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C O G N I T I V E  N E U R O S C I E N C E

Domain-specific representation of social inference by 
neurons in the human amygdala and hippocampus
Runnan Cao1*, Julien Dubois2, Adam N. Mamelak2, Ralph Adolphs3,4†,  
Shuo Wang1†, Ueli Rutishauser2,4*†

Inferring the intentions and emotions of others from behavior is crucial for social cognition. While neuroimaging 
studies have identified brain regions involved in social inference, it remains unknown whether performing social 
inference is an abstract computation that generalizes across different stimulus categories or is specific to certain 
stimulus domain. We recorded single-neuron activity from the medial temporal lobe (MTL) and the medial frontal 
cortex (MFC) in neurosurgical patients performing different types of inferences from images of faces, hands, and 
natural scenes. Our findings indicate distinct neuron populations in both regions encoding inference type for 
social (faces, hands) and nonsocial (scenes) stimuli, while stimulus category was itself represented in a task-
general manner. Uniquely in the MTL, social inference type was represented by separate subsets of neurons for 
faces and hands, suggesting a domain-specific representation. These results reveal evidence for specialized social 
inference processes in the MTL, in which inference representations were entangled with stimulus type as expected 
from a domain-specific process.

INTRODUCTION
Inferring the latent mental states and intentions of other people 
from observing their behavior is a critical human ability that is at 
the core of what is often referred to as either “theory of mind” 
(ToM), “mentalizing” (1, 2), or “social inference” (3, 4). Emerging 
during early childhood, typically around the age of four (5), this 
important skill relies on representing the beliefs, desires, intentions, 
and feelings of others to make sophisticated social interactions 
possible (6). Atypical social inference is thought to contribute to the 
difficulties experienced in mental and neurological disorders, in-
cluding in autism (7, 8), schizophrenia (9), and Parkinson’s disease 
(10, 11) [for review, see (12)]. Social inference has been an active 
topic of study since the 1970s, ranging from developmental psychol-
ogy (13) to social neuroscience (14, 15) to philosophy of mind (16). 
A wide range of tasks has been developed to study it, including the 
false-belief task (17), pragmatic language comprehension (18), and 
belief-desire reasoning (19). A key question in social inference work 
is how the brain represents its own and other’s mental states at the 
neuronal level (6).

Anatomically, a large number of brain regions have been associ-
ated with social inference, ranging from the cerebellum to the supe-
rior temporal sulcus to the frontal cortex (12,  20,  21), a list that 
varies greatly depending on the exact task used [see (22, 23) for re-
views]. Three common sets of regions that stand out in the literature 
are the temporo-parietal junction (TPJ) (24, 25), medial frontal cor-
tex (MFC) (21), and the medial temporal lobe (MTL), which to-
gether form important components of the “social brain” (26, 27). 
The MFC contains several areas of interest to social inference, in-
cluding the supplementary motor area (SMA), the pre-SMA, the 
anterior and middle cingulate cortex (ACC/MCC) (28), and the 

medial prefrontal cortex (mPFC) (29,  30). These subregions have 
been broadly associated, to varying extents, with the inference 
of different mental states (31), such as false beliefs (32), deception 
(20), intentions (33), empathy (34), desires (24), and preferences 
(35), indicating a prominent role for sectors of the MFC in specific 
kinds of social inferences (36). The role of frontal regions in social 
inference is dissociable from their role in “executive functions” 
more broadly (37, 38), suggesting that social inference processes 
are distinct specializations rather than reutilization of more general 
executive processes.

By contrast, a broader role in making social inferences is sug-
gested for the MTL, notably including the amygdala (AMY) and 
hippocampus (HIPP) (26, 27, 39). The MTL supports processes such 
as recognition memory (40), social evaluations (27, 41), categoriza-
tion (42), facial emotion recognition (43, 44), relational processing 
(45), and latent state inference (46) that are needed for social infer-
ence but are not specialized for doing so. The MTL is closely 
connected both structurally and functionally with the MFC (47, 48), 
suggesting that these two regions are two nodes in the social infer-
ence network.

Several important questions regarding the neural basis of social 
inference remain open. First, while a wide set of brain regions have 
been implicated in social inference, it remains unknown what spe-
cifically the neurons in these regions contribute functionally, a 
question that neuroimaging studies alone cannot resolve. Second, 
although many subregions of the MFC have been linked to social 
inference, only the mPFC reached a high degree (90%) of reliability 
of activation across different inference studies (36). It remains un-
clear how other frontal brain regions, including pre-SMA and dor-
sal anterior cingulate cortex (dACC), contribute to social inference. 
Third, while the MTL has been hypothesized to play an important 
role in social inference (26), it is not typically identified as part of 
the social inference network in imaging studies (36, 49). However, 
lesion studies (e.g., impaired social inference function following 
amygdala damage) (49–51) as well as prominent representations of 
faces and judgments about faces at the single neuron level (52, 53) 
suggest that the amygdala plays an important role in social infer-
ence. This discrepancy may be partly attributed to limitations such 
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as poor signal-to-noise ratio (SNR) in subcortical areas with blood 
oxygen level dependent (BOLD) functional magnetic resonance 
imaging (fMRI), thus leaving the involvement of the MTL in social 
inference unclear.

Last, it remains unclear whether the implementation of social in-
ference recruits specific brain regions dedicated to representing 
mental states (54, 55). This question is part of a long standing debate 
on the domain specificity of social processing in the brain, with 
seminal debates historically focused on whether or not there are 
regions specialized for processing faces (56). With respect to the 
processes engaged in social inference, this important question re-
mains unresolved. On one hand, a recent nonhuman primate fMRI 
study found that part of the MFC was exclusively activated during 
social interactions (57), and lesion studies in the macaque have 
found evidence for specifically social valuation in anterior cingulate 
cortex (58). On the other hand, human studies suggested that the 
MFC plays a more general role in subserving executive function–
related neural functions rather than social inference specifically 
(54, 59, 60).

Here, we used single-neuron recordings to study social inference 
using a well-validated and well-established ToM task. Our focus is 
on the specific cognitive function of inferring the mental states of 
others from observing human behavior. We previously developed 
and validated with fMRI and behavior a task that contrasts physical 
judgments about social images (“how” an action is being performed) 
with social inferences about the mental states responsible (“why” 
the person is performing that action) (61). We note that this task has 
been adopted in the National Institute of Mental Health (NIMH) 
Research Domain Criteria framework for the subconstruct of 
“action perception” within the construct “perception and under-
standing of others” in the social processes domain of the framework 
(www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/
constructs/action-perception) (62, 63). Given the importance of this 
task, it is important to anchor its neural correlates in intracranial 
electrophysiology. Here, we used this same task with intracranial re-
cordings in humans and asked whether social inference-related pro-
cesses are represented in the responses of single neurons within 
parts of the MFC (the dACC and pre-SMA) and the MTL (amyg-
dala and hippocampus). The core analysis approach we took is to 
contrast why with how questions for the very same images, thereby 
differentiating the neural representations of social inference from 
those of perceptual judgments (61).

RESULTS
Task and behavior
We used the validated “why/how” social inference task (61, 64, 65) 
to probe the neural mechanisms of social inference in the human 
brain. Patients were presented with naturalistic color images and 
asked to answer questions about the stimuli that required perform-
ing social inference. We varied stimulus domains (hand actions 
versus facial expressions versus nonsocial events) and the type of 
inference required to answer a question (perceptual judgment of the 
action probed by how questions (e.g., “is the person smiling?”) 
versus social inference of the cause probed by why questions (e.g., 
“is the person admiring someone?”) in a blocked design (Fig. 1A 
and see Materials and Methods for details). In each trial, patients 
were first shown the question to be answered, then saw a single im-
age, and then made a “yes” or “no” decision. Our analysis generally 

used a two (inference type: why versus how) by two (category: faces 
versus hands) by two (choice: yes versus no) factorial design. In 8 of 
the 14 patients, we also included a third category of images: scenes 
of natural events that contained neither a face nor hands. We refer to 
face and hand images as social stimuli and to scene images as 
nonsocial stimuli. In the latter subset of sessions, the paradigm was 
a 2 × 3 × 2 design.

Patients’ responses were compared with normative data acquired 
independently in (61). We used the data from this group of subjects 
as the “ground truth” to calculate the accuracy of the judgments 
made by the subjects in the present study. The patients performed 
well on both why (Fig. 1, C and D; accuracy: 87.08 ± 10.5% [mean ± 
SD]; response time: 0.77 ± 0.12 s [mean ± SD]) and how ques-
tions (accuracy: 91.87 ± 7.83% [mean  ± SD]; response time: 
0.68 ± 0.14 s [mean ± SD]). The accuracy for why questions was 
lower (two-tailed paired t test: t18 =  4.06, P =  0.0007), and the 
response time for why questions was longer (two-tailed paired t 
test: t18 = 5.05, P = 8.03 × 10−5) compared to how questions. This 
is similar to the normative data (61) and is expected given the 
additional inferential processing required for why blocks.

Neuronal correlates of social inference in the MTL and MFC
We isolated in total 726 single neurons from the amygdala, hippo-
campus, dACC, and pre-SMA across 19 sessions in 14 neurosurgical 
patients (see Fig. 1B for example locations of the electrodes and ta-
ble S1 for a complete list; n = 236, 158, 141, and 191 neurons from 
the AMY, HIPP, dACC, and pre-SMA, respectively). For brevity, we 
refer to AMY and HIPP together as the MTL (n = 394 cells) and the 
dACC and pre-SMA together as the MFC (n = 332 cells). Only neu-
rons with an average firing rate greater than 0.2 Hz (n = 683) were 
included in subsequent analyses.

Answering why and how questions required different types of 
inference for the very same images, thereby allowing us to isolate 
signatures of inference controlling for sensory input (which is the 
same). We first examined neural activity in a single 1-s long time 
window following stimulus onset (200 to 1200 ms relative to stimu-
lus onset). A total of 17.9% of neurons in the MFC responded dif-
ferentially as a function of whether subjects were performing the 
why or how task (“inference-type neurons”; see Fig. 2E for a sum-
mary of selected neurons in each subregion; Fig. 2, B and D shows 
examples; 56 of 313, 16 in dACC and 40 in pre-SMA; binomial test, 
P < 10−20; three-way analysis of variance (ANOVA); see Materials 
and Methods). Similarly, 13.2% of MTL neurons differentiated be-
tween the two tasks following stimulus onset (Fig. 2, A and C show 
examples; 49 of 370, 13.2%, 28 in AMY and 21 in HIPP; binomial 
test, ). P = 2.58 × 10−20 The proportion of neurons doing so was not 
significantly different between the MTL and MFC (17.9% versus 
13.2%; χ2 test of proportion: P = 0.09). Among all inference-type 
neurons, 60 of 105 (57.14%; see Fig. 2, A and B for examples and Fig. 
2G for group results, and see fig. S1G for the proportions in each 
area, respectively) showed higher activity in the why task (why-
preferring), and 45 (42.86%; see Fig. 2, C and D for examples and 
Fig. 2H for group results) had a greater response in the how task 
(how-preferring). The proportion of why- and how-preferring 
inference-type neurons was similar across brain areas and hemi-
spheres (see fig. S1G and legend for details). As a control, we also 
repeated the above analysis by selecting neurons with linear regres-
sion using response time as a nuisance regressor, with qualitatively 
similar results (see the Supplementary Materials).
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In addition to the above effects following stimulus onset, inference-
type neurons also differentiated between task types during the inter-
stimulus interval period that preceded stimulus onset. This was 
possible because the task is blocked (Fig. 1A; Fig. 2F shows an exam-
ple neuron; and Fig. 2, G and H shows the average firing rate during 
the baseline period throughout the entire block for all inference-type 
neurons; and fig. S1, A to F shows the temporal dynamics aligned to 
trial onset).

We next investigated how the neural population as a whole rep-
resented different types of inference. We performed single-trial 
population decoding on the firing rates following stimulus onset 
(200 to 1200 ms) of all recorded neurons pooled across patients to 
distinguish between inference types (why versus how). Decoding 
accuracy was significantly above chance in both the MTL (Fig. 2I; 
accuracy  =  73.68  ±  4.69% [mean  ±  SD], P  <  0.001, compared 
against the empirical null distribution) and the MFC (accuracy = 
86.39 ± 3.67% [mean ± SD], P < 0.001, compared against the em-
pirical null distribution). Decoding accuracy in the MFC was sig-
nificantly higher than that in the MTL (difference in accuracy: 
12.72%, P = 0.04, compared against the difference of empirical null 
distribution), suggesting that the MFC had a stronger association 
with social inference at the population level (see Fig. 2K for the de-
coding performance in each subregion of the MTL and MFC). Sim-
ilar results were derived when we matched the number of neurons 

between the MTL and MFC. Inference type was decodable through 
the whole trial including the pre-cue period (Fig. 2J and see fig. S1L 
for decoding performance in the MTL and MFC separately). To-
gether, these data show that the type of inference is encoded in both 
MFC and MTL.

Generalizability of inference encoding in the human 
MTL and MFC
We next examined how the encoding of inference type (how versus 
why) was modulated by other task variables. We first turned to the 
visual category (i.e., face and hand), which is prominently encoded 
across the ventral visual pathway (66–68) and the MTL (42, 69). In 
the human MFC, on the other hand, representations of visual cate-
gory are task dependent in a manner that is little understood, with 
encoding in some and weak encoding in other tasks (70).

We examined whether the selectivity of inference-type neurons 
differed between images showing faces and hands. To do so, we se-
lected inference-type neurons separately in face and hand trials (us-
ing a paired t test). A significant number of inference-type cells (Fig. 
3C and see fig. S2C for the proportions in each subregion) was iden-
tified for both face (45 of 370, 12.16% in the MTL; 45 of 313, 
14.38% in the MFC) and hand stimuli (n = 31, 8.38% in the MTL 
and n = 48, 15.34% in the MFC). Therefore, both the MTL and MFC 
represented inference types during both face and hand stimuli. 
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Fig. 1. Task, electrode locations, and behavior. (A) Task paradigm. Each session consisted of 16 blocks of 8 trials, with 128 trials in total. In each block, a set of face im-
ages with emotional expressions or hand images depicting intentional actions were paired with questions about motive (why) and implementation (how). The blocks 
alternated between why and how questions. Images of the same category were shown in neighboring blocks. Each block began with a short fixation and full question 
presentation. A brief interstimulus interval (ISI) cue was presented as a reminder of the question between image presentations. Independently acquired normative data 
are used to ensure that the selected images featuring unambiguous (i.e., consensus) response. Each block contained five images eliciting a yes response and three im-
ages eliciting a no response. The participants had up to 1.7 s to respond. The task advanced either 0.2 s after a response or when the response time limit was reached. The 
block onsets were predesigned and fixed, although the block durations were contingent on response times. As a result, session durations of were approximately equal 
across participants. (B) Example electrode locations are shown on an MNI152 template brain. Each dot indicates the location of a microwire bundle in one subject. 
(C) Behavior performance. Accuracy was calculated by comparing the participants’ response to the normative response. Each dot represents a session. Only trials where 
participants responded were included in the analysis. (D) Reaction time in why versus how trials. ****P < 0.0001.
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Strikingly, the inference-type neurons selected from trials in which 
faces were shown were largely distinct from those selected in trials 
in which hands were shown in the MTL (Fig. 3D; Chi-squared test 
of independence, P = 0.82) and the MFC, although only marginally 
so, indicating more overlap in the MFC compared to MTL (Fig. 3E; 
Chi-squared test, P = 0.08). This result also held in all subregions 
(Ps > 0.05) of the MTL and MFC (fig. S2C). Consistent results were 
revealed at the single-trial level (fig. S2, A and B). Together, this 

single-neuron analysis indicates that inference-type signals may 
generalize across face and hand stimuli in the MFC, particularly in 
the pre-SMA. We next tested this prediction at the population level.

We next examined how inference type was represented at the 
population level of all recorded neurons, with the ultimate goal of 
examining whether representations generalize across hands and 
face. We trained decoders to distinguish between how versus why 
questions on one visual category (i.e., face) and then tested them on 
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the MFC that showed generalized effect across face and hand. (C) Proportions of inference-type neuron in the MTL and MFC. Yellow: selected with face stimuli; blue: se-
lected with hand stimuli; purple: overlapping for face and hand. (D and E) Distribution of inference-type cells selected using face and hand stimuli respectively in the MTL 
(D) and MFC (E). (F) Population decoding of inference type using within-category decoder (i.e., train and test using either face or hand stimuli only) and cross-category 
decoder (i.e., train with one category and test on the other). (G) Generalization index of inference decoding (see Materials and Methods for computation). The representa-
tion of inference generalized across face and hand in the MFC but not in the MTL. (H and I) Scatter plot of the importance index (see Materials and Methods for details) 
assigned by an inference-type decoder to each cell built with face stimuli (x axis) or hand stimuli (y axis). (H) MTL cells. (I) MFC cells. (J) Inference-type decoders trained and 
tested within each category. Only cells (n = 281 in total) that collected in sessions where scene images presented in addition to face and hand images were included in 
the analysis. Legend conventions as in (G). (K) Decoding performance of inference type from cross social-domain decoders: train on face and test on scene (yellow) or train 
on hand and test on scene (blue). Legend conventions as in (G).
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the same visual category (within-category decoding, i.e., face) or the 
other (cross-category decoding, i.e., hand). Confirming our earlier 
finding (for which we pooled across hands and faces), inference type 
was decodable using within-category decoders for both face and 
hand stimuli in the MTL (Fig. 3F; face: 84.40 ± 5.10% [mean ± SD]; 
P < 0.001; hand: 68.48 ± 5.91% [mean ± SD]; P = 0.001) and the 
MFC (face: 88.92 ± 4.67% [mean ± SD]; P < 0.001; hand: 86.48 ± 
4.94% [mean ± SD]; P < 0.001). Decoding accuracy for face stim-
uli was higher than that for hand stimuli in the MTL (difference in 
accuracy with face-hand: 15.92%, P = 0.01, compared against the 
difference of empirical null distribution). This was the case in both 
the AMY (difference in accuracy with face-hand: 7.23%, P = 0.01) 
and HIPP (difference in accuracy with face-hand: 14.70%, P = 0.01; 
fig. S2D).

By contrast, decoding accuracy was not significantly different in 
the MFC (difference in accuracy with face-hand: 2.44%, P = 0.08). 
However, there were notable differences when looking at dACC and 
pre-SMA separately: Decoding accuracy was higher for face stimuli 
(difference in decoding accuracy face-hand: 9.91%, P = 0.01) in the 
dACC, whereas the pre-SMA had a higher decoding accuracy for 
hand stimuli (difference in accuracy hand-face: 3.83%, P = 0.005). 
We next turned to examine cross-condition generalization perfor-
mance (train on face, test on hand, and vice versa). This revealed 
that, in the MFC, decoding generalized (train with faces and test 
with hands: 68.05 ± 4.43% [mean ± SD], P < 0.001; train with hands 
and test with faces: 67.22 ± 4.73% [mean ± SD], P < 0.001). In con-
trast, in the MTL, cross-condition generalization was not greater 
than expected by chance (train with faces and test with hands: 
53.25 ± 4.37% [mean ± SD], P = 0.17; train with hands and test with 
faces: 52.78 ± 4.75% [mean ± SD], P = 0.23). This was also the case 
separately in both AMY and HIPP. Quantifying this observation 
with the generalization index (see Materials and Methods for the 
definition) confirmed this observation (Fig. 3G and fig. S2E). Con-
sistently, face-selected inference-type neurons and hand-selected 
inference-type neurons tended to contribute exclusively to the de-
coding of inference type for one category in the MTL (Fig. 3H; im-
portance index defined using weight in the decoder for each neuron) 
but exhibited mixed effects in the MFC (Fig. 3I). These results indi-
cate that, in the MTL, social inference processes are coupled to 
specific classes of stimuli and do not generalize across stimulus 
categories (especially so for faces). In contrast, in the MFC, infer-
ence processes were domain-general across the two types of stimu-
lus categories (faces and hands).

Generalizability of inference representation between social 
versus nonsocial world
While both MTL and MFC are implicated in social processing 
(57, 71), they are also involved in the processing of general nonso-
cial objects (e.g., selectivity to different object categories) (69). This 
thus raises the question of whether making inferences in the social 
and nonsocial world share a common neural mechanism in these 
brain areas—a question related to the long-standing question about 
whether social processing is specialized in some way. To address this 
question, we also included images of scenes showing nonhuman 
natural events in the task in a subset of patients (n = 281 neurons 
from nine sessions; see Materials and Methods for details). As be-
fore, we asked our patients, for the same image, to either judge its 
perceptual properties (e.g., “is the photo showing rain?”) or make 
inferences about the hidden states that caused what the image shows 

(e.g., “is it a result of thunderstorm?”). At the single-neuron level, a 
significant number of neurons (fig. S3, C and D) discriminated why 
versus how following the onset of scene images in both MTL (18 of 
174, 10.34%, binomial P =  0.0012; 8.91% in AMY and 12.33% in 
HIPP; see fig. S3A for an example) and MFC (18 of 107, 16.82%, 
P = 1.47 × 10−6; 13.95% in dACC and 18.75% in pre-SMA; see fig. 
S3B for an example). Analysis of the single-trial response selectivity 
index (RSI) confirmed that these neurons discriminated why versus 
how questions for natural scene stimuli [fig. S3E; Kolmogorov-
Smirnov (KS) test: MTL, KS  =  0.21, P  =  0.59  ×  10−17; MFC, 
KS = 0.22, P = 0.02 × 10−17]. At the population level, inference type 
was decodable for scene images in both MTL (Fig. 3J; 63.50 ± 4.76% 
[mean ± SD]; P = 0.004) and MFC (69.03 ± 4.87% [mean ± SD]; 
P = 0.004). These results suggested that the MTL and MFC repre-
sent inference type also for nonsocial images.

We next repeated the cross-condition generalization analysis for 
the scene images. First, mirroring our earlier finding, inference-type 
neurons selected using social stimuli were largely separate from 
those selected using scene stimuli in both the MTL (3 of the 21 face-
selected and 3 of the 14 hand-selected inference-type neurons were 
also selective for scene inference) and MFC (3 of the 19 face-selected 
and 3 of the 16 hand-selected inference-type neurons were also se-
lective for scene inference). Second, single-trial RSI analysis con-
firmed this result by showing that the inference-type neurons in the 
MTL selected with social images could not discriminate why versus 
how conditions of scene stimuli (fig. S3, E and F). In line with indi-
vidual neuron level results, decoding did not generalize across cat-
egories (Fig. 3K; face versus scene and hand versus scene) in neither 
the MTL (train with faces and test with scene: 49.87  ±  4.84% 
[mean  ±  SD], P  =  0.42; train with hands and test with scenes: 
49.97 ± 4.54% [mean ± SD], P = 0.50) nor MFC (train with faces 
and test with scene: 50.27 ± 5.93% [mean ± SD], P = 0.44; train with 
hands and test with scenes: 50.07 ± 5.43% [mean ± SD], P = 0.54).

Together, our results suggest that the neural substrates in the 
MTL and MFC for making inferences in the social versus nonsocial 
domain are domain specific. In contrast, in the MFC, inference was 
domain general between different subtypes of social domains (hands 
and faces).

Representation of visual categories in the MTL and MFC
An open question is whether social inference processes share neural 
substrates with other cognitive processes that involve the MTL and 
MFC. Neurons in both areas prominently encode visual categories 
(42, 69, 70, 72). We therefore started our analysis by examining the 
encoding of visual category in our dataset. Note that we restricted 
this analysis to the face and hand stimuli (scene stimuli were not 
examined for this analysis). As expected, neurons were modulated 
by visual category following stimulus onset (200 to 1200 ms) in both 
the MTL (65 of 370, 17.57%, binomial P < 10−20; 42 neurons in 
AMY and 23 neurons in HIPP; see an example in Fig. 4A and group 
results in Fig. 4C) and the MFC (48 of 286, 16.61%, binomial 
P = 9.70 × 10−13; 20 neurons in dACC and 28 neurons in pre-SMA; 
see an example in Fig. 4B and group results in Fig. 4C). We refer to 
these neurons as category-selective (CS) neurons. Sixty-one of the 
113 CS neurons (53.98%; see Fig. 4, D to F) showed higher activ-
ity for faces (face-preferring), with the remaining 52 (46.02%; 
Fig. 4, D, G, and H) showing a greater response to hands (hand-
preferring). The proportions of the two types of neurons were 
comparable (Fig. 4D) in HIPP (face-preferring: 10 of 23, 43.48% versus 
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hand-preferring: 13 of 23, 56.52%) and pre-SMA (face-preferring: 
15 of 30, 50% versus hand-preferring: 15 of 30, 50%). In contrast, the 
AMY had a higher proportion of face-preferring CS neurons (Fig. 
4D; face-preferring: 29 of 42, 69.05%; hand-preferring: 13 of 42, 
30.95%; χ2 test of proportion: P = 0.0005) than hand-preferring CS 
neurons. Consistently, population decoding of category achieved an 
above-chance accuracy for each brain area (Fig. 4I; AMY: 86.74 ± 
3.40% [mean ± SD], P < 0.001; HIPP: 68.01 ± 4.61% [mean ± SD], 
P < 0.001; dACC: 73.29 ± 4.57% [mean ± SD], P < 0.001; pre-SMA: 
85.66 ± 4.36% [mean ± SD], P < 0.001). MFC neurons, including 
both dACC and pre-SMA, peaked earlier than the MTL neurons 
after stimulus onset, with HIPP peaked at the latest latency (Fig. 4J). 
In line with previous studies, our results confirmed that categorical 
information is prominently represented at both the individual neu-
ron level and population level in both the MTL and MFC.

Specific representation of inference and category in the 
MTL and MFC
To examine whether the representation of stimulus categories was 
modulated by inference type, we first selected CS neurons (i.e., face 
versus hand) in why and how trials separately (Fig. 5, A and B). The 
proportion of CS neurons was similar in why (Fig. 5C; MTL: 46 of 
370, percentage = 12.43%; MFC: 42 of 313, percentage = 13.42%) 
and how trials (MTL: 58 of 370, percentage = 15.68%; MFC: 46 
of 313, percentage = 14.70%). Neurons selected during why tri-
als were more likely to also be selected during how trials (Fig. 5D) 
in both the MTL (χ2 test of the proportion of how-CS neurons 
among why-CS neurons versus all neurons: P = 0.01) and MFC 
(P = 0.0002). Similar results were revealed in subregions in the 
MTL and MFC (fig. S5, A and B). We confirmed this conclusion 
at the single-trial level: CS neurons selected during why trials 
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differentiated between faces versus hands also during how ques-
tions (Fig. 5E, light colors; KS test, MTL: K = 0.08, P = 0.84 × 10−5; 
MFC: K = 0.10, P = 0.13 × 10−7), and vice versa (Fig. 5F; how, 
MTL: K = 0.24, P < 1 × 10−56; MFC: K = 0.26, P = 0.80 × 10−55; 
why, MTL: K = 0.09, P = 0.12 × 10−8; MFC: K = 0.11, P = 0.07 × 10−8). 
These results suggested that inference type did not modulate the 

encoding of the category at the single-neuron level, indicating that 
the two variables are independent.

To confirm this impression at the population level, we next ex-
amined whether a decoder trained to distinguish between faces and 
hands when participants were making one type of inference would 
generalize to the other type of inference. Decoding performance 
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was similar when making different types of inferences (Fig. 5E, filled 
bars; MTL: why: 88.90 ± 4.30% [mean ± SD] and how: 91.02 ± 3.97% 
[mean ± SD]; MFC: why: 87.00 ±  5.23% [mean ± SD] and how: 
88.19 ± 4.24% [mean ± SD]). In line with the single-neuron level 
analysis, category decoding generalized between why and how 
(Fig. 5E; train with why test on how: 79.72 ± 4.91% [mean ± SD]; 
P <  0.0001 against null distribution; train with how test on why: 
73.20 ± 5.85%) and MFC (train with why: 73.96 ± 4.99% [mean ± 
SD], P  <  0.0001; train with how: 73.25 ± 5.65% [mean ± SD], 
P < 0.0001). More specifically, category decoding generalized well 
across inference types in the AMY, dACC, and pre-SMA, but not in 
the HIPP (fig. S5C). We further quantified the generalizability when 
decoding categories across inference types using the generalization 
index (Fig. 5H), which confirmed the above observations.

Above findings indicate that the representation of categories and 
inference relied on different sets of neurons. To test this hypothesis, 
we first examined the overlap between inference-type neurons and 
CS neurons. The two neural populations were largely distinct (Fig. 
5I and see fig. S4, A and C for separate results in the MTL and MFC). 
This conclusion also held at the population level: Neurons that con-
tributed strongly to decoding in one of the tasks tended to not 
strongly contribute to the other task and vice versa (Fig. 5, J and K 
and see fig. S4 B and E for results in the MTL and MFC separately; 
Fig. 5K; Hartigan dip test: dip =  0.10, P <  0.0001). We observed 
similar results in the MTL (fig. S4C) and MFC (fig. S4F) and a fur-
ther breakdown in the four subregions (fig. S5, D and E) separately. 
Together, these results support the conclusion that the representa-
tion of inference and categorization was independent of each other, 
with visual category represented in a domain-general manner.

DISCUSSION
We investigated the neuronal mechanisms underlying social infer-
ence in the human MTL and MFC by examining how neural activity 
changed when participants made different types of inference. Con-
sistent with previous neuroimaging findings, we observed neural 
representations of social inference type in the MFC. MTL neurons 
also encoded social inference type and more strongly so for faces. 
This finding is in contrast to neuroimaging studies that reveal no 
significant differences in the MTL for the why-how contrast 
(36,  49,  61). Furthermore, our results revealed a key difference 
between the MFC and MTL. In the MFC, representations of infer-
ence type were domain general across the different social categories 
(face versus hand), as shown by cross-condition generalization, but 
were domain specific when comparing social versus nonsocial 
domains (representations did not generalize across person versus 
natural scene). On the other hand, in the MTL, the neural represen-
tations were highly specialized (domain specific), with no general-
ization between faces, hands, or scenes. The striking entanglement 
of faces and hands, which are both social stimuli, with social infer-
ence in the MTL shows that, at least at this level of processing in the 
brain, there is not an abstract social inference computation. Rather, 
social inference is closely tied to the specific social stimulus category 
in the MTL. In contrast, the encoding of visual categories itself (i.e., 
selectivity for faces or hands) was domain general across task condi-
tions in both brain areas. Together, our findings reveal that the MTL 
encodes inference type in a domain-specific manner in both social 
and nonsocial domains, indicating a fractionation of social infer-
ence processing that is tied to specific classes of social stimuli.

MTL is involved in social inference
Our finding that the MFC participates in social inference is consis-
tent with earlier neuroimaging findings in the same task (4, 61, 64). 
Our contribution to this literature is that we reveal a single-neuron 
substrate of this common neuroimaging finding.

A contribution we make is that we identify neurons in the amyg-
dala and hippocampus that fired differentially to different types of 
inference in both social and nonsocial domains. This is in contrast 
to neuroimaging work that shows no such differences at the fMRI-
BOLD level (49, 61). Our results support the hypothesis that the 
amygdala and hippocampus, as critical components of the social 
brain (27,  39,  71), are among the neurobiological bases of social 
inference.

Although only a few fMRI studies have linked the amygdala to 
social inference (73), the mixed results derived from studies of indi-
viduals with damaged amygdala (49–51) have led to debate about 
the role that the MTL plays in social inference. While Stone and 
colleagues (50) reported impaired performance of patients with bi-
lateral amygdala lesions in two social inference tasks (“recognition 
of faux pas” and “reading the mind in the eyes”), a recent study sug-
gested that “amygdala is not a necessary component of the cortical 
network for false-belief reasoning” (49). It is worth noting that in 
the latter study, the authors observed that amygdala activation in a 
false-belief task could only be revealed when a large number of par-
ticipants were included. The discrepancies among these studies 
could potentially be explained by diversity in the tasks used and the 
extent of the lesion. Our study used a well-established task and 
found that the MTL exhibited a significant yet weaker representa-
tion compared to the MFC, providing evidence for the involvement 
of the MTL in social inference.

Functional specialization of the social inference network
The topic of domain specificity in social inference has been widely 
discussed given the diversity of stimulus categories and formats ap-
plied in past neuroimaging studies (36, 54). One of the debates is 
whether the neural network commonly activated for social infer-
ence, including the MFC and TPJ, is used exclusively for social in-
ference or subserves other functions also. An fMRI study conducted 
on nonhuman primates found that the pre-SMA and ACC were 
exclusively activated by social interactions with other agents but 
not for other stimulus conditions, including physical interaction, 
agents’ actions, and faces (57). However, fMRI studies on humans 
suggested that the MFC, which covers the pre-SMA and ACC as in 
the present study, plays a more general role in multiple neural func-
tions (54, 59, 60). We found that the MFC represented inference 
type and category information in a domain general manner, sup-
porting the hypothesis that the MFC is a central region for general 
processing of social information rather than specifically only for 
social inference.

Domain-specific inferences in the MTL and MFC
Did the inferences from our three types of stimuli (hands, faces, and 
scenes) use a common neural mechanism in the human brain 
(4, 64)? It is plausible that the different types of stimuli require dis-
tinct neural substrates as social and nonsocial inference is usually 
implemented with input from distinguishable domains (people 
versus scenes). Domain-specific processing of faces, bodies, places, 
and objects has been proposed and indicated from numerous imag-
ing studies (66, 68, 74), which might be one of the reasons for the 
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putative neural dissociation of social versus nonsocial inference that 
we found. On the other hand, both social and nonsocial inference 
necessarily demand semantic memory to understand the contents 
of a visual scene and the possible hidden causes that explain what is 
shown in the stimulus (64, 75). Therefore, making attributions of 
different types of events might be expected to recruit a domain-
general process as well. This hypothesis was supported by previous 
meta-analyses conducted over imaging studies across various social 
inference tasks (23). A recent fMRI study also showed that the ma-
jority of the brain regions identified in social attributions were also 
activated by nonsocial attributions (64).

The present study shows evidence for domain-specific process-
ing of inference information across different categories of stimuli 
(face, hand, and scene) in the MTL. In contrast, the inference repre-
sentation in the MFC (and, particularly, in the pre-SMA) was par-
tially domain general. Social inference type was domain general 
across different social stimuli (faces and hands), but not when com-
paring social versus nonsocial stimuli. This finding is compatible 
with the interpretation that the processes in MTL remain domain 
specific because it reads out information of faces, hands, and scenes 
from different specific areas in the higher visual cortex that are also 
domain specific (76). In contrast, the MFC is a central region that 
plays an executive role in the use of world knowledge and domain-
specific information fed from the MTL. Hence, among the areas we 
examined, only the MTL was found to contain specialized processes 
for social inference from faces and hands.

Our results can also be understood from the point of view of 
population-level coding. The absence of cross-condition general-
ization for inference type decoding between faces and hands in-
dicates that the two variables (inference type and face/hand) are 
not represented independently in the MTL (Fig. 3) (46). Rather, 
they are entangled (77). Category decoding had high cross-
condition generalization in the MTL (Fig. 5), indicating that it is 
specifically the inference type variable that was entangled with 
stimulus type.

Caveats and future direction
The current study has a number of caveats. First, we focused on in-
ference processes with participants engaged as observers only. While 
sometimes overlapping, observing and performing actions might 
rely on different neural substrates (78). Real interactions might rely 
on different neural mechanisms (79, 80). Second, we provided ex-
plicit instructions. Spontaneous social inferences, which are com-
mon (81), might rely on different mechanisms. These caveats might 
be addressed by using interactive paradigms, in which the partici-
pants act as agents and interact with other agents. Third, the frontal 
recordings we examined were exclusively from two locations along 
the medial wall. It remains an open question how related findings 
made in the lateral frontal areas (82) and other parts of the medial 
frontal wall that we did not sample. Fourth, we did not examine 
other parts of the MTL, particularly the parahippocampal gyrus and 
entorhinal cortex.

MATERIALS AND METHODS
Patients
We collected data in 19 sessions from 14 adult surgical epilepsy 
patients (five males) (table S1). All participants provided written 
informed consent using protocols approved by the Institutional 

Review Board of Cedars-Sinai Medical Center and the California 
Institute of Technology.

Task and procedure
In this study, we used a why/how task established in previous fMRI 
studies (61, 64). A sequence of naturalistic pictures was presented to 
the patients using a block design. The task required patients to make 
social inference about the intention (why the person does this) or 
perceptual judgment about the action (how the person does this) of 
the person displayed in the pictures. Hand and face stimuli were 
evenly distributed across blocks (n = 8) and paired with one why or 
how question (see table S2 for the block questions, n = 16 in total). 
Each block contained eight different images from one category, re-
sulting in 32 trials for each category in each condition. A pre-block 
cue (e.g., “is this person admiring someone?”) was displayed for 2.1 s 
at the beginning of each block. After each trial, a brief verbal cue 
(e.g., “admiring?”) was displayed for 0.15 s (Fig. 1A). Participants 
had a maximum of 1.7 s to respond after the stimulus onset. The task 
advanced immediately once the answer was given, or the display du-
ration of the current stimulus reached 1.7 s. Each question was 
paired with five pictures designed to elicit a yes response, and three 
pictures designed to elicit a no response. No feedback was provided. 
The task thus featured a two (categories: face/hand) by two (ques-
tions: why/how) by two (choices: “yes/no”) design, resulting in a 
total of 128 trials. The onset of each block was fixed across subjects 
and was designed to maximize the efficiency of separately estimat-
ing the contrast of interest (why versus how) for each of the two 
image categories. A varied length of interblock interval was thus 
implemented at the end of each block to keep the block onset syn-
chronized across subjects. Besides, the order of why and how blocks 
were counterbalanced within each image category.

A subset of patients (n = 8; 9 sessions) completed an updated 
version of the why/how task (64), which included scene photo-
graphs depicting natural events in addition to a new set of face and 
hand images. In this version of the task, there were six blocks for 
each image category, resulting in a total of 36 blocks also with 
paired questions (see table S3 for the question list). Each block con-
tained nine different images from one of the three categories, result-
ing in 54 trials for each category for why and how, respectively. Each 
question was paired with five pictures designed to elicit a yes re-
sponse, and four pictures designed to elicit a no response. Stimuli 
were presented using MATLAB with the Psychtoolbox 3 (http://
psychtoolbox.org).

Electrophysiology
We recorded from the bilateral amygdala (AMY), hippocampus 
(HIPP), dACC, and pre-SMA using implanted hybrid depth elec-
trodes with eight macro contacts and eight microwires (see Fig. 1B 
for recording locations). The target locations in these recording sites 
were determined based solely on clinical need by the neurosurgeon 
and verified using post-implantation computed tomography and 
magnetic resonance imaging. We recorded continuous extracellular 
signals in the broadband range of 0.1 to 9000 Hz with a sampling 
rate of 32 kHz (ATLAS System, Neuralynx Inc.).

Spike sorting and single-neuron analysis
The raw signal underwent filtering with a zero-phase lag filter with-
in the 300- to 3000-Hz band. Spike detection and sorting were per-
formed using a semi-automated template-matching algorithm (83). 
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All peri-stimulus time histograms were computed using a 500-ms 
window with a step size of 100 ms, and no smoothing was applied. 
Neurons with an average firing rate greater than 0.2 Hz throughout 
the entire trial were kept for analysis.

Electrode localization
Electrode localization was achieved through post-operative MRI 
scans, which were registered to pre-operative MRI scans using 
Freesurfer’s mri_robust_register (70, 84). This procedure ensured 
accurate and subject-specific localization. To allow for comparabil-
ity across studies, we summarized the electrode positions across 
subjects by aligning the locations to the MNI152-aligned CIT168 
template brain (85) using an affine transformation followed by a 
symmetric image normalization (SyN) diffeomorphic transform 
(86). This method provided MNI coordinates for each recording 
location in this study (Fig. 1B).

Selection of inference-type and CS neurons using 
ANOVA model
Only trials with a response (96.38 ±  5.90% [mean ±  SD]) were 
included in further analysis. To identify neurons that discriminated 
inference types or stimulus categories while taking into account all 
possible contributing factors, we applied a three-way ANOVA on 
each neuron. In the ANOVA model, we labeled each trial for dif-
ferent stimulus categories (face/hand), inference type (why/how), 
and choice (yes/no). A neuron that had a significant main effect 
(P < 0.05) on inference was defined as an inference-type neuron. 
Similarly, a neuron that had a significant main effect on category 
was identified as a CS neuron. A binomial test was conducted to 
determine the significance of the number of the selected neurons. 
A null distribution was created to further validate the significance 
by randomly reshuffling the inference or category label 1000 times 
and repeating the above selection procedure.

Selection of inference-type and CS neurons using t test
To check the modulation of one variable to another (i.e., category to 
inference type), we used an unpaired t-test to select neurons with 
one type of stimuli. For example, we selected inference-type neu-
rons using face and hand stimuli separately.

Selection of inference-type and CS neurons using a linear 
mixed-effect model
To account for the effect of response time (RT), we selected the 
inference-type and CS neurons using a linear mixed-effect model 
[firing rate ~ category + inference + choice + (1|RT)], where RT was 
considered as a random factor. A neuron was considered to be an 
inference-type neuron if the fixed effect of inference passed P < 0.05. 
Similarly, a neuron was considered to be a CS neuron if the fixed 
effect of category passed P < 0.05. Neurons selected with this proce-
dure were then compared with that selected with ANOVA.

Population decoding
Single-trial population decoding was conducted on pseudo-random 
population assembled across sessions to substitute for simultane-
ous recordings (87). We performed linear support vector machine 
(SVM) decoding on two contrasts: (i) inference type: why versus 
how, and (ii) category: face versus hand. As 22 more trials were 
displayed for each condition (e.g., face images with why questions) 
in the updated-version task (number of trials: n = 54; see the “Task 

and procedure” section), for these sessions, we split the trials in half 
and estimated the mean between them to generate a similar number 
of trials (n = 27) as the other sessions (n = 32). To further match the 
number of trials between different sessions, we excluded the first 
trial of each block and the last trial of the last block, resulting in 27 
trials in each condition for the original version of the task (10 ses-
sions). We randomly selected 75% of the whole neuron population 
in each interested brain area on each iteration of the decoder. The 
procedure was iterated for 500 times. To test the significance of 
the decoding performance, a null distribution was estimated by 
shuffling the labels of the conditions in each iteration. We then 
compared the average performance of the observed decoding 
performance with the null distribution (the P value was estimated 
by the rate of the null decoding exceeding the observed decoding). 
To compare the performance between different decoders, we con-
structed an empirical null distribution using paired differences of 
performances obtained with shuffled labels. The significance of the 
difference in performance between the two decoders was then 
determined by comparing the observed difference against the null 
difference distribution.

Upon feeding into the decoder, the data was first baseline cor-
rected using interblock interval and then normalized (z scored) to 
account for any drift in the baseline period and the scale problem. A 
10-fold cross-validation procedure was then performed to estimate 
the decoding accuracy for each contrast. The analysis was done in 
MATLAB by implementing the function “fitcsvm” with a kernel 
scale equal to 1. Decoding accuracy was displayed either as a func-
tion of time or in a fixed time window. Time course decoding was 
performed on the firing rate calculated in a 500-ms sliding window, 
with a step of 100 ms. For fixed-window decoding, we used the 
firing rate estimated in a time window from 200 to 1200 ms after 
stimulus onset.

To perform within-condition decoding (e.g., within-category 
decoding of inference), we trained and tested the decoder with 
trials of one condition only. We used the same procedure as de-
scribed above.

To perform cross-condition decoding (e.g., cross-category de-
coding of inference), we trained the decoder with trials of one con-
dition and tested with trials of the other condition. We used the 
same procedure as described above except that we only split the 
training set and testing set in half rather than 10-folds.

Single-trial RSI
For each neuron, we quantified whether its response differed be-
tween contrasted conditions using a single-trial RSI (see Eqs. 1 and 
2), which has been proven to be effective in previous single-neuron 
studies (88, 89). We reported this measurement for both inference-
type and CS neurons, where we contrasted between why versus 
how and face versus hand trials. Typically, the RSI facilitates group 
analysis and comparisons between different types of cells (i.e., so-
cial inference preferring versus perceptual judgment preferring 
cells in this study). The RSI quantifies the response during why tri-
als relative to the mean response during how trials and baseline. 
The mean response and baseline were calculated individually for 
each neuron

Cell type 1: RSIi =
FRi −mean

(

FRtype1

)

mean
(

FRbaseline

) ⋅ 100 (1)
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For each trial, i, RSIi is the baseline normalized mean firing rate 
(FR) in a fixed time window from 200 to 1200 ms after stimulus 
onset (the same time interval as cell selection). The baseline is the 
mean firing rate estimated within the first 2 s before the onset of the 
first trial in each block.

The cumulative distribution function (CDF) was constructed by 
calculating for each possible value x of the RSI by counting how 
many examples are smaller than x. That is, F(x) = P (X ≤ x), where 
X is a vector of all RSI values. The CDFs of different conditions (why 
versus how; face versus hand) were compared using two-tailed two-
sample KS tests.

Generalization index
We defined a generalization index (Eq. 3) to compare the within-
condition decoding to the across condition generalization (70)

where “Within” indicates the decoding performance for within-
condition decoders (e.g., train on face and test on face), “Cross” 
indicates the decoding performance for cross-condition decoders 
(e.g., train on face and test on hand), and “Chance” indicates the 
theoretical chance level of decoding performance for the variable of 
interest (inference = 0.5, category = 0.5).

Normalized weight metric

We further determined the extent of specialization of each neu-
ron using the angle between the vector of (wInference, wCategory) with 
respect to the x axis.

Statistical significance
Statistical significance for all tests was set at P < 0.05. We corrected 
for multiple comparisons over time points by the false discovery rate 
(see the description in Figs. 2G and 4G) method (90). For all other 
tests, we adjusted the threshold of the P value for multiple compari-
sons, where appropriate, using the Holm-Bonferroni correction (91) 
to control the family-wise error rate.

Supplementary Materials
This PDF file includes:
Supplementary Text
Tables S1 to S3
Figs. S1 to S5
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