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wewill show, in many cases, this allows fewer tasks to be suspended

compared to IG-EDF-VD.

The remainder of the paper is organized as follows. Section 2

discusses related work. Section 3 presents the considered system

models. Section 4 introduces the IG-EDF-VD algorithm, and Sec-

tion 5 introduces the EG-EDF-VD algorithm. Section 6 evaluates

these algorithms using randomly-generated synthetic task sets.

Section 7 concludes the paper and discusses directions for future

work.

2 Related Work

This paper considers systems of implicit-deadline sporadic real-

time tasks scheduled on a single processor core. In this section,

we outline relevant prior work in this area, including for mixed-

criticality and elastic real-time task systems. In Liu and Layland’s

classic three-parameter task model [17], a system is schedulable on

a preemptive uniprocessor using the Earliest Deadline First (EDF)

algorithm if the system’s total utilization demand does not exceed

1.

2.1 Mixed-Criticality Systems

In safety-critical systems, statutory certi�cation authorities may re-

quire that task worst-case execution times (WCETs) (and therefore,

utilizations) be certi�ed to a high level of assurance. The resulting

utilization demand may be pessimistic, and not indicative of sys-

tem load under common-case behavior. This may be too restrictive,

especially in mixed-criticality systems that integrate both safety-

critical and non-critical tasks. To accommodate both common- and

worst-case behaviors, Vestal proposed to classify tasks according

to their criticality levels [28]. Criticality may be de�ned according

to a variety of safety standards, such as ISO 26262 [16] for the au-

tomotive domain, DO 178C [7] for aeronautics, or IEC 61508 [15]

for generic purposes. In this paper, we restrict our analysis to two

levels: low and high criticality.

Under Vestal’s model, each high-criticality task is character-

ized with two WCETs: one representing common-case behavior

at the certi�cation level demanded by low-criticality tasks, and

one representing the worst-case behavior under the assurances of

the high-criticality certi�cation level. If a job of a high-criticality

task continues to execute beyond its low-criticality WCET, the sys-

tem switches into high-criticality mode, and jobs of low-criticality

tasks are dropped. This allows high-criticality tasks to meet their

deadlines even under their more pessimistic high-criticality WCETs

while allowing all low-criticality tasks to meet their deadlines if

the system remains in low-criticality mode.

Earliest Deadline First with Virtual Deadlines (EDF-VD) [3] is

a dynamic-priority scheduling algorithm for mixed-criticality sys-

tems. EDF-VD has been proven to be speedup-optimal [1] and out-

performs other mixed-criticality scheduling algorithms in terms of

its acceptance ratio [8, 9]. Under EDF-VD,* LO
ΓLO

denotes the total uti-

lization of low-criticality tasks; * LO
ΓHI

denotes the total utilization of

high-criticality tasks according to their low-criticality WCETs, and

*HI
ΓHI

denotes their total utilization according to their high-criticality

(most pessimistic) WCETs. Namely, for each of j ∈ {LO,HI} and

Γ: ∈ {ΓLO, ΓHI}, we denote:

*
j
Γ:

=

∑

g8 ∈Γ:

*
j
8

Tasks are scheduled according to EDF, but high-criticality tasks

g8 are each assigned a virtual deadline )̂8 ← G)8 where )8 is the

task’s period and G is computed as

G ←
* LO
ΓHI

1 −* LO
ΓLO

(1)

If a high-criticality task overruns its low-criticality WCET, jobs

of all low-criticality tasks are dropped, and high-criticality task

deadlines are set to their original )8 values. In [1], Baruah et al.

prove that a mixed-criticality system is schedulable under EDF-VD

if

G* LO
ΓLO
+*HI

ΓHI
≤ 1 (2)

In this paper, we refer to the following as the EDF-VD schedula-

bility function for a mixed-criticality system Γ:

B(Γ) =
* LO
ΓHI

1 −* LO
ΓLO

·* LO
ΓLO
+*HI

ΓHI
(3)

From Equations 1 and 2, a mixed-criticality system is schedulable

under EDF-VD if B(Γ) ≤ 1.

2.2 Importance

A key distinction can be made between a task’s criticality, which is

used to validate mixed-criticality systems according to the safety

standards noted in Section 2.1, and its importance [11, 12]. Flem-

ing and Burns observed that dropping jobs of all low-criticality

tasks is unacceptable for many practical applications and proposed

suspending low-criticality tasks based on their importance, which

is speci�ed by a system developer to capture each task’s relative

contribution to the system’s performance or other objectives [12].

For example, consider a hobbyist drone in “follow-me” mode,

with an objective to follow and �lm a moving target. In this case,

�ight control tasks are high-criticality, since missing a deadline

may result in a crash. In contrast, the video-related tasks are low-

criticality. Compared to the target tracking task, the video capturing

task is more important, since missing a deadline of the latter results

in dropped frames, whereas missing a deadline of the former still

retains video frames, but the target might be o�-center or missing.

As a second example, consider a high-energy nuclear physics

detector or astrophysics telescope designed to read and process

data from particle interactions in the instrument. Such instruments

are deployed in diverse environments, where critical control tasks

maintain, e.g., stability of a �own telescope, or temperatures and

voltages in sensitive electronics; missing a deadline might result

in expensive damage. Low-criticality data collection tasks are still

important to the mission; for example, real-time gamma-ray trajec-

tory reconstruction and localization aboard the ADAPT telescope

will enable rapid follow-up observations of gamma-ray bursts by

other telescopes [25]. But compared to the localization task, the

reconstruction task is more important, as reconstructed data is

necessary for subsequent localization.

Our work in this paper adopts Fleming and Burns’ convention

of representing importance as a strict total order over the set of
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tasks {g8 } using an ordinal, but not interval, measure: it does not

necessarily support addition or other arithmetic operations on its

values, nor does it capture any notion of multiple less important

tasks being more important in combination than a single task of

higher importance. We note that an interval importance may be

applicable to many real-world applications, but it is left to future

work.

Fleming and Burns used this notion of importance to reduce the

number of tasks suspended across a mode switch in a �xed-priority

mixed-criticality model [12]. Our paper is the �rst to integrate it

with a dynamic-priority schedulingmodel—speci�cally, we consider

EDF-VD [3].

2.3 Adaptability and Elastic Scheduling

Several other alternatives to job and task dropping have been pro-

posed. For instance, the imprecise mixed-criticality model allows

low-criticality jobs to run at a reduced utilization instead of being

dropped [18].

Another example is Su and Zhu’s elastic task model for unipro-

cessor mixed-criticality systems, which characterizes each low-

criticality task with a maximum period that re�ects its minimum

service requirement [21]. If the system switches to a high-criticality

mode, periods are expanded to these values (with opportunities

for early releases given su�cient slack). Compared to the impre-

cise mixed-criticality model, this elastic model is more adaptive,

with multiple early release points for slack reclamation. We argue

that while this is an adaptive model, it is not quite a truly elastic

model because low-criticality tasks still have their utilizations fully

degraded to their minimum acceptable values.

The elastic model of Buttazzo et al. for implicit-deadline sporadic

tasks on a uniprocessor [5, 6] characterizes each task g8 with a

continuous range [*min
8 ,*max

8 ] from which its utilization*8 can be

assigned. Under normal operation, tasks execute at their maximum

utilizations*max
8 . Each taskmay also be assigned an elastic constant

�8 representing “the �exibility of the task to vary its utilization” [5].

We note that a task with �8 = 0 (equivalently,*min
8 = *max

8 ) cannot

be compressed and is referred to as an inelastic task. Conversely, a

task is referred to as an elastic task if �8 > 0.

If the system becomes overloaded, task utilizations may be re-

duced by increasing their periods (period-elasticity) or decreasing

their execution times (workload-elasticity [20]). Under Buttazzo’s

model, task utilizations are compressed from their maximum values

*max
8 in proportion to their elastic constants �8 until the system

becomes schedulable. Speci�cally, this means that for all elastic

tasks g8 and g 9 with *8 > *min
8 and * 9 > *min

9 , the following

relationship must be satis�ed:

(
*max
8 −*8

�8

)
=

(
*max
9 −* 9

� 9

)

(4)

In [19], Orr and Baruah introduce a term Φ to capture this equi-

librium value; each task’s utilization value is thus:

*8 (Φ)
def
= max

(
*max
8 − Φ · �8 ,*

min
8

)
(5)

We refer to Φ as the system compression level.

If an elastic task’s utilization reaches its minimum, it is not

reduced further, although other elastic tasks may be compressed

more if needed to reach schedulability. In [23, 24], Sudvarg et al.

assign a parameter q8 to each elastic task, representing the system

compression level needed for an elastic task to reach its minimum

utilization:

q8
def
=

*max
8 −*min

8

�8
(6)

We refer toq8 as themaximum compression level of task g8 . Rather

than forcing each low-criticality task to execute at its minimum

utilization if the system criticality level increases, as in Su and

Zhu’s model [21] where tasks execute at their maximum periods,

we suggest instead that utilizations should be compressed only to

the extent necessary to accommodate low-criticality task execu-

tion in high-criticality mode. In this paper, we propose an elastic

mixed-criticality model for workload-elastic tasks and present an

algorithm to minimize the number of low-criticality tasks dropped

while compressing task workloads as little as possible to still guar-

antee schedulability across a mode switch.

3 System Model

In this paper, we consider two systemmodels. Section 4 uses Vestal’s

classic preemptive mixed-criticality model from [28] with an addi-

tional ordinal importance parameter assigned to each low-criticality

task per Fleming and Burns [12]. Section 5 extends this model to

Buttazzo’s elastic scheduling [5, 6] by additionally parameterizing

each task with a continuous range of allowed utilizations and an

elasticity.

3.1 Mixed-Criticality with Importance

In traditional mixed-criticality systems, if a job of a high-criticality

task executes for time�LO
8 without completing, a system criticality

mode switch is triggered. In this high-criticality mode, jobs of all

low-criticality tasks are discarded.

In Section 4, we introduce a scheduling algorithm that allows,

to the extent possible, low-criticality tasks to continue execut-

ing across a mode switch. It assumes a �nite set Γ of mixed-

criticality, implicit-deadline, sporadic tasks executing on a single-

core processor. Each task g8 is characterized by the tuple g8 =

(j8 , �8 ,)8 ,*
LO
8 ,*HI

8 ), where:

• j8 ∈ {LO, HI} denotes the task’s criticality.

• �8 denotes the unique importance of a low-criticality task, i.e,

∀g8 , g 9 where 8 ≠ 9 , �8 ≠ � 9 . Note that, as in [12], importance is

ordinal but not interval; one should not perform arithmetic on

the value. After a mode switch, our algorithm suspends low-

criticality tasks in order of increasing importance until the re-

maining tasks are schedulable.

• )8 denotes the task’s period or minimum inter-arrival time.

• * LO
8 denotes the task’s utilization under low-criticality mode.

From this, the worst-case execution time in low-criticality mode

�LO
8 = * LO

8 ·)8 can be derived.

• *HI
8 denotes the task’s utilization under high-criticality mode.

For high-criticality tasks,*HI
8 ≥ * LO

8 . For low-criticality tasks

not suspended across a mode switch, *HI
8 = * LO

8 . Similarly,

�HI
8 = *HI

8 ·)8 can be derived.
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We denote the set of high-criticality tasks as ΓHI and the set of

low-criticality tasks as ΓLO.

3.2 Elastic Mixed-Criticality with Importance

An intuitive extension of the above model to Buttazzo’s elastic

scheduling [5, 6] for workload-elastic tasks is to characterize each

task as

g8 = (j8 , �8 ,)8 ,*
LO,min
8 ,* LO,max

8 ,*HI,min
8 ,*HI,max

8 , �LO8 , �HI8 )

where

• j8 ∈ {LO, HI} denotes the task’s criticality.

• �8 denotes ordinal importance, as in Section 3.1.

• )8 again denotes the task’s period.

•
[
* LO, min
8 ,* LO, max

8

]
denotes the continuous range of allowed

values from which the task’s assigned utilization * LO
8 may be

selected under low-criticality mode.

•
[
*HI, min
8 ,*HI, max

8

]
denotes the continuous range of allowed

values from which the task’s assigned utilization *HI
8 may be

selected under high-criticality mode.

• �LO8 and �HI8 denote the elasticity of the task under low- and

high-criticality modes.

A task g8 has �
LO
8 = �HI8 = 0 if it is inelastic, while �LO8 > 0 and

�HI8 > 0 if the task is elastic.

For workload-elastic tasks, which we consider in this paper,

the period )8 remains constant. From the other parameters, the

task’s WCET values can be derived as �
j,min
8 = *

j,min
8 ·)8 and

�
j,max
8 = *

j,max
8 ·)8 .

We extend Orr and Baruah’s de�nition of the system compres-

sion level (Equation 5) to this system model:

*
j
8 (Φ)

def
= max

(
*

j,max
8 − Φ · �

j
8 ,*

j,min
8

)
(7)

Similarly, we can extend Sudvarg’s de�nition of the maximum

compression level of a task (Equation 6):

q
j
8

def
=

*
j,max
8 −*

j,min
8

�
j
8

(8)

In this paper, we restrict q8 to remain constant across criticality

levels. This guarantees two properties that are necessary to the

development of the EG-EDF-VD algorithm. First, for a given system

compression level Φ, it guarantees that a task that is fully com-

pressed to its minimum utilization *
j,min
8 in one criticality level

remains so in the other level. Second, it guarantees that elastic tasks

do not exceed their budgets upon a mode switch. These properties

are further motivated and proven in Section 5.

By rearranging the de�nition of q8 , we can express the elasticity

at each criticality level as




�LO8 =

* LO, max
8 −* LO, min

8

q8

�HI8 =

*HI, max
8 −*HI, min

8

q8

(9)

By doing so, we may re-parameterize each task g8 with one fewer

parameter as

g8 = (j8 , �8 ,)8 ,*
LO,min
8 ,* LO,max

8 ,*HI,min
8 ,*HI,max

8 , q8 )

We motivate this model by illustrating how elasticity may be

orthogonal to criticality for workload-elastic tasks.

Example 1. Consider a high-criticality iterative re�nement task g8
that runs every 200<B , requiring 4 iterations at minimum and ideally

10. The WCET of one iteration is 5<B under low-criticality and 10<B

under high-criticality for certi�cation.

We can characterize task g8 with )8 = 200<B , * LO,min
8 = 0.1,

*HI,min
8 = 0.2, * LO,max

8 = 0.25, *HI,max
8 = 0.5, and q8 = 6. Then

the allowed range of the task’s WCET is [20<B, 50<B] under low-

criticality mode and [40<B, 100<B] under high-criticality mode.

Suppose the EG-EDF-VD algorithm determines that a system com-

pression level Φ = 2 guarantees schedulability. Then utilizations are

assigned as * LO
8 (Φ) = 0.2 and *HI

8 (Φ) = 0.4, with corresponding

execution times �LO
8 = 40<B and �HI

8 = 80<B guaranteeing that at

least 8 iterations can complete in either criticality level.

We note that, although the number of iterations completed rep-

resents a discrete value, it is still worthwhile to assign a contin-

uous range of allowed utilizations. For example, for Φ = 2.5, the

task in the above example would have execution time budgets

�LO
8 = 37.5<B and �HI

8 = 75<B , guaranteeing completion of 7 itera-

tions. However, since workloads are characterized according to the

WCET, faster execution might allow 8 iterations to complete; this

becomes more likely as utilization is continuously increased.

4 Inelastic Graceful EDF-VD

This section introduces the Inelastic Graceful EDF-VD (IG-EDF-

VD) algorithm, which extends the EDF-VD algorithm by incorporat-

ing ordinal importance according to the model de�ned in Section 3.1.

The idea is to �nd the maximal set, in order of importance, of low-

criticality tasks that can continue to execute in high-criticalitymode.

In Section 4.1, we �rst motivate the algorithm with an example.

Next, we describe the IG-EDF-VD algorithm in Section 4.2. Finally,

we analyze the schedulability of the IG-EDF-VD scheduling scheme

from an adaption of the EDF-VD schedulability test in Section 4.3.

4.1 Motivation

Example 2. Consider the implicit-deadline task system Γ whose

parameters are shown in Table 1.

j8 �8 )8 * LO
8 *HI

8
g1 HI - 91.735 0.255 0.518

g2 HI - 4.286 0.095 0.132

g3 LO 1 1.710 0.245 0.245

g4 LO 2 92.718 0.111 0.111

g5 LO 3 2.300 0.094 0.094

Table 1: Sample inelastic taskset

Applying the EDF-VD schedulability function from Equation 3,

we get

B(Γ) =
0.35

1 − 0.45
· 0.45 + 0.65 ≈ 0.936

Since B(Γ) ≤ 1, the task set Γ is schedulable under EDF-VD.
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Lemma 4.1. The following is su�cient for ensuring IG-EDF-VD

successfully schedules all low-criticality behaviors of Γ.

G ≥
* LO
ΓHI
+* LO

ΓUD

1 −* LO
ΓDR

(14)

Proof. Applying the schedulability condition for EDF-VD [1,

Theorem 1], the following ensures IG-EDF-VD successfully sched-

ules all low-criticality behaviors of Γ.

G ≥
* ′LO

ΓHI

1 −* ′LO
ΓLO

Equations 12 and 13 imply that

G ≥
* LO
ΓHI
+* LO

ΓUD

1 −* LO
ΓDR

□

Therefore, Algorithm 1 sets G =

* LO
ΓHI
+* LO

ΓUD

1−* LO
ΓDR

to ensure it success-

fully schedules all low-criticality behaviors of Γ.

Lemma 4.2. The following is su�cient for ensuring IG-EDF-VD

successfully schedules all high-criticality behaviors of Γ.

G* LO
ΓDR
+*HI

ΓHI
+* LO

ΓUD
≤ 1 (15)

Proof. Applying [1, Theorem 2], the following condition is suf-

�cient for ensuring IG-EDF-VD successfully schedules all high-

criticality behaviors of Γ.

G* ′
LO
ΓLO
+* ′

HI
ΓHI
≤ 1

Equations 11 and 13 imply that

G* LO
ΓDR
+*HI

ΓHI
+* LO

ΓUD
≤ 1

□

As such, Algorithm 1 will always ensure IG-EDF-VD successfully

schedules all high-criticality behaviors of Γ. Now we can prove

the IG-EDF-VD schedulability function de�ned in Section 4.2 by

combining Lemma 4.1 and Lemma 4.2:

Theorem 4.3. If the IG-EDF-VD schedulability function

B(Γ, ΓUD) ≤ 1

then a schedule for the system Γ is feasible under IG-EDF-VD.

Proof. For G =

* LO
ΓHI
+* LO

ΓUD

1−* LO
ΓDR

, IG-EDF-VD successfully schedules

all low-criticality behaviors of Γ from Lemma 4.1. Now we have

G* LO
ΓDR
+ *HI

ΓHI
+ * LO

ΓUD
≤ 1, so IG-EDF-VD successfully schedules

all high-criticality behaviors of Γ from Lemma 4.2. Therefore, a

schedule for the system Γ is feasible. □

Now that we have shown a su�cient schedulability function, we

prove a result related to the observation we made in Section 4.2:

as we move tasks from ΓUD to ΓDR, the schedulability function

decreases. Therefore, it is valid to consider dropping jobs of low-

criticality tasks in order from the least important to the most im-

portant task, terminating once a schedulable con�guration is found.

To prove this, we make use of the following properties. First, we

assume* LO
ΓHI
+* LO

ΓLO
≤ 1; otherwise, the system is trivially unschedu-

lable. Second, we assume* LO
ΓLO

< 1; otherwise, no critical task can

be scheduled even in low-criticality mode.

Lemma 4.4. For a task set Γ with* LO
ΓHI
+* LO

ΓLO
≤ 1 and* LO

ΓDR
< 1, the

IG-EDF-VD schedulability function B(Γ, ΓUD) is monotonically non-

increasing with respect to* LO
ΓDR

as tasks are moved from ΓUD to ΓDR.

Proof. We prove this by showing that the derivative with re-

spect to * LO
ΓDR

is non-positive for Γ. Since *HI
8 = * LO

8 for all low-

criticality tasks,*HI
ΓUD

= * LO
ΓUD

. This implies that the schedulability

function B(Γ, ΓUD) is equivalent to:

* LO
ΓHI
+* LO

ΓUD

1 −* LO
ΓDR

·* LO
ΓDR
+* LO

ΓUD
+*HI

ΓHI

Since we partitioned ΓLO into ΓDR and ΓUD, the total utilization of

ΓDR and ΓUD must equal that of ΓLO. Then from* LO
ΓUD

= * LO
ΓLO
−* LO

ΓDR
,

we have:

B(Γ, ΓUD) =
* LO
ΓHI
+ (* LO

ΓLO
−* LO

ΓDR
)

1 −* LO
ΓDR

·* LO
ΓDR
+ (* LO

ΓLO
−* LO

ΓDR
) +*HI

ΓHI

As the set of low- and high-criticality tasks does not change with

respect to the partition of low-criticality tasks, we may consider

* LO
ΓLO

, * LO
ΓHI

, and *HI
ΓHI

to be constants. Therefore, we can rearrange

the schedulability function as follows:

(* LO
ΓHI
+* LO

ΓLO
) ·

* LO
ΓDR

1 −* LO
ΓDR

−
(* LO

ΓDR
)2

1 −* LO
ΓDR

−* LO
ΓDR
+ (* LO

ΓLO
+*HI

ΓHI
)

Taking the derivative, we get:

3

3* LO
ΓDR

B(Γ, ΓUD)

=(* LO
ΓHI
+* LO

ΓLO
) ·

1

(1 −* LO
ΓDR
)2
− (

1

(1 −* LO
ΓDR
)2
− 1) − 1

=

* LO
ΓHI
+* LO

ΓLO
− 1

(1 −* LO
ΓDR
)2

Since * LO
ΓHI
+* LO

ΓLO
≤ 1, the numerator is non-positive. Also, as

* LO
ΓDR

≠ 1, the denominator must be positive. Therefore, the de-

rivative must be non-positive, so the schedulability function is

monotonically non-increasing with* LO
ΓDR

. □

Theorem 4.5. Let Γ be a task set and ΓUD, ΓDR represent a partition

of its low-criticality tasks. Let Γ′UD, Γ
′
DR be another partition where

g8 is moved from ΓUD to ΓDR, i.e, Γ
′
UD = ΓUD \ g8 and Γ

′
DR = ΓDR ∪ g8 .

Then B(Γ, Γ′UD) ≤ 1 if B(Γ, ΓUD) ≤ 1.

Proof. Clearly, if B(Γ, ΓUD) ≤ 1 then* LO
ΓHI
+* LO

ΓLO
≤ 1. Applying

Lemma 4.4, we have

B(Γ, Γ′UD) ≤ B(Γ, ΓUD)

By the transitive property, we get

B(Γ, Γ′UD) ≤ 1

□
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j8 �8 )8 * LO,min
8 * LO,max

8 *HI,min
8 *HI,max

8 q8
g1 HI - 91.735 0.255 0.255 0.518 0.518 -

g2 HI - 4.286 0.095 0.095 0.132 0.132 -

g3 LO 1 1.710 0.225 0.245 0.225 0.245 0.030

g4 LO 2 92.718 0.082 0.111 0.082 0.111 4.028

g5 LO 3 2.300 0.092 0.094 0.092 0.094 0.002

Table 2: Sample elastic taskset

Therefore, a schedule for Γ will still be feasible if a task is moved

from ΓUD to ΓDR per Theorem 4.3.

5 EG-EDF-VD

This section introduces the Elastic Graceful EDF-VD (EG-EDF-VD)

algorithm, which extends the IG-EDF-VD algorithm from Section 4

to the elastic system model in Section 3.2. The idea is still to �nd

the maximal set of low-criticality tasks that can continue to execute

in high-criticality mode. EG-EDF-VD takes advantage of elasticity

to do so, compressing task utilizations to the extent necessary to

further reduce the number of suspended tasks.

We �rst motivate this algorithm in Section 5.1 by considering an

elastic version of Example 2. We then introduce the EG-EDF-VD

algorithm in Section 5.2. In Section 5.3, we prove several properties

of our elastic mixed-criticality system model; these are leveraged

in Section 5.4 to develop an algorithm that e�ciently �nds the

minimum system compression level Φ deemed schedulable. In Sec-

tion 5.5, we discuss how EG-EDF-VD schedules tasks across a mode

switch.

5.1 Motivation

Example 3. Let us revisit Example 2. Now, all low-criticality tasks

are also elastic, with parameters shown in Table 2.

Let Γmin denote the task system where all elastic tasks are fully

compressed (i.e., Φ ≥ max8 {q8 }) and Γ
max denote the task system

where no tasks are compressed at all (i.e.,Φ = 0), which is equivalent

to the inelastic system Γ in Example 2.

Let us treat tasks g4 and g5 as high-criticality, i.e., ΓUD = {g4, g5}.

Applying the IG-EDF-VD schedulability function,

B(Γmax, ΓUD) =
0.555

1 − 0.245
· 0.245 + 0.855 ≈ 1.035

and

B(Γmin, ΓUD) =
0.524

1 − 0.225
· 0.225 + 0.824 ≈ 0.976

As B(Γmax, ΓUD) > 1, IG-EDF-VD does not guarantee schedula-

bility. However, the fully compressed system is schedulable since

B(Γmin, ΓUD) ≤ 1. Therefore, we propose the EG-EDF-VD algo-

rithm, which extends IG-EDF-VD by leveraging elasticity to drop

even fewer tasks.

5.2 EG-EDF-VD Algorithm

The primary goal of the EG-EDF-VD algorithm is still to �nd

the maximal subset (in order of importance) of undroppable low-

criticality tasks ΓUD. It �rst compresses all elastic tasks to their

minimum utilizations, then uses Algorithm 1 to �nd the maximal

resulting assignment of tasks to ΓUD. Once this is found, EG-EDF-

VD �nds the minimum system compression level Φ for which the
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Figure 2: Schedulability function against utilization of drop-

pable tasks of a sample elastic task set

partition remains schedulable. This is done by binary search with

tunable precision n using the compression algorithm in Section 5.4.

From Equation 7, the utilization of each task g8 for a given value

of Φ at criticality level j can be expressed as:

*
j
8 (Φ)

def
= max

(
*

j,max
8 − Φ · �

j
8 ,*

j,min
8

)
(16)

Then for each of j ∈ {LO,HI} and Γ: ∈ {ΓHI, ΓUD, ΓDR}, we can

now include the system compression level in the corresponding

total utilization parameter as:

*
j
Γ:
(Φ) =

∑

g8 ∈Γ:

*
j
8 (Φ)

To simplify notation in the remainder of this section, we abbrevi-

ate*
j
Γ:
(Φ) as*

j
Γ:
. With that, we de�ne the EG-EDF-VD schedulabil-

ity function for a mixed-criticality system Γ at system compression

level Φ as follows.

B(Γ, ΓUD,Φ) =
* LO
ΓHI
+* LO

ΓUD

1 −* LO
ΓDR

·* LO
ΓDR
+*HI

ΓUD
+*HI

ΓHI
(17)

One may note that this is exactly the same as the function for

IG-EDF-VD except that utilization is now a function of the system

compression level Φ. Because this expression includes task utiliza-

tions for both low- and high-criticality system modes, we consider

the problem of �nding a single value of Φ that, when applied to

both criticality levels, guarantees schedulability. Algorithm 2 in Sec-

tion 5.4 �nds the minimum such value for the maximal assignment

of tasks to ΓUD.

Figure 2 shows how the EG-EDF-VD schedulability function for

the set of tasks in Example 3 changes with Φ. The schedulability

function for Γmin (where Φ ≥ max8 {q8 }) is shown as the bottom
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(blue) curve, and that for Γmax (where Φ = 0) is shown as the top

(green) curve.

Again, each point represents an assignment of tasks to ΓUD. The

x-axis represents the value* LO
ΓDR

of that partition, and the y-axis is

the schedulability function value B(Γ, ΓUD,Φ). A horizontal refer-

ence line shows the schedulability bound where B(Γ, ΓUD,Φ) = 1.

For these tasks, EG-EDF-VD �rst �nds the maximal schedulable

partition, i.e., the leftmost point under the reference line on the bot-

tom curve. It then decompresses the system, �nding the minimum

value of Φ for which the bound is reached, as shown by the red

dot where the dashed line connecting the top and bottom curves

intersects the bound.

5.3 Properties of the Elastic Task Model

Orthogonal to criticality, we partition the set of tasks Γ into two

subsets, ΓFIX (Φ) and ΓVAR (Φ), as in [23]. ΓFIX (Φ) are tasks that

have already reached their minimum utilization*
j
8 (Φ) = *

j,min
8 ;

ΓVAR (Φ) are tasks that can still be compressed, i.e.,*
j
8 (Φ) > *

j,min
8 .

Note that inelastic tasks are always in ΓFIX (Φ) for any value of Φ.

Because we restrict q8 to remain constant across criticality levels,

the assignment of tasks to ΓFIX (Φ) and ΓVAR (Φ) also remains un-

changed across a mode switch. We prove this by showing that one

can determine whether an elastic task g8 is variable or �xed by

simply comparing the system compression level Φ and the task’s

maximum compression level q8 .

Lemma 5.1. An elastic task g8 ∈ ΓFIX (Φ) if and only if q8 ≤ Φ.

Equivalently, g8 ∈ ΓVAR (Φ) if and only if q8 > Φ.

Proof. If g8 ∈ ΓFIX (Φ), then *
j
8 (Φ) = *

j,min
8 . Since we know

*
j
8 (Φ) = max

(
*

j,max
8 − Φ · �

j
8 ,*

j,min
8

)
, we can derive

*
j,max
8 − Φ · �

j
8 ≤ *

j,min
8

*
j,max
8 −*

j,min
8

�
j
8

≤ Φ

q8 ≤ Φ

If q8 ≤ Φ, by the de�nition of q8 and Φ, we get

*
j,max
8 −*

j,min
8

�
j
8

≤
*

j,max
8 −*

j
8 (Φ)

�
j
8

*
j,max
8 −*

j,min
8 ≤ *

j,max
8 −*

j
8 (Φ)

*
j
8 (Φ) ≤ *

j,min
8

By de�nition, *
j
8 (Φ) = max(*

j,max
8 − Φ · �

j
8 ,*

j,min
8 ), which

implies that *
j
8 (Φ) ≥ *

j,min
8 . Therefore, it must be the case that

*
j
8 (Φ) = *

j,min
8 and we have g8 ∈ ΓFIX (Φ).

Since g8 ∈ ΓFIX (Φ) if and only if q8 ≤ Φ, the following is equiva-

lent: g8 ∈ ΓVAR (Φ) if and only if q8 > Φ. □

Since q8 remains constant across criticality levels, the partition

will remain the same upon a mode switch for a �xed value of Φ. We

now show that for two system compression levels Φ1 and Φ2, the

partition of tasks into ΓFIX and ΓVAR is the same as long as there is

no task g8 for which q8 ∈ (Φ1,Φ2].

Theorem 5.2. Let Γ be a task system and Φ1 ≤ Φ2 be two system

compression levels of Γ. If there does not exist a task g8 in Γ such that

Φ1 < q8 ≤ Φ2, then ΓFIX (Φ1) = ΓFIX (Φ2) and ΓVAR (Φ1) = ΓVAR (Φ2).

Proof. Because there does not exist any task g8 in Γ such that

Φ1 < q8 ≤ Φ2, it follows that for all tasks g8 , q8 ≤ Φ1 ≤ Φ2 or Φ1 ≤

Φ2 < q8 . If g8 ∈ ΓFIX (Φ1), then q8 ≤ Φ1 by Lemma 5.1. Therefore, it

must be the case that q8 ≤ Φ1 ≤ Φ2. By the same lemma, we get

g8 ∈ ΓFIX (Φ2). By symmetry, if g8 ∈ ΓFIX (Φ2), then we have g8 ∈

ΓFIX (Φ1). Therefore, ΓFIX (Φ1) = ΓFIX (Φ2); equivalently ΓVAR (Φ1) =

ΓVAR (Φ2). □

Finally, we show that B(Γ, ΓUD,Φ) is monotonically non-

increasing with Φ.

Theorem 5.3. For a task set Γ with * LO
ΓDR
≤ 1, the function

B(Γ, ΓUD,Φ) de�ned in Equation 17 is monotonically non-increasing

with Φ.

Proof. From Equation 17,

B(Γ, ΓUD,Φ) =
(
* LO
ΓHI
+* LO

ΓUD

) * LO
ΓDR

1 −* LO
ΓDR

+*HI
ΓUD
+*HI

ΓHI

For two values of Φ, Φ1 ≤ Φ2, we know from Equation 16

that *8 (Φ1) ≥ *8 (Φ2). Furthermore, for 0 ≤ * LO
ΓDR

< 1,
* LO
ΓDR

1−* LO
ΓDR

increases as * LO
ΓDR

increases. Thus, B(Γ, ΓUD,Φ) is monotonically

non-increasing as Φ8 increases. □

These properties allow us to develop an algorithm, based on

binary search, that �nds the smallest system compression level Φ—

to within some arbitrary degree of precision n—for which a set of

tasks partitioned according to IG-EDF-VD in Algorithm 1 remains

schedulable according to the bound in Equation 3.

5.4 Elastic Compression Algorithm

Given an elastic mixed-criticality task system Γ characterized as

in Section 3.2, EG-EDF-VD begins by using Algorithm 1 to �nd

the maximal assignment (in order of importance) of tasks g8 to

ΓUD. It does so by compressing each elastic task g8 to its minimum

utilization *
j,min
8 , then applying Algorithm 1 in Section 4.2 to

the resulting task set Γmin. Algorithm 2 is then invoked to �nd

the smallest system compression level Φ for which that partition

remains schedulable.

If B(Γ, ΓUD, 0) ≤ 1, it immediately returns 0 as the partition is

already schedulable without any compression. Otherwise, it iter-

ates through all elastic tasks g8 in non-increasing order of their

maximum compression levels q8 , computing B(Γ, ΓUD, q8 ). It uses a

variable Φprev, initialized to 0, to track the previously-tested value

of Φ.

If B(Γ, ΓUD, q8 ) is 1, then Φ = q8 is the smallest value deemed

schedulable due to the monotonicity property of Theorem 5.3. Oth-

erwise, if B(Γ, ΓUD, q8 ) < 1, we know from Theorem 5.2 that there

is no task g 9 such that Φprev < q 9 < q8 because we are iterat-

ing over elastic tasks in order of q8 . Therefore, by monotonicity of

B(Γ, ΓUD, q8 ), the algorithm uses binary search to �nd theminimum

(with precision n) schedulable value of Φ in the range (Φprev, q8 ].
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Algorithm 2 Compression

Require: A schedulable partition of an elastic implicit-deadline

sporadic task system Γ.

Ensure: Minimum value of Φ (with precision n) for which

B(Γ, ΓUD,Φ) ≤ 1.

1: ΓFIX ← {g8 ∈ Γ |g8 is inelastic} ⊲ all inelastic tasks

2: ΓVAR ← {g8 ∈ Γ |g8 is elastic} ⊲ all elastic tasks

3: if B(Γ, ΓUD, 0) ≤ 1 then return 0 ⊲ already schedulable

4: Sort tasks g8 ∈ Γ in ascending order by q8
5: Φprev ← 0

6: for all g8 ∈ ΓVAR do

7: if B(Γ, ΓUD, q8 ) = 1 then

8: return q8 ⊲ exact match

9: else if B(Γ, ΓUD, q8 ) < 1 then

10: Φ← BinarySearch(qprev, q8 , n)

11: return Φ ⊲ �nd in interval

12: end if

13: Move g8 from ΓVAR to ΓFIX

14: Φprev ← q8
15: end for

16: return Infeasible ⊲ not schedulable

However, if B(Γ, ΓUD, q8 ) > 1, it moves g8 from ΓVAR to ΓFIX, up-

dates Φprev, and proceeds to the next task.

For a set Γ of = tasks, the time complexity of sorting the tasks

by q8 is $ (= log=). Then the loop in Lines 6–15 requires no more

than = iterations. Each iteration except the last computes the bound

function B(Γ, ΓUD, q8 ) once. The last iteration requires at most

log
(
qmax

n

)
steps to �nd the solution via binary search. Since the

bound function requires $ (=) time to compute, the overall time

complexity of Algorithm 2 is $
(
=2 + = log

(
qmax

n

))
.

5.5 Mode Switch Behavior

During runtime, EG-EDF-VD executes similarly to IG-EDF-VD: a job

arriving at time C0 is assigned a virtual deadline C0 + G)8 if g8 ∈ ΓHI
where G is computed according to Equation 4.1 for the current sys-

tem compression level Φ. If a job of a high-criticality task executes

for longer than its assigned �LO
8 for the system compression level

Φ, tasks in ΓDR are suspended and the remaining jobs are scheduled

according to their actual deadlines C0 +)8 . Since we only consider

workload-elastic tasks, )8 is constant across criticality levels.

Tasks that are not suspended have their workloads adjusted to

values derived from the utilizations assigned by EG-EDF-VD under

high-criticality mode. Because these assignments are computed by

the algorithm during o�ine analysis, no additional computation

is required during the mode switch. (Note, however, that the cost

of communicating and enforcing the new workload assignment is

application-speci�c.) Furthermore, after the mode switch, a high-

criticality task’s execution time budget does not decrease since Φ

is constant. This means that the amount of time any job executed

prior to the mode switch does not exceed the budget it is assigned

in high-criticality mode, so schedulability remains guaranteed.

Lemma 5.4. For a given value of Φ, for any task g8 ,

*��
8 (Φ) ≥ * !$

8 (Φ)

Proof. If * LO
8 (Φ) = * LO,min

8 , then by Lemma 5.1, *HI
8 (Φ) =

*HI,min
8 , and we require*HI, min

8 ≥ * LO, min
8 .

For tasks g8 with *
j
8 (Φ) > *

j,min
8 , we have *

j
8 (Φ) =

*
j,max
8 − Φ · �

j
8 . And by de�nition, *

j,max
8 = *

j,min
8 + q8 · �

j
8 .

Rearranging, we get*
j,min
8 = *

j,max
8 − q8 · �

j
8 . Then,

*HI,min
8 ≥ * LO,min

8

*HI,max
8 − q8 · �

HI
8 ≥ * LO,max

8 − q8 · �
LO
8

q8 ≤
*HI,max
8 −* LO,max

8

�HI8 − �
LO
8

Φ <

*HI,max
8 −* LO,max

8

�HI8 − �
LO
8

*HI,max
8 − Φ · �HI8 > * LO,max

8 − Φ · �LO8

*HI
8 ≥ * LO

8

Therefore,*��
8 (Φ) ≥ * !$

8 (Φ) for all tasks g8 at any given system

compression level Φ. □

Thus, the behavior of EG-EDF-VD is correct.

6 Evaluation

In this section, we illustrate the e�ectiveness of the proposed

IG-EDF-VD and EG-EDF-VD algorithms by evaluating sets of

randomly-generated synthetic tasks, parameterized according to

the elastic mixed-criticality model in Section 3.2. For each set of

tasks, we compare the number of low-criticality tasks that must be

suspended across a mode switch, demonstrating the improvements

realized over EDF-VD. For this simple empirical study, each set of

tasks includes 5 low-criticality and 5 high-criticality tasks. Task

utilizations are assigned as follows:

(1) The total maximum utilization of low-criticality tasks is �xed at

*max
ΓLO

= 0.4−Y; we use the Dirichlet-Rescale (DRS) algorithm [13]

to distribute this in an unbiased random fashion across their

individual utilizations. The value Y is used to compensate for

numerical instability due to �oating-point rounding errors; we

set Y = 0.001.

(2) The total minimum utilization of low-criticality tasks is �xed

at *min
ΓLO

= 0.35 − Y. We use DRS to distribute this across the

individual utilization values such that each value *min
8 does not

exceed*max
8 .

(3) The total maximum utilization of high-criticality tasks in high-

criticality mode*HI, max
ΓHI

is swept over the range 0.76−Y to 1.1−Y

with a step size of 0.01; for each value, we generate 10 sets of

tasks. We again use DRS to distribute this across the *HI, max
8

values.

(4) The total minimum utilization of high-criticality tasks in high-

criticality mode is �xed at *HI, min
ΓHI

= 0.75 − Y; we use DRS to

distribute this such that each value *HI, min
8 does not exceed

*HI, max
8 .

(5) The total maximum utilization of high-criticality tasks in low-

criticality mode is �xed at * LO, max
ΓHI

= 0.2 − Y; this is again
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Results are shown in Figures 5 and 6. Comparing Figure 5 to Fig-

ure 3, the proportion of tasks dropped by each algorithm does not

change signi�cantly. However, as the number of tasks increases,

the number of possible partitions increases, allowing us to �nd a

partition that takes the schedulability function closer to the bound.

In other words, the points along the curves illustrated in Figures 1

and 2 are more densely placed. This is re�ected by Figure 6, which

compared to Figure 4 shows IG-EDF-VD and EG-EDF-VD bring-

ing the schedulability function closer to 1 for smaller maximum

utilizations.

7 Conclusions

In this work, we proposed the IG-EDF-VD scheduling algorithm that

allows only the least important low-criticality tasks to be dropped

upon a mode switch while the schedule is still feasible. We then

extended it to the EG-EDF-VD scheduling algorithm that com-

presses the utilizations of workload-elastic tasks to allow fewer

low-criticality tasks to be dropped upon a mode switch.

As future work, we will extend our algorithms to existing anal-

ysis of EDF-VD for more than two criticality levels [2, 30]. We

will also explore period-elastic tasks, for which additional analy-

sis will be required if period can change across criticality levels.

Additionally, we plan to relax the requirement that the maximum

compression level q8 for each task remains constant across crit-

icality levels. Finally, we will explore improvements to the time

complexity of Algorithm 2.
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