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Abstract

Many mixed-criticality system models drop all jobs of low-criticality
tasks when a criticality mode switch occurs, ensuring that high-
criticality tasks still can meet their deadlines in the new mode.
However, this means that even important low-criticality tasks are
discarded, which may not be acceptable in some systems in prac-
tice. This paper addresses that distinction between criticality and
importance through a new Inelastic Graceful Earliest Deadline First
with Virtual Deadlines (IG-EDF-VD) scheme that upon a critical-
ity mode switch only discards the least important low-criticality
tasks necessary to ensure feasibility. Moreover, we consider elas-
tic scheduling within our mixed-criticality model (EG-EDF-VD),
using compression of workload-elastic tasks’ utilizations (and, as
a result, execution time budgets) to reduce further the number of
low-criticality tasks that are dropped.
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1 Introduction

A mixed-criticality real-time system (e.g., a drone using a Fast In-
tegrated Mobility Spectrometer [26, 29] to map the extent of an
aerosol plume, or a high-altitude balloon flying the ADAPT tele-
scope [4, 14, 22, 27] to detect and localize gamma-ray bursts) must
distinguish high-criticality tasks whose schedulability must be as-
sured for system safety, from low-criticality tasks that may be safely
dropped if unavoidable due to system overload. For example, drone
navigation tasks to avoid flying into obstacles are high-criticality; in
contrast, jobs of tasks that determine the aerosol plume’s extent may
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be dropped safely, and thus are low-criticality, even though they are
essential to the drone’s mission. Similarly, control tasks to maintain
balloon stability and telescope temperature are high-criticality; in
contrast, jobs of tasks that collect and analyze gamma-ray data are
low-criticality.

Furthermore, within each criticality level, some tasks may be
more important to the system than others. For example, tasks in-
volved with mapping the aerosol plume may be more important
than tasks that collect and report mission statistics for post-hoc anal-
ysis: dropping the latter would have a lesser effect on the mission’s
outcome than dropping the former. Similarly, tasks for reading out
sensors that measure gamma-ray interactions in the telescope may
be more important than high-level analysis tasks; dropping all of
the former would prevent the latter from executing anyway.

What is needed then is a means to support graceful degradation
of system outcomes while still maintaining system safety by re-
ducing the number of low-criticality jobs that are dropped. In this
paper, we propose a new Inelastic Graceful Earliest Deadline First
with Virtual Deadlines (IG-EDF-VD) algorithm, which considers
the importance of tasks as well as their criticality. When a mode
switch is triggered by an overrun of a high-criticality task, our algo-
rithm only drops jobs of the lowest importance low-criticality tasks
as needed to maintain schedulability. We note that the IG-EDF-VD
algorithm is the first to integrate importance with dynamic-priority
mixed-criticality scheduling (specifically EDF-VD).

Additionally, in practice, some tasks also may be elastic. Such
tasks may, with varying degrees of flexibility, reduce their utiliza-
tions in a continuous range by reducing their workloads (e.g., the
amount of input data processed, the number of iterations of a refine-
ment step). Elastic real-time scheduling models allow for principled
compression of elastic task utilizations until the cumulative utiliza-
tion falls below the utilization bound while guaranteeing that each
task’s utilization remains above some specified minimum value [5].
This, in turn, offers further opportunities for graceful degradation
as an alternative to dropping jobs by reducing task utilizations
across a mode switch to a higher criticality level.

To this end, we propose an Elastic Graceful Earliest Deadline
First with Virtual Deadlines (EG-EDF-VD) algorithm that attempts
to compress the utilizations of workload-elastic tasks to minimize
the number of tasks that must be suspended across a criticality
mode switch. Intuitively, the algorithm determines the minimum
number of tasks (in order of importance) to suspend when all task
utilizations are compressed to their minimum values. Then, given
the set of tasks that must be dropped, the algorithm applies elastic
scheduling’s principled compression to achieve the least degrada-
tion (i.e., reduction in task utilizations) to remain schedulable. As
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we will show, in many cases, this allows fewer tasks to be suspended
compared to IG-EDF-VD.

The remainder of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the considered system
models. Section 4 introduces the IG-EDF-VD algorithm, and Sec-
tion 5 introduces the EG-EDF-VD algorithm. Section 6 evaluates
these algorithms using randomly-generated synthetic task sets.
Section 7 concludes the paper and discusses directions for future
work.

2 Related Work

This paper considers systems of implicit-deadline sporadic real-
time tasks scheduled on a single processor core. In this section,
we outline relevant prior work in this area, including for mixed-
criticality and elastic real-time task systems. In Liu and Layland’s
classic three-parameter task model [17], a system is schedulable on
a preemptive uniprocessor using the Earliest Deadline First (EDF)
algorithm if the system’s total utilization demand does not exceed
1.

2.1 Mixed-Criticality Systems

In safety-critical systems, statutory certification authorities may re-
quire that task worst-case execution times (WCETs) (and therefore,
utilizations) be certified to a high level of assurance. The resulting
utilization demand may be pessimistic, and not indicative of sys-
tem load under common-case behavior. This may be too restrictive,
especially in mixed-criticality systems that integrate both safety-
critical and non-critical tasks. To accommodate both common- and
worst-case behaviors, Vestal proposed to classify tasks according
to their criticality levels [28]. Criticality may be defined according
to a variety of safety standards, such as ISO 26262 [16] for the au-
tomotive domain, DO 178C [7] for aeronautics, or IEC 61508 [15]
for generic purposes. In this paper, we restrict our analysis to two
levels: low and high criticality.

Under Vestal’s model, each high-criticality task is character-
ized with two WCETs: one representing common-case behavior
at the certification level demanded by low-criticality tasks, and
one representing the worst-case behavior under the assurances of
the high-criticality certification level. If a job of a high-criticality
task continues to execute beyond its low-criticality WCET, the sys-
tem switches into high-criticality mode, and jobs of low-criticality
tasks are dropped. This allows high-criticality tasks to meet their
deadlines even under their more pessimistic high-criticality WCETs
while allowing all low-criticality tasks to meet their deadlines if
the system remains in low-criticality mode.

Earliest Deadline First with Virtual Deadlines (EDF-VD) [3] is
a dynamic-priority scheduling algorithm for mixed-criticality sys-
tems. EDF-VD has been proven to be speedup-optimal [1] and out-
performs other mixed-criticality scheduling algorithms in terms of
its acceptance ratio [8, 9]. Under EDF-VD, UrLLg denotes the total uti-
lization of low-criticality tasks; UFLH? denotes the total utilization of
high-criticality tasks according to their low-criticality WCETs, and
UI%II denotes their total utilization according to their high-criticality
(most pessimistic) WCETs. Namely, for each of y € {LO, HI} and
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T € {TLo, 11}, we denote:
X _ X
Urk - Z Ui
T €l
Tasks are scheduled according to EDF, but high-criticality tasks
7; are each assigned a virtual deadline T; « xT; where T; is the
task’s period and x is computed as
ULO
HI
X< o (1)
Iio
If a high-criticality task overruns its low-criticality WCET, jobs
of all low-criticality tasks are dropped, and high-criticality task
deadlines are set to their original T; values. In [1], Baruah et al.
prove that a mixed-criticality system is schedulable under EDF-VD
if
LO HI
U0 + Ut <1 ()
In this paper, we refer to the following as the EDF-VD schedula-
bility function for a mixed-criticality system I':

LO

U
I;
B(I) = —;ILO U0 +uft (3)
1=Un,

From Equations 1 and 2, a mixed-criticality system is schedulable
under EDF-VD if B(T) < 1.

2.2 Importance

A key distinction can be made between a task’s criticality, which is
used to validate mixed-criticality systems according to the safety
standards noted in Section 2.1, and its importance [11, 12]. Flem-
ing and Burns observed that dropping jobs of all low-criticality
tasks is unacceptable for many practical applications and proposed
suspending low-criticality tasks based on their importance, which
is specified by a system developer to capture each task’s relative
contribution to the system’s performance or other objectives [12].

For example, consider a hobbyist drone in “follow-me” mode,
with an objective to follow and film a moving target. In this case,
flight control tasks are high-criticality, since missing a deadline
may result in a crash. In contrast, the video-related tasks are low-
criticality. Compared to the target tracking task, the video capturing
task is more important, since missing a deadline of the latter results
in dropped frames, whereas missing a deadline of the former still
retains video frames, but the target might be off-center or missing.

As a second example, consider a high-energy nuclear physics
detector or astrophysics telescope designed to read and process
data from particle interactions in the instrument. Such instruments
are deployed in diverse environments, where critical control tasks
maintain, e.g., stability of a flown telescope, or temperatures and
voltages in sensitive electronics; missing a deadline might result
in expensive damage. Low-criticality data collection tasks are still
important to the mission; for example, real-time gamma-ray trajec-
tory reconstruction and localization aboard the ADAPT telescope
will enable rapid follow-up observations of gamma-ray bursts by
other telescopes [25]. But compared to the localization task, the
reconstruction task is more important, as reconstructed data is
necessary for subsequent localization.

Our work in this paper adopts Fleming and Burns’ convention
of representing importance as a strict total order over the set of
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tasks {7;} using an ordinal, but not interval, measure: it does not
necessarily support addition or other arithmetic operations on its
values, nor does it capture any notion of multiple less important
tasks being more important in combination than a single task of
higher importance. We note that an interval importance may be
applicable to many real-world applications, but it is left to future
work.

Fleming and Burns used this notion of importance to reduce the
number of tasks suspended across a mode switch in a fixed-priority
mixed-criticality model [12]. Our paper is the first to integrate it
with a dynamic-priority scheduling model—specifically, we consider
EDF-VD [3].

2.3 Adaptability and Elastic Scheduling

Several other alternatives to job and task dropping have been pro-
posed. For instance, the imprecise mixed-criticality model allows
low-criticality jobs to run at a reduced utilization instead of being
dropped [18].

Another example is Su and Zhu’s elastic task model for unipro-
cessor mixed-criticality systems, which characterizes each low-
criticality task with a maximum period that reflects its minimum
service requirement [21]. If the system switches to a high-criticality
mode, periods are expanded to these values (with opportunities
for early releases given sufficient slack). Compared to the impre-
cise mixed-criticality model, this elastic model is more adaptive,
with multiple early release points for slack reclamation. We argue
that while this is an adaptive model, it is not quite a truly elastic
model because low-criticality tasks still have their utilizations fully
degraded to their minimum acceptable values.

The elastic model of Buttazzo et al. for implicit-deadline sporadic
tasks on a uniprocessor [5, 6] characterizes each task 7; with a
continuous range [Ul.mi“, U] from which its utilization U; can be
assigned. Under normal operation, tasks execute at their maximum
utilizations U["®*. Each task may also be assigned an elastic constant
E; representing “the flexibility of the task to vary its utilization” [5].
We note that a task with E; = 0 (equivalently, Uimin = U;"®) cannot
be compressed and is referred to as an inelastic task. Conversely, a
task is referred to as an elastic task if E; > 0.

If the system becomes overloaded, task utilizations may be re-
duced by increasing their periods (period-elasticity) or decreasing
their execution times (workload-elasticity [20]). Under Buttazzo’s
model, task utilizations are compressed from their maximum values
U™ in proportion to their elastic constants E; until the system
becomes schedulable. Specifically, this means that for all elastic
tasks 7; and 7; with U; > Ul.min and U; > U;“in, the following
relationship must be satisfied:

(2

E; - E; )

In [19], Orr and Baruah introduce a term ® to capture this equi-
librium value; each task’s utilization value is thus:

Ui (@) % max (Ul.maX - ®-E, Ul.mi“) )

We refer to @ as the system compression level.
If an elastic task’s utilization reaches its minimum, it is not
reduced further, although other elastic tasks may be compressed
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more if needed to reach schedulability. In [23, 24], Sudvarg et al.
assign a parameter ¢; to each elastic task, representing the system
compression level needed for an elastic task to reach its minimum
utilization:

def Uimax _ Uimm
$i = 5 (6)
We refer to ¢; as the maximum compression level of task ;. Rather
than forcing each low-criticality task to execute at its minimum
utilization if the system criticality level increases, as in Su and
Zhu’s model [21] where tasks execute at their maximum periods,
we suggest instead that utilizations should be compressed only to
the extent necessary to accommodate low-criticality task execu-
tion in high-criticality mode. In this paper, we propose an elastic
mixed-criticality model for workload-elastic tasks and present an
algorithm to minimize the number of low-criticality tasks dropped
while compressing task workloads as little as possible to still guar-

antee schedulability across a mode switch.

3 System Model

In this paper, we consider two system models. Section 4 uses Vestal’s
classic preemptive mixed-criticality model from [28] with an addi-
tional ordinal importance parameter assigned to each low-criticality
task per Fleming and Burns [12]. Section 5 extends this model to
Buttazzo’s elastic scheduling [5, 6] by additionally parameterizing
each task with a continuous range of allowed utilizations and an
elasticity.

3.1 Mixed-Criticality with Importance

In traditional mixed-criticality systems, if a job of a high-criticality
task executes for time CL.LO without completing, a system criticality
mode switch is triggered. In this high-criticality mode, jobs of all
low-criticality tasks are discarded.

In Section 4, we introduce a scheduling algorithm that allows,
to the extent possible, low-criticality tasks to continue execut-
ing across a mode switch. It assumes a finite set I' of mixed-
criticality, implicit-deadline, sporadic tasks executing on a single-
core processor. Each task 7; is characterized by the tuple 7; =
(xi I, T, Ul.LO, UiHI), where:

e xi € {LO, HI} denotes the task’s criticality.

o ]; denotes the unique importance of a low-criticality task, i.e,
Vi, 7j where i # j, I; # Ij. Note that, as in [12], importance is
ordinal but not interval; one should not perform arithmetic on
the value. After a mode switch, our algorithm suspends low-
criticality tasks in order of increasing importance until the re-
maining tasks are schedulable.

o T; denotes the task’s period or minimum inter-arrival time.

Ul.LO denotes the task’s utilization under low-criticality mode.
From this, the worst-case execution time in low-criticality mode
CiLO = UiLO - T; can be derived.

. Ul.HI denotes the task’s utilization under high-criticality mode.
For high-criticality tasks, UiHI > Ul.LO. For low-criticality tasks
not suspended across a mode switch, Ul.HI = UI.LO, Similarly,
Cl.HI = Ul.HI - T; can be derived.
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We denote the set of high-criticality tasks as Iy and the set of
low-criticality tasks as I 0.

3.2 Elastic Mixed-Criticality with Importance

An intuitive extension of the above model to Buttazzo’s elastic
scheduling [5, 6] for workload-elastic tasks is to characterize each
task as

UiLO,mln’ UiLO,max’ UiHI,mln, UiHI,max, E%O, E?I)

ti = (I Ti,

where

o yi € {LO, HI} denotes the task’s criticality.

o ]; denotes ordinal importance, as in Section 3.1.
o T; again denotes the task’s period.

° [ULO, min U.LO’ max

; U; ] denotes the continuous range of allowed

values from which the task’s assigned utilization Ul.LO
selected under low-criticality mode.

. [UiHI, mm’ UiHI, max

may be

] denotes the continuous range of allowed

values from which the task’s assigned utilization UiHI may be
selected under high-criticality mode.

3 E!.“O and E%—H denote the elasticity of the task under low- and
high-criticality modes.

A task 7; has E%‘O = E?I = 0 if it is inelastic, while E{.‘O > 0 and
ElHI > 0 if the task is elastic.

For workload-elastic tasks, which we consider in this paper,
the period T; remains constant. From the other parameters, the
task’s WCET values can be derived as Cf{’mm = Ul-"‘(’mln - T; and
C?(,max _ U.)(,max . Ti

i i :

We extend Orr and Baruah’s definition of the system compres-
sion level (Equation 5) to this system model:

54 def xX-max X 7rX-min
UF (@) < max (UF - 0 EF UFM) @)

Similarly, we can extend Sudvarg’s definition of the maximum
compression level of a task (Equation 6):
min

max

-uXr
1
EX

1

Xs
x def Uj

9 ®

In this paper, we restrict ¢; to remain constant across criticality
levels. This guarantees two properties that are necessary to the
development of the EG-EDF-VD algorithm. First, for a given system
compression level @, it guarantees that a task that is fully com-
pressed to its minimum utilization UiX ™ in one criticality level
remains so in the other level. Second, it guarantees that elastic tasks
do not exceed their budgets upon a mode switch. These properties
are further motivated and proven in Section 5.

By rearranging the definition of ¢;, we can express the elasticity
at each criticality level as

LO, max _ ULO, min

ELO = L L
! ¢i . (9)
U.HI’ max _ U.HI’ min
pHI _ i i
i b
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By doing so, we may re-parameterize each task 7; with one fewer
parameter as

LOmin ;;LOmax ;;Hl,min ; /HI,max
7= (i1, T3, U; U; U; U; . $i)

i > >
We motivate this model by illustrating how elasticity may be
orthogonal to criticality for workload-elastic tasks.

ExampiE 1. Consider a high-criticality iterative refinement task ;
that runs every 200ms, requiring 4 iterations at minimum and ideally
10. The WCET of one iteration is 5ms under low-criticality and 10ms
under high-criticality for certification.

We can characterize task 7; with T; = 200ms, Ul.L Omin _ 0.1,

Ut = 0.2, UFO™X = 0,25, UMMM = 0.5, and ¢ = 6. Then
the allowed range of the task’s WCET is [20ms, 50ms] under low-
criticality mode and [40ms, 100ms] under high-criticality mode.
Suppose the EG-EDF-VD algorithm determines that a system com-
pression level ® = 2 guarantees schedulability. Then utilizations are
assigned as UZ.LO(CID) =0.2 and UiHI(CD) = 0.4, with corresponding
execution times CI.“O 40ms and Cl.HI = 80ms guaranteeing that at
least 8 iterations can complete in either criticality level.

We note that, although the number of iterations completed rep-
resents a discrete value, it is still worthwhile to assign a contin-
uous range of allowed utilizations. For example, for ® = 2.5, the
task in the above example would have execution time budgets
C{.‘O = 37.5ms and C}’H = 75ms, guaranteeing completion of 7 itera-
tions. However, since workloads are characterized according to the
WCET, faster execution might allow 8 iterations to complete; this
becomes more likely as utilization is continuously increased.

4 Inelastic Graceful EDF-VD

This section introduces the Inelastic Graceful EDF-VD (IG-EDF-
VD) algorithm, which extends the EDF-VD algorithm by incorporat-
ing ordinal importance according to the model defined in Section 3.1.
The idea is to find the maximal set, in order of importance, of low-
criticality tasks that can continue to execute in high-criticality mode.
In Section 4.1, we first motivate the algorithm with an example.
Next, we describe the IG-EDF-VD algorithm in Section 4.2. Finally,
we analyze the schedulability of the IG-EDF-VD scheduling scheme
from an adaption of the EDF-VD schedulability test in Section 4.3.

4.1 Motivation
ExAMPLE 2. Consider the implicit-deadline task system I" whose

parameters are shown in Table 1.

i |L] T Ul | vl
T | HI | - | 91.735 | 0.255 | 0.518
T, | HI | - | 4.286 | 0.095 | 0.132
73 | LO | 1 | 1.710 | 0.245 | 0.245
s | LO | 2 | 92718 | 0.111 | 0.111
75 | LO | 3 | 2.300 | 0.094 | 0.094

Table 1: Sample inelastic taskset

Applying the EDF-VD schedulability function from Equation 3,
we get
.35
N=—
B0 1-0.45
Since B(T') < 1, the task set T is schedulable under EDF-VD.

-0.45+0.65 =~ 0.936
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Algorithm 1 IG-EDF-VD schedulability test

Require: An implicit-deadline sporadic task system I' where I7 o
is sorted in ascending order of importance.

Ensure: An IG-EDF-VD schedule is feasible for the returned set
of undroppable tasks.

. if UII:LE)) + UII“iII < 1thenreturnIig

FUD — FLO

: Ipr < @

: while Iyyp # @ do

Move the least important task 7; from Iyp to Ipr

if B(T,Typ) < 1 then return [jp > Per Eqn. 10

: end while

return INFEASIBLE

> Attempt EDF

S~ A A o

Now consider a task set I that is identical to I' except that 75
is a high-criticality task instead of a low-criticality task. Applying
the same schedulability function, we get

444
B(I') = 0

= ——— - 0.356 + 0.744 ~ 0.989
1-0.356

Since B(I’) < 1, the task set I' is also schedulable.

To minimize the number of low-criticality tasks dropped, we
propose IG-EDF-VD, as outlined in Algorithm 1. It finds the maximal
subset (in order of importance) of undroppable low-criticality tasks
Typ that can be treated as high-criticality tasks while an EDF-VD
schedule remains feasible.

4.2 IG-EDF-VD Algorithm

Like EDF-VD, the IG-EDF-VD algorithm first performs a schedu-
lability test and computes a modified period T; < T;. However,
IG-EDF-VD also partitions the low-criticality tasks into subsets
of undroppable and droppable tasks — Iyp and Ipr — based on
importance. Any task in Iyp is always more important than any
task in Ipg, ie, V7; € Iyp and Vr; € Ipg, I; > Ij. Tasks in Iyp
are treated as if they are high-criticality. The algorithm finds the
maximal assignment of tasks to set Iyp (in order of importance)
for which schedulability remains guaranteed.

During runtime, the IG-EDF-VD algorithm assigns virtual dead-
lines t, + Ty if 7; € Tyyorr; € Typ and te + T; if 7; € Ipg to
tasks 7; arriving at time t,. If a high-criticality job executes beyond
its low-criticality WCET without signaling that it has completed
execution:

o All droppable tasks’ jobs are immediately suspended.

e Subsequent run-time scheduling of all undroppable and high-
criticality tasks continues to be done according to EDF, but actual
job deadlines t, + T; are used.

Note that even though the undroppable tasks are treated as
high-criticality tasks, they will never trigger an overrun since their
low-criticality WCET is the same as their high-criticality WCET,
which they will never exceed.

For each of y € {LO,HI} and I} € {Iyp,Ipr}, we define a
utilization parameter as follows:

= 3 o

T; €l
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With that, we define the IG-EDF-VD schedulability function for a
mixed-criticality system I' as follows:

ULO LO
T; T;
B(T,Typ) = 1*“ ULOUD Up0 + Ut + Ut (10)
i Y

Note that when Iyp = @, we have Ipr = I10, and the schedula-
bility function is equivalent to that of EDF-VD. As we will show in
Section 4.3, this function bounds the IG-EDF-VD algorithm, i.e., if
B(T,Typ) < 1, then a schedule for the system T is feasible under
IG-EDF-VD.

1.1001

1.0751
1.050 1

3

2 1.0251

-

& 1.000
0.975
0.950

0.2 0.3 0.4
Uts,

Figure 1: Schedulability function against utilization of drop-
pable tasks of a sample inelastic task set

0.0 0.1

The schedulability function of the task set in Example 2 is shown
in Figure 1. Each point represents one partition of the task set. The
x-axis represents the value Ull‘Do for the corresponding partition,
while the y-axis represents the schedulability function 8(T, Iyp) of
that partition. A horizontal reference line shows the schedulability
bound where B(I,Iyp) = 1. Any partition that lies on or below
the reference line is schedulable under IG-EDF-VD; those above the
line are not deemed schedulable.

One may observe in Figure 1 that the schedulability function
ULO

Ipr
Lemma 4.4 of Section 4.3. This means that as tasks move from Iyp to
IDR, UI%)OR increases and thus the schedulability function decreases.
Therefore, we consider dropping jobs of low-criticality tasks via
linear search from the least to most important task.

is monotonically decreasing as increases, which we prove in

4.3 IG-EDF-VD Schedulability Analysis

Since the algorithm treats undroppable tasks Ijp as if they are high-
criticality tasks, we can consider the set T of tasks scheduled under
IG-EDF-VD to be equivalent to a set T” scheduled by traditional
EDF-VD where

+HI

_ r7HI LO
U T = UFHI + UFUD (11)
+/LO _ +/LO LO
U T = UrHI + UTUD (12)
/LO _ 7LO
u o — UFDR (13)

We use this to prove the sufficient schedulability condition used
by IG-EDF-VD’s analysis.
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LEMMA 4.1. The following is sufficient for ensuring IG-EDF-VD
successfully schedules all low-criticality behaviors of T.

ULO ULO
x> T T'up (14)
1- U0
Ipr

Proor. Applying the schedulability condition for EDF-VD [1,
Theorem 1], the following ensures IG-EDF-VD successfully sched-
ules all low-criticality behaviors of T.

/LO
> 4 T
- +LO
-U Io

Equations 12 and 13 imply that

LO LO
UrHI UFUI)
< 10
1 UrDR
O
Lo
T

T .
o2 to ensure it success-
T

fully schedules all low-criticality behaviors of T.

Therefore, Algorithm 1 sets x =

LEMMA 4.2. The following is sufficient for ensuring IG-EDF-VD
successfully schedules all high-criticality behaviors of T
ULO UHI

LO
<
I'pr Thr U, 1

Tom (15)

Proor. Applying [1, Theorem 2], the following condition is suf-
ficient for ensuring IG-EDF-VD successfully schedules all high-
criticality behaviors of T

/LO +HI

xU + U Thr <1
Equations 11 and 13 imply that
LO HI LO
UFDR UTHI UFUD =1

O

As such, Algorithm 1 will always ensure IG-EDF-VD successfully
schedules all high-criticality behaviors of I'. Now we can prove
the IG-EDF-VD schedulability function defined in Section 4.2 by
combining Lemma 4.1 and Lemma 4.2:

THEOREM 4.3. If the IG-EDF-VD schedulability function
B(T,Typ) <1
then a schedule for the system T is feasible under IG-EDF-VD.

LO
% IG-EDF-VD successfully schedules
T
all low-criticality behaviors of I' from Lemma 4.1. Now we have

xUI;)?z + UEIIII + ULO < 1, so IG-EDF-VD successfully schedules

all high- crltlcahty behav10rs of I' from Lemma 4.2. Therefore, a
schedule for the system T is feasible. O

Proor. For x =

Now that we have shown a sufficient schedulability function, we
prove a result related to the observation we made in Section 4.2:
as we move tasks from Iyp to Ipg, the schedulability function
decreases. Therefore, it is valid to consider dropping jobs of low-
criticality tasks in order from the least important to the most im-
portant task, terminating once a schedulable configuration is found.
To prove this, we make use of the following properties. First, we
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assume U%“H(I) + U%‘Lg < 1; otherwise, the system is trivially unschedu-

lable. Second, we assume Ul{;fj) < 1; otherwise, no critical task can
be scheduled even in low-criticality mode.

LEMMA 4.4. For a task setT with UII“H([)+U1§£ < 1land UIEDOR <1, the
IG-EDF-VD schedulability function B (T, Typ) is monotonically non-
increasing with respect to ULO as tasks are moved from I'yp to I'pp.

ProoF. We prove this by showing that the derivative with re-
spect to ULO is non-positive for T'. Since U; HI _ =U; LO for all low-

Uil = UII.;J?) This implies that the schedulability
function B(T, Iyp) is equivalent to:

criticality tasks,

ULO LO
5315 Tup + Lo 4 pyHI
1-pylLo rDR Tup T
TIpr

Since we partitioned I o into Ipg and I'yp, the total utilization of

Ipr and [yp must equal that of Iy o. Then from UII:O U}‘L?) Ul%goR
we have:
I‘I-II ( UII‘;E)) I‘DR ) LO LO LO HI
B(I.Iyp) = 1-ylo UFDR (UFLO UFDR) + UFHI
Ipr

As the set of low- and high-criticality tasks does not change with
respect to the partition of low-criticality tasks, we may consider

ULO ULO and UHI to be constants. Therefore, we can rearrange
the schedulablhty functlon as follows:
ULO ( LO 2
LO Ibr DR LO LO HI
(UTHI FLo) ULO 1- yLo - UTDR (UFLO + UFHI)
Ipr Ipr
Taking the derivative, we get:
— 5 8. Iup)
Ipr
1 1
LO
(UFHI + TLO) (1_ULO)2 _(( ULO)Z -1
Ipr Ipr
LO LO
_ UTHI + UFLo
LOy2
(1- UFDR)

Since UII:H? + UII:L(S < 1, the numerator is non-positive. Also, as

Ul%)(; # 1, the denominator must be positive. Therefore, the de-
rivative must be non-positive, so the schedulability function is

monotonically non-increasing with Ullq;)?{. O

THEOREM 4.5. Let T be a task set and Typ, Ipg represent a partition
of its low-criticality tasks. Let T’ yp, I’ pr be another partition where
7; is moved from Typ toIpg, i.e, ' yp = Typ \ 7i and [’ pgr = [pr U 7;.
Then B(T,T"yp) < 1if B(T,Typ) < 1.

Proor. Clearly, if B(T,Iyp) < 1then UI]:H(I) + Ul]:Lg < 1. Applying
Lemma 4.4, we have

B(I,T"yp) < B(T,Tup)

By the transitive property, we get

B([,T'yp) < 1
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Yi I; T; UiLO,mln UiLO,max UiHI,mln UiHI,max ¢i
r1 | HI | - | 91.735 0.255 0.255 0.518 0.518 -
o | HI | - 4.286 0.095 0.095 0.132 0.132 -
3 | LO | 1 1.710 0.225 0.245 0.225 0.245 0.030
g | LO| 2 | 92.718 0.082 0.111 0.082 0.111 4.028
5 | LO | 3 | 2300 0.092 0.094 0.092 0.094 0.002

Table 2: Sample elastic taskset

Therefore, a schedule for I will still be feasible if a task is moved
from Iyp to Ipr per Theorem 4.3.

5 EG-EDF-VD

This section introduces the Elastic Graceful EDF-VD (EG-EDF-VD)
algorithm, which extends the IG-EDF-VD algorithm from Section 4
to the elastic system model in Section 3.2. The idea is still to find
the maximal set of low-criticality tasks that can continue to execute
in high-criticality mode. EG-EDF-VD takes advantage of elasticity
to do so, compressing task utilizations to the extent necessary to
further reduce the number of suspended tasks.

We first motivate this algorithm in Section 5.1 by considering an
elastic version of Example 2. We then introduce the EG-EDF-VD
algorithm in Section 5.2. In Section 5.3, we prove several properties
of our elastic mixed-criticality system model; these are leveraged
in Section 5.4 to develop an algorithm that efficiently finds the
minimum system compression level ® deemed schedulable. In Sec-
tion 5.5, we discuss how EG-EDF-VD schedules tasks across a mode
switch.

5.1 Motivation

EXAMPLE 3. Let us revisit Example 2. Now, all low-criticality tasks
are also elastic, with parameters shown in Table 2.

Let I'™" denote the task system where all elastic tasks are fully
compressed (i.e., & > max;{¢;}) and I™?* denote the task system
where no tasks are compressed at all (i.e., ® = 0), which is equivalent
to the inelastic system I' in Example 2.

Let us treat tasks 74 and 75 as high-criticality, i.e., Typ = {74, 75}
Applying the IG-EDF-VD schedulability function,

0.555
B(I' [p) = ————— - 0.245 + 0.855 ~ 1.035
( w) = T 024
and
A 0.524
B(I™M" Typ) = ——— - 0.225 + 0.824 ~ 0.976
( D) = T 0225

As B(I'™&X Typ) > 1, IG-EDF-VD does not guarantee schedula-
bility. However, the fully compressed system is schedulable since
B(I™" Tiyp) < 1. Therefore, we propose the EG-EDF-VD algo-
rithm, which extends IG-EDF-VD by leveraging elasticity to drop
even fewer tasks.

5.2 EG-EDF-VD Algorithm

The primary goal of the EG-EDF-VD algorithm is still to find
the maximal subset (in order of importance) of undroppable low-
criticality tasks Iyp. It first compresses all elastic tasks to their
minimum utilizations, then uses Algorithm 1 to find the maximal
resulting assignment of tasks to Iyp. Once this is found, EG-EDF-
VD finds the minimum system compression level ® for which the
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Figure 2: Schedulability function against utilization of drop-
pable tasks of a sample elastic task set

partition remains schedulable. This is done by binary search with
tunable precision € using the compression algorithm in Section 5.4.

From Equation 7, the utilization of each task z; for a given value
of @ at criticality level y can be expressed as:

U (@) < max (UF™ - @ BF, UF™) (16)

Then for each of y € {LO,HI} and I}, € {Iyr, Iup, IDr}, we can
now include the system compression level in the corresponding
total utilization parameter as:

Ut @)= ) Ul (@)
7 €l
To simplify notation in the remainder of this section, we abbrevi-
ate Ugi () as U;’i . With that, we define the EG-EDF-VD schedulabil-
ity function for a mixed-criticality system I' at system compression
level @ as follows.
U%H? + UII{J?D LO HI HI
B(F, FUD, (I)) = W . UFDR + UrUD + UrHI (17)
Ipr
One may note that this is exactly the same as the function for
IG-EDF-VD except that utilization is now a function of the system
compression level ®. Because this expression includes task utiliza-
tions for both low- and high-criticality system modes, we consider
the problem of finding a single value of ® that, when applied to
both criticality levels, guarantees schedulability. Algorithm 2 in Sec-
tion 5.4 finds the minimum such value for the maximal assignment
of tasks to Iyp.
Figure 2 shows how the EG-EDF-VD schedulability function for
the set of tasks in Example 3 changes with ®. The schedulability
function for ™" (where ® > max;{¢;}) is shown as the bottom
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(blue) curve, and that for ™% (where ® = 0) is shown as the top
(green) curve.

Again, each point represents an assignment of tasks to Iyp. The
x-axis represents the value U11:2 of that partition, and the y-axis is
the schedulability function value B(T, Iyp, ®). A horizontal refer-
ence line shows the schedulability bound where B(T, Iyp, ) = 1.
For these tasks, EG-EDF-VD first finds the maximal schedulable
partition, i.e., the leftmost point under the reference line on the bot-
tom curve. It then decompresses the system, finding the minimum
value of ® for which the bound is reached, as shown by the red
dot where the dashed line connecting the top and bottom curves
intersects the bound.

5.3 Properties of the Elastic Task Model

Orthogonal to criticality, we partition the set of tasks I into two
subsets, T (®) and Tyar(®), as in [23]. Tprx(P) are tasks that

have already reached their minimum utilization Ul.X (@) = Ui)(’nlln R

Tyar (@) are tasks that can still be compressed, i.e., UiX (@) > UiX’mm.
Note that inelastic tasks are always in If (®) for any value of ®.
Because we restrict ¢; to remain constant across criticality levels,
the assignment of tasks to Ik (®) and Iyar (P) also remains un-
changed across a mode switch. We prove this by showing that one
can determine whether an elastic task 7; is variable or fixed by
simply comparing the system compression level ® and the task’s
maximum compression level ¢;.

LEMMA 5.1. An elastic task t; € Tpx(®) if and only if ¢; < @.
Equivalently, t; € Tyar(®) if and only if §; > ®.

Proor. If 7; € Ty (®), then UI.X (@) = Ul.X’mm. Since we know
UI.X(CID) = max (Ui){’mElx -0 EIX, Ul.X’mm), we can derive

U.)(,max _®- EX < U')(,min
i i =i

X-max x-min
U; - U
% <o
E;

l i <P
If ¢; < @, by the definition of ¢; and @, we get
urmE i)(,min UrmE X (@)
Ef - Ef
g _ emin

IN

Ui)(,max _ UiX((I))
X x-min
Ul(@) < U;

By definition, Ul.X (®) = max(Ui)(’max -P- ElX , Ul.X’min), which
implies that UI.X(CD) > yrmn

] i
Ul.X(CD) = Ul.)(’mm and we have 7; € Tfx (D).

Since 7; € Tfx (®) if and only if ¢; < @, the following is equiva-
lent: 7; € [yar(®) if and only if ¢; > . O

. Therefore, it must be the case that

Since ¢; remains constant across criticality levels, the partition
will remain the same upon a mode switch for a fixed value of ®. We
now show that for two system compression levels ®; and @, the
partition of tasks into Igrx and I'yag is the same as long as there is
no task 7; for which ¢; € (@1, D2].
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THEOREM 5.2. LetT be a task system and @1 < @y be two system
compression levels of T. If there does not exist a task 7; in ' such that
@1 < ¢i < Py, then Tprx(P1) = Tpx(P2) and Tyar(P1) = Tvar(P2).

ProoF. Because there does not exist any task 7; in I" such that
®; < ¢; < Dy, it follows that for all tasks 77, ¢; < 1 < Dy or P1 <
Oy < ¢;. If 7; € Tprx (1), then ¢p; < &1 by Lemma 5.1. Therefore, it
must be the case that ¢; < ®; < ®. By the same lemma, we get
7 € Iprx(®@2). By symmetry, if 7; € Tprx(®2), then we have 7; €
Irrx (®1). Therefore, Tprx (1) = Irrx (P2); equivalently Ivar (91) =
VAR (®2). o

Finally, we show that B(I,Iyp,®) is monotonically non-
increasing with @.

THEOREM 5.3. For a task set I' with UléDOR < 1, the function

B(T,Typ, ) defined in Equation 17 is monotonically non-increasing
with ®.

Proor. From Equation 17,

ULO
_ LO LO IDr HI HI
B(T, Typ, D) = (UFHI + UrUD) i UL, + U
Tbr

For two values of ®, ®; < ®;, we know from Equation 16
ULO

that U;(®1) > U;(®3). Furthermore, for 0 < U%;)OR <1, l_g)ﬂ‘o

Ipr

increases as ULO increases. Thus, 8(T, Iyp, ®) is monotonically
. . rDR .
non-increasing as ®; increases. O

These properties allow us to develop an algorithm, based on
binary search, that finds the smallest system compression level ®—
to within some arbitrary degree of precision e—for which a set of
tasks partitioned according to IG-EDF-VD in Algorithm 1 remains
schedulable according to the bound in Equation 3.

5.4 Elastic Compression Algorithm

Given an elastic mixed-criticality task system I' characterized as
in Section 3.2, EG-EDF-VD begins by using Algorithm 1 to find
the maximal assignment (in order of importance) of tasks z; to
I'yp. It does so by compressing each elastic task 7; to its minimum
utilization Uix’mm, then applying Algorithm 1 in Section 4.2 to
the resulting task set ™" Algorithm 2 is then invoked to find
the smallest system compression level ® for which that partition
remains schedulable.

If B(T, Iyp, 0) < 1, it immediately returns 0 as the partition is
already schedulable without any compression. Otherwise, it iter-
ates through all elastic tasks 7; in non-increasing order of their
maximum compression levels ¢;, computing B(T, Iyp, ¢;). It uses a
variable @prey, initialized to 0, to track the previously-tested value
of ®.

If B(T,Tup, ¢i) is 1, then & = ¢; is the smallest value deemed
schedulable due to the monotonicity property of Theorem 5.3. Oth-
erwise, if B(T, Iyp, @i) < 1, we know from Theorem 5.2 that there
is no task 7; such that ®prey < ¢; < ¢; because we are iterat-
ing over elastic tasks in order of ¢;. Therefore, by monotonicity of
B(T, Tup, $i), the algorithm uses binary search to find the minimum
(with precision €) schedulable value of @ in the range (®prev, ¢:].
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Algorithm 2 Compression

Require: A schedulable partition of an elastic implicit-deadline
sporadic task system I'.
Ensure: Minimum value of ® (with precision €) for which
B(T,Iyp,P) < 1.
: Tprx < {7; € Tz is inelastic}
: Tyar < {7 € T|7; is elastic} > all elastic tasks
. if B(T,Iyp,0) < 1 then return 0 > already schedulable
. Sort tasks 7; € T in ascending order by ¢;
: Dprey — 0
. for all 7; € Iyar do
if B(T,Tup, ¢i) = 1 then
return ¢;
else if B(T,Iyp, ¢;) < 1 then
® « BINARYSEARCH(@prev, §i, €)
return ¢
end if
Move 7; from Iyyag to Ty
q)prev — ¢i
15: end for
6: return INFEASIBLE

> all inelastic tasks

> exact match

R T B N N T

-
<

> find in interval

T

> not schedulable

=

However, if B(T, Iyp, ¢;i) > 1, it moves 7; from Tyagr to IFrx, up-
dates ®prev, and proceeds to the next task.

For a set I of n tasks, the time complexity of sorting the tasks
by ¢; is O(nlogn). Then the loop in Lines 6-15 requires no more
than n iterations. Each iteration except the last computes the bound
function B(T, Iyp, ¢i) once. The last iteration requires at most

¢max

€

log ( ) steps to find the solution via binary search. Since the

bound function requires O(n) time to compute, the overall time
complexity of Algorithm 2 is O (n2 +nlog ((ﬁ"‘?‘x))

5.5 Mode Switch Behavior

During runtime, EG-EDF-VD executes similarly to IG-EDF-VD: a job
arriving at time t, is assigned a virtual deadline ¢, + xT; if 7; € Iy
where x is computed according to Equation 4.1 for the current sys-
tem compression level ®. If a job of a high-criticality task executes
for longer than its assigned C}O for the system compression level
®, tasks in IpR are suspended and the remaining jobs are scheduled
according to their actual deadlines t, + T;. Since we only consider
workload-elastic tasks, T; is constant across criticality levels.

Tasks that are not suspended have their workloads adjusted to
values derived from the utilizations assigned by EG-EDF-VD under
high-criticality mode. Because these assignments are computed by
the algorithm during offline analysis, no additional computation
is required during the mode switch. (Note, however, that the cost
of communicating and enforcing the new workload assignment is
application-specific.) Furthermore, after the mode switch, a high-
criticality task’s execution time budget does not decrease since ®
is constant. This means that the amount of time any job executed
prior to the mode switch does not exceed the budget it is assigned
in high-criticality mode, so schedulability remains guaranteed.

LEMMA 5.4. For a given value of ®, for any task t;,

uitl(@) > UL° (o)
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Proor. If UFO(@) = Ul.Lo’min, then by Lemma 5.1, UF ()

HI, min > UiLO, min‘

HI,mi .
Ui T and we require Ui

For tasks 7; with UiX (®) > UI.X ’min, we have Ul.X (@) =
U™ — @ Ef. And by definition, U™ = U™ + ¢; - EY.
Rearranging, we get Ul.)(’mln = UI.X’max - i Ef( Then,
HI,min LO,min
U; > U;

UHI,max

HI LO,max LO
P gy B 2 O g )

UHI,max _ ULO,max

¢i < _t 0t
EHI_ pLO

HI,max LO,max

P < —Ui — U
EHL— fLO

UiHI,max . E?H > UiLO,max _d. E{-“O
UMl > Lo

Therefore, UiH (@) > UZ.LO (@) for all tasks 7; at any given system
compression level ®. m]

Thus, the behavior of EG-EDF-VD is correct.

6 Evaluation

In this section, we illustrate the effectiveness of the proposed
IG-EDF-VD and EG-EDF-VD algorithms by evaluating sets of
randomly-generated synthetic tasks, parameterized according to
the elastic mixed-criticality model in Section 3.2. For each set of
tasks, we compare the number of low-criticality tasks that must be
suspended across a mode switch, demonstrating the improvements
realized over EDF-VD. For this simple empirical study, each set of
tasks includes 5 low-criticality and 5 high-criticality tasks. Task
utilizations are assigned as follows:

(1) The total maximum utilization of low-criticality tasks is fixed at
Uﬁ‘g" = 0.4—¢; we use the Dirichlet-Rescale (DRS) algorithm [13]
to distribute this in an unbiased random fashion across their
individual utilizations. The value ¢ is used to compensate for
numerical instability due to floating-point rounding errors; we
set £ = 0.001.

(2) The total minimum utilization of low-criticality tasks is fixed
at UI{Ei)“ = 0.35 — ¢&. We use DRS to distribute this across the
individual utilization values such that each value Ul.min does not
exceed U™,

(3) The total maximum utilization of high-criticality tasks in high-

criticality mode UE L max 3 swept over the range 0.76—¢to 1.1—¢

with a step size of 0.01; for each value, we generate 10 sets of
tasks. We again use DRS to distribute this across the UI.HI’ max
values.

(4) The total minimum utilization of high-criticality tasks in high-

criticality mode is fixed at Ulf:é min _ g 75 _ &; we use DRS to

distribute this such that each value Ul.HI’ MiN 4oes not exceed

HI, max

U; .
(5) The total maximum utilization of high-criticality tasks in low-
criticality mode is fixed at U;‘H(I)’ WX = 0.2 — ¢ this is again
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Figure 5: Number of tasks dropped

distributed with DRS such that each value Ul.LO’ M3 does not

exceed Ul.HI’ max
(6) The total minimum utilization of high-criticality tasks in low-

criticality mode is fixed at UII:H (1) min _ (.15 — ¢&. We use DRS to

distribute this such that each value Ul.LO’ min Joes not exceed
UiLO, max or UiHL mmA

Each task’s period T; is generated using a log-uniform distri-
bution (per [10]) from the range [1,1000]. Workloads C; are then
derived from the utilization and period. The maximum compression
level ¢; of each task is generated uniformly from the range [0, 1];
elasticity is then derived using Equation 9. A random sequence of
importance values [; are assigned to low-criticality tasks.

Figure 3 shows — for the 1000 task sets generated for each value
of UFP}II i X _ the mean number of low-criticality tasks that must be
dropped. Whereas EDF-VD will always drop all low-criticality tasks,
we can see that IG-EDF-VD is able to execute some low-criticality
tasks across a mode switch by incorporating importance. However,
IG-EDF-VD drops more low-criticality tasks as UI%II increases until
all low-criticality tasks have to be dropped.
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Figure 6: Schedulability function

For EDF-VD and IG-EDF-VD, which cannot take advantage of
task elasticity, each elastic task is treated as inelastic, i.e., only the
system compression level ® = 0 is considered. On the other hand,
the number of low-criticality tasks dropped by EG-EDF-VD remains
roughly the same regardless of UE{ M8 because it takes advantage
of task elasticity to compress utilizations.

Figure 4 shows the mean value of the schedulability function
B(T) achieved by each algorithm. For the evaluated task sets, both
EDF-VD and IG-EDF-VD can schedule up to UFPPI[II =0.86 — ¢, after
which B(T) > 1 for EDF-VD and B(T,Iyp) > 1 for IG-EDF-VD.
Below this, the value of the schedulability function for IG-EDF-VD
lies above that of EDF-VD (but does not exceed 1) as a result of treat-
ing undroppable tasks as high-criticality tasks. On the other hand,
EG-EDF-VD can schedule task sets beyond Ug[ II M3 = 0.86 — ¢ by
compressing task utilizations until 8(T, Iyp, ) = 1. We can also
see that the value of the schedulability function for IG-EDF-VD
closely follows the schedulability bound as it tries to decompress
as much as possible.

To illustrate the scalability of our proposed approaches, we re-
peated this experiment with task sets having 25 low-criticality and
25 high-criticality tasks, keeping all other parameters the same.
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Results are shown in Figures 5 and 6. Comparing Figure 5 to Fig-
ure 3, the proportion of tasks dropped by each algorithm does not
change significantly. However, as the number of tasks increases,
the number of possible partitions increases, allowing us to find a
partition that takes the schedulability function closer to the bound.
In other words, the points along the curves illustrated in Figures 1
and 2 are more densely placed. This is reflected by Figure 6, which
compared to Figure 4 shows IG-EDF-VD and EG-EDF-VD bring-
ing the schedulability function closer to 1 for smaller maximum
utilizations.

7 Conclusions

In this work, we proposed the IG-EDF-VD scheduling algorithm that
allows only the least important low-criticality tasks to be dropped
upon a mode switch while the schedule is still feasible. We then
extended it to the EG-EDF-VD scheduling algorithm that com-
presses the utilizations of workload-elastic tasks to allow fewer
low-criticality tasks to be dropped upon a mode switch.

As future work, we will extend our algorithms to existing anal-
ysis of EDF-VD for more than two criticality levels [2, 30]. We
will also explore period-elastic tasks, for which additional analy-
sis will be required if period can change across criticality levels.
Additionally, we plan to relax the requirement that the maximum
compression level ¢; for each task remains constant across crit-
icality levels. Finally, we will explore improvements to the time
complexity of Algorithm 2.
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