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Multi-axial real-time hybrid simulation (maRTHS) uses multiple hydraulic

actuators to apply loads and deform experimental substructures, enacting

both translational and rotational motion. This allows for an increased level of

realism in seismic testing. However, this also demands the implementation of

multiple-input, multiple-output control strategies with complex nonlinear

behaviors. To realize true real-time hybrid simulation at the necessary sub-

millisecond timescales, computational platforms will need to support these

complexities at scale, while still providing deadline assurance. This paper

presents initial work towards supporting (and is influenced by the need for)

envisioned larger-scale future experiments based on the current maRTHS

benchmark: it discusses aspects of hardware, operating system kernels,

runtime middleware, and scheduling theory that may be leveraged or

developed to meet those goals. This work aims to create new concurrency

platforms capable of managing task scheduling and adaptive event handling for

computationally intensive numerical simulation and control models like those for

the maRTHS benchmark problem. These should support real-time behavior at

millisecond timescales, even for large complex structures with thousands of

degrees of freedom. Temporal guarantees should be maintained across

behavioral and computational mode changes, e.g., linear to nonlinear control.

Pursuant to this goal, preliminary scalability analysis is conducted towards

designing future maRTHS experiments. The results demonstrate that the

increased capabilities of modern hardware architectures are able to handle

larger finite element models compared to prior work, while imposing the

same latency constraints. However, the results also illustrate a subtle

challenge: with larger numbers of CPU cores, thread coordination incurs

more overhead. These results provide insight into the computational

requirements to support envisioned future experiments that will take the

maRTHS benchmark problem to nine stories and beyond in scale. In

particular, this paper (1) re-evaluates scalability of prior work on current

platform hardware, and (2) assesses the resource demands of a basic smaller

scale model from which to gauge the projected scalability of the new maRTHS

benchmark as ever larger and more complex models are integrated within it.
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1 Introduction

Real-Time Hybrid Simulation (RTHS) is a powerful

technique for evaluating the behaviors of complex structures

under realistic and often adverse conditions (e.g., in the domain

of natural hazards engineering). The state of the art in RTHS has

evolved significantly over the past decades: although initially

even simple models were challenging to run at sufficiently fine-

grained (e.g., millisecond) time-scales to be fully physically

realistic based on dynamics of the modes that dominate the

behavior in mechanical systems (Ferry et al., 2013),

subsequent advances in real-time scheduling theory (Li et al.,

2014) and concurrency platform design (Ferry et al., 2014a)

allowed physically realistic RTHS experiments to be run, at

scales corresponding to a nine-story building.

Despite those advances, three primary limitations of the state of

the art still must be addressed in order to achieve envisioned next-

generation RTHS experiments whose complexity, scale, and

dynamics may require further advances in real-time scheduling

theory and its application to modern computational platforms:

(1) overheads from communication across chip sockets, barrier

synchronization mechanisms, and un-optimized task code; (2)

execution only on conventional multicore and multiprocessor

devices, which leaves the capacity of GPUs and FPGAs that are

often available on modern endsystems largely unused; and (3) static

assignment of which jobs are released onto which processors and at

what periodic rates, which limits the system’s ability to adjust

resource utilization.

This article explores the first of those issues in the context of

prior work and of a newly developed experimental benchmark

control problem for multi-axial real-time hybrid simulation

(maRTHS) (Condori et al., 2023). The semantics of the maRTHS

benchmark expose new challenges toward achieving realistic

millisecond-scale RTHS beyond those in prior work, including

increased control complexity associated with multiple actuators

that produce both translational and rotational motion, as well as

the more demanding numerical models for simulating responses to

those motions in the virtual substructure. For both the models used

in prior work and a basic version of the maRTHS benchmark, this

paper examines to what extent the computational performance of

modern multicore hardware may be harnessed to allow significantly

larger models to be used, which also motivates leveraging hardware-

optimized libraries (e.g., BLAS).

The rest of this paper is structured as follows. Section 2 surveys

prior work and provides background information on the models

used in the evaluations. Section 3 provides an overview of the

experiments that were run, including single-core (Section 4) and

multi-core (Section 5) evaluations of models used in prior work, as

well as of a basic model of the maRTHS benchmark (Section 6).

Finally, Section 7 concludes this paper’s discussion and outlines

directions for future work including (1) exploiting new high-

performance concurrency platform frameworks (e.g., OpenMP

5.3), (2) re-targeting real-time tasks to run on other devices (e.g.,

GPUs and FPGAs) at millisecond time-scales, and (3) examining

how new elastic and mixed-criticality real-time scheduling

techniques may be developed and exploited to reallocate platform

resources dynamically at run-time, to optimize performance of

maRTHS experiments and to adapt to changing operating

conditions while maintaining schedulability at millisecond

timescales.

2 Background and related work

The RT-OpenMP concurrency platform for parallel real-time

computing was applied to Real-Time Hybrid Simulation (RTHS) a

little more than a decade ago (Ferry et al., 2013). Shortly thereafter,

the CyberMech concurrency platform exploited a new design and

implementation to achieve for the first time millisecond resolution

RTHS for thousand-degree-of-freedom finite element models (Ferry

et al., 2014a; b) including for the nine-story structural model used as

a baseline for comparison in this article. Results obtained on a 16-

core machine with eight cores per chip socket revealed scalability

limits due to inter-thread communication costs, especially as the

number of cores exceeded those in a single chip socket (Ferry

et al., 2014a).

The CyberMech platform was further refined to provide

adaptive reallocation of resources during on-line operation, based

on newly developed elastic scheduling techniques for parallel real-

time systems (Orr et al., 2018; Orr et al., 2019; Orr et al., 2020).

Elastic scheduling places further demands on the concurrency

platform, to be able to adapt tasks’ resource utilizations by

changing tasks’ rates, workloads, and/or critical path lengths

(a.k.a. spans) rapidly within the timescales at which tasks are

scheduled, while still meeting deadlines. Those capabilities were

then used to conduct a new generation of virtual RTHS experiments

involving control of a nonlinear physical plant with parametric

uncertainties (Condori et al., 2020). This in turn places even greater

and more dynamic computational demand on the concurrency

platform, both to manage resource reallocation and within the

nonlinear Bayesian estimator used to implement a nonlinear

robust controller.

The next-generation MechWorks concurrency platform,

currently under development, targets an even more demanding

category of RTHS, of which the multi-axial benchmark problem

(Condori et al., 2023) is an example. Although this initial

configuration of the multi-axial real-time hybrid simulation

(maRTHS) experiments involves only a single model that is

modest in scale, it offers an important starting point against

which relative demands can be gauged for (1) the structural

model as it scales up, (2) nonlinearity, multi-axial actuation, and

other complexities of the tracking and control problem, and (3)

adaptive resource reallocation to manage those complexities on-line

while ensuring schedulability, control stability, non-reachability of

adverse states, and other key safety properties.

3 Overview of experiments

To exploit parallelism to achieve millisecond-scale RTHS, Ferry

et al. (2014a,b) introduced CyberMech, a run-time platform written

in C++ that leverages OpenMP for multithreading and

multiprocessor execution. Condori et al. (2023) subsequently

developed the experimental benchmark control problem for

multi-axial real-time hybrid simulation (maRTHS benchmark),

which is implemented in MATLAB/Simulink R2019b. This article

Frontiers in Built Environment frontiersin.org02

Sudvarg et al. 10.3389/fbuil.2024.1424721



seeks to gauge the suitability and assess the limitations of

CyberMech as a platform to run the maRTHS benchmark,

towards addressing those limitations in the next-generation

MechWorks platform that is under development.

In addition to running the maRTHS benchmark itself, this paper

presents scalability studies of the nine-story structural model

analyzed by Ferry et al. (2014a); Ferry et al. (2014b) which is

particularly suitable as a benchmark to test the feasibility and

scalability of CyberMech because (1) it includes numerical

simulations with representations in a wide range of model

degrees of freedom (DoF) to choose from; and (2) the results can

be compared directly to the detailed analysis in the prior work of

Ferry et al. (2014a); Ferry et al. (2014b) to understand how the

computational platform has evolved, both in terms of software

support and the capabilities of the underlying hardware.

3.1 Nine-story structural model

Ohtori et al. (2004) proposed a benchmark control problem for

nine-story moment-resisting steel frame buildings for the SAC

project, which is representative of typical medium-rise buildings

in Los Angeles, California. The structural model was then analyzed

by Ferry et al. (2014a); Ferry et al. (2014b) to show the assurance of

real-time execution by enabling parallel computing. Details of the

computation and the structural model were provided by Aguilar

(2012) in the open-source RT-Frame2D example. Note that for

spatial discretization, they used one Bernoulli-Euler frame element

within each column and beam. The lumped mass matrix is used

where rotational inertia is ignored. Thus, they assigned a small value

of rotational mass.

A series of control tasks including active, passive, and semi-

active control strategies have been conducted using this benchmark

building model. In the RTHS test conducted by Ferry et al. (2014a);

Ferry et al. (2014b), it is fitted (in simulation) with a virtual

magneto-rheological damper. The model provides a useful vehicle

for analysis because scalability studies (to multiple cores and finer

granularity) already have been performed in the prior literature

(Ferry et al., 2014a; Ferry et al., 2014b). As a decade has since passed,

this provides an opportunity to re-evaluate the analysis using the

newer more capable hardware available, and to consider how

modern platforms can be used similarly to achieve desired real-

time performance of the maRTHS benchmark.

The model is implemented as a standalone virtual RTHS

(vRTHS), in which the control loop (transfer of impulse, physical

response, and sensor readouts) for the physical specimen under

examination is implemented virtually. Typically this is performed on

a separate PC running Speedgoat or Simulink Real-Time (aka xPC-

Target). In the standalone implementation, all computations (both

for the simulated building model and simulated physical target) are

performed on the same platform, which enables rapid

experimentation over a large number of tunable parameters.

Experiments are run over large numbers of processor cores

(1–127), with different multithreading implementations

(OpenMP and BLAS), and workload granularities (23 model

implementations with different numbers of degrees of freedom).

The model is subjected to ground motions from the

1940 Imperial Valley earthquake recorded at El Centro. The

simulation is performed in real-time at a 1,024 Hz rate, executing

for 61,440 iterations— 1 min total, except when there are overruns.1

The OpenMP-based multithreaded federated scheduling service

from Ferry et al. (2014a) is used to launch the simulation in

CyberMech, which distributes threads among specified cores,

assigns them to the Linux SCHED_FIFO real-time scheduling

class, and allows them to be released synchronously at the

correct interval.

At each iteration, given a time step t, the implementation

integrates over Δt time units using the same computation

described in Ferry et al. (2014a), which is reiterated here.

1. Numerical substructure:

Mn €Ut+Δt + Cn _Ut+Δt +KnUt+Δt � −Mn
Γ€x

g
t+Δt − fp

t (1)

This equation is solved by the Newmark-beta method.

~M
n
� Mn + γΔtCn + βΔt2Kn (2a)

~Ft+Δt � Ft −KnUt − Cn _Ut (2b)

€Ut+Δt � ~M
n[ ]−1 ~Ft+Δt (2c)

_U
n

t+Δt �
_U
n

t + Δt 1 − γ( ) €Un

t + γ €U
n

t+Δt( ) (2d)

Un
t+Δt � Un

t + Δt _U
n

t + 0.5Δt2 1 − 2β( ) €Un

t + 2β €U
n

t+Δt( ) (2e)

Where β and γ are algorithmic parameters for the Newmark-

beta method. The value €xg is the ground acceleration; fp is the

feedback force vector; U, _U, and €U are displacement, velocity, and

acceleration vectors; ~M
n
is an effective mass matrix for numerical

substructure; F is an exerted force matrix; ~F is a pseudo-force vector;

and Mn, Kn, and Cn are mass, stiffness, and damping matrices.

In the vRTHS setup, the structural model is decomposed into

numerical and virtual physical substructures, with 14 model degrees

of freedom specified as part of the physical substructure. Therefore,

for n degrees of freedom, each matrix and vector are of dimension

(n − 14) × (n − 14) and (n − 14) × 1, respectively.

2. Feedback force from magnetorheological damper (Spencer

et al., 1997):

fp � fc sgn _xmr
( ) + c0 _xmr + f0 (3)

where c0 is the damping coefficient, fc is the frictional force related

to the fluid yield stress, and f0 is an offset to account for the nonzero

mean due to the presence of the accumulator.

The structural model in Ferry et al. (2014a) used n � 198 degrees

of freedom; in Sections 4, 5 of this article, we carry out RTHS tests

with larger degrees of freedom by finer meshes. To generate finer

meshes, we use multiple Euler-Bernoulli beam elements within each

column and beam. More details about the structural model and its

implementation in code can be found in (Aguilar, 2012, Model 5).

1 For purposes of this scalability study, the simulation is allowed to slow its

rate in response to overruns—i.e., when a single iteration of a model with a

large number of degrees of freedom exceeds 1/1,024 s due to insufficient

processor cores—and record the corresponding execution times.
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3.2 Three-story multi-axial model

The experimental benchmark control problem for multi-axial

real-time hybrid simulation (maRTHS) recently proposed in

Condori et al. (2023) highlights several new challenges in RTHS

towardmore realistic large-scale structural experimentation. Among

those challenges is the increased computational complexity involved

in controlling multiple actuators to produce both translational and

rotational motion, as well as higher-order explicit numerical

methods. Due to the nonlinear coordinate transformations,

utilizing multi-axial actuators increases complexity due to

nonlinearities and internal coupling, which can require solving

nonlinear problems (Nakata et al., 2010).

Toward addressing this increased complexity, a representative

simulation model is implemented for the maRTHS benchmark as a

standalone virtual RTHS. As an initial proof-of-concept, all

computation is performed on a single machine, similarly to the

nine-story structural model. This allows us to analyze all

computational costs associated with the simulation uniformly on

a single platform, and to identify the speedups gained by the

improved parallelism available in a single chip socket.

The model is again subjected to 1 min of recorded ground

motion from the Imperial Valley earthquake at a 1,024 Hz rate. The

same multi-threaded federated scheduling service is used to launch

the simulation in CyberMech. At each iteration, given a time step t,

the implementation integrates over Δt time units using the following

methodology.

1. Numerical substructure:

Mn €U
n

t+Δt + Cn _U
n

t+Δt +KnUn
t+Δt � −Mn

Γ€x
g
t+Δt − fp

t (4a)

_U
n

t+Δt �
_U
n

t + Δt 1 − γ( ) €Un

t + γ €U
n

t+Δt( ) (4b)

Un
t+Δt � Un

t + Δt _U
n

t + 0.5Δt2 1 − 2β( ) €Un

t + 2β €U
n

t+Δt( ) (4c)

WhereMn, Cn,Kn,Un, _U
n
, and €U

n
are the mass, damping, and

stiffness matrices, and displacement, velocity, and acceleration

vectors, respectively, for the numerical substructure. The value of

€xg is the ground acceleration, Γ is a loading vector that describes

the inertial effects due to the ground acceleration, and fp is the

feedback force obtained from the physical substructure. The

Newmark method with parameters γ � 0.5 and β � 0.25 is used

to simulate the numerical substructure. From Un
t+Δt with a

coordinate transformation, target actuator displacements xn
t+Δt

are computed.

2. Linear quadratic Gaussian (LQG) control system: The control

system is composed of a deterministic LQR and a Kalman filter.

From the deterministic LQR, command signals to the actuators

u are computed:

u t( ) � KLQR
xk t( )

xn t( ) − x̂m t( )
[ ] (5)

whereKLQR is the gain and x̂
m is the estimated displacements for the

actuators. The vectors xk and x̂m are computed from the continuous

state-space model for the Kalman filter.

_zk t( ) � Akzk t( ) + Bk u t( )

Up t( )
[ ] (6a)

x̂m t( )

xk t( )
[ ] � Ckzk t( ) +Dk u t( )

Up t( )
[ ] (6b)

Where Ak, Bk, Ck, and Dk are the matrices for the continuous

Kalman filter state-space model. Note that Up is computed from the

control plant model.

3. Control plant model: A transfer function matrix with

command signals to the actuators u as inputs and measured

displacements xm as outputs is computed as

Hcp �

2165.2
s + 120( ) s + 90( )

s + 2.65( ) s + 40( )
4.5394 × 106

s + 3

s + 3.5( ) s + 18.5( )

349.95
s + 120( ) s + 90( )

s + 2.65( ) s + 40( )
1.9238 × 107

s + 5

s + 3.5( ) s + 18.5( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
1

s2 + 100s + 6469

(7)

Then, this system is transformed to the following continuous state-

space form with measurement noise nm.

_zcp t( ) � Acpzcp t( ) + Bcpu t( ) (8a)

xm t( ) � Ccpzcp t( ) +Dcpu t( ) + nm t( ) (8b)

Where Acp, Bcp, Ccp, and Dcp are the matrices for the

continuous state-space model. The measurement noise is

assumed to follow a normal distribution: nm ~ N(0, σ2), where σ

is its standard deviation. Note that the LQG control system and the

control plant operate in a closed loop. Using the fourth-order

explicit Runge-Kutta method, x̂m
t+Δt is computed, from which the

physical displacement Û
p

t+Δt is computed using a coordinate

transformation.

4. Feedback force:

f
p
t+Δt � Mp €̂U

p

t+Δt + Cp _̂U
p

t+Δt + KpÛ
p

t+Δt (9)

where Mp, Cp, Kp, Û
p
, _̂U

p
, and €̂U

p
are the mass, damping, and

stiffness matrices, and the estimated displacement, velocity, and

acceleration vectors, respectively, for the physical substructure. The

vectors _̂U
p

t+Δt and €̂U
p

t+Δt are computed using the forward

difference scheme:

_̂U
p

t+Δt � Û
p

t+Δt − Û
p

t( )/Δt, €̂U
p

t+Δt �
_̂U
p

t+Δt −
_̂U
p

t( )/Δt (10)

Further details of this maRTHS benchmark problem are given in

Condori et al. (2023).

3.3 Target computational platform

This paper extends the scalability analysis performed by Ferry

et al. (2014a); Ferry et al. (2014b) to a modern multicore CPU: in

particular, an AMD EPYC 9754 with 128 cores running at 3.1 GHz

with 128 GB of RAM and version 5.14.0 of the Linux kernel using the

Rocky 9.3 distribution. CyberMech is written in C++ and compiled
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using the GNU Compiler Collection’s C++ compiler (g++)

version 11.4.1.

All experiments are run using Linux’s SCHED_FIFO real-

time scheduling class. To improve temporal regularity of

execution, Simultaneous Multithreading and CPU throttling

are disabled at the hardware level, and real-time scheduler

throttling is disabled at the kernel level via proc pseudo-

filesystem interfaces.

Two alternative implementations of each model are

evaluated. In the first, OMP, matrix operations are written as

nested loops, and the outer loop is explicitly parallelized using

OpenMP pragmas. The second implementation, BLAS, uses the

OpenBLAS distribution of the Basic Linear Algebra Subprograms

(BLAS), which also accelerates operations using the Linear

Algebra PACKage (LAPACK). BLAS leverages OpenMP for

inter-processor parallelism, but also uses highly-optimized

code to improve memory and cache locality, as well as making

use of the AVX-512 vector extensions on the EPYC CPU. Note

that both the OMP and BLAS implementations use a call to

LAPACK’s dgetrs function to solve the linear equation in

Expression 2c.

4 Single-core scalability

In the decade since the scalability analysis in Ferry et al. (2014a);

Ferry et al. (2014b) was performed, CPU architectures have

improved significantly, both in the number of cores on a single

chip socket, as well as the performance of each individual core. This

section evaluates the nine-story linearized model described in

Section 3.1 on a single core of the CPU platform to consider (1)

how execution time scales with model size, and (2) for which model

sizes it is necessary to exploit multicore parallelism.

The size and complexity of the linearized model are scaled up by

increasing the number of degrees of freedom (DoFs) of the

numerical simulation. Note that by discretizing each frame and

beam with multiple elements, we construct mass, damping, and

stiffness matrices with large DoFs. DoFs used are {198, 216, 231, 249,

264, 282, 297, 315, 330, 348, 363, 381, 396, 414, 429, 447, 462, 480,

495, 513, 528, 858, 1,188}, for a total of 23 model sizes.

4.1 OMP

The execution times of each iteration of the purely OpenMP-

based implementation for each model size are first measured when

pinned to a single CPU core.

4.1.1 Execution time distributions
For each model size, the median and maximum execution times

are measured across the 61,440 iterations, along with the 99.865th

percentile, which captures times less than three standard deviations

(3σ) above the mean, assuming a Gaussian distribution. Results are

shown in Figure 1.

These results indicate that execution times tend to be very

consistent: the median and 3σ values for each model size are very

close, with the 3σ values never exceeding the median by more

than 187μs. Furthermore, even a single core of the AMD EPYC

CPU is very efficient: for models of up to 528 DoF, the 3σ

execution time does not exceed the 976.6 μs deadline imposed

by the 1,024 Hz rate (represented as a horizontal dashed line

in Figure 1).

However, occasional outliers inflate the worst-case execution

times. Within the 83 iterations that exceed the 3σ execution time for

each model size, the maximum time can reach as high as 770μs over

the median. These outliers are due to execution time

nondeterminism in the computational platform, not dynamic

modeling or variations in ground motions. In a hard real-time

hybrid simulation environment, where deadline misses must be

avoided, timely completion cannot be guaranteed on a single CPU

core for model sizes above 428 DoF. Investigation of the root causes

of the outliers, and further examination of techniques to improve

execution time stability and eliminate those outliers is

underway—including statically-compiling the binary, using less

aggressive compiler optimisation, isolating CPU cores from the

scheduler, or using a real-time patch of the Linux kernel or even

a real-time microkernel such as seL4 (seL4, 2024; Blackham

et al., 2011).

Nonetheless, even the worst-case execution times indicate

significant improvements in single-core performance over the last

decade. In (Ferry et al., 2014a; Figure 6), the authors were only able

to meet a 1 m deadline for models of up to about 400 DoF, even

using a very simple finite element model.2 In contrast, the maximum

time remains below 1 m for models of up to 428 DoF. Furthermore,

the 3σ time remains below 1m for up to 528 DoF, and is projected to

do so for up to 650 DoF. This suggests that if the root causes of the

outliers can be identified and addressed, it may be possible to achieve

millisecond-scale RTHS for models up to 650 degrees of freedom on

a single core.

FIGURE 1

OMP execution times on 1 CPU.

2 An exact value is not reported in the text, but (Ferry et al., 2014a; Figure 6)

provides an estimate.
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4.1.2 Execution time complexity
The numerical simulation for the nine-story building model

uses several matrix-vector multiplication operations. For a model

with d degrees of freedom, this implies an execution time

complexity of O(d2) — i.e., the execution time should scale

with the square of the model size. This provides a

straightforward way to estimate the execution time of a model

size that has not yet been tested. To evaluate how closely this

estimate is expected to reflect reality, both the median and 3σ

execution times are fitted to a quadratic function (the maximum

is not considered, due to the observed outliers). Results are shown

in Figure 2; a very close quadratic relationship between model

size and execution time is observed.

4.2 BLAS

The experiments above are now repeated for the BLAS

implementation of the numerical simulation.

4.2.1 Execution time distributions
For each model size, the median, 99.865th percentile (3σ), and

maximum execution times are again measured. Results are shown

in Figure 3.

These experiments indicate that not only is BLAS faster, but task

latency with it also may be more stable than the purely OpenMP-based

implementations of the equivalent nine-story building models. For

BLAS, the 3σ values never exceed the median by more than 53μs.

Furthermore, the maximum values are never more than 687μs above

the median for each model size. These outliers could be due to

nondeterministic cache behavior, which might be partially addressed

by BLAS and LAPACK’s optimizations to improve memory locality.

However, the numerical simulation contains loop operations that are

not straightforward to represent as matrix/vector operations, and

therefore cannot be accelerated with BLAS. These instead remain

parallelized with explicit OpenMP pragmas, and nondeterministic

overheads due to the runtime’s management of thread

synchronization may also contribute to worst-case overheads. Efforts

to verify this and address the issue are ongoing.

Moreover, BLAS enables timely simulation of even large numerical

models on a single core. Formodel sizes of up to 858DoF, the execution

time does not exceed the 976.6 μs deadline imposed by the 1,024 Hz

rate (represented as a horizontal dashed line in Figure 3). For 858 DoF,

themedian execution time is only 437 μs, the 3σ time is 490 μs, and the

maximum time is 897 μs.

4.2.2 Execution time complexity
For completeness, both the median and 3σ execution times for

BLAS are also fitted to a quadratic function. Results are shown in

Figure 4; a very close quadratic relationship between model size and

execution time is again observed.

4.2.3 Comparison to OMP
To better illustrate the improvements gained by using BLAS over

naïvely implementing matrix operations using nested loops, ratios of

the OMP to the BLAS execution time statistics are plotted

in Figure 5.

The median and 3σ execution times for the BLAS

implementation are 1.74 × to 4.38 × faster than OMP. In the

FIGURE 2

Quadratic relationship between model size and OMP execution time.

FIGURE 3

BLAS execution times on 1 CPU.
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worst case, the OMP implementation’s maximum time is 11.1 ×

greater than that of BLAS.

4.3 Discussion

The results of this section highlight the key point of this paper: RTHS

can benefit substantially from the vast improvements in computational

platforms realized over the last decade. Compared to the scalability

analysis performed by Ferry et al. (2014a), using BLAS in conjunction

with the high-end AMD EPYC architecture allows ~ 2 × larger models

to complete within a millisecond even on a single CPU core.

5 Scaling to multiple cores

The previous section demonstrated that the CyberMech platform,

coupled with highly-optimized BLAS-based implementations of matrix

operations, enables standalone vRTHS at 1,024 Hz even for large

models (858 DoF) on a single CPU core. As mentioned in the

introduction, this paper serves as a scalability study toward creating

new concurrency platforms to support multi-axial RTHS on multicore

and heterogeneous (e.g., GPU and FPGA-based) computational

platforms. One might assume, given the results of the previous

section, that these advanced platforms are unnecessary since high

performance can be extracted from even a single core.

However, several scenarios in RTHSmay arise inwhich a single core

is nonetheless insufficient. First, for complex built environments, larger

models with more degrees of freedom or faster rates may be necessary

for accurate numerical simulations. Second, the nine-story building

model uses very simple representations of the structural model, control

laws, and nonlinear behavior. The maRTHS benchmark problem

(Condori et al., 2023), for which results for initial scalability

experiments are presented in the next section, has more complex

behavior governed by actuators that apply forces along multiple

axes. Third, the experiments presented in this paper are standalone

vRTHS: numerical simulations are executed on a single host machine.

Recurrent workloads are therefore modeled as implicit-deadline real-

time tasks: each iteration needs only to complete prior to invocation of

the next iteration, and therefore the relative deadline is equal to the

iteration period. In a full RTHS setup where a control signal based on

the results of numerical analysis must be applied to the controlled plant

(i.e., the tested physical substructure), deadlines may be constrained to

be significantly shorter than the period, so that the resulting sensed state

of the plant can be used to update the simulation environment prior to

application of the next control signal.

These three scenarios suggest that at key points, scaling vRTHS

or RTHS to multicore machines may be necessary. This section

evaluates the OMP and BLAS implementations of the nine-story

structural model by scaling up to all 128 cores of the AMD

EPYC 9754 CPU.

5.1 OMP

As before, the execution times for each iteration of the OpenMP

implementation are measured for each model size. This time, the

model is allowed to take advantage of the parallelism provided by the

FIGURE 4

Quadratic relationship between model size and BLAS execution time.

FIGURE 5

Execution time ratios between OMP and BLAS implementations.
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128-core CPU, testing with 1–127 cores; core 0 is reserved for

operating system tasks and the CyberMech runtime’s management

thread, which performs dispatching and synchronization of the

recurrent workloads. In all, 127 × 23 � 2921 runs of

61,440 iterations each are performed.

5.1.1 Execution times for every run
Median execution times for each combination of model size and

number of cores are displayed as a heatmap in Figure 6. Similar

heatmaps for the 99.865th percentile (3σ) and maximum execution

values are shown in Supplementary Appendix 1.

FIGURE 6

Median OMP execution times for each combination of model size and number of cores.

FIGURE 7

OMP execution times for individual large model sizes.
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As expected, execution times continue to increase with model

size, even as the number of cores used by the greater number of

threads increases. Perhaps surprisingly, as the number of cores used

increases execution time decreases to a point but then begins to

increase slightly as more cores are used. This trend is examinedmore

closely, and a plausible explanation is provided, backed with

empirical evidence.

5.1.2 A closer look
To illustrate more clearly the effect observed above—that

increasing the number of cores allocated to the numerical

simulation improves execution time at first, but that after a

point, adding more cores increases the execution time—selected

plots of the execution time dependence on the number of cores for

individual model sizes are shown in Figure 7.

In the top plots of Figure 7, which show how execution time

scales with the number of cores for smaller models (198 and

315 DoF), an initial sharp decrease in execution time is observed

as the number of cores increases. This is followed by a roughly linear

increase in execution time with the number of cores. The effect is

more pronounced in the smaller model, and the larger model

appears to continue to benefit from a larger number of cores

compared to the smaller model. The bottom plots of Figure 7

show the execution time dependence on the number of cores for

larger models (528 and 1,188 DoF). The same trend emerges, where

adding cores provides diminishing returns, though the returns are

still present for larger numbers of cores compared to the smaller

model sizes.

Toward quantifying this effect, it is helpful to compare

the number of cores that provide the minimum median

execution time across each model size. These results are

plotted in Figure 8. The relationship between model size and

the optimal core count shows a positive correlation. For the

smallest model (198 DoF), six cores provide the best

performance. For the largest model (1,188 DoF), the best

performance is achieved with 42 cores, and not the full

127 available on the evaluation machine.

However, it may be observed that for model sizes from 216 to

528 degrees of freedom, the optimal number of cores remains 7. For

larger model sizes, the trend is roughly linear. The significant jump

from 7 to 22 cores when scaling from 528 to 858 DoF may be

explained, in part, by the underlying processor architecture. The

AMD EPYC 9754 CPU used in this evaluation has 128 “Zen 4c”

cores, grouped into “core complexes” (CCXs) each with eight cores

and an L3 cache they share. Execution on seven cores therefore

remains local to a single CCX, but because core 0 is reserved in the

experiment for the runtimemiddleware, scaling to eight cores means

execution spans two CCXs and the cores no longer share a single

L3 cache. Thus, when scaling tomodel sizes where seven cores are no

longer optimal, the transition to non-CCX-local execution means

more cores are needed to recover the overheads associated with

inter-CCX communication and cache non-locality.

5.1.3 A possible explanation
A possible explanation for the observed results is now proposed

and evaluated. In the smaller models especially, a roughly inverse

relationship between execution time and the number of cores is

observed up to a point, then a linear relationship as the number of

cores continues to grow. To help explain this, terminology from the

field of real-time computing is now introduced.

• τi denotes a task, or recurrent workload in an application. The

numerical simulation of the nine-story structural model is a

task, and a single iteration of that simulation is an instance of

the task, also referred to as a job.

• mi represents the number of CPU cores dedicated to executing

task τi.

• Ci represents the total workload of task τi, which is the total

CPU time necessary to complete a single job of the task. This

corresponds to its execution time when provided only a single

processor core.

• Li represents the task’s latency, and denotes the time from

when a job of the task begins execution to when it completes.

If task execution can be distributed evenly across cores, and

it runs on those cores without being preempted, then the

following relationship between workload and latency is

expected to hold:

Li �
Ci

mi

(11)

However, OpenMP also incurs additional overhead related to

management of its threads, e.g., dispatching of work items and

barrier synchronization. Assuming that this overhead scales linearly

with the number of threads (e.g., each time a thread is added, a

constant amount w of additional overhead is accrued), then the

following relationship may capture latency more accurately:

Li �
Ci

mi

+ w ·mi (12)

To test this hypothesis, the median workload Ci of the OpenMP

implementation when run on the target computational platform, as

a function of the model size d in degrees of freedom, is first

characterized. On a single core, mi � 1, allowing the following

expression for Ci(d) to be derived:

Ci d( ) � Li d( ) − w (13)

FIGURE 8

Best core count by model size for OMP.
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From the quadratic relationship for median execution times in

Figure 2, the following expression is obtained3 for Li(d):

Li d( ) � 2.64 · 10−6d2 − 4.64 · 10−4d + 7.41 · 10−2 (14)

OpenMP’s per-thread overhead w is then estimated by

finding the slope of the roughly linear portion (above ~ 20

cores) of the median execution times for 198 DoF (shown

in the top left of Figure 7). From this, w � 4.1 · 10−6

is obtained.

Putting the pieces together gives the following function for

latency as a function of model size and number of cores:

Li md, d( ) �
2.64 · 10−6d2 − 4.64 · 10−4d + 7.41 · 10−2

mi

+ 4.4 · 10−6 ·mi (15)

5.1.4 Validating the latency model
To test this model, this function is plotted side-by-side with the

median execution times for the models with 198, 315, 528, and

1,188 DoF. Results are shown in Figure 9: the latency model very

closely matches the observed values.

What the latency model says about the optimal number

of cores to allocate to the numerical simulation (i.e., for

each model size, which core count obtains the minimum

execution time) is now considered. The expression for latency

in Equation 12 can be used to find the minimum for a

given workload:

FIGURE 9

Comparison of median OMP execution times to latency model.

FIGURE 10

Best core count by number of DoF predicted by latency model

for OMP.

3 These coefficients are specific to the tested model on a given

computational platform. This characterization process must be

repeated when testing different models or different target computers.

They should not be affected by changing the simulated groundmotions, as

these only influence the values used by the computations, but not the

computational instructions themselves.
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δ

δm
Li m( ) � w −

Ci

m2
(16)

Setting to 0 and solving for m, gives:

mmin �

��
Ci

w

√
(17)

Since Ci is quadratic in the number of degrees of freedom d, this

model is dominantly linear in d. To test this model against the

observed optimal values, Equation 17 is plotted against the series

illustrated in Figure 8. This side-by-side comparison is shown in

Figure 10: the optimal core count predicted by the latency model

remains reasonably close to the observed values, though the effects

of the underlying hardware architecture (inter-CCX communication

and issues of cache locality) may contribute to the observed

discrepancy.

5.2 BLAS

The previous section showed that re-implementing the matrix

operations in the simulation model using BLAS significantly

improved execution times, allowing larger models to be run on

just a single CPU core. Whether these improvements remain

consistent as the number of threads of execution is increased,

and whether the latency model still applies, is now examined by

repeating the above experiments for the BLAS implementation of

the numerical simulation of the nine-story structural model.

127 × 23 � 2921 runs of 61,440 iterations each are again

performed (with core 0 reserved for the operating system kernel

and the CyberMech runtime manager).

5.2.1 Execution times for every run
Median and maximum execution times for each combination of

model size and number of cores are displayed as heatmaps in

Figure 11. Supplementary Appendix 1 includes a similar heatmap

for the 99.865th percentile (3σ) execution values.

As with the OMP implementation, median execution times tend

to increase with model size, even as the number of cores increases.

Execution time decreases with the number of cores at first, but then

begins to increase slightly as more CPU cores are added. This trend

is investigated more closely, to see if it remains consistent with the

trends observed for the OMP implementation, in Section 5.2.3.

For the model sizes evaluated, the median execution times for

BLAS never exceed 963 μs, while the maximum execution time

remains under 1.21 m. In comparison, for the OMP

implementation, the median execution time reaches 3.26 m while

the maximum goes up to 3.54 m.

5.2.2 Comparison to OMP
Just by comparing the largest observed median and maximum

execution times for the BLAS and OMP implementations across all

runs, the BLAS implementation is significantly more efficient. To

better illustrate the improvements gained by using BLAS over

naïvely implementing matrix operations using nested loops,

ratios of the OMP execution times to the BLAS execution times

are shown in Figure 12.

On average, the median execution time achieved by BLAS is

1.76 × faster than that of the OMP implementation for the

equivalent model size and same number of cores. At best, BLAS,

achieves a median execution time 4.38 × faster than OMP. The

difference between the maximum execution times is even more

substantial, with BLAS achieving a maximum that is up to 15.8 ×

faster — 1.93 × faster on average—than OMP.

5.2.3 Individual model sizes
To investigate whether the trends observed for OpenMP extend

to the faster BLAS implementation, Figure 7 is replicated, plotting

the BLAS execution times with number of cores for individual

model sizes.

The top two plots of Figure 13 show how execution times

scale with the number of cores for smaller models (198 and

315 DoF); the bottom two show the same for larger models

(528 and 1,188 DoF). As observed for the OMP implementations,

FIGURE 11

BLAS execution times for each combination of model size and number of cores.
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execution time tends to decrease at first with the number of CPU

cores allocated, but then increases approximately linearly for

smaller models. However, for 1,188 DoF, the segment where

execution times decrease significantly as cores are added (up to

about 20 CPU cores) does not indicate a smooth inverse

relationship compared to its OMP counterpart in Figure 7.

Although the BLAS results display some unusual patterns

compared to the OMP implementation, the general trends

remain similar: execution time tends to decrease at first as

more cores are allocated to the problem, then increase after a

certain point. Where this increase occurs appears to be

dependent on the model size, with larger models typically

continuing to benefit from a larger number of CPU cores.

This relationship is plotted in Figure 14, which shows the

number of cores that minimizes the median execution time for

each model size.

Though the relationship between model size and the optimal

core count shows a generally positive correlation, it is not strictly

FIGURE 12

OMP vs. BLAS execution time ratios for combinations of model sizes and numbers of cores. Darker regions indicate closer performance.

FIGURE 13

BLAS execution times for individual large model sizes.
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monotone non-decreasing as it was for the OMP results

illustrated in Figure 8. For model sizes up to 528 DoF, 4-

7 CPU cores are optimal; afterward, the optimal core count

generally increases, with 62 cores being optimal for 1,188 DoF.

The significant jump from 7 to 22 cores when scaling from 528 to

858 DoF may be explained again, in part, by the underlying

processor architecture and the grouping of cores into

complexes (CCXs).

5.2.4 Applying the OpenMP latency model
While the relationships among numbers of cores, model sizes,

and execution times reflect new execution semantics for the BLAS

implementation that have not yet been fully characterized, they

nonetheless appear to follow the same general trends as for the OMP

implementation. To evaluate how well the latency model in Section

5.1.3 describes the BLAS results, the same exercise is repeated: the

quadratic relationship for median execution times on a single core is

used to quantify execution time, then the per-thread overhead w is

approximated with a linear fit.

From the quadratic relationship in Figure 4, the following

expression for Li(m, d) is obtained:

Li mi, d( ) �
9.38 · 10−7d2 − 3.66 · 10−4d + 6.90 · 10−2

mi

+ 1.75 · 10−6 ·mi (18)

where L is the latency, mi is the number of CPU cores allocated for

task execution, and d is the model size in degrees of freedom.

5.2.5 Validating the latency model for BLAS
To evaluate how well Equation 18 describes the observed

execution times for the BLAS implementation, this function (in

orange) is plotted side-by-side with the median execution times for

the models with 198, 315, 528, and 1,188 DoF. Results are shown

in Figure 15.

The latency model does not provide as close a match with the

observed data as it did for the OMP results in Figure 9, significantly

underestimating the latency for larger models. To achieve a closer fit,

FIGURE 14

Best core count by model size for BLAS.

FIGURE 15

Comparison of median BLAS execution times to latency model.
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Equation 18 is modified with an additional term that is linear in the

size of the model, but independent of core count:

Li mi, d( ) �
9.38 · 10−7d2 − 3.66 · 10−4d + 6.90 · 10−2

mi

+ 1.75 · 10−6

·mi + 2.42 · 10−4d − 4.2 · 10−2

(19)

This adjustment is illustrated in Figure 15. This phenomenon only

occurs in the BLAS implementation; as seen in Section 5.1, all overheads

related to OpenMP are dependent on the number of CPU cores used. It

is likely due to the BLAS library’s attempts at optimizing its parallel

behavior—regions which can be parallelized but may suffer

performance penalties from doing so might be run sequentially,

resulting in execution times that are dependent of the model size

but independent of the number of cores. Efforts to trace the library’s

control flow and threading behavior to verify this are ongoing.

It is also worth reexamining how well the observed optimal core

counts for each model size, plotted in Figure 14, match those

predicted by this latency model. In Figure 16; Equation 17 is

plotted against the observed values. The model now tends to

underestimate the optimal number of cores for each larger model

sizes, indicating that the latency model, despite providing a

reasonable explanation for the OMP implementation, does not

sufficiently capture the underlying architectural complexities,

sequential code, and other factors that become more relevant

under the BLAS implementation.

5.3 Discussion

This section evaluated performance of the nine-story structural

model analyzed in Ferry et al. (2014a); Ferry et al. (2014b) when

simulated on multiple cores. Results indicate that improvements

over the last decade to computational hardware and software

platforms enable timely vRTHS execution for larger models, even

on fewer processor cores.

The benefits provided by modern multicore CPUs, which

now may have over a hundred cores in a single chip socket (an

AMD EPYC 9754 with 128 cores was used for these

evaluations), enable scaling to even larger model sizes. While

the overheads associated with dispatching and synchronizing

large numbers of threads mean that fewer cores should be used

with smaller model sizes, larger models may benefit from

execution on all available processor cores. For OpenMP, a

latency model that demonstrably captures these effects was

proposed and evaluated.

The OMP implementation performs matrix operations in a

naïve manner using nested loops, with the outer loop

parallelized with OpenMP pragmas. Replacing these with

explicit calls to BLAS allowed even faster execution, with

typical speedups on the order of 1.8x, and certain cases as

large as 4.4x. However, BLAS’s execution semantics are more

complex, and the latency model for OpenMP was not as

FIGURE 16

Best core count by number of DoF predicted by latency model

for BLAS.

FIGURE 17

Standalone virtual maRTHS execution time statistics for each core count.
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accurate in predicting BLAS’s execution times. Efforts to

improve that model by quantifying the effects of vector

instructions, measuring communication and cache overheads

associated with the CPU architecture and the organization of

processor cores on the chip, identifying how BLAS allocates

data among threads, and understanding how BLAS’s threading

model interacts with the underlying OpenMP runtime,

are ongoing.

6 Initial feasibility experiments for the
multi-axial benchmark

Thus far, this paper has used the earlier nine-story structural

model analyzed by Ferry et al. (2014a); Ferry et al. (2014b) as an

experimental vehicle to highlight how advancements in

computational platforms over the last decade can be applied in

RTHS. This section considers how the improvements demonstrated

in the previous two sections may be leveraged to provide

millisecond-scale RTHS for the more complex multi-axial

benchmark problem at scale.

As described in Section 3.2, the implementations of the multi-

axial model perform standalone hybrid simulations using the

CyberMech platform. A single model size is tested, with

29 degrees of freedom (DoF), as a proof of concept to

demonstrate the problem’s difficulty and gauge its ability to

exploit the parallelism available on a multi-core processor.

6.1 Multicore execution times

The execution times of each time step in the simulation are first

measured, again testing with 1–127 cores, and for each run reporting

the median, 99.865th percentile (3σ) and maximum execution times

across all 61,440 iterations. Plots for both the OMP and BLAS

implementations are shown in Figure 17.

The results tell a similar story to those in Section 5, indicating that

the high-end AMD EPYC CPU, coupled with modern kernel,

middleware, and compiler support, is more than sufficient to

enable millisecond-scale virtual maRTHS. For the model size

tested, with only 29 degrees of freedom, each simulation time step

completes in well under 100 μs in the worst case, even on a single core.

However, the plots in Figure 17 demonstrate timing behavioral

patterns that are noteworthy, and differ slightly from those observed

in Section 5 for the nine-story structural simulation. For example, the

3σ times show highly consistent separation from the median:

29–38 μs for OMP, and 29–35 μs for BLAS. The fact that this gap

tends to be relatively constant, rather than proportional to the median

time, suggests that on some simulation iterations, additional

sequential computation is performed. Investigating possible sources

of this, including dynamicmemory reallocation, controller updates, or

kinematic transformation, is planned as future work.

Unsurprisingly, and consistent with the results from the nine-

story structural model, the BLAS implementation is more

efficient than OMP. Figure 18 plots the ratio of OMP to BLAS

execution times. On a single core, the median execution time for

BLAS is more than 3 × faster than that of OMP. Also, since the

model size is relatively small at only 29 DoF, increasing

parallelism quickly decreases the performance of the

simulation. For the OMP implementation, the best median

execution time of 14 μs is with six cores; for BLAS, the best

median time of 7.4 μs is with only four cores. The high degrees of

parallelism available from the 128-core CPU thus cannot be

exploited at that scale, though representative models with

substantially more degrees of freedom are in development, for

which it is reasonable to expect that using more cores will be

advantageous.

6.2 Discussion

The results of the scalability analysis for the standalone virtual

implementation of the maRTHS benchmark problem tell a

conclusive story. For the evaluated model, the worst-case

execution time remains under 60 μs on just four cores of the

128-core platform when accelerated using BLAS. This is only 6%

of the 977 ms response time required by a 1024 Hz simulation,

which provides plenty of room to grow; even with larger models and

constrained deadlines imposed by control loops across distributed

vRTHS and full RTHS with a physical substructure, the

computational techniques discussed in this paper are expected to

enable millisecond-scale simulations.

7 Conclusions and future work

The experimental benchmark control problem for multi-axial

real-time hybrid simulation (maRTHS), newly released to the

community by (Condori et al., 2023), proposes a more realistic,

albeit more complex, approach toward seismic testing. This paper

has considered the computational requirements towards realizing

millisecond-scale maRTHS.

Pursuant to this, it has presented evaluations of the semantically

simpler nine-story structural model analyzed by Ferry et al. (2014a,b).

The results of those evaluations demonstrate that in the decade since

that analysis, improvements inmodern computational platforms offer

FIGURE 18

Execution time ratios between OMP and BLAS implementations

of standalone virtual maRTHS.
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significant speedups, enabling sub-millisecond RTHS even for large

models with 1,188 degrees of freedom. The greatest speedups were

achieved by taking advantage of the parallelism offered by a modern

128-core AMD EPYC processor, and optimizing matrix operations

using BLAS and LAPACK.

Evaluations of a standalone virtual implementation of the

maRTHS benchmark in the CyberMech platform (Condori et al.,

2020) were also presented. On a smaller model with only 29 DoF, it

was possible to simulate each timestep in under 60 μs in the worst

case using only 4 CPU cores, suggesting the feasibility of real-time

millisecond-scale hybrid simulation for larger multi-axial models

with a physically-controlled substructure.

As an initial feasibility and scalability analysis, this paper

illuminates several directions of investigation and development

toward implementation of the next-generation MechWorks

concurrency platform. While a latency model that explains the

execution times of the purely OpenMP-based implementation of

the nine-story structural model has been proposed and analyzed

for different model sizes and on different numbers of cores, that

same latency model does not fully capture the semantics of BLAS, for

which execution time also has a term that depends on the number of

model degrees of freedom but not on the number of cores. Efforts to

develop richer execution models that explain the observed data

are ongoing.

Furthermore, the maRTHS evaluation thus far has been in a

simplified experimental environment. Toward supporting full

maRTHS with finer resolution (both in time and in models’

degrees of freedom) on MechWorks, it will be necessary to

identify and address additional limitations of the current

computational platform. Development of new operating system

and middleware thread scheduling platforms, using distributed

networked endsystems, and acceleration with heterogeneous

computing architectures such as GPUs and FPGAs, are all underway.
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