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Abstract—We revisit the problem of entanglement-assisted
covert communication over bosonic channels and show that the
benefits of entanglement can be achieved with fewer entanglement
resources than previously identified. Specifically, we show that
O(

√
n log n) covert and reliable bits can be exchanged using

ω(
√
n) ∩ o(n) Two-Mode Squeezed-Vacuum (TMSV) pairs and

ω(1)∩o(
√
n) secret-key bits. The conceptual approach behind the

result is to combine 1) soft-covering and secret-key resources as a
coordination mechanism and 2) superposition coding in the form
of a two-layer On-Off Keying (OOK) and Phase Shift Keying
(PSK) to index channel uses in which TMSV pairs are encoded.
This approach is related to the idea of quantum trade-off coding,
specialized and extended to the covert communication setting.
Our technical contribution is to develop one-shot bounds then
specialized to bosonic channels.

I. INTRODUCTION

Covert communications refer to situations in which the

objective is to achieve reliability while simultaneously re-

maining undetectable by an adversary [1]. This stringent

requirement often leads to a square-root law, by which the

number of covert and reliable bits transmitted over n uses

of a channel cannot scale greater than O(
√
n) [2]; a notion

of covert capacity capturing the constant in front of the
√
n

can then be appropriately defined and characterized [3], [4].

Subsequent studies have extended these characterizations to

multiuser scenarios [5]–[10], Gaussian and continuous time

channels [4], [11]–[13], as well as investigated situations in

which the square-root law can be circumvented [14]–[19].

Specifically relevant to the present work, the problem of covert

communication over quantum channels has attracted attention

for its potential to offer unique quantum-secure capabilities.

Following the experimental demonstration of quantum-secure

communications over optical channels [20], the covert capacity

of classical-quantum channels [21]–[23] and lossy bosonic

channels [24]–[27] has been studied. In particular, the use of

entanglement resources results in a scaling of O(
√
n log n) for

the number of covert and reliable bits, strictly improving on

the covert capacity without entanglement [23], [25].

One of the central questions in covert communications has

been to identify the resources required to achieve covertness,

i.e., in the form of secret keys or entanglement pairs. In

particular, for classical channels, both the number of covert

and reliable bits and the number of secret key bits required
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to support the communication scale as the square root of the

blocklength [3], sometimes not requiring any secret key at

all [3], [28]. In the case of quantum covert communications,

the recent results of [29], [30] show that a O(
√
n log n) scaling

can be achieved with no more than n TMSV pairs.

The main contribution of the present work is to extend

the results of [25], [30] by showing that the quantum advan-

tage of entanglement-assisted covert communications requires

much fewer resources than previously identified: we show

that a covert throughput O(
√
n log n) can be obtained with

ω(
√
n) ∩ o(n) TMSV pairs and ω(1) ∩ o(

√
n) secret bits.

Specifically, we achieve this result by combining two layers

of coded modulation, including OOK and PSK, in a manner

reminiscent of quantum trade-off coding [31]. Our approach

leverages one-shot results subsequently specialized to the

specific bosonic channel at hand.

The rest of the paper is organized as follows. We introduce

necessary notation used throughout the paper in Section II and

the formal system model in Section III. We present our main

results in Section IV, together with a high-level proof. Finally,

we outline more detailed aspects of the proof in Section V.

II. NOTATION

Let R+ and N∗ denote all non-negative real numbers and

all positive integers, respectively. For any set Ω, the indicator

function is defined as 1(ω ∈ Ω) = 1 if ω ∈ Ω and 0
otherwise. For any set X and n ∈ N∗, a sequence of n

elements is denoted by xn ≜ (x1, · · · , xn) ∈ Xn, and we

sometimes use x ≜ (x1, · · · , xn) ∈ Xn when it is clear

from the context. For x ∈ Xn, p̂x denotes the type of x, i.e.,

p̂x(x) =
1
n

Pn
i=1 1{xi = x}. Moreover, for a, b ∈ R such that

⌊a⌋ ⩽ ⌈b⌉, we define [a; b] ≜ {⌊a⌋, ⌊a⌋+1, · · · , ⌈b⌉−1, ⌈b⌉};

otherwise [a; b] ≜ ∅. In addition, for any x ∈ R, we let

|x|
+

denote max(x, 0). For any x ∈ R, we also define the

Q-function Q(x) ≜
R∞
x

1√
2π

e
−x2

2 dx and its inverse function

Q−1(·). Throughout the paper, log is with respect to (w.r.t.)

base e, and therefore all the information quantities should be

understood in nats.

Let D(H) denote the set of density operators acting

on a separable Hilbert space H, and let D⩽(H) denote

the set of subnormalized density operators with trace less

than 1. Let id be the identity operator acting on D(H).
For ρ ∈ D(H), the von Neumann entropy is H(ρ) ≜
−tr (ρ log ρ). The trace distance between two states ρ and



σ is defined as 1
2∥ρ− σ∥1, where ∥σ∥1 ≜ tr (

√
σ†σ).

The fidelity for ρ,σ ∈ D(H) is defined as F (ρ,σ) ≜
∥√ρ

√
σ∥21. The purified distance for ρ,σ ∈ D⩽(H) is de-

fined as P (ρ,σ) ≜
p

1− F (ρ⊕ [1− tr (ρ)],σ ⊕ [1− tr (σ)]).
For σ, ρ ∈ D(H), the quantum relative entropy is

D(ρ ∥σ) ≜ tr (ρ (log ρ− log σ)), the quantum relative entropy

variance is V (ρ∥σ) ≜ tr
�

ρ (log ρ− log σ − D(ρ ∥σ))2
�

,

and the fourth central moment of quantum relative en-

tropy is R(ρ∥σ) ≜ tr
�

ρ (log ρ− log σ − D(ρ ∥σ))4
�

. For

a Classical-Quantum (cq) state ρXA, D(ρXA ∥ ρX ⊗ ρA)
also represents the Holevo information. The hypothesis

testing relative entropy of ρ,σ ∈ D(H) is defined

as D
ϵ
H(ρ ∥σ) ≜ − log inf0⩽Π⩽I:tr(Πρ)⩾1−ϵ tr (Πσ) [32].

The max relative entropy of ρ,σ ∈ D⩽(H) such

that supp (ρ) ⊆ supp (σ) is defined as Dmax(ρ ∥σ) ≜
inf {λ ∈ R : ρ ⩽ eλσ} [33]. The ϵ-smooth max relative en-

tropy is defined as D
ϵ
max(ρ ∥σ) ≜ infρ′∈Bϵ(ρ) Dmax(ρ

′ ∥σ),
where Bϵ(ρ) ≜ {σ ∈ D(H) : P (ρ,σ) ⩽ ϵ}.

III. COVERT COMMUNICATION MODEL

We consider the problem of covert communication over

multiple uses of a single-mode lossy thermal-noise bosonic

channel L
(κ,NB)
A→BW [34] illustrated in Fig. 1, where κ is the

transmissivity and NB is the mean photon number charac-

terizing the background thermal noise. Atransmitter (Alice)

attempts to reliably transmit a message to a receiver (Bob)

while avoiding detection by an adversary (Willie). Specifically,

the thermal state ρNB
with mean photon number NB is ρNB

≜
1

πNB

R
exp

�

− |α|2

NB

�

d2α|α⟩⟨α| =
P∞

n=0
Nn

B

(NB+1)n+1 |n⟩⟨n|,
where {|α⟩}α∈C is the over-complete set of coherent states and

{|n⟩}n∈N is the Fock basis. The relations between annihilation

operators at the input and output of the channel are described

by b̂ =
√
κâ+

√
1− κê and ŵ = −

√
1− κâ+

√
κê.

More formally, Alice transmits her uniform message W ∈
[1;M ] with the aid of a uniform secret key S ∈ [1;K]
and m pairs of entangled states |ψ⟩⊗m

RI preshared with

Bob. In the present work, the entangled pair consists of

the reference (R) and idler (I) of a TMSV described in

the Fock basis by |ψ⟩RI =
P∞

n=0

q
Nn

S

(NS+1)n+1 |n⟩R|n⟩I ,
where NS is the effective mean photon number, or the

signal power, on each sub-system. Alice receives R m while

Bob noiselessly obtains Im. Inspired by the trade-off coding
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Fig. 1. Covert communication model with secret keys and entangled resources
over a lossy thermal-noise bosonic channel.

framework [31], [35], we investigate the achievable through-

put of classical bits with limited access to the entangled

resource, and therefore assume the number of entangled

pairs m may be different from the actual number of chan-

nel uses n. Specifically, Alice transmits her message W

with a set of encoding channels {E
(w,s)
WSRm→An}(w,s) map-

ping systems (W,S,Rm) to an n-mode state σAn(w, s) =

trIm (σAnIm(w, s)), where σAnIm(w, s) ≜ (E
(w,s)
WSRm ⊗

id⊗m
I )ψ⊗m

RI , and ψRI ≜ |ψ⟩⟨ψ|RI . After n uses of the

channel L
(κ,NB)
A→BW , Bob observes the state σBnIm(w, s) ≜

trWn (((L
(κ,NB)
A→BW )⊗n ⊗ idIm)σAnIm(w, s)) and Willie ob-

serves σWn(w, s) ≜ trBn ((L
(κ,NB)
A→BW )⊗nσAn(w, s)) . Bob’s

objective is to reliably decode the message W with

his knowledge of secret key S and a collection of

decoding Positive Operator-Valued Measures (POVMs)

{{Π
(w,s)
BnIm}w}s. The reliability metric is the average prob-

ability of error of his estimate cW of W , Pe ≜
ES [P (cW ̸= W |S)], where P (cW ̸= w|W = w, S = s) =
tr ((idBnIm −Π

(w,s)
BnIm)σBnIm(w, s)). On the other hand,

Willie’s objective is to detect whether Alice is transmitting

or not based on his observations σWn via a hypothesis test

TWn→{0,1} described by a POVM {T, id − T}. Note that

Willie has knowledge of the exact channel state and Alice’s

coding scheme but has neither access to the realization of

secret key s nor to the entangled pairs |ψ⟩⊗m
RI . In particular,

when Alice chooses not to transmit anything, her input state

to the channel is simply |0⟩⟨0|⊗n
, and therefore Willie expects

σ⊗n
0,W ≜ ρ⊗n

κNB
for the null hypothesis H0. When a transmission

occurs, Willie expects σ̂Wn for the alternative hypothesis H1,

where σ̂Wn ≜ 1
MK

PM
w=1

PK
s=1 σWn(w, s) is the mixed state

induced by the codebook. The covertness metric is then cap-

tured by the trace distance between σ⊗n
0,W and σ̂Wn . As already

pointed out in [1], [24], [26], the trace distance metric is the

most operationally relevant choice since any test performed by

Willie on σWn satisfies 1 ⩾ α + β ⩾ 1− 1
2∥σ̂Wn − σ⊗n

0,W ∥1,

where α and β are probabilities of false alarm and missed-

detection, and the lower bound can be achieved by the Holevo-

Helstrom test [36, Chapter IV.2], [37], [38, Lemma 9.1.1].

Acode achieving reliability and covertness for the channel

model of Fig. 1 is formally defined as follows.

Definition 1. An (M,K,m, n, ϵ, δ) code defined by
�

{E
(w,s)
WSRm→An}(w,s), {Π

(w,s)
BnIm}(w,s)

�

is both ϵ-reliable and

δ-covert if Pe ⩽ ϵ and 1
2∥σ̂Wn − σ⊗n

0,W ∥1 ⩽ δ.

IV. MAIN RESULT

We propose a protocol achieving a reliable and covert

communication with a two-layer encoding, inspired by the

classical-entanglement trade-off coding framework [31], [35].

The intuition is that Alice and Bob may reduce the number

of TMSV pairs by indexing a subset of positions in which the

pairs are phase-coded. Although this indexing might partially

rely on secret-key bits, it also carries information bits as the

indexing may be viewed as OOK modulation. Specifically,

Alice splits her message W into two message layers W 1 and

W2; the first message layer W1 is coded for reliability and



covertness using OOK, while the second message layer W2

is phase-coded for reliability onto the references of TMSV

pairs, which are transmitted in the ON timeslots of the OOK

modulation. Bob subsequently attempts to decode the first

layer W1 using the preshared secret key S but without any

entanglement resources, and then decodes the second layer

W2 based on the estimate cW1 and the entanglement resources

Im.

Our protocol achieves covertness by combining a sparse

OOK encoding together with diffuse power when phase mod-

ulating. This simultaneous use of sparse and a diffuse power

is central to efficiently use resources, which is unlike existing

coding schemes [25], [30] that solely rely on diffuse power

to achieve covertness. We shall see that there exist trade-

offs between the sparsity and the power levels required for

covertness.

Formally, we shall use the following two-layer codes.

Definition 2. Consider a sub-family of (M,K,m, n, ϵ, δ)
codes where M = M1M2. An (M 1,M2,K,m, n, ϵ, δ) 2-layer

code with encoding channels {E
(w1,w2,s)
W1W2SRm→An}(w1,w2,s)

and collections of 2-stage decoding POVMs
�

{Π
(w1,s)
Bn }(w1,s), {Γ

(w1,w2)
BnIm }(w1,w2)

�

is ϵ-reliable and

δ-covert if

Pe = ES [P (cW1 ̸= W1 or cW2 ̸= W2|S)] ⩽ ϵ,

1

2
∥σ̂Wn − σ⊗n

0,W ∥1 ⩽ δ.

Our main result is the characterization of

(M1,M2,K,m, n, ϵ, δ) code as follows.

Theorem 3. Let ϵ, δ > 0. Let {αn}n∈N∗

and {sn}n∈N∗

be

sequences of positive real numbers satisfying αn ∈ o(1) ∩
ω(n− 1

2 ), sn ∈ o(1) ∩ ω(n− 1
2 ), and such that αnsn ⩽

2
√

κNB(1+κNB)

(1−κ) Q−1


1−δ
2

�

n− 1
2 − o(n− 1

2 ). There exist µ ∈
(0, 1) and a sequence of (M1,M2,K,m, n, ϵ, δ) codes such

that for n large enough,

logM1 =
nκ2αns

2
n

2(1− κ)NB(1 + (1− κ)NB)
+ o(

√
n),

logM1K =
n(1− κ)2αns

2
n

2κNB(1 + κNB)
+ o(

√
n),

logM2 = −(1− µ)
κnαnsn log sn
1 + (1− κ)NB

+ o(
√
n log n),

and m = nαn(1− µ).

Acouple of comments are in order. The parameters α n and

sn capture the sparsity and the diffuse signal power level of

our coding scheme, respectively. There is a joint constraint that

restricts the scaling of the product αnsn with the blocklength

n but different choices of the sparsity and the diffuse signal

power level result in different scalings for the number of bits

logM1, logM2, the number of secret-key bits logK, and

the number of TMSV pairs m. As expected, the quantum

entanglement advantage presents itself in the second layer

of coding logM2 and not in the first layer logM1, but the

benefit of the first layer presents itself in the reduced number

of TMSV pairs scaling as O(nαn) instead of n.

Theorem 3 can be further specialized to reveal constants

associated to the scaling.

Corollary 4. For any τ ∈ (0, 1
2 ), fix some α, s > 0 such

that αs =
2
√

κNB(1+κNB)

1−κ
Q−1



1−δ
2

�

, and let lim
n→∞

αn

n−
1
2
+τ

=

α, and lim
n→∞

sn
n−τ = s. Then

lim
n→∞

logM1

n
1
2−τ

=
κ2s

p
κNB(1 + κNB)

(1− κ)2NB(1 + (1− κ)NB)
Q−1

�

1− δ

2

�

,

lim
n→∞

logM1K

n
1
2−τ

=
(1− κ)sp

κNB(1 + κNB)
Q−1

�

1− δ

2

�

,

lim
n→∞

logM2

n
1
2 log n

=
2τκ

p
κNB(1 + κNB)

(1− κ)(1 + (1− κ)NB)
Q−1

�

1− δ

2

�

,

lim
n→∞

m

n
1
2+τ

= α,

and, in particular, the number of entangled nats consumed by

this protocol is scaling as

lim
n→∞

mg(sn)

n
1
2 log n

=
2τ

p
κNB(1 + κNB)

1− κ
Q−1

�

1− δ

2

�

,

where g(x) = (x+ 1) log(x+ 1)− x log x.

Note that for channels for which κ > 0.5, no secret-key

bits are needed to ensure that the first layer of coding remains

covert. In such cases, our protocol offers strict savings of

resources compared to [25], [30]. In other cases, our protocol

strictly reduces the number of TMSV pairs required at the

expense of the use of secret-key bits. An illustration of the

resource trade-off in terms of τ is provided in Fig. 2.
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Fig. 2. Illustration of resource trade-off in terms of orders of parameters
with blocklength. The sparsity is represented by αn and the signal power is
represented by sn.

Remark 1. Even though our results do not extend directly to

the case in which either αn = Θ(n− 1
2 ) or sn = Θ(n− 1

2 ), we

offer some insights on how our idea may be applied to the

two extreme regimes.

1) When sn = Θ(n− 1
2 ), our scheme corresponds to

the entanglement-assisted covert capacity investigated



in [25], in which at least n TMSV pairs are consumed

and no indexing is required.

2) When αn = Θ(n− 1
2 ), our scheme corresponds to the

sparse OOK strategy investigated in [22]. In addition,

the benefits of the additional log n scaling in covert and

reliable throughput is lost. The reason is that, strictly

speaking, the phase encoding effectively utilizes TMSV

pairs as cq states, and the associated rate is there-

fore limited by the Holevo information instead of the

entanglement-assisted capacity. This is consistent with

[29], [30], which both show that the benefit of phase

encoding on TMSV pairs to approach entanglement-

assisted capacity only shows up when the signal power

is small enough.

V. PROOF OF THEOREM 3

The trade-off between the sparsity of OOK and the diffuse

signal power in terms of the mean photon number NS of

the shared TMSV pairs ψRI translates into the the two-layer

codebook for covertness, in which we set αn ∈ o(1)∩ω(n− 1
2 )

and let NS = sn ∈ o(1) ∩ ω(n− 1
2 ).

A. Codebook Construction

Let M1,M2,K ∈ N∗. Alice generates two codebooks C 1

and C2 independently, with |C1| = M1K and |C2| = M2.

Let X ≜ {x0, x1} and PX(x) ≜ (1 − αn)1{x = x0} +
αn1{x = x1}, where x0 and x1 represent the off and on

symbols of OOK, respectively. The above distribution PX

captures the sparsity level of OOK and generates nαn pulses

on average for n channel uses, but we require a finer control

over the number of pulses within each codeword; we create

the following auxiliary n-fold distribution ePXn for x ∈ Xn

to throw away the codewords with too small weights:

ePXn(x) ≜
P⊗n
X (x)1{p̂x(x1) ⩾ (1− µ̄)αn}

P (p̂x(x1) ⩾ (1− µ̄)αn)
,

where µ̄ ∈ (0, 1). Alice then generates M 1K codewords

xw1s with w1 ∈ [1;M1] and s ∈ [1;K] according to ePXn

independently at random for C1. Note that there are at least

ℓ ≜ ⌊n(1 − µ̄)αn⌋ x1-pulses for every codeword xw1s. For

codebook C2, Alice generates M 2 codewords θw2
∈ Θℓ

n of

length ℓ with w2 ∈ [1;M2], where Θn represents Ln ≜ 2n-

PSK, according to a ℓ-product uniform distribution P⊗ℓ
Θn

over

Θn independently at random.

· · ·· · ·· · · · · ·

n

· · ·1 ℓℓ-1ℓ-22 j

· · · ℓ-2 ℓ-1 ℓj21 · · ·

· · ·

A1 A3 Aij

θθθθθθ

I

ψθ1

A1I1
ψθ2

A3I2
ψ
θj

Aij
Ij

ψ
θℓ−2

Aiℓ−2
Iℓ−2 ψ

θℓ−1

Aiℓ−
1
Iℓ−1 ψ

θℓ

Aiℓ
Iℓ

Ai
-2ℓ

Ai
-1ℓ

Ai
ℓ

θw2

σAnIℓ

x1 :

x0 :
I I I I I

Fig. 3. Illustration of two-layered encoding scheme

The two-layer encoding scheme is illustrated in Fig. 3 and

works as follows. Alice first encodes w 1 and s into layer 1

codeword xw1s, and also encodes w2 into layer 2 codeword

θw2 . She then performs phase modulation by applying the

unitary operators, characterized by bUθi ≜ exp
�

jθiâ
†â
	

,

according to codeword θ for each i ∈ [1; ℓ] on her share

of the entanglement sub-systems Rℓ, which requires a con-

sumption of ℓ entangled pairs, i.e., ψ
θw2

RℓIℓ ≜
Nℓ

i=1 ψ
θi
RiIi

=Nℓ
i=1((

bUθi ⊗ idIi)ψRiIi(
bU †
θi

⊗ idIi)). Finally, Alice spreads

the state ψ
θw2

RℓIℓ according to xw1s by placing the states in the

first ℓ positions of x1, i.e.,

σ
xw1s,θw2

AnIℓ ≜ ψθ1
A1I1

⊗ |0⟩⟨0|A2
⊗ ψθ2

A3I2
⊗ |0⟩⟨0|A4

⊗ · · ·

⊗ψ
θj
Aij

Ij
⊗ |0⟩⟨0|Aij+1

⊗ ψ
θℓ−2

Aiℓ−2
Iℓ−2

⊗ · · ·⊗ |0⟩⟨0|An
,

where {ij}j ⊂ [1;n] represents the first ℓ indices of the x1-

pulse positions with j ∈ [1; ℓ]. Equivalently, the two-layer

encoder maps the message and the secret key to the fol-

lowing cq state: σXnΘℓAnIℓ(w1, w2, s) ≜ |xw1s⟩⟨xw1s|Xn ⊗
|θw2

⟩⟨θw2|Θℓ ⊗σ
xw1s,θw2

AnIℓ . Note that without access to Iℓ, the

reduced state

σ
xw1s,θw2

An = trIℓ

�

σ
xw1s,θw2

AnIℓ

�

= ρsn,A1
⊗ |0⟩⟨0|A2

⊗ ρsn,A3
⊗ |0⟩⟨0|A4

⊗ · · ·

⊗ ρsn,Aij
⊗ |0⟩⟨0|Aij+1

⊗ ρsn,Aiℓ−2
⊗ · · ·⊗ |0⟩⟨0|An

,

where ρsn is a thermal state with mean photon number sn,

and σ
xw1s,θw2

An completely loses the phase information θw2
.

Note also that the expected cq state over the genera-

tion of random codebook C1 is EC1

�

|X⟩⟨X|Xn ⊗ σX

An

�

=P
x
ePXn(x)|x⟩⟨x|Xn ⊗ σx

An ≜ σ̃XnAn . Lemma 5 charac-

terizes the trace distance between σ̃XnAn and σ⊗n
XA, where

σXA ≜
P

x PX(x)|x⟩⟨x|X ⊗ σx
A = (1 − αn)|x0⟩⟨x0|X ⊗

|0⟩⟨0|A + αn|x1⟩⟨x1|X ⊗ ρsn,A.

Lemma 5. For n large enough, there exists some cµ̄ >

0 such that 1
2





σ̃XnAn − σ⊗n
XA







1
⩽ exp (−cµ̄nαn) and

1
2





σ̃Xn ⊗ σ̃An − σ⊗n
X ⊗ σ⊗n

A







1
⩽ 2 exp (−cµ̄nαn)

Proof: This is a consequence of the Chernoff bound and

the monotonicity of the trace distance.

B. Reliability and Soft-Covering Analysis

Observe that after n uses of L
(κ,NB)
A→BW , the global joint state

containing Bob’s systems is σXnΘℓBnIℓ(w1, w2, s) ≜
trWn (((L

(κ,NB)
A→BW )

⊗n ⊗ idIℓ)σXnΘℓAnIℓ(w1, w2, s)) ,
while the global joint state containing

Willie’s terminal is σXnΘℓWn(w1, w2, s) ≜
trBn ((L

(κ,NB)
A→BW )⊗nσXnΘℓAn(w1, w2, s)) = |θw2

⟩⟨θw2
|
Θℓ ⊗

σXnWn(w1, s), which shows that Willie’s observation Wn is

decoupled from Θℓ. Similarly, when Bob chooses to ignore

systems Iℓ, his observations are also decoupled from Θℓ as

σXnBn(w1, s). We then recall the following one-shot channel

reliability and soft-covering results via position-based coding

and convex splitting lemma.

Lemma 6 (One-shot Channel Reliability and Soft-covering

Adapted from [26], [39]–[42]). Fix ϵ 1 ∈ (0, 1), η ∈ (0, δ),
γ1 ∈ (0, ϵ1), γ2 ∈ (0, η

2 ), and γ3 ∈ (0, η
2 − γ2). Then for a cq



state ρXA and a channel G : ρXA 7→ ρXBW , there exists a

coding scheme such that logM ⩾ D
ϵ1−γ1

H (ρXB ∥ ρX ⊗ ρB)−
log



4ϵ1γ
−2
1

�

, logMK ⩽ D
η/2−γ2−γ3
max (ρXW ∥ ρX ⊗ ρW ) −

2log (γ2) + log


8γ−2
3

�

, EC,S [P (cW ̸= W |S)] ⩽ ϵ1, and

EC [
1
2∥ρ̂W − ρW ∥1] ⩽ η − γ2, where C is the codebook and

ρ̂W is induced by the codebook C.

Proof: Omitted due to space constraint.

We now specialize the above result for layer 1 codebook C1.

Bob first ignores his share of entangled systems Iℓ, and the ex-

pected cq state of Bob over the generation of random codebook

C1 is σ̃XnBn ≜ EC1 [|X⟩⟨X|Xn ⊗ trWn ((L
(κ,NB)
A→BW )⊗nσX

An)].
Similarly, since Willie has no access to Iℓ, the expected cq

state of Willie over the generation of random codebook C1
is σ̃XnWn ≜ EC1

[|X⟩⟨X|Xn ⊗ trBn ((L
(κ,NB)
A→BW )⊗nσX

An)]. On

the other hand, the observation induced by C1 at Willie’s

terminal is σ̂Wn . We can then apply Lemma 6 and obtain

logM1 ⩾ D
ϵ1−n−1/2

H (σ̃XnBn ∥ σ̃Xn ⊗ σ̃Bn)−O(log n),
(1)

logM1K ⩽ D
η/2−2n−1/2

max (σ̃XnWn ∥ σ̃Xn ⊗ σ̃Wn) +O(log n),
(2)

such that

EC1,S [P (cW1 ̸= W1|S)] ⩽ ϵ1, (3)

EC1

�

1

2
∥σ̂Wn − σ̃Wn∥1

�

⩽ η − n− 1
2 , (4)

where we have chosen γ1 = γ2 = γ3 = n− 1
2 . We then specify

αn and sn to ensure that σ⊗n
n,W ≜ σ⊗n

W and σ⊗n
0,W are close.

Lemma 7. The trace distance between σ⊗n
n,W and σ⊗n

0,W is

1

2









σ⊗n
n,W − σ⊗n

0,W










1
⩽ 1− 2Q (

√
n(1− κ)αnsn

2
p
κNB(1 + κNB)

)

+D0

√
nαns

3
n +D1n

−1/2. (5)

Proof: Adapted from [26, Lemma IV.1].

Choose αnsn =
2
√

κNB(1+κNB)

(1−κ) Q−1
�

1−(δ−η)
2

�

n− 1
2 −

D̄s2nn
−1/2 − O(n−1), where D̄ is some constant depending

on the channel to ensure that

1

2
∥σ⊗n

n,W − σ⊗n
0,W ∥1 ⩽ δ − η − s2n +O(n−1/2). (6)

Therefore, by combining (6), triangle inequality, and

Lemma 5, we obtain

1

2
∥σ̃Wn − σ⊗n

0,W ∥1 ⩽ δ − η. (7)

Similar to the analysis for layer 1, we use Lemma 6 for

reliability of layer 2 codebook C2. However, because of the

perturbation caused by the decoding POVM for layer 1, we

have to account for the perturbation by the gentle measurement

lemma [43] to ensure compatibility and include it as part of

the decoding error for layer 2. Consequently,

logM2 ⩾ D
ϵ2−2

√
ϵ1−n−1/2

H (σ⊗ℓ
ΘBI ∥σ⊗ℓ

Θ
⊗ σ⊗ℓ

BI)−O(log n),
(8)

such that

EC2
[cW2 ̸= W2

�

�

�

cW1 = W1] ⩽ ϵ2 − 2
√
ϵ1, (9)

where σΘBI ≜ EPΘ
[trW (|Θ⟩⟨Θ|

Θ
⊗ (L

(κ,NB)
A→BW ⊗ idI)ψ

Θ

AI)].
By combining (3), (9) and the gentle measurement lemma,

EC1C2

h
P

�

Ŵ1 ̸= W1 or cW2 ̸= W2

�

�

�
S
�i

⩽ ϵ1 + ϵ2⩽ ϵ. By

combining (4), (6) and (7), EC1C2

�

1
2∥σ̂Wn − σ⊗n

0,W ∥1
�

⩽ δ.

Therefore, by applying a derandomization argument similar

to the one in [40, Section 4.2], there exists a two-layer coding

scheme with codebooks C1 and C2 as desired.

C. Throughput Analysis

To obtain the asymptotics of (1) and (2), we ignore the

second order asymptotics and the associated information quan-

tities due to space constraint. The following lemma provides

information quantities involved in the characterization of first-

order asymptotics. Note that the truncation effect characterized

by Lemma 5 creates negligble difference from the asymptotics

computed by the corresponding n-product states.

Lemma 8. Let σXBW ≜ L
(κ,NB)
A→BW (σXA). Then

D(σXB ∥σX ⊗ σB) =
κ2αns

2
n

2(1− κ)NB(1 + (1− κ)NB)

−O(α2
ns

2
n,αns

3
n),

D(σXW ∥σX ⊗ σW ) =
(1− κ)2αns

2
n

2κNB(1 + κNB)
−O(α2

ns
2
n,αns

3
n),

Proof: Omitted due to space constraint.

Therefore,

logM1 ⩾
nκ2αns

2
n

2(1− κ)NB(1 + (1− κ)NB)
+ o(

√
n), (10)

logM1K ⩽
n(1− κ)2αns

2
n

2κNB(1 + κNB)
+ o(

√
n). (11)

For the phase modulation on layer 2, we show that as we

enlarge the set of phase modulation Ln, there exists a state

σ̃BI that represents the mixed state coming from a uniform

and continuous phase ensemble over [0, 2π]. Then the code

rate also converges to the Holevo information corresponding

to this ensemble [29, Eq. (11)].

Lemma 9. There exists σ̃ΘBI = limLn→∞ σΘBI

in the sense of trace distance, and

D(σΘBI ∥σΘ ⊗ σBI) ⩾ − κ
1+(1−κ)NB

sn log sn + O(sn) +

O(24n−3×2n log2 s−1
n −3×2n log2

(1−κ)NB+1

κ ) for large enough n.

Proof: The proof follows from combining [44, Theorem

2 and 5] and [29, Appendix B].

Finally,

logM2 ⩾ (1− µ)
−κnαnsn log sn
1 + (1− κ)NB

+ o(
√
n log n). (12)

The result follows by taking m = ℓ = ⌊n(1− µ̄)αn⌋, µ such

that (1−µ) = m
nαn

, and η from (4) and (7) is arbitrarily small.
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[26] S.-Y. Wang, T. Erdoğan, and M. R. Bloch, “Towards a characterization

of the covert capacity of bosonic channels under trace distance,” in Proc.

of IEEE International Symposium on Information Theory, Helsinki,
Finland, Jun. 2022, pp. 354–359.
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