
Subtask-Level Elastic Scheduling
Marion Sudvarg, Daisy Wang, Jeremy Buhler, Chris Gill

Department of Computer Science and Engineering

Washington University in St. Louis

(msudvarg, w.yanwang, jbuhler, cdgill)@wustl.edu

Buttazzo et al.’s elastic scheduling model allows task utiliza-

tions to be “compressed” to ensure schedulability atop limited

resources. Each task is assigned a range of acceptable utiliza-

tions and an “elastic constant” representing the relative adapt-

ability of its utilization. In this paper, we consider federated

scheduling, under which each high-utilization parallel task is

assigned dedicated processor cores. We propose a new model

of elastic workload compression for parallel DAG tasks that

assigns each subtask its own elastic constant and continuous

range of acceptable workloads. We show that the problem can

be solved offline as a mixed-integer quadratic program, or

online using a pseudo-polynomial dynamic programming algo-

rithm. We also consider joint core allocation and compression

of low-utilization sequential tasks and present a mixed-integer

linear program for optimal elastic compression of tasks under

partitioned EDF scheduling. We show empirical improvements

in schedulability over the prior work and present a case study

for the Fast Integrated Mobility Spectrometer (FIMS).

I. INTRODUCTION

Elastic real-time scheduling models provide a framework

in which task utilizations may be reduced to guarantee

schedulability despite limited resources. The original model

of Buttazzo et al. [1], [2] considers uniprocessor scheduling

of implicit-deadline task systems. Each task is assigned a

range of allowed utilizations, as well as an additional elasticity

parameter that “specifies the flexibility of the task to vary its

utilization” [1]. Ideally, each task is allowed to execute at its

maximum utilization. However, if this would cause the system

to become overloaded, each task’s utilization is “compressed”

proportionally to its elastic constant until the total utilization

no longer exceeds the schedulable bound of the system, or

until the task reaches its minimum serviceable utilization.

The growing prevalence of multicore CPUs, even in em-

bedded platforms, has enabled increasingly complex real-time

applications to exploit intra-task parallelism. Tasks that indi-

vidually require parallel execution on more than one processor

to meet their deadlines are found in autonomous vehicles [3],

computer vision systems [4], mobile robotics [5], hybrid

structural simulation [6], [7], and satellite telescopes [8]–[10].

This has inspired extensions of the elastic framework to

federated scheduling [11] of parallel real-time tasks, under

which each high-utilization parallel task (those with U > 1)

is allocated dedicated processor cores in sufficient number to

guarantee schedulability. In prior work by Orr et al. [12], if

the number of allocated cores exceeds those available in the

system, parallel task utilizations are compressed by decreasing

their workloads over a continuous range until the demand for

processors can be met. Utilizations thus assigned satisfy a

reformulation of the quadratic optimization problem presented

by Chantem et al. [13], [14] that is solved by Buttazzo’s

original elastic scheduling model [1], [2].

Limitations of Prior Work: The proposed approach in [12]

has three key limitations. First, it decreases the task’s compu-

tational demand as a whole, without considering the impact on

each subtask. The ability of each subtask to vary its utilization

— and the resulting impact on quality of outcome (e.g.,

control performance, prediction accuracy, etc.) — should be

considered individually to maximize overall quality within the

resource constraints [15]–[19]. Second, it allocates processor

cores per the methodology in [11], which considers each par-

allel task’s total workload, deadline, and span. As it decreases

task workloads, the model in [12] holds the span constant.

However, span may also decrease with subtask workloads,

allowing schedulability with less overall compression. Third, it

only considers core allocation to high-utilization parallel tasks.

In fact, under the federated scheduling model in [11], low-

utilization tasks are scheduled concurrently on any remaining

cores not allocated to the high-utilization tasks. Orr et al.’s

model [12] compresses parallel tasks given a number of

available cores, only suggesting as an aside that low-utilization

tasks can be compressed if there are cores remaining. However,

jointly compressing all tasks may change the numbers of cores

separately allocated to high- and low-utilization tasks.

Contributions of This Work: To address these limitations of

the current state of the art, we propose a model of subtask-level

elastic scheduling. To capture the semantics of individually

compressing subtask workloads, it assigns to each subtask an

elasticity parameter and continuous range of acceptable work-

loads. It adapts the quadratic objective for elastic scheduling

from Chantem et al. [13], [14] to this new model.

It also demonstrates solver-based methods for assigning

subtask workloads. The model can be expressed and solved

as a mixed-integer quadratic program (MIQP), though it is

nontrivial to express the schedulability constraint as a function

of subtask workloads because their assignment affects the

task’s span. We propose and analyze two different methods

to construct the MIQP, as well as a dynamic programming

algorithm for jointly compressing multiple tasks.

Finally, it jointly compresses low-utilization tasks. By con-

sidering them in aggregate, the model captures the objective

value associated with compressing low-utilization tasks onto

different numbers of cores, then folds these values into the

dynamic program to allocate cores to both high- and low-

utilization tasks. We demonstrate this concretely in the context

of fluid [20] and partitioned EDF scheduling [21]. For the

latter, we present a novel mixed-integer linear program (MILP)



formulation for optimal elastic scheduling of sequential tasks.

Empirical Results: We implement the MIQPs and MILP in

Gurobi [22], an off-the-shelf constraint-programming solver.

In our evaluation, solving the MIQP for individual parallel

tasks with up to 50 subtasks took under 42ms. By solving mul-

tiple MIQPs offline, our pseudo-polynomial algorithm enabled

online core allocation and workload compression in under

60ms for 10 tasks with up to 20 subtasks each. Moreover, for

the parallel tasks considered, we demonstrate that our model

may achieve schedulability on systems with only 41% of the

cores required by the prior model of Orr et al. [12].

We also apply our approach to a real-time atmospheric

aerosol monitoring pipeline [23], [24] for the Fast Integrated

Mobility Spectrometer (FIMS). We re-implement its image

processing task that detects and sizes aerosol particles to

parallelize over multiple image segments. We assign elastic

constants based on average particle densities within each

segment. This allows us to compress the subtask workloads to

remain schedulable even on future drone-based deployments

where reduced particle resident times require shorter periods.

II. BACKGROUND

A. Uniprocessor, Implicit-Deadline Elastic Scheduling

Buttazzo’s elastic recurrent real-time workload model [1],

[2] provides a framework for managing overload by reducing

(“compressing”) the utilizations of individual tasks until the

total no longer exceeds the schedulable bound. It characterizes

each task τi=(Ci, U
min
i , Umax

i , Ui, Ei) by five non-negative

parameters: Ci is the task’s worst-case execution time; Umax
i is

its maximum utilization, i.e., its nominal value when executing

at the desired service level in an uncompressed state; Umin
i is

its minimum utilization, i.e., a bound on the amount its service

can degrade; Ui is the task’s assigned utilization, constrained

to Umin
i ≤ Ui ≤ Umax

i ; and Ei is an elastic constant, repre-

senting “the flexibility of the task to vary its utilization” [1].

A task system Γ = {τ1, . . . , τn} has a total uncompressed

utilization Umax
SUM =

∑n
i=1 U

max
i and a desired utilization UD

representing the utilization bound given by the scheduling

algorithm in use. In the event of system overload, i.e., if

Umax
SUM > UD, the elastic model compresses each task’s uti-

lization such that it is reduced from its desired maximum

proportionally to the task’s elasticity parameter, subject to the

constraint that it remains no less than the specified minimum.

Compression is realized by adjusting each task’s period Ti

according to its new utilization, i.e., Ti = Ci/Ui.

Chantem et al. [13], [14] demonstrated that utilizations thus

assigned satisfy the following quadratic optimization problem:

min
Ui

n
∑

i=1

1

Ei
(Umax

i − Ui)
2 (1a)

s.t.

n
∑

i=1

Ui ≤ UD (1b)

∀i, Umin
i ≤ Ui ≤ Umax

i . (1c)

This supports elasticity in other task models with schedu-

lability tests that do not rely strictly on a utilization bound,

including federated scheduling of parallel real-time tasks [11].

B. Elastic Frameworks for Federated Scheduling

The federated scheduling model of Li et al. [11] deals with

systems of parallel implicit-deadline tasks. Each task τi con-

sists of a set of subtasks τi,j , each characterized by a workload

ci,j representing its worst-case execution time. Subtasks may

run in parallel, except as constrained by a precedence relation:

if τi,a ≺ τi,b, then τi,a must fully complete its execution before

τi,b is scheduled. The partial-ordering of precedence over

subtask execution that describes task execution gives rise to

a standard directed acyclic graph (DAG) representation with

a collection of vertices vi,j corresponding to subtasks τi,j .

A directed edge from vertex vi,a to vi,b exists if and only if

τi,a ≺ τi,b and there is no τi,c for which τi,a ≺ τi,c ≺ τi,b, i.e.,

τi,b directly succeeds τi,a.

Each high-utilization parallel task τi is allocated mi dedi-

cated processor cores, where

mi =

⌈

Ci − Li

Di − Li

⌉

. (2)

Here, Ci =
∑

j ci,j represents the task’s total workload (DAG

volume). Li is the task’s span, i.e., the DAG’s critical path

length (weighted by subtask execution time). Di is the task’s

deadline; for implicit-deadline tasks, this equals the period Ti.

In [25], Orr et al. extended the elastic framework to the fed-

erated scheduling model. If the total processor cores allocated

exceed the number available, each high-utilization parallel task

has its utilization compressed until demand is met. Rather

than a simple utilization bound, Eqn. 2 implies the following

schedulability condition:

n
∑

i=1

⌈

Ci − Li

Di − Li

⌉

≤ m. (3)

where m is the total number of processor cores available. Task

utilizations are assigned according to Eqn. 1, with the original

schedulability condition (Eqn. 1b) replaced by Eqn. 3.

In [12], Orr et al. extended their approach to

computationally-elastic tasks, allowing parallel workloads to

be adjusted over a continuous range: a task with period Ti

would have its workload assigned as Ci = Ti · Ui. This may

be realized, for example, by reducing the quantity of input

data to process or by forcing an iterative anytime algorithm

to terminate early [26]. The span Li is held constant.

This work addresses limitations of that model. In particular,

we consider how reducing the workload of each individual

subtask impacts result quality and task span. We also consider

the joint compression of low-utilization tasks. The next section

details these limitations and motivates our work.

III. MOTIVATION AND PROBLEM STATEMENTS

A. Subtask-Level Elastic Scheduling

Subtask-Level Workload Compression: In a computationally-

elastic task, the workloads of individual subtasks may be



(a) Uncompressed workload (b) No change to span (c) Span compressed

Fig. 1: Critical path may change depending on which subtask workloads are compressed.

able to adapt in different ways. Examples include anytime

workloads, which may iteratively refine the result to achieve

greater precision. If their execution time budget is exhausted,

the current result is used. Others support discrete execution

modes that can be selected prior to execution, which may

correspond to different algorithmic techniques [19] or vary-

ing degrees of numerical precision [17], [27], [28]. At fine

enough granularity, discrete modes can be approximated as

a continuous state space, e.g., the proportion of input data

selected from a large set for processing [19]. Furthermore, as

we demonstrate with our case study in §VIII, a subtask may

represent some optional execution to improve the result. If

the subtask’s execution times form a wide distribution, e.g.,

due to dependence on the number of features present in an

image, then selecting an execution time from a continuous

range increases the likelihood that it will be able to complete.

Moreover, the workload assigned to each individual subtask

may uniquely impact result quality. For example, in au-

tonomous vehicles, AutoE2E [18], [29] adjusts end-to-end task

execution to maintain schedulability in open and unpredictable

environments. It considers the relative importance of each

subtask, both from the perspective of driver preference and

control outcome. For LiDAR object detection, fine-grained

time and accuracy tradeoffs in the PointPillars [30] encoder

pipeline are exploited in [17] to enable adaptive execution in

response to dynamic deadlines in an open environment. The

authors analyze the execution time and corresponding accuracy

associated with different levels of computational precision in

the DAG’s subtasks. For prompt gamma-ray burst localization,

the authors of [19] model the localization pipeline as a highly-

parallel fork-join task, then parameterize its workloads along

continuous degrees of freedom, characterizing the impact on

localization accuracy of compressing each pipeline stage.

Each of these applications enables adaptive real-time execu-

tion based on the importance of each subtask. However, there

is as yet no model that extends elastic scheduling to consider

individual subtasks for parallel DAG tasks in general.

Considering Task Span: The model in [12] for federated

scheduling of computationally-elastic tasks holds the span Li

of each task τi constant while compressing workloads Ci.

Depending on how the new workload assignment Ci is to be

realized, i.e., which subtask workloads ci,j are to be reduced,

the value Li may also decrease, as Fig. 1 illustrates. Without

accounting for this, the model may be pessimistic in resource

allocation and may over-compress task workloads.

Example 1. Consider a task with parameters Cmax
i = 10,

Li = 4, and Di = 6 to be scheduled on only 2 processor cores.

If Li is held constant, the task’s workload would have to be

decreased to Ci = 8 to satisfy Eqn. 2. But the workload needs

to only be reduced by 1 unit along its critical path (Ci = 9
and Li = 3) to be schedulable.

The Subtask-Level Elastic Workload Model: To fill the

above-mentioned gaps, we propose a model of subtask-level

computational-elasticity where each subtask τi,j is assigned a

continuous range of allowed execution times [cmin
i,j , cmax

i,j ] and

an elastic constant Ei,j . This elasticity parameter, similarly to

the model of Buttazzo et al. [1], [2], represents the adaptability

of the subtask’s workload, e.g., based on its relative importance

to result outcome (a more important subtask would be less

elastic). Subtask workloads ci,j are then selected to satisfy a

modified version of the quadratic optimization of Chantem et

al. [13], [14] in Eqn. 1 so as to (4a) minimize the (weighted)

deviations of individual subtask utilizations from their desired

values, within (4b) the schedulability constraints that arise

from assigning each parallel task its own dedicated processor

cores according to Eqn. 2, and (4c) constraints on the range

of allowed execution times for each subtask.

min
{ci,j}

∑

τi,j

1

Ei,jT 2
i

(

cmax
i,j − ci,j

)2
(4a)

s.t.

n
∑

i=1

⌈

Ci − Li({ci,j})

Ti − Li({ci,j})

⌉

≤ m (4b)

∀i,j , cmin
i,j ≤ ci,j ≤ cmax

i,j . (4c)

B. Joint Compression of Low-Utilization Tasks

Motivation: Prior models for elastic scheduling of parallel

tasks in [12], [25], [27] do not address compression of

low-utilization (i.e., sequential, non-DAG) elastic tasks. They

assume a fixed allocation of processor cores to high-utilization

parallel tasks, mentioning as an aside that sequential tasks can

be compressed per Buttazzo’s original algorithm in [1], [2]

to be schedule on any remaining processors. However, the

semantics of elastic scheduling suggest that, as the allocation

of cores to each task may change, so too may the allocation

of cores between high- and low-utilization tasks.

Example 2. Consider a system with m = 4 processor cores on

which the following implicit-deadline tasks must be scheduled:

1) τ1 = (C1 = 5, T1 = 10), a sequential task.

2) τ2 = (C2 = 3, T2 = 8), a sequential task.

3) τ3 = (C3 = 4, T3 = 7), a sequential task.

4) τ4 = (C4 = 30, L4 = 10, T4 = 15), a parallel task.







The MIQP may be simplified by removing the variable mi

that represents the number of cores assigned to task τi and

replacing it instead with a constant m = m∗. In doing so, the

constraint taking the form of Eqn. 8 becomes linear instead of

quadratic, and the constraint of Eqn. 9 is removed.

Algorithm 1: COMPRESS-DP(Γ,m)

1 Input: A set Γ of n high-utilization parallel tasks, m available
processor cores

2 Output: A set {ci,j} of subtask workload assignments

3 ▷ Find optimal state for each core allocation

4 forall τi ∈ Γ do

5 Cmin

i ←
∑

j c
min

i,j , Cmax

i ←
∑

j c
max

i,j

6 Lmin

i ← Compute span according to cmin

i,j values

7 Lmax

i ← Compute span according to cmax

i,j values

8 mmin

i ←

⌈

Cmin

i −Lmin

i

Ti−Lmin

i

⌉

, mmax

i ←
⌈

Cmax

i −Lmax

i

Ti−Lmax

i

⌉

9 forall mi,k ← mmin

i ..(mmax

i −1) do

10 Construct and solve an MIQP to obtain optimal subtask
workloads and corresponding objective value Oi,k to
compress the single task τi to execute on mi,k cores.

11 ▷ Find optimal joint state for m cores

12 if
∑

i m
max

i ≤ m then return No compression needed

13 if
∑

i m
min

i > m then return Not schedulable

14 ▷ Adapted multiple-choice knapsack

15 DP [0..m][0..n]▷ Table to track optimal solution.

16 DP [0][∗].O ←∞, DP [∗][0].O ←∞
17 for m∗ ← 1..m do

18 for i← 1..n do

19 MIN ←∞ ▷ Minimum objective so far.

20 ALLOC ← −1 ▷ Core allocation to τi.

21 ▷ Possible compression states for τi,

corresponding to valid core assignments

22 for mi,k ← mmin

i ..min(mmax

i ,m∗) do

23 if i = 1 then

24 ▷ First task, allocate cores.

25 MIN ← Oi,k

26 ALLOC ← mi,k

27 else if DP [m∗ −mi,k][i− 1].O +Oi,k < MIN then

28 ▷ Re-assigning mi,k cores to τi
reduces objective function.

29 MIN ← DP [m∗ −mi,k][i− 1].O +Oi,k

30 ALLOC ← mi,k

31 if ALLOC > −1 then

32 ▷ Update based on re-allocation.

33 DP [m∗][i].M ← DP [m∗ − ALLOC][i− 1].M
34 Insert ALLOC into DP [m∗][i].M
35 DP [m∗][i].O = MIN

36 else
37 ▷ Otherwise, use previous allocation.

38 DP [m∗][i] = DP [m∗ − 1][i]

39 return DP [m][n]

Solving for each value of m∗ in this way gives us a set of

optimal subtask workload assignments and objective function

values for each allocation; for m∗ = mmax
i , every subtask

workload is assigned as ci,j = cmax
i,j and the task’s contribution

to the objective function in Eqn. 4a is 0.

2) Joint Allocation as a Multiple-Choice Knapsack Prob-

lem: Lines 4–10 of Alg. 1 give us, for each task τi, a group

of pairs of weight (processor core allocation, mi,k) and cost

(the minimum value taken by Eqn. 4a, Oi,k) values for each

mi,k ∈ [mmin
i ,mmax

i ]. The goal is to select a pair from each

group to minimize total cost, while preventing the total weight

from exceeding the number of available cores m.

The above problem is similar to multiple-choice knapsack,

in which is given a set of disjoint groups of items with weights

and profits, and the problem is to select exactly one item

from each group to maximize total profit without exceeding a

given total weight bound. It is shown in [27] that the pseudo-

polynomial DP-based algorithm presented in [34] for multiple-

choice knapsack can be adapted instead to minimize total item

cost, and is therefore applicable to our allocation problem.

Our implementation of this algorithm builds a two-

dimensional table DP where DP [m∗][i] gives the optimal

solution after considering the first i≤n tasks on m∗≤m cores.

Each entry in the table is a pair ⟨M,O⟩ where M is a set that

tracks the number of cores allocated to those i tasks, and O is

the corresponding minimum objective function value. Entries

satisfy the following recurrence:

DP [m∗][i].O = min
(

DP [m∗ − 1][i].O,

min
k

{DP [m∗ −mi,k][i− 1].O +Oi,k}
)

The first term is the entry corresponding to assigning the first i
tasks on m∗−1 cores, i.e., the case where adding an additional

core does not decrease the cost. The second term represents

the minimum cumulative cost of assigning mi,k cores to task

τi and the remaining m∗ −mi,k cores to the previous tasks.

Lines 14–38 of Alg. 1 use dynamic programming to iter-

atively construct the table so DP [m∗ − 1][i] and all entries

DP [m∗−mi,k][i−1] are already populated when DP [m∗][i]
is computed. The procedure iterates over cores, then tasks,

considering scheduling the first i tasks on m∗ CPUs. For each

possible assignment of cores mi,k ≤ m∗ to τi (bounded by the

minimum and maximum core assignments mmin
i and mmax

i

due to the constraints on the subtask workloads of τi), the

algorithm checks whether re-allocating mi,k cores to task τi
improves the result (i.e., decreases the tracking variable MIN).

If an improved allocation is found, then the entry of the DP

table is updated with the objective (cost) and corresponding

core allocation. Otherwise, it is updated to match the best

allocation over the previously-considered m∗ − 1 cores.

Runtime Complexity and Admission Control: While we

cannot make guarantees about the time to solve each MIQP, the

DP portion of Alg. 1 is pseudopolynomial in n and m. There

are m CPUs to allocate (line 17) to n tasks (line 18). For each

task τi, we consider allocations from mmin
i to mmax

i , stopping

if the currently-considered allocation m∗ is reached (line 19);

this bounds the number of iterations of the inner for loop to m,

since m∗≤m. The total worst-case running time is therefore

O(n·m2). As justified in §V-A, if the optimal set of task

workloads for each core allocation is obtained offline when a

task’s other parameters are characterized, then admission of

a new task to an already-compressed system can be achieved

by executing lines 14–32 of the algorithm, enabling admission

control in pseudo-polynomial time. We evaluate this in the

context of synthetically-generated parallel tasks in §VII-C.



VI. JOINTLY COMPRESSING LOW-UTILIZATION TASKS

Our DP-based approach of the previous section also en-

ables joint scheduling of low-utilization sequential tasks. We

characterize such tasks according to Buttazzo’s original elastic

scheduling model, with utilizations compressed proportionally

to their elastic constants [1], [2]. The key idea is that we can

consider mmin
LO and mmax

LO as the number of cores necessary

to schedule the complete set ΓLO of low-utilization tasks

when fully compressed and uncompressed, respectively. For

every m∗ ∈ [mmin
LO ,mmax

LO − 1], we can quantify the amount of

compression necessary to achieve schedulability on m∗ cores.

By then solving for the corresponding objective function value

in Eqn. 4a for the compressed ΓLO, we obtain a set of discrete

core assignments and costs. This allows the complete set ΓLO

to be integrated into the DP-based algorithm as if it were a

single high-utilization parallel task.

Obtaining values mmin
LO and mmax

LO — and the amount of

compression needed to schedule on m∗ cores — depends on

the scheduling algorithm. Though complete coverage of mul-

tiprocessor scheduling is out of scope, we outline approaches

for fluid and partitioned EDF scheduling, extending the ap-

proaches in [35], [36] for multiprocessor elastic scheduling.

A. Fluid Scheduling

Under fluid scheduling, each individual task τi is assigned

a fraction fi of a processor at each instant in time. This is

a convenient abstraction that considers a task set Γ to be

schedulable on m cores so long as (a) the total utilization
∑

i Ui of Γ does not exceed m, and (b) the individual

utilization Ui of each task τi does not exceed 1 [20].

For low-utilization tasks, condition (b) is automatically

satisfied. We can therefore obtain mmin
LO and mmax

LO as

mmin
LO =

⌈

∑

i

Umin
i

⌉

mmax
LO =

⌈

∑

i

Umax
i

⌉

, (14)

where Umin
i = Cmin

i /Ti or Ci/T
max
i (and similarly for Umax

i ),

depending on whether τi is computationally-elastic or rate-

elastic. Then for m∗ ∈ [mmin
LO ,mmax

LO − 1], we assign values

Ui to each task τi that satisfy Buttazzo’s elastic model [1], [2]

with the desired utilization UD equal to m∗.

The total time — beyond the O((nHI +1)·m2) to solve the

DP problem jointly with nHI high-utilization parallel tasks —

can be kept to a minimum by using the algorithm of Sudvarg

et al. in [36], [37]. Computing mmin
LO and mmax

LO can be done in

time linear in nLO, the number of tasks in ΓLO. Compressing to

m∗ cores can be done in time O(nLO · log(nLO)). However, the

quasilinear time is due to an initial step of obtaining a sorted

list of tasks; the sort order does not depend on the desired

utilization UD. Therefore, this only needs to be done once.

The remainder of [37, Alg. 1] takes time O(nLO). Thus, the

worst-case running time is

O(nLO · log(nLO) +m·nLO)

which accounts for the initial sort, followed by at most m
linear-time invocations of [37, Alg. 1] and computations of

Eqn. 4a, since we can stop when m∗ exceeds m.

B. Partitioned EDF Scheduling

While fluid scheduling is a convenient abstraction, and

implementations exist to approximate it [38], it often remains

impractical in real systems [35]. A more applicable paradigm

is partitioned scheduling, where tasks are distributed to proces-

sors a priori, then scheduled with other tasks on that processor

according to a common approach (e.g., fixed-priority or EDF).

An optimal distribution for partitioned EDF is equivalent to

bin-packing, and is therefore NP-hard in the strong sense,

but approximation algorithms exist that provide guaranteed

schedulability if a utilization bound is not exceeded [21]. For

example, a set of low-utilization tasks is EDF-schedulable on

m∗ cores using first-fit or best-fit partitioning if their total

utilization does not exceed (m∗ + 1)/2. It is therefore straight-

forward to adapt the method proposed for fluid scheduling to

partitioned EDF by changing the utilization bound.

However, this bound tends to be pessimistic [36]. An alter-

native heuristic-based method is explored in [35], [36]. We in-

stead propose an exact solution based on a mixed-integer linear

program (MILP). The MILP is solved for each possible core

assignment m∗ ∈ [mmin
LO ,mmax

LO − 1], where mmin
LO is computed

as per fluid scheduling (representing the absolute lower bound

on the number of cores for which a feasible partition might be

found under maximum compression) and from the worst-case

utilization bound, mmax
LO = ⌈2

∑

i(U
max
i )− 1⌉.

Constructing the MILP: From [39], there is a value λ repre-

senting the amount of compression applied to the task system.

Since every sequential task is compressed proportionally to its

elasticity, we can express each task’s utilization Ui as

Ui(λ) = max
(

Umax
i − λEi, U

min
i

)

. (15)

The goal, then, is to find the minimum value of λ for which

the set ΓLO of low-utilization tasks is schedulable on m cores.

1) Task Utilizations: For each low-utilization task τi, define

a continuous variable Ui representing its utilization:

Umin
i ≤ Ui ≤ Umax

i . (16)

2) Compression: We define a real-valued variable λ inter-

preted as above. To enforce this, we specify the constraint:

0 ≤ λ ≤ λmax. (17)

Here, λmax represents the value of λ for which every task’s

utilization Ui reaches its minimum Umin
i . This is the maximum

compression that may be applied, after which utilizations no

longer change. From Eqn. 15, this can be computed as:

λmax = max
τi∈ΓLO

(

Umax
i − Umin

i

Ei

)

.

To enforce the utilization and compression relationship in

Eqn. 15, for each task τi we add a constraint of the form

Ui ≥ Umax
i − Eiλ. (18)

Then the objective is to

minimize λ. (19)



A

B

C

Fig. 4: Removing shortcut edges.

3) Schedulability: A set of tasks is partitioned EDF schedu-

lable on m cores if and only if there exists a partition of tasks

into m sets such that the total utilization of tasks in each set

does not exceed 1. For each task τi and each core k ∈ 1..m, we

define zero-one variables xi,k with the intended interpretation

that xi,k takes the value 1 if task τi executes on core k, and

0 otherwise. So that each task τi is assigned to exactly one

core, we add constraints of the form

m
∑

k=1

xi,k = 1. (20)

To enforce the schedulability condition, we require that for

every core k,
∑

i Ui · xi,k ≤ 1. To avoid quadratic constraints,

we define a large constant value M and for each variable xi,k

we define a corresponding variable zi,k constrained as

zi,k ≥ 0, (21)

zi,k ≥ Ui +M · (xi,k − 1). (22)

This way, if xi,k takes the value 1, the term M ·(xi,k − 1)
will evaluate to 0 and so zi,k will be forced to take the value

Ui; if xi,k instead takes the value 0, the term M ·(xi,k − 1)
will take the value −M . If M > maxi{U

max
i }, the expression

Ui +M ·(xi,k − 1) evaluates to a negative value, and thus, zi,k
will be forced to 0. To enforce schedulability, we can therefore

add a constraint of the following form for each core k:
∑

τi∈ΓLO

zi,k ≤ 1. (23)

VII. EVALUATION

A. Analysis of Span Constraints

We begin by analyzing the number of constraints necessary

to enforce the intended interpretation of the span variables in

the MIQP discussed in §IV-B and §IV-C. Though we have

already provided theoretical upper bounds, we would like to

now empirically quantify a range of realistic problem sizes

associated with sets of synthetically-generated DAG tasks.

Experimental Setup: We generate DAGs according to a mod-

ified version of the Erdős-Rényi method [40]:

1) Select a number of vertices k for the DAG G (we iterate

over values of k from 5–50).

2) For each pair of vertices in {v2, ..., vk−1}, add a connecting

edge with probability p (we iterate over values of p from

0.05–0.95 in steps of 0.05). So the graph remains acyclic,

we direct the edge from the smaller to larger vertex index.

3) Vertex v1 is the source vertex: direct an edge from it to all

remaining vertices (except vk) with no incoming vertices.

Similarly, vertex vk is the sink: direct an edge to it from all

vertices with no outgoing vertices. This guarantees that the

DAG is weakly connected.

4) For every edge E connecting vertex va to vb, if there exists

a path from va to vb in G\E, then E is a shortcut and

is removed as illustrated in Fig. 4. This guarantees that no

path from source to sink is a subset of another path, so every

path might form the critical path, depending on its vertex

weights (i.e., the corresponding subtask execution times).

For each combination (k, p), we generate 10 000 graphs.

Counting Maximal Paths: For each DAG, we count the

number of paths from the source to the sink vertex; these are

exactly the set of maximal paths and correspond to constraints

in the form of Eqn. 10. We plot the mean and maximum count

for each pair (k, p) in Fig. 5.

We observe that an edge probability of 0.5 is expected

to produce the largest number of maximal paths. For tasks

with 50 subtasks and p = 0.5, 8465 constraints of the form

of Eqn. 10 will be added on average with a maximum

observed of 106 560. However, an edge probability of 0.55
gives the maximum observed overall at 133 632 such paths. In

comparison, the maximum possible for the pathological case

illustrated in Fig. 3 is 3(50−2)/3, which is over 43 million.

Counting Edges: For each DAG, we also count the number of

edges remaining after removal of shortcut edges. Each such

edge corresponds to a constraint in the form of Eqn. 12 or

Eqn. 13. Results are plotted in Fig. 6.

We observe that for smaller numbers of subtasks, an edge

probability of 0.2 is expected to produce the largest number

of edges, as edge shortcuts are removed after the initial

set of edges are generated. As the number of subtasks k
approaches 50, p = 0.15 is expected to result in the most

edges: 106 on average. The maximum observed overall was

136. Most importantly, as the number of subtasks increases, the

number of paths rapidly overtakes the number of edges. This

suggests that the method in §IV-C for enforcing the intended

interpretation of the span variables using a constraint for each

edge in the task DAG will tend to scale better with problem

size; we confirm this with the following experiments.

B. MIQP Solver Performance

We now evaluate the feasibility of solving the optimization

problem listed in Eqn. 4. We use version 10.0.3 [41] of

the Gurobi Optimizer [22] to solve the MIQP. We measure

execution times on a server with an AMD EPYC 9754 CPU

and 128GB of RAM running Linux 5.14.0. Simultaneous

Multithreading and CPU throttling are disabled.

Compressing Individual Tasks: We begin by randomly gen-

erating tasks according to the modified Erdős-Rényi method

outlined above, using an edge probability of p = 0.5 since we

have observed that this typically induces the greatest number

of maximal paths. For each value k (number of subtasks) in

5–50, we generate 1000 such tasks, for a total of 46 000.

Each subtask τi,j has its elasticity Ei,j randomly selected

as an integer from the range 1–100. To assign a range of

acceptable execution times to each subtask, we randomly











ACKNOWLEDGMENT

This work was supported by NSF grants CPS-2229290 and

CNS-2141256, NASA award 80NSSC21K1741, a Washington

University OVCR seed grant, and a Washington University

CSE/EECE seed grant. Thanks to the several attendees of the

OPERA 2023 workshop, co-located with RTSS 2023, whose

suggestions were invaluable in constructing this paper. We

would especially like to thank Tanya Amert, Jian-Jia Chen,

Mario Günzel, and Corey Tessler for their insights.

REFERENCES

[1] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Proc. of IEEE Real-Time Systems Symposium,
1998. [Online]. Available: https://doi.org/10.1109/REAL.1998.739754

[2] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on

Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[3] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in 2013 ACM/IEEE International Conference on Cyber-Physical

Systems (ICCPS), 2013, pp. 31–40.

[4] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time
computer vision workloads using openvx on multicore+gpu platforms,”
in 2015 IEEE Real-Time Systems Symposium, 2015, pp. 273–284.

[5] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data flow
orb-slam for real-time performance on embedded gpu boards,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2019, pp. 5370–5375.

[6] D. Ferry, A. Maghareh, G. Bunting, A. Prakash, K. Agrawal, C. Gill,
C. Lu, and S. Dyke, “On the performance of a highly parallelizable
concurrency platform for real-time hybrid simulation,” in The Sixth

World Conference on Structural Control and Monitoring, 2014.

[7] D. Ferry, G. Bunting, A. Maghareh, A. Prakash, S. Dyke, K. Agrawal,
C. Gill, and C. Lu, “Real-time system support for hybrid structural
simulation,” in Proceedings of the 14th International Conference

on Embedded Software, ser. EMSOFT ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2656045.2656067

[8] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen et al., “A Fast GRB
Source Localization Pipeline for the Advanced Particle-astrophysics
Telescope,” PoS, vol. ICRC2021, p. 588, 2021.

[9] J. Wheelock, W. Kanu, M. Sudvarg et al., “Supporting multi-messenger
astrophysics with fast gamma-ray burst localization,” in Proc. of

IEEE/ACM HPC for Urgent Decision Making Workshop. IEEE, Nov.
2021.

[10] Y. Htet, M. Sudvarg, J. Buhler, R. Chamberlain, W. Chen, J. H.
Buckley et al., “Prompt and Accurate GRB Source Localization Aboard
the Advanced Particle Astrophysics Telescope (APT) and its Antarctic
Demonstrator (ADAPT),” in Proc. of 38th Int’l Cosmic Ray Conference,
vol. 444. Sissa Medialab, Jul. 2023, pp. 956:1–956:9.

[11] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Proc.

of 26th Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.
[Online]. Available: https://doi.org/10.1109/ECRTS.2014.23

[12] J. Orr, C. Gill, K. Agrawal, S. Baruah et al., “Elasticity of workloads
and periods of parallel real-time tasks,” in Proc. of 26th International

Conference on Real-Time Networks and Systems. ACM, 2018, pp.
61–71. [Online]. Available: https://doi.org/10.1145/3273905.3273915

[13] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling,” in Proc. of IEEE International Real-Time Systems

Symposium, 2006, pp. 236–245. [Online]. Available: https://doi.org/10.
1109/RTSS.2006.24

[14] ——, “Generalized elastic scheduling for real-time tasks,” IEEE

Transactions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.
[Online]. Available: https://doi.org/10.1109/TC.2008.175

[15] C. Lu, X. Wang, and X. Koutsoukos, “End-to-end utilization control
in distributed real-time systems,” in 24th International Conference on

Distributed Computing Systems, 2004. Proceedings., 2004, pp. 456–466.

[16] ——, “Feedback utilization control in distributed real-time systems
with end-to-end tasks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 16, no. 6, pp. 550–561, 2005.

[17] A. Soyyigit, S. Yao, and H. Yun, “Anytime-lidar: Deadline-aware
3d object detection,” in 2022 IEEE 28th International Conference

on Embedded and Real-Time Computing Systems and Applications

(RTCSA). Los Alamitos, CA, USA: IEEE Computer Society, aug
2022, pp. 31–40. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/RTCSA55878.2022.00010

[18] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang, “Performance opti-
mization of autonomous driving control under end-to-end deadlines,”
Real-Time Systems, vol. 58, no. 4, pp. 509–547, Dec 2022.

[19] M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, J. Buckley, and W. Chen,
“Parameterized workload adaptation for fork-join tasks with dynamic
workloads and deadlines,” in 2023 IEEE 29th International Conference

on Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2023, pp. 1–10.

[20] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, Jun 1996. [Online].
Available: https://doi.org/10.1007/BF01940883

[21] S. Baruah, “Partitioned edf scheduling: a closer look,” Real-Time

Systems, vol. 49, no. 6, pp. 715–729, Nov 2013. [Online]. Available:
https://doi.org/10.1007/s11241-013-9186-0

[22] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2024. [Online]. Available: https://www.gurobi.com

[23] D. Wang, J. Zhang, J. Buhler, and J. Wang, “Real-time analysis
of aerosol size distributions with the fast integrated mobility
spectrometer (FIMS),” in 41st Conference of American Association

for Aerosol Research (AAAR), Oct. 2023. [Online]. Available:
https://aaarabstracts.com/2023/view abstract.php?pid=752

[24] M. Sudvarg, A. Li, D. Wang, S. Baruah, J. Buhler, C. Gill, N. Zhang, and
P. Ekberg, “Elastic scheduling for harmonic task systems,” in 2024 Real-

Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2024.

[25] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling for
parallel real-time systems,” Leibniz Transactions on Embedded Systems,
vol. 6, no. 1, p. 05:1–05:14, May 2019. [Online]. Available: https:
//ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005

[26] M. Sudvarg, J. Buhler, R. D. Chamberlain, C. Gill, J. Buckley, and
W. Chen, “Parameterized workload adaptation for fork-join tasks with
dynamic workloads and deadlines,” in Proc. of IEEE 29th International

Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA), Aug. 2023, pp. 232–242.

[27] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling
of parallel real-time tasks with discrete utilizations,” in Proc.

of 28th International Conference on Real-Time Networks and

Systems. ACM, 2020, pp. 117–127. [Online]. Available: https:
//doi.org/10.1145/3394810.3394824

[28] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[29] Y. Bai, Z. Wang, X. Wang, and J. Wang, “Autoe2e: End-to-end real-
time middleware for autonomous driving control,” in 2020 IEEE 40th

International Conference on Distributed Computing Systems (ICDCS),
2020, pp. 1101–1111.

[30] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019, pp. 12 689–12 697.

[31] S. Odagiri and H. Goto, “On the greatest number of paths and maximal
paths for a class of directed acyclic graphs,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences,
vol. 97, no. 6, pp. 1370–1374, 2014.

[32] M. Sudvarg and C. Gill, “Analysis of federated scheduling for
integer-valued workloads,” in Proceedings of the 30th International

Conference on Real-Time Networks and Systems, ser. RTNS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
12–23. [Online]. Available: https://doi.org/10.1145/3534879.3534892

[33] P. Turán, “On an extremal problem in graph theory,” Matematikai és

Fizikai Lapok, vol. 48, pp. 436–452, 1941.

[34] H. Kellerer, U. Pferschy, and D. Pisinger, The Multiple-

Choice Knapsack Problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 317–347. [Online]. Available:
https://doi.org/10.1007/978-3-540-24777-7 11



[35] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,”
in Proc. of 27th International Conference on Real-Time Networks

and Systems. ACM, 2019, pp. 133–142. [Online]. Available:
https://doi.org/10.1145/3356401.3356403

[36] M. Sudvarg, C. Gill, and S. Baruah, “Improved implicit-deadline
elastic scheduling,” in Proceedings of the 14th IEEE International

Symposium on Industrial Embedded Systems (SIES 2024). IEEE,
2024. [Online]. Available: https://sudvarg.com/publications/SIES2024
improved implicit elastic.pdf

[37] ——, “Linear-time admission control for elastic scheduling,” Real-Time

Systems, vol. 57, no. 4, pp. 485–490, Oct 2021. [Online]. Available:
https://doi.org/10.1007/s11241-021-09373-4

[38] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSˆRT : A testbed for empirically comparing real-time
multiprocessor schedulers,” in 2006 27th IEEE International Real-Time

Systems Symposium (RTSS’06), 2006, pp. 111–126.
[39] M. Sudvarg, S. Baruah, and C. Gill, “Elastic scheduling for fixed-priority

constrained-deadline tasks,” in 2023 IEEE 26th International Symposium

on Real-Time Distributed Computing (ISORC), 2023, pp. 11–20.
[40] L.-C. Canon, M. E. Sayah, and P.-C. Héam, “A comparison of random

task graph generation methods for scheduling problems,” in Euro-

Par 2019: Parallel Processing, R. Yahyapour, Ed. Cham: Springer
International Publishing, 2019, pp. 61–73.

[41] S. Mars, “Gurobi 10.0.3 released,” Gurobi Optimization, Technical
Report, September 2023. [Online]. Available: https://support.gurobi.
com/hc/en-us/articles/18530517319953-Gurobi-10-0-3-released

[42] D. Griffin, I. Bate, and R. I. Davis, “Generating Utilization Vectors for
the Systematic Evaluation of Schedulability Tests,” in 2020 IEEE Real-

Time Systems Symposium (RTSS), 2020, pp. 76–88.
[43] J. Wang, M. Pikridas, S. R. Spielman, and T. Pinterich, “A fast integrated

mobility spectrometer for rapid measurement of sub-micrometer aerosol
size distribution, part i: Design and model evaluation,” Journal of

Aerosol Science, vol. 108, pp. 44–55, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021850216304426

[44] Y. Wang, T. Pinterich, and J. Wang, “Rapid measurement of sub-
micrometer aerosol size distribution using a fast integrated mobility
spectrometer,” Journal of Aerosol Science, vol. 121, pp. 12–20, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0021850217305049

[45] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the

4th Conference on Message Understanding, ser. MUC4 ’92. USA:
Association for Computational Linguistics, 1992, p. 22–29. [Online].
Available: https://doi.org/10.3115/1072064.1072067

[46] A. Li, M. Sudvarg, H. Liu, Z. Yu, C. Gill, and N. Zhang, “Polyrhythm:
Adaptive tuning of a multi-channel attack template for timing interfer-
ence,” in 2022 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2022, pp. 225–239.

[47] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in 2024 IEEE 30th Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2024, pp. 320–333.


