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Astract—We revisit the problem of entanglement-assisted
covert communication over bosonic channels and show that the
benefits of entanglement can be achieved with fewer entanglement
resources than previously identified. Specifically, we show that
O(y/nlogn) covert and reliable bits can be exchanged using
w(v/n) No(n) Two-Mode Squeezed-Vacuum (TMSV) pairs and
w(1)No(y/n) secret-key bits. The conceptual approach behind the
result is to combine 1) soft-covering and secret-key resources as a
coordination mechanism and 2) superposition coding in the form
of a two-layer On-Off Keying (OOK) and Phase Shift Keying
(PSK) to index channel uses in which TMSYV pairs are encoded.
This approach is related to the idea of quantum trade-off coding,
specialized and extended to the covert communication setting.
Our technical contribution is to develop one-shot bounds then
specialized to bosonic channels.

I. INTRODUCTION

Covert communications refer to situations in which the
objective is to achieve reliability while simultaneously re-
maining undetectable by an adversary [1]. This stringent
requirement often leads to a square-root law, by which the
number of covert and reliable bits transmitted over n uses
of a channel cannot scale greater than O(y/n) [2]; a notion
of covert capacity capturing the constant in front of the \/n
can then be appropriately defined and characterized [3], [4].
Subsequent studies have extended these characterizations to
multiuser scenarios [5]-[10], Gaussian and continuous time
channels [4], [11]-[13], as well as investigated situations in
which the square-root law can be circumvented [14]-[19].
Specifically relevant to the present work, the problem of covert
communication over quantum channels has attracted attention
for its potential to offer unique quantum-secure capabilities.
Following the experimental demonstration of quantum-secure
communications over optical channels [20], the covert capacity
of classical-quantum channels [21]-[23] and lossy bosonic
channels [24]-[27] has been studied. In particular, the use of
entanglement resources results in a scaling of O(y/n logn) for
the number of covert and reliable bits, strictly improving on
the covert capacity without entanglement [23], [25].

One of the central questions in covert communications has
been to identify the resources required to achieve covertness,
i.e., in the form of secret keys or entanglement pairs. In
particular, for classical channels, both the number of covert
and reliable bits and the number of secret key bits required
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to support the communication scale as the square root of the
blocklength [3], sometimes not requiring any secret key at
all [3], [28]. In the case of quantum covert communications,
the recent results of [29], [30] show that a O(y/n logn) scaling
can be achieved with no more than n TMSV pairs.

The main contribution of the present work is to extend
the results of [25], [30] by showing that the quantum advan-
tage of entanglement-assisted covert communications requires
much fewer resources than previously identified: we show
that a covert throughput O(y/nlogn) can be obtained with
w(y/n) No(n) TMSV pairs and w(1) N o(y/n) secret bits.
Specifically, we achieve this result by combining two layers
of coded modulation, including OOK and PSK, in a manner
reminiscent of quantum trade-off coding [31]. Our approach
leverages one-shot results subsequently specialized to the
specific bosonic channel at hand.

The rest of the paper is organized as follows. We introduce
necessary notation used throughout the paper in Section II and
the formal system model in Section III. We present our main
results in Section IV, together with a high-level proof. Finally,
we outline more detailed aspects of the proof in Section V.

II. NOTAION

Let R, and N, denote all non-negative real numbers and
all positive integers, respectively. For any set €, the indicator
function is defined as 1(w € Q) = 1 if w € Q and 0
otherwise. For any set X and n € N,, a sequence of n
elements is denoted by z" £ (1, ,x,) € X", and we
sometimes use X = (v1,---,z,) € X" when it is clear
from the context. For x € X, px denotes the type of x, i.e.,
px(z) = L3 | 1{x; = x}. Moreover, for a,b € R such that
la) <[], we define [asb] 2 {[al, [a] +1,--- , [6] — 1, [b]}:
otherwise [a;b] = (). In addition, for any z € R, we let
|z|* denote max(z,0). For any x € R, we also define the
Q-function Q(z) £ [ ﬁe%dx and its inverse function
Q~1(-). Throughout the paper, log is with respect to (W.r.t.)
base e, and therefore all the information quantities should be
understood in nats.

Let D(H) denote the set of density operators acting
on a separable Hilbert space #, and let D (H) denote
the set of subnormalized density operators with trace less
than 1. Let id be the identity operator acting on D(H).
For p € D(H), the von Neumann entropy is H(p) =
—tr (plog p). The trace distance between two states p and



o is defined as i|p—ol|,, where ||o]|, £ tr(Volo).
The fidelity for p,o0 € D(H) is defined as F(p, o) =
H\f\/»H? The puriﬁed distance for p,0 € D¢(H) i
finedas P(p,0) £ \/1-F(pa[l —tr (p)],0c & [L — tr (0))]).
For o,p € D(’H), the quantum relative entropy is
D(p| o) £ tr (p (log p — log o)), the quantum relative entropy

2 tr (p(logp —~logo —D(p[|0))").

variance is V(pllo) =
and the fourth central moment of quantum relative en-
tropy is R(plo) 2t (plogp— D(p|0))"). For
a Classical-Quantum (cq) state pxa, D(pxa | px @ pa)
also represents the Holevo information. The hypothesis
testing relative entropy of p,oc € D(H) is defined
as DE(PHU) = _loginfOSI_Iélzlr(Hp))lfetr(HU) (32].
The max relative entropy of p,0 € Dg(H) such
that supp(p) C supp(o) is defined as D, (p|o) =
inf {\ € R: p < e*c} [33]. The e-smooth max relative en-
tropy is defined as Dy (p | ) 2 infyvcse(p) D (7' [ 0),
where B¢(p) £ {0 € D(H) : P(p,0) < €}.

III. COVERT COMMUNICAION MODEL

logo —

logo —

We consider the problem of covert communication over
multiple uses of a single-mode lossy thermal-noise bosonic
channel £ : _)Ngw [34] illustrated in Fig. 1, where & is the
transmissivity and Np is the mean photon number charac-
terizing the background thermal noise. Atransmitter (Aice)
attempts to reliably transmit a message to a receiver (Bob)
while avoiding detection by an adversary (Willie). Specifically,

the thermal state p INe with mean photon number Np is py, =

s Jexp (5L) dalayal = K02, i n) (nl,
where {|a) }aE(C is the over-complete set of coherent states and
{|n)} nen is the Fock basis. The relations between annihilation
operators at the input and output of the channel are described
by b= /kia+ 1 — ké and 0 = —/1 — ki + /Ké.

More formally, Aice transmits her uniform message W &€
[1; M] with the aid of a uniform secret key S € [I; K]
and m pairs of entangled states |1/J>%}" preshared with
Bob. In the present work, the entangled pair consists of
the reference (R) and idler (/) of a TMSV described in

. o'e) NTL
the Fock basis by [0}z, = 2. 01/ variyer ™ gl s

where Ng is the effective mean photon number, or the
signal power, on each sub-system. Aice receives R ™ while
Bob noiselessly obtains ™. Inspired by the trade-off coding
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Fig. 1. Covert communication model with secret keys and entangled resources
over a lossy thermal-noise bosonic channel.

framework [31], [35], we investigate the achievable through-
put of classical bits with limited access to the entangled
resource, and therefore assume the number of entangled
pairs m may be different from the actual number of chan-
nel uses n. Specifically, Aice transmits her message W
with a set of encoding channels {5‘(,;,”:981)%,” A }(w,s) Map-
ping systems (W, S, R™) to an n-mode state o4n (w s) =
trym (O’An[m (’LU7 S)), where TAnm (w7 S) e (5( SRm ®
d¥™)ye, and Yrpr = |¢)(1h|g;. Ater n uses of the
channel C;NBW, Bob observes the state opgnrm(w,s) =
trypn (((;CAA)BW)®TL & ld]m) A,?n[m gw, 8)) and Willie ob-
serves on (w,s) 2 trpe (L5NE))® 0 an (w, s)) . Bob’s
objective is to reliably decode the message W with
his knowledge of secret key S and a collection of
decoding Positive Operator-Valued Measures (POVMs)
{{Hg“unfm w}s. The reliability metric is the average prob-
ablhty _of error of his estimate W of w, P, %
Eg [P (W#W|S)] where ]P’(W;éw|W—w S=s) =

((1dBn1m — 15 7m)oBnm(w,s)). On the other hand,
Willie’s objective is to detect whether Aice is transmitting
or not based on his observations oy~ via a hypothesis test
Twn—g0,1} described by a POVM {T',id — T'}. Note that
Willie has knowledge of the exact channel state and Aice’s
coding scheme but has neither access to the realization of
secret key s nor to the entangled pairs |¢)%7". In particular,
when Aice chooses not to transmit anything, her input state
to the channel is simply |0)(0|®", and therefore Willie expects
agz’"w = p%’\} for the null hypothesis Hy. When a transmission
occurs, Willie expects gy for the alternative hypothesis Hi,
where Gyn 2 T SM SR gyn (w, 5) s the mixed state
induced by the codebook. The covertness metric is then cap-
tured by the trace distance between a®” and oy~. A already
pointed out in [1], [24], [26], the trace d1stance metric is the
most operationally relevant choice since any test performed by
Willie on oy satisfies 1 > a+ 8> 1— §llown — o5y |
where « and (3 are probabilities of false alarm and missed-
detection, and the lower bound can be achieved by the Holevo-
Helstrom test [36, Chapter IV.2], [37], [38, Lemma 9.1.1].

Acode achieving reliability and covertness for the channel
model of Fig. 1 is formally defined as follows.

Definition 1. 4 (M,K,m,n,¢e,d) code defined by
({Sé;uéi)zqun}(w s)» {H(w’im}(w S)> is both e-reliable and

S-covert if P. < € and %||Gwn — a®” wil <

IV. MAN RESULT

We propose a protocol achieving a reliable and covert
communication with a two-layer encoding, inspired by the
classical-entanglement trade-off coding framework [31], [35].
The intuition is that Aice and Bob may reduce the number
of TMSV pairs by indexing a subset of positions in which the
pairs are phase-coded. Athough this indexing might partially
rely on secret-key bits, it also carries information bits as the
indexing may be viewed as OOK modulation. Specifically,
Aice splits her message W into two message layers W 1 and
Ws; the first message layer W; is coded for reliability and



covertness using OOK, while the second message layer W5
is phase-coded for reliability onto the references of TMSV
pairs, which are transmitted in the ON timeslots of the OOK
modulation. Bob subsequently attempts to decode the first
layer W1 using the preshared secret key S but without any
entanglement resources, and then decodes the second layer
W, based on the estimate W/ and the entanglement resources
Im.

Our protocol achieves covertness by combining a sparse
OOK encoding together with diffuse power when phase mod-
ulating. This simultaneous use of sparse and a diffuse power
is central to efficiently use resources, which is unlike existing
coding schemes [25], [30] that solely rely on diffuse power
to achieve covertness. We shall see that there exist trade-
offs between the sparsity and the power levels required for
covertness.

Formally, we shall use the following two-layer codes.

Definition 2. Consider a sub-family of (M,K,m,n,e,d)
codes where M = My Ms. A (M 1, My, K,m,n,€,0) 2-layer
code with encoding channels {Eéﬁlﬁég}qﬁzm,ﬁm}(wl,w%s)
and  collections of  2-stage decoding POVMs
({H%ﬁf’s)}(whs),{ng,l;it?)}(whw,z)) is  ereliable

d-covert if

and

Pe = ES []P) (Wl 75 W1 or /V[72 75 W2|S)] < €,

1 ~ n

§||0W” - U?,WHl < 0.
characterization  of

Our main result is the
(M, M, K, m,n, e, ) code as follows.

Theorem 3. Let ¢,6 > 0. Let {an}, oy, and {sn},cy. be
sequences of positive real numbers satisfying «, € o(1) N
w(n’%), sn € o(l) N w(nfé), and such that o,s, <

K K — —_ — 1 — L .
Q—WQ ! (%)n > — o(n=2). There exist ji €
(0,1) and a sequence of (My, Ms, K,m,n,¢€,d) codes such

that for n large enough,

nka,, s
log My = n
o8 M = S NS+ (L= )N o(Vn),
n(l — k)%a,s?
log My K = ———— 2 Tnon_
o8 M = N+ RN o(vn),
KNnoy, Sy, log s,
log My = —(1 — pi) —2nn 208 5n. 1
og My = —( u)1+(1_H>NB+0(\/ﬁ ogn),

and m = nay, (1 — p).

Acouple of comments are in order. The parameters « ,, and
sp, capture the sparsity and the diffuse signal power level of
our coding scheme, respectively. There is a joint constraint that
restricts the scaling of the product v, s, with the blocklength
n but different choices of the sparsity and the diffuse signal
power level result in different scalings for the number of bits
log M, log M,, the number of secret-key bits log K, and
the number of TMSV pairs m. A expected, the quantum
entanglement advantage presents itself in the second layer
of coding log Ms and not in the first layer log M7, but the

benefit of the first layer presents itself in the reduced number
of TMSV pairs scaling as O(na,) instead of n.

Theorem 3 can be further specialized to reveal constants
associated to the scaling.

@rollary 4. For any 7 € (0, %), fix some a,s > 0 such
1

that as = Q—WQ_I (;), and let lim —p— =

5 =
= 8. Then

— -2
a, and lim 2= roeen
’ n—oo™ T

lim logM;  k?s\/kNp(1+KNp) 1196

n—oo p3—7 (1 —k)2Np(1+ (1 —K)Ng) 2 )7
. longlK _ (1—k)s 1 <1 5) 7
n—0o p3z—T kNp(l+ kNg) 2

27x+/kNg(1 + kNp) —

i Jog My _ 27r\/kNp(1+ £Ng) Q—l(l 5>7

n—roonzlogn (1 —k)(1+(1—~K)Np) 2
m

lim =

1 Q,
n—oop3+T

and, in particular, the number of entangled nats consumed by
this protocol is scaling as

mg(sn) _ QTx/mQ_l (1—5) 7

1—k 2

lim
n—oonz logn

where g(z) = (x4 1)log(z + 1) — zlog .

Note that for channels for which x > 0.5, no secret-key
bits are needed to ensure that the first layer of coding remains
covert. In such cases, our protocol offers strict savings of
resources compared to [25], [30]. In other cases, our protocol
strictly reduces the number of TMSV pairs required at the
expense of the use of secret-key bits. A illustration of the
resource trade-off in terms of 7 is provided in Fig. 2.
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Fig. 2. Tllustration of resource trade-off in terms of orders of parameters

with blocklength. The sparsity is represented by «, and the signal power is
represented by sp,.

Remark 1. Even though our results do not extend directly to
the case in which either o, = ©(n"2) or s, = O(n"2), we
offer some insights on how our idea may be applied to the
two extreme regimes.

1
1) When s, = ©O(n~2), our scheme corresponds to
the entanglement-assisted covert capacity investigated



in [25], in which at least n TMSV pairs are consumed
and no indexing is required.

2) When o, = @(n_%), our scheme corresponds to the
sparse OOK strategy investigated in [22]. In addition,
the benefits of the additional logn scaling in covert and
reliable throughput is lost. The reason is that, strictly
speaking, the phase encoding effectively utilizes TMSV
pairs as cq states, and the associated rate is there-
fore limited by the Holevo information instead of the
entanglement-assisted capacity. This is consistent with
[29], [30], which both show that the benefit of phase
encoding on TMSV pairs to approach entanglement-
assisted capacity only shows up when the signal power
is small enough.

V. PROOF OF THEOREM 3

The trade-off between the sparsity of OOK and the diffuse
signal power in terms of the mean photon number Ng of
the shared TMSV pairs ¢ translates into the the two-layer
codebook for covertness, in which we set a,, € o(1)Nw(n™2)
and let Ng = s,, € o(1) Nw(n™2).

A Codebook Construction

Let My, My, K € N,. Aice generates two codebooks C ;
and Cs independently, with |C;| = M;K and |Co| = Mo.
Let X & {zg,71} and Px(x) =& (1 — a,)l{z =} +
ap1{x = x1}, where xg and x; represent the off and on
symbols of OOK, respectively. The above distribution Px
captures the sparsity level of OOK and generates na,, pulses
on average for n channel uses, but we require a finer control
over the number of pulses within each codeword; we create
the following auxiliary n-fold distribution Px~» for x € A"
to throw away the codewords with too small weights:

PRM(x){px(z1) > (1 — pan}
P (px(z1) 2 (1= pan)

where i € (0,1). Aice then generates M ;K codewords
Xy, s With wy € [1;M;] and s € [1; K] according to Pxn
independently at random for C;. Note that there are at least
¢ 2 |n(1 — fi)ay,] =1-pulses for every codeword x,,, . For
codebook Cq, Aice generates M o codewords 0., € @ﬁ, of
length ¢ with wy € [1; Ms], where ©,, represents L, = 27-
PSK, according to a ¢-product uniform distribution ng over
©,, independently at random.
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Fig. 3. Illustration of two-layered encoding scheme

The two-layer encoding scheme is illustrated in Fig. 3 and
works as follows. Aice first encodes w 1 and s into layer 1

codeword x,,, s, and also encodes wy into layer 2 codeword
0.,,. She then performs phase modulation by applying the
umtary operators, characterized by Uy, £ exp {j0:aa},
according to codeword O for each ¢ € [1;¢] on her share
of the entanglement sub-systems R’, which requires a con-
sumption of ¢ entangled pairs ie., wgﬁe £ ®f:1 VYR, =
(8Z 1((U9 ® idy, ¥R, 1, (Ue ® idy,)). Finally, Aice spreads
the state w e e according to xy,, s by placing the states in the

first ¢ positions of x4, i.e.,

Xy s,0w
s A111 ® 10)(0[ 4, ® 1/)A312 ®10){0] 4, ®

O ange
%
®¢A N ® [0)(0] 4, +1®¢f P, ® @00,

where {i;}; C [1;n] represents the first ¢ indices of the z1-
pulse positions with j € [1;/]. Equivalently, the two-layer
encoder maps the message and the secret key to the fol-
lowing cq state: o xngean e (W1, Wa,8) 2 [Xuys) (Xuwys| xn @
10w, ) (O w2l ge ®0:Z}Z’9”’2 Note that without access to I, the
reduced state

xurl s 79w2 _

w Q791U
O pn = trye < Anlll 2)
= Psn,ar @[0)(0] 4, ® ps,,, a5 @ [0)(0] 4, ®
Y Psn,Aij ® [0) <O‘Aij+1 & Psn,As,_, O @ |0) <O|An7

where p,_ is a thermal state with mean photon number s,,,
and o,2**"""> completely loses the phase information 6,,,.

Note also that the expected cq state over the genera-
tion of random codebook C; is E¢, [|X)(X| . ® 0%.] =
S Pxn (X)[X)(X| yn @ 0% 2 Gxnan. Lemma 5 charac-
terizes the trace distance between G xn 4» and 0?}7}1, where
oxa = 3, Px(z)lz)(zy ® o = (1 — an)lzo){zoly ®
1004 + anlz1){z1] X @ P50,

Lemma 5. For n large enough, there exists some cp >
0 such that %"5’X7;An—o'xA‘|1 < exp(—cpnay,) and
t|oxn ®6an — 0" ® 0§ | S 2exp (—cpnay)

Proof: This is a consequence of the Chernoff bound and
the monotonicity of the trace distance. [ ]

B. Reliability and Soft-Covering Aalysis

Observe that after n uses of £E4':N§V)V, the global joint state

contamlng Bob’s systems is oxngegne(wi,we,s) =
trw (L5050 @ id1e)oxneange (w1, w3, 9))

while the global joint state containing
Willie’s Ntermmal is  oxnewn (Wi, ws,s) =
e (L5 g2 0 xnoran (W1, w2, 9)) = [04,) (O, |or @

oxnwn (w1, s), which shows that Willie’s observation W" is
decoupled from ©F. Similarly, when Bob chooses to ignore
systems I*, his observations are also decoupled from O as
oxnpn(wy, s). We then recall the following one-shot channel
reliability and soft-covering results via position-based coding
and convex splitting lemma.

Lemma 6 (One-shot Channel Reliability and Soft-covering
Mapted from [26], [39]-[42]). Fix e 1 € (0,1), n € (0,0),
71 € (0,€1), 72 €(0,3), and v3 € (0,2 —2). Then for a cq



state px 4 and a channel G : px s — pxBw, there exists a
coding scheme such that log M > Df ™ " (pxp || px ® pB) —
log (461772), log MK < Dila ™ ™ (pxw | px © pw) —
2log (12) + log (875 %), Ecs[P(W # W|S)] < e, and
Ec [5llpw — pwll;] < n — 2, where C is the codebook and
pw is induced by the codebook C.

Proof: Omitted due to space constraint. ]
We now specialize the above result for layer 1 codebook C;.
Bob first ignores his share of entangled systems I, and the ex-
pected cq state of Bob over the generation of random codebook
Cy is Gxnpn 2 Ee, [[X)(X] o @ trn (L5 50) 5 0% )]
Similarly, since Willie has no access to I, the expected cq
state of Willie over the generation of random codebook C;
is Gxnwn 2 Ee, [IX)(X] 0 @ trpn ((£5705),)%"0%,)]. On
the other hand, the observation induced by C; at Willie’s
terminal is Gyy». We can then apply Lemma 6 and obtain

1/2

log Ml > ]D)IE_II - (&X”B” &Xn X 5’Bn) — 0(10g n),
(L
n/2—2n"1/2  ~ ~ ~
log M1 K < D2 (Gxnwn || Gxn @ Gwn) + O(logn),
2
such that
Ec,.s [P (W1 # Wi|9)] < e, (3)
1. - _1
Ec, |:2|UW"_UW"||1:| <n—n, (€]

where we have chosen v; = v = v3 = n~%. We then specify

A
ay, and s, to ensure that 027, £ 0% and o}y, are close.

®

<1-20( Vn(l — K)apsy
1 2 HNB(l + HNB)
+Dov/naysd + Din~ Y2 (5)

Lemma 7. The trace distance between o
1
2

Proof: Mapted from [26, Lemma IV.1]. ]

— 2/rNs(4kNB) 6 (1—(5—n)> n-% _
2

Choose o, s, = =)

Ds2n=1/2 — O(n="), where D is some constant depending
on the channel to ensure that

n XN .
w and ooy IS

Xn Qn
Onw — Oow

1
oy —ofily <6 —n—sp+0m™V2). (@

Therefore, by combining (6), triangle inequality, and
Lemma 5, we obtain

1 ~ m

Sllown —ogivll <3 —m. ™

Similar to the analysis for layer 1, we use Lemma 6 for
reliability of layer 2 codebook Co. However, because of the
perturbation caused by the decoding POVM for layer 1, we
have to account for the perturbation by the gentle measurement
lemma [43] to ensure compatibility and include it as part of
the decoding error for layer 2. Consequently,

log My > DT (0h, || 08" © o) — Ollogn),

®)

such that
Ec, [/Wz # Wz)wl =W1] < e —24/eq, &)

where oop; 2 Ep, [t (10)(0le ® (L5205, @idr)us))].
By combining (3), (9) and the gentle measurement lemma,
]E51C2 |:IP (Wl 7é Wl or W2 7é WQ‘S :| < €1 + €2< €. By
combining (4), (6) and (7), E¢,c, [5“&Wﬂ — 0’8%%”1] < 4.
Therefore, by applying a derandomization argument similar
to the one in [40, Section 4.2], there exists a two-layer coding
scheme with codebooks C; and C, as desired.

C. Throughput Awalysis

To obtain the asymptotics of (1) and (2), we ignore the
second order asymptotics and the associated information quan-
tities due to space constraint. The following lemma provides
information quantities involved in the characterization of first-
order asymptotics. Note that the truncation effect characterized
by Lemma 5 creates negligble difference from the asymptotics
computed by the corresponding n-product states.

Lemma 8. Let oxpw = EEL{:N;IBV(UXA). Then

K20, 82

2(1 — H)NB(I + (1 - K)NB)
— 0(a?52, a,s3),

nen’ n

ID)(O'XBHO')((X)O’B):

2 .2
Dioxw ||lox @ ow) = m —0(a?s%, a,s3),
Proof: Omitted due to space constraint. [ ]
Therefore,
log M > Ao s, +o(v/n), (10)
2(1—k)Np(1+ (1 —K)Np)
log Mi K < n(l - &) ansy o(v/n). (11)

= 2/<QNB(1 +I€NB)

For the phase modulation on layer 2, we show that as we
enlarge the set of phase modulation L, there exists a state
opy that represents the mixed state coming from a uniform
and continuous phase ensemble over [0,27]. Then the code
rate also converges to the Holevo information corresponding
to this ensemble [29, Eq. (11)].

Lemma 9. There exists copr = limp, 0 00BI

in the sense of trace distance, and
K

D(UQBI ||U(~)®UBI) P —Wsnlogsn + O(Sn) +

O(24n—3x2" log, s, —3x2" log, =) for large enough n.

Proof: The proof follows from combining [44, Theorem
2 and 5] and [29, Apendix B]. |
Finally,

—KNnQy, Sy log s,
1 + (1 - IQ)NB
The result follows by taking m = ¢ = [n(1 — i)ay,], u such
that (1—pu) = -2, and 7 from (4) and (7) is arbitrarily small.

noy, ’

log My > (1 — p) +o(v/nlogn). (12)



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

B. ABash, D. Goeckel, D. Towsley, and S. Guha, “Hiding information
in noise: fundamental limits of covert wireless communication,” /IEEE
Communications Magazine, vol. 53, no. 12, pp. 26-31, Dec. 2015.

B. Bash, D. Goeckel, and D. Towsley, “Limits of reliable communication
with low probability of detection on AVGN channels,” IEEE Journal
on Selected Aeas in Communications, vol. 31, no. 9, pp. 1921-1930,
September 2013.

M. R. Bloch, “Covert communication over noisy channels: Aresolv-
ability perspective,” IEEE Transactions on Information Theory, vol. 62,
no. 5, pp. 2334-2354, May 2016.

L. Wang, G. W. Wornell, and L. Zheng, “Fundamental limits of
communication with low probability of detection,” IEEE Transactions
on Information Theory, vol. 62, no. 6, pp. 3493-3503, Jun. 2016.

V. Y. F Tan and S.-H. Lee, “Time-division is optimal for covert
communication over some broadcast channels,” IEEE Transactions on
Information Forensics and Security, vol. 14, no. 5, pp. 1377-1389, May
2019.

K. S. K. Aumugam and M. R. Bloch, “Embedding covert informa-
tion in broadcast communications,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 10, pp. 2787-2801, Oct. 2019.
——, “Covert communication over a k-user multiple access channel,”
IEEE Transactions on Information Theory, vol. 65, no. 11, pp. 7020—
7044, Nov. 2019.

K. S. K. Aumugam, M. R. Bloch, and L. Wang, “Covert communication
over a physically degraded relay channel with non-colluding wardens,”
in Proc. of IEEE International Symposium on Information Theory, Vail,
CO, Jun. 2018, pp. 766-770.

K.-H. Cho and S.-H. Lee, “Treating interference as noise is optimal for
covert communication over interference channels,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 322-332, 2021.
ABounhar, M. Sarkiss, and M. Wigger, “Mixing a covert and a non-
covert user,” in Proc. of IEEE International Symposium on Information
Theory. Taipei, Taiwan: IEEE, Jun. 2023, pp. 2577-2582.

L. Wang, “On gaussian covert communication in continuous time,”
EURAIP Journal on Wireless Communications and Networking, vol.
2019, no. 1, p. 283, Dec. 2019.

Q. Zhang, M. Bloch, M. Bakshi, and S. Jaggi, “Undetectable radios:
Covert communication under spectral mask constraints,” in Proc. of
IEEE International Symposium on Information Theory, Paris, France,
Jul. 2019, pp. 992-996.

C. Bouette, L. Luzzi, and L. Wang, “Covert communication over two
types of additive noise channels,” in Proc. of IEEE Information Theory
Workshop, Saint-Malo, France, Ar. 2023.

P. H. Che, M. Bakshi, C. Chan, and S. Jaggi, “Reliable deniable
communication with channel uncertainty,” in Proc. of IEEE Information
Theory Workshop, Hobart, Tasmania, November 2014, pp. 30-34.

B. ABash, D. Goeckel, and D. Towsley, “Covert communication gains
from adversary’s ignorance of transmission time,” IEEE Transactions on
Wireless Communications, vol. 15, no. 12, pp. 8394-8405, Dec. 2016.
K. S. K. Aumugam and M. R. Bloch, “Keyless asynchronous covert
communication,” in Proc. of IEEE Information Theory Workshop, Cam-
bridge, United Kingdom, Sep. 2016, pp. 191-195.

T. V. Sobers, B. A Bash, S. Guha, D. Towsley, and D. Goeckel,
“Covert communication in the presence of an uninformed jammer,” JEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 6193—
6206, 2017.

S. H. Lee, L. Wang, A Khisti, and G. W. Wornell, “Covert com-
munication with channel-state information at the transmitter,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 9, pp.
2310-2319, Sep. 2018.

H. Zivari-Fard, M. Bloch, and ANosratinia, “Keyless covert communi-
cation via channel state information,” IEEE Transactions on Information
Theory, vol. 68, no. 8, pp. 5440-5474, Ag. 2022.

B. A Bash, A H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel,
D. Towsley, and S. Guha, “Quantum-secure covert communication on
bosonic channels,” Nature Communications, vol. 6, pp. —, October 2015.
L. Wang, “Optimal throughput for covert communication over a
classical-quantum channel,” in Proc. of IEEE Information Theory Work-
shop, Cambridge, UK, September 2016, pp. 364-368.

A Sheikholeslami, B. ABash, D. Towsley, D. Goeckel, and S. Guha,
“Covert communication over classical-quantum channels,” in Proc.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[42]

[43]

[44]

of IEEE International Symposium on Information Theory, Barcelona,
Spain, July 2016, pp. 2064-2068.

E. Zlotnick, B. Bash, and U. Pereg, “Entanglement-assisted covert
communication via qubit depolarizing channels,” in Proc. of IEEE
International Symposium on Information Theory. Taipei, Taiwan: IEEE,
Jun. 2023, pp. 198-203.

M. S. Bullock, C. N. Gagatsos, S. Guha, and B. ABash, “Fundamental
limits of quantum-secure covert communication over bosonic channels,”
IEEE Journal of Selected Aeas in Communications, vol. 38, no. 3, pp.
471-482, mar 2020.

C. N. Gagatsos, M. S. Bullock, and B. A Bash, “Covert capacity
of bosonic channels,” IEEE Journal on Selected Aeas in Information
Theory, vol. 1, no. 2, pp. 555-567, aug 2020.

S.-Y. Wang, T. Erdogan, and M. R. Bloch, “Towards a characterization
of the covert capacity of bosonic channels under trace distance,” in Proc.
of IEEE International Symposium on Information Theory, Helsinki,
Finland, Jun. 2022, pp. 354-359.

R. Di Candia, H. Yigitler, G. Paraoanu, and R. Jintti, “Two-way covert
quantum communication in the microwave regime,” PRX Quantum,
vol. 2, no. 2, p. 020316, may 2021.

P. H. Che, M. Bakshi, and S. Jaggi, “Reliable deniable communication:
Hiding messages in noise,” in Proc. of IEEE International Symposium
on Information Theory, Istanbul, Turkey, July 2013, pp. 2945-2949.
H. Shi, Z. Zhang, and Q. Zhuang, “Practical route to entanglement-
assisted communication over noisy bosonic channels,” Physical Review
Hplied, vol. 13, no. 3, p. 034029, mar 2020.

ACox, Q. Zhuang, C. N. Gagatsos, B. Bash, and S. Guha, “Transceiver
designs approaching the entanglement-assisted communication capac-
ity,” Physical Review Aplied, vol. 19, no. 6, p. 064015, jun 2023.

M. M. Wilde, P. Hayden, and S. Guha, “Quantum trade-off coding for
bosonic communication,” Phys. Rev. A vol. 86, p. 062306, Dec 2012.
L. Wang and R. Renner, “One-Shot Classical-Quantum Capacity and
Hypothesis Testing,” Physical Review Letters, vol. 108, no. 20, p.
200501, May 2012.

N. Datta, M. Mosonyi, M.-H. Hsieh, and F. G. S. L. Brandao, “ASmooth
Entropy Aproach to Quantum Hypothesis Testing and the Classical
Capacity of Quantum Channels,” IEEE Transactions on Information
Theory, vol. 59, no. 12, pp. 8014-8026, Dec. 2013.

C. Weedbrook, S. Pirandola, R. Garcia-Patrén, N. J. Cerf, T. C. Ralph,
J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Reviews
of Modern Physics, vol. 84, no. 2, pp. 621-669, May 2012.

P. W. Shor, “The classical capacity achievable by a quantum channel
assisted by a limited entanglement,” Quantum Information & Computa-
tion, vol. 4, no. 6, pp. 537-545, Dec. 2004.

C. W. Helstrom, Quantum Detection and Estimation Theory. New York,
NY, USA Aademic Press, 1976.

AS. Holevo, “Statistical decision theory for quantum systems,” Journal
of Multivariate Aalysis, vol. 3, no. 4, pp. 337-394, Dec. 1973.

M. M. Wilde, Quantum Information Theory. Cambridge: Cambridge
University Press, 2017.

A Ashu, R. Jain, and N. A Warsi, “Building Blocks for Communica-
tion Over Noisy Quantum Networks,” IEEE Transactions on Information
Theory, vol. 65, no. 2, pp. 1287-1306, Feb. 2019.

M. M. Wilde, “Position-based coding and convex splitting for private
communication over quantum channels,” Quantum Information Process-
ing, vol. 16, no. 10, p. 264, Oct. 2017.

S. K. Oskouei, S. Mancini, and M. M. Wilde, “Union bound for
quantum information processing,” Proceedings of the Royal Society A
Mathematical, Physical and Engineering Sciences, vol. 475, no. 2221,
p- 20180612, Ar. 2018.

S. Khatri, E. Kaur, S. Guha, and M. M. Wilde, “Second-order coding
rates for key distillation in quantum key distribution,” arXiv preprint,
vol. 1910.03883, Oct. 2019.

AWinter, “Coding theorem and strong converse for quantum channels,”
IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2481—
2485, Nov. 1999.

M. R. Grace and S. Guha, “Perturbation Theory for Quantum Informa-
tion,” arXiv preprint, vol. 2106.05533, Jun. 2021.



