B. Manuck, P. J. Gianaros, M. Ceko, E. A. Reynolds Losin, C.-W. Woo,
T. E. Nichols, T. D. Wager, Generalizable representations of pain, cognitive control, and
negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283-289 (2018).

61. R.P.Spunt, R. Adolphs, Validating the why/how contrast for functional MRI studies of
theory of mind. Neurolmage 99, 301-311 (2014).

62. L.S.King,V.C. Salo, A. Kujawa, K. L. Humphreys, Advancing the RDoC initiative through
the assessment of caregiver social processes. Dev. Psychopathol. 33, 1648-1664 (2021).

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

R. P. Lobo, K. L. Bottenhorn, M. C. Riedel, A. I. Toma, M. M. Hare, D. D. Smith, A. C. Moor,
1. K. Cowan, J. A.Valdes, J. E. Bartley, T. Salo, E. R. Boeving, B. Pankey, M. T. Sutherland,
E. D. Musser, A. R. Laird, Neural systems underlying RDoC social constructs: An
activation likelihood estimation meta-analysis. Neurosci. Biobehav. Rev. 144, 104971
(2023).

R. P. Spunt, R. Adolphs, Folk explanations of behavior: A specialized use of a domain-
general mechanism. Psychol. Sci. 26, 724-736 (2015).

A.Tusche, R. Spunt, L. Paul, J. Tyszka, R. Adolphs, Neural signatures of social inferences
predict the number of real-life social contacts and autism severity. Nat. Commun. 14, 4399
(2023).

N. Kanwisher, J. McDermott, M. M. Chun, The fusiform face area: A module in human
extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302-4311 (1997).

N. Kanwisher, G. Yovel, The fusiform face area: A cortical region specialized for the
perception of faces. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2109-2128 (2006).

R. F. Schwarzlose, J. D. Swisher, S. Dang, N. Kanwisher, The distribution of category and
location information across object-selective regions in human visual cortex. Proc. Natl.
Acad. Sci. U.S.A. 105, 4447-4452 (2008).

T. P. Reber, M. Bausch, S. Mackay, J. Bostrom, C. E. Elger, F. Mormann, Representation of
abstract semantic knowledge in populations of human single neurons in the medial
temporal lobe. PLOS Biol. 17, €3000290 (2019).

J. Minxha, R. Adolphs, S. Fusi, A. N. Mamelak, U. Rutishauser, Flexible recruitment of
memory-based choice representations by the human medial frontal cortex. Science 368,
eaba3313(2020).

R. Adolphs, D. Tranel, A. R. Damasio, The human amygdala in social judgment. Nature
393, 470-474 (1998).

U. Rutishauser, L. Reddy, F. Mormann, J. Sarnthein, The architecture of human memory:
Insights from human single-neuron recordings. J. Neurosci. 41, 883-890 (2021).

S. Baron-Cohen, H. A. Ring, S. Wheelwright, E. T. Bullmore, M. J. Brammer, A. Simmons,

S. C. R. Williams, Social intelligence in the normal and autistic brain: An fMRI study. Eur. J.
Neurosci. 11,1891-1898 (1999).

N. Kanwisher, The quest for the FFA and where it led. J. Neurosci. 37, 1056-1061 (2017).
J.R. Binder, R. H. Desai, W. W. Graves, L. L. Conant, Where is the semantic system? A critical
review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19,
2767-2796 (2009).

F.D.Raslau, I.T. Mark, A. P. Klein, J. L. Ulmer, V. Mathews, L. P. Mark, Memory part 2: The
role of the medial temporal lobe. Am. J. Neuroradiol. 36, 846-849 (2015).

1. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, A. Lerchner, Towards a
definition of disentangled representations. arXiv:1812.02230 [cs.LG] (2018).

R. Mukamel, A. D. Ekstrom, J. Kaplan, M. lacoboni, I. Fried, Single-neuron responses in
humans during execution and observation of actions. Curr. Biol. 20, 750-756 (2010).

L. Schilbach, B. Timmermans, V. Reddy, A. Costall, G. Bente, T. Schlicht, K. Vogeley, Toward
a second-person neuroscience. Behav. Brain Sci. 36, 393-414 (2013).

H. Z. G. Probolovski, Commentary: Using second-person neuroscience to elucidate the
mechanisms of reciprocal social interaction. Front. Behav. Neurosci. 14, 13 (2020).
S.Baek, M. Song, J. Jang, G. Kim, S.-B. Paik, Spontaneous generation of face recognition in
untrained deep neural networks. bioRxiv 857466 [Preprint] (2019). https://doi.
org/10.1101/857466.

M. Jamali, B. L. Grannan, E. Fedorenko, R. Saxe, R. Baez-Mendoza, Z. M. Williams,
Single-neuronal predictions of others’ beliefs in humans. Nature 591, 610-614 (2021).
U. Rutishauser, E. M. Schuman, A. N. Mamelak, Online detection and sorting of
extracellularly recorded action potentials in human medial temporal lobe recordings, in
vivo. J Neurosci. Methods 154, 204-224 (2006).

M. Reuter, H. D. Rosas, B. Fischl, Highly accurate inverse consistent registration: A robust
approach. Neurolmage 53, 1181-1196 (2010).

J. M. Tyszka, W. M. Pauli, In vivo delineation of subdivisions of the human amygdaloid
complex in a high-resolution group template. Hum. Brain Mapp. 37, 3979-3998 (2016).
B. Avants, J.T. Duda, J. Kim, H. Zhang, J. Pluta, J. C. Gee, J. Whyte, Multivariate analysis of
structural and diffusion imaging in traumatic brain injury. Acad. Radiol. 15, 1360-1375
(2008).

E. M. Meyers, D. J. Freedman, G. Kreiman, E. K. Miller, T. Poggio, Dynamic population
coding of category information in inferior temporal and prefrontal cortex. J. Neurophysiol.
100, 1407-1419 (2008).

S.Wang, A. N. Mamelak, R. Adolphs, U. Rutishauser, Encoding of target detection
during visual search by single neurons in the human brain. Curr. Biol. 28, 2058-2069.e4
(2018).

R. Cao, X. Li, N. J. Brandmeir, S. Wang, Encoding of facial features by single neurons in the
human amygdala and hippocampus. Commun. Biol. 4, 1394 (2021).

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57,
289-300 (1995).

H. G. Mikel Aickin, Adjusting for multiple testing when reporting research results: The
Bonferroni vs Holm methods. Am. J. Public Health 86, 726-728 (1996).

130f 14

$Z0T ‘10 YOIBJA UO S10°90UAIIS MMA//:SANY WOLf papeo[umo


http://dx.doi.org/10.1101/2023.11.10.566490
https://arxiv.org/abs/1812.02230
http://dx.doi.org/10.1101/857466
http://dx.doi.org/10.1101/857466

SCIENCE ADVANCES | RESEARCH ARTICLE

Acknowledgments: We thank all patients for their participation, staff from Cedars-Sinai
Medical Center for support with patient testing, and H. Courellis for discussion. Funding: This
research was supported by the McDonnell Center for Systems Neuroscience, AFOSR
(FA9550-21-1-0088), NSF (BCS-1945230 and 11S-2114644), and NIH (K99EY036650 to R.C.,
ROTMH129426 to S.W., PSOMH094258 to R.A., UOTNS117839 to U.R., and ROTMH134990 to U.R.
and R.A.). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript. Author contributions: J.D., R.A,, and U.R. designed
the research. J.D. and U.R. performed the experiments. A.N.M. performed the surgery. R.C., S.W.,
and U.R. analyzed the data. R.C,, R.A., S.W.,, and U.R. wrote the paper. All authors discussed the

Caoetal., Sci. Adv. 10, eado6166 (2024) 4 December 2024

results and contributed toward the manuscript. Competing interests: The authors declare that
they have no competing interests. Data and materials availability: All data needed to
evaluate the conclusions in this paper are present in the paper and/or the Supplementary
Materials. The raw data (single-neuron activity and behavior) is available at https://osf.io/qx92s/.

Submitted 12 February 2024
Accepted 1 November 2024
Published 4 December 2024
10.1126/sciadv.ado6166

140f 14

$Z0T ‘10 YOIBJA UO S10°90UAIIS MMA//:SANY WOLf papeo[umo


https://osf.io/qx92s/

	Domain-specific representation of social inference by neurons in the human amygdala and hippocampus
	INTRODUCTION
	RESULTS
	Task and behavior
	Neuronal correlates of social inference in the MTL and MFC
	Generalizability of inference encoding in the human MTL and MFC
	Generalizability of inference representation between social versus nonsocial world
	Representation of visual categories in the MTL and MFC
	Specific representation of inference and category in the MTL and MFC

	DISCUSSION
	MTL is involved in social inference
	Functional specialization of the social inference network
	Domain-specific inferences in the MTL and MFC
	Caveats and future direction

	MATERIALS AND METHODS
	Patients
	Task and procedure
	Electrophysiology
	Spike sorting and single-neuron analysis
	Electrode localization
	Selection of inference-type and CS neurons using ANOVA model
	Selection of inference-type and CS neurons using t test
	Selection of inference-type and CS neurons using a linear mixed-effect model
	Population decoding
	Single-trial RSI
	Generalization index
	Normalized weight metric
	Statistical significance

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

	Domain-specific representation of social inference by neurons in the human amygdala and hippocampus
	INTRODUCTION
	RESULTS
	Task and behavior
	Neuronal correlates of social inference in the MTL and MFC
	Generalizability of inference encoding in the human MTL and MFC
	Generalizability of inference representation between social versus nonsocial world
	Representation of visual categories in the MTL and MFC
	Specific representation of inference and category in the MTL and MFC

	DISCUSSION
	MTL is involved in social inference
	Functional specialization of the social inference network
	Domain-specific inferences in the MTL and MFC
	Caveats and future direction

	MATERIALS AND METHODS
	Patients
	Task and procedure
	Electrophysiology
	Spike sorting and single-neuron analysis
	Electrode localization
	Selection of inference-type and CS neurons using ANOVA model
	Selection of inference-type and CS neurons using t test
	Selection of inference-type and CS neurons using a linear mixed-effect model
	Population decoding
	Single-trial RSI
	Generalization index
	Normalized weight metric
	Statistical significance

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


