
SciPost Phys. 17, 034 (2024)

Numerical signatures of ultra-local criticality in
a one dimensional Kondo lattice model

Alexander Nikolaenko1 and Ya-Hui Zhang2⋆

1 Department of Physics, Harvard University, Cambridge, MA, USA
2 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA

⋆ yzhan566@jhu.edu

Abstract

Heavy fermion criticality has been a long-standing problem in condensed matter physics.
Here we study a one-dimensional Kondo lattice model through numerical simulation and
observe signatures of local criticality. We vary the Kondo coupling JK at fixed doping x .
At large positive JK , we confirm the expected conventional Luttinger liquid phase with
2kF =

1+x
2 (in units of 2π), an analogue of the heavy Fermi liquid (HFL) in the higher

dimension. In the JK ≤ 0 side, our simulation finds the existence of a fractional Lut-
tinger liquid (LL*) phase with 2kF =

x
2 , accompanied by a gapless spin mode originating

from localized spin moments, which serves as an analogue of the fractional Fermi liq-
uid (FL*) phase in higher dimensions. The LL* phase becomes unstable and transitions
to a spin-gapped Luther-Emery (LE) liquid phase at small positive JK . Then we mainly
focus on the ‘critical regime’ between the LE phase and the LL phase. Approaching the
critical point from the spin-gapped LE phase, we often find that the spin gap vanishes
continuously, while the spin-spin correlation length in real space stays finite and small.
For a certain range of doping, in a point (or narrow region) of JK , the dynamical spin
structure factor obtained through the time-evolving block decimation (TEBD) simula-
tion shows dispersion-less spin fluctuations in a finite range of momentum space above
a small energy scale (around 0.035J) that is limited by the TEBD accuracy. All of these
results are unexpected for a regular gapless phase (or critical point) described by confor-
mal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality
with an infinite dynamical exponent z = +∞. The numerical discovery here may have
important implications on our general theoretical understanding of the strange metals
in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical
lattice with a potential difference.
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1 Introduction

The study of quantum phase transition between a small Fermi surface phase and a large Fermi
surface phase is a central topic in modern quantum condensed matter physics and may be
closely related to the strange metals observed in heavy Fermion systems [1–8] and in hole-
doped high Tc cuprates [9–12]. The standard Landau-Ginzburg theory involves the onset of a
symmetry-breaking order and its fluctuation [13, 14]. However, a number of experiments in
heavy Fermion systems [15–17] do not appear to be consistent with the simple spin-density-
wave (SDW) approach. It was suggested that the transition in heavy fermion systems may
be characterized by a jump in Fermi surface volume resulting from Kondo breakdown, rather
than fluctuations in symmetry-breaking orders. There have been many attempts to formulate a
framework of an exotic transition following different approaches, such as extended dynamical
mean field theory (EDMFT) [18], fractionalization and slave boson theory [19–21], ancilla
qubit theory [22, 23]. However, a well-established theoretical description of such a Kondo
breakdown transition is still elusive.

In this paper, we take a microscopic approach to avoid uncontrolled approximations usually
existing in low-energy effective field theory methods. Specifically, we will numerically simulate
a one-dimensional Kondo lattice model using density matrix renormalization group (DMRG)
[24]. DMRG has been demonstrated to be an unbiased method with excellent performance in
one dimension (1D). Therefore, the numerical results should be reliable. The only question is
whether there is anything interesting in a 1D model. We will show that the answer is yes and
we find a critical point or phase which seems to support local criticality behaviour. We note
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that there already exist a few numerical studies of the Kondo lattice model in one dimension
[25–28], but to our best knowledge, there is no detailed study of how a Kondo breakdown
phase at negative JK evolves to the Luttinger liquid in the large positive JK at a generic filling.

The model we study consists of a t-J model of itinerant electron and a Heisenberg model of
spin 1/2 chain [29]. They couple to each other through a Kondo coupling JK . At a density x for
the itinerant electron, we vary JK to study the phase diagram. In the JK ≤ 0 side, the ground
state has one charge mode and two spin modes (C1S2), where the localized spin 1/2 moments
provide an additional gapless mode with momentum Q = π. The itinerant electron forms a
Luttinger liquid with 2k∗F =

x
2 (in units of 2π). The phase is an analogue of the fractional Fermi

liquid (FL*) phase in higher dimension and we call it fractional Luttinger liquid (LL*) [30]. In
the large positive JK we find the expected Luttinger liquid (LL) phase with 2kF =

1+x
2 (in units

of 2π), which is an analogue of the heavy Fermi liquid (HFL) phase in the higher dimensional
Kondo lattice model. Therefore, we have the same problem of small to large Fermi surface
evolution as in higher dimensions. Complexity arises in one dimension because the LL* phase
is unstable at small positive JK and transitions to a Luther-Emery liquid (LE) phase with a
spin gap and only one gapless charge mode [26, 29, 31, 32]. The LE phase is best described
as a descendant of the LL* phase [29]. It is similar to a superconductor phase in a higher
dimension and above the energy scale of the spin gap it smoothly connects to the LL* phase.
We note, that in the heavy Fermion experiments, the transitions between the small and large
Fermi surface metals are typically covered by a superconductor dome. Thus, the situation in
1D is similar to higher dimension and we will try to understand the nature of the evolution
from the LE phase to the LL phase upon increasing JK . The hope is that there may also be a
‘strange metal’ critical point or a phase in between.

As the LE phase descends from the LL* phase and we are not aware of any way to construct
it from the LL phase, we do not expect any obvious continuous transition between the LE and
LL phases. Indeed, we find that there is either a first-order transition or an intermediate
region in between. We will focus on the latter case and provide evidence of local criticality
behaviour beyond the familiar Luttinger liquid or conformal field theory (CFT) descriptions.
At one point (or a narrow region) of JK , we find that the spin gap is almost vanishing, while
there is still a finite correlation length in equal time spin-spin correlation function in real space.
Meanwhile, the dynamical spin structure factor S(ω, q)∼ ImχS(ω, q) obtained from the time-
evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a range
of the momentum space above an energy cutoff (around 0.035J , J is the Heisenberg spin
coupling) imposed by the numerical accuracy itself. Such behaviour resembles what is called
local criticality. We note, that in the literature sometimes local criticality is also used [18] for
the case where only the self-energy is momentum independent, while there is still a significant
spatial correlation. In this weaker case, the dynamical exponent is still finite. The behaviour in
our model is closer to a stronger definition with an infinite dynamical exponent. Therefore, we
follow Ref. [33] and call it ultra-local criticality to be distinguished from the weaker definition.

The discovery of ultra-local critical spin fluctuations above a small energy scale is quite
remarkable, as this phenomenon is not generally believed to be possible in a reasonable model
with translation invariance and a finite-dimensional Hilbert space at each site. The existence
of ultra-local criticality also has significant implications for our understanding of the strange
metal. For example, it may be a loophole of the anomaly approach of non-Fermi liquid [33]
and it is known that ultra-local critical spin fluctuations with a constant spectral function over
frequency can lead to a marginal Fermi liquid and linear T resistivity [34]. On the experimental
side, similar local critical behaviours have been discovered in neutron scattering measurements
of some heavy Fermion materials [17,35]. One may worry that the experimental results arise
from disorder effects. Our numerical observation of similar local critical behaviours in a clean
model strongly suggests that such a phenomenon may likely be intrinsic and does not need
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Figure 1: The geometry and corresponding couplings of the Hamiltonian in Eq. 1.
The first layer corresponds to a t-J model, while the second layer is an antiferromag-
netic spin 1/2 model. The two layers are coupled together through the on-site Kondo
coupling JK and nearest neighbour Kondo interaction Jcs.

disorders. On the theoretical side, similar behaviour has been discussed in holographic theory
from the gravity side and dubbed as ‘semi-local quantum fluid’ [36]. However, we are not
aware of a well-established theory of ultra-local criticality for a local and translation invariant
quantum lattice model directly. We hope our numerical confirmation of the existence of ultra-
local criticality will stimulate theoretical efforts in this direction. Lastly, we propose to simulate
the Kondo lattice model in a bilayer optical lattice with a potential difference, which hopefully
will provide more information at finite temperatures and higher dimensions.

2 Model and phase diagram

We formulate our model as a generalization of the Kondo-Heisenberg lattice model, which is
described by the following Hamiltonian:

H = −tP
∑

<i, j>,σ

(c†
i,σc j,σ + h.c)P + Jc

∑

〈i j〉

S⃗e
i · S⃗

e
j + (V −

1
4

Jc)
∑

〈i j〉

nin j

+ J
∑

<i, j>

S⃗i · S⃗ j + JK

∑

i

S⃗e
i · S⃗i + Jcs

∑

〈i j〉

S⃗e
i · S⃗ j + S⃗i · S⃗e

j . (1)

The first layer is described by the t-J model, P is the projection operator to forbid double
occupancy and S⃗e

i =
1
2

∑

σσ′=↑,↓ c†
i;σσ⃗σσ′ ci;σ′ is the spin operator of the itinerant electron. The

couplings V and Jc account for the nearest neighbour interaction in the first layer. The second
layer is described by Heisenberg spin 1/2 model with coupling J . We will call these two
layers C layer and S layer respectively in what follows. Finally, we have the inter-layer Kondo
couplings JK and Jcs. Fig. 1. shows the geometry and the corresponding couplings pictorially.
In the Appendix A we show how the studied model can be realized in bilayer optical lattices.

In the rest of the paper, we fix t = 1, J = Jc = 0.5 and study how the system evolves as we
change Kondo coupling JK . We also use two different values Jcs = 0,0.5J which we concluded
does not change the underlying physics much. We will simulate the model with both finite
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Figure 2: Illustration of phase diagram of the Kondo lattice model with
Jcs = 0.5J , V = 4J . LL∗ phase corresponds to fractional Luttinger liquid, LE stands
for Luther-Emery(spin gap) phase, and LL is a Luttinger liquid phase. LL*, LE and
LL phases can be labeled as C1S2, C1S0 and C1S1 respectively and they have central
charges c = 3,1, 2. Here CmSn means that there are m charge modes and n spin
modes. Grey shadowed regions correspond to commensurate fillings x = 1/3 and
x = 1/2 where the system turns into a charge density wave (CDW) insulator. The
red vertical line marks the first-order transition between LE and LL phases. Region I
is a gapless phase with a central charge c = 3. When approaching the region I from
the LE phase, the spin gap vanishes continuously, while the spin correlation length
in real space stays finite and small, indicating possible infinite dynamical exponent.
Region II hosts an exotic phase with a weak ferromagnetic moment and ultra-local
criticality at the phase boundary. Within region II, around the doping x ≈ 0.61−0.63,
there is a re-entrance of another spin-gapped phase. We find signatures of ultra-local
criticality between the two spin-gapped domes. We use system size L = 113, and
maximum bond dimension m= 1000 with finite DMRG for this plot.

and infinite DMRG. The bond dimension varies from 500 to 8000 depending on parameters.
The typical truncation error is at order 10−8 or even smaller.

We start our analysis by providing an illustrated phase diagram of the model in Fig. 2.
Previous calculations have found a dominant ferromagnetic phase in the conventional Kondo
lattice model with J = 0 [25]. Here we use J = 0.5t to get rid of the FM order. Then the phase
diagram is dramatically different from that of the conventional Kondo lattice model with J = 0.

At JK = 0, we can start from the layer decoupled phase. We know the itinerant electron in
the C layer just forms a spinful Luttinger liquid, while the spin moments in the S layer form
a gapless phase with one spin mode. We can dub this phase C1S2 because it has one charge
mode and two spin modes. The itinerant electrons in the C layer form a Fermi surface with
2k∗F =

x
2×2π, which is different from the required value of the Luttinger theorem by 1/2 of 2π.

This feature is similar to the fractional Fermi liquid (FL*) phase discussed in higher dimensions.
Therefore, we dub this phase a fractional Luttinger liquid (LL*) [29]. The LL* phase is stable
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Figure 3: Spin gap ∆S jumps at the first order transition. L = 113, x = 45/113
and maximum bond dimension m = 1000. In the inset, we also show the jump of
V = 2〈S⃗i · S⃗e

i 〉 and the central charge c. We use Jcs = 0.5 and V = 1
4 Jc for this plot.

in the negative JK regime. However, it is unstable to a spin-gapped Luther Emery (LE) liquid
phase with a finite positive JK [29]. In the large positive JK , we recover the Luttinger liquid
(LL) as an analogue of the heavy Fermi liquid in higher dimensions. The LL phase has a Fermi
surface with 2kF =

1+x
2 × 2π, satisfying the Yamanaka-Oshikawa theorem [37]. Note that

the central charge for the LL*, LE, and LL phases are c = 3, 1,2 respectively and they can be
labeled as C1S2, C1S0, C1S1.

Although the LL* phase is unstable to the spin-gapped LE phase, one can view the LE phase
as a descendant of the LL* phase. Above the energy scale of the spin gap, we can still think
of this phase as a LL* phase with a small Fermi surface. Therefore we can ask how the small
Fermi surface changes to the large Fermi surface in the large JK regime. In the regime of
intermediate filling x ∈ (0.33,0.43) the transition appeared to be of the first order, labeled as
the red line in Fig. 2. As evidence of the first order transition, the spin gap ∆s jumps to zero
discontinuously and other physical quantities such as V = 2〈S⃗i · S⃗e

i 〉 also experience a jump, as
shown in Figure 3. The central charge changes from c = 1 in the LE phase to c = 2 in the LL
phase directly at the transition.

2.1 Intermediate region I

At small doping x < 1
3 the LE phase evolves to the LL phase through an intermediate region

I. Region I has a central charge c = 3 and a finite spin susceptibility, in agreement with a
conformal field theory (CFT) description with both gapless charge and spin modes. We list
results for intermediate region I at x = 7

31 , Jcs = 0.5J in Fig. 4. In Fig. 4(a) we plot ∆S L
from finite DMRG, where ∆S is the spin gap and L is the system size. ∆S is obtained from
E(S t

z = 1)− E(S t
z = 0), where E(S t

z = m) is the ground state energy of the sector of the total
spin Sz = m sector. Note that the total S t

z = Sz+Se
z component is conserved in our calculation,

so we can target a state at each S t
z = m. It is known that the inverse of the uniform spin
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Figure 4: Results for the intermediate region I at x = 7
31 , Jcs = 0.5J , V = 0. (a) ∆S L

for a few system sizes obtained from finite DMRG with bond dimension m = 2000.
L is the system size and ∆S is the spin gap. ∆S L is proportional to the inverse of
the uniform spin susceptibility. The two dashed lines are at JK = 2.05 and JK = 2.7,
which mark the phase boundaries of the intermediate region I. (b) Central charge fit
from infinite DRMG with unit cell L = 31. The central charge is c = 1,3, 2 for the
three phases when increasing JK . (c) Spin-spin correlation function in momentum
space. Here we use the total spin operator S⃗ t = S⃗ + S⃗e. (d) Density-density corre-
lation function in momentum space. In (c)(d) the black dashed vertical line labels
q = 2k∗F =

x
2 × 2π. The red dashed line labels q = 4kF = x × 2π. The blue dashed

line labels q = 2kF =
1+x

2 × 2π. In (c)(d) the lines of different JK are shifted, so the
absolute value of the y-axis is meaningless.

susceptibility χ−1
S ∝ ∆S L. When JK < 2.05, we can see that ∆S L increases with the system

size L, indicating a finite spin gap in agreement with the LE phase. But when JK > 2.05, ∆S L
is constant with system size, indicating a finite uniform spin susceptibility. This is expected
from the scaling ∆S ∼

1
L of a conformal field theory (CFT) description.

Using bond dimension m from 500 to 2000 we fit the central charge with the formula
S = c

6 logξ, where ξ is the correlation length obtained from the transfer matrix technique [38]
and S is the entanglement entropy. Inside the intermediate region I, we find that the central
charge is c = 3 from the infinite DMRG result in Fig. 4(b). This central charge is larger than
both the LE phase (c = 1) on the left and the LL phase (c = 2) on the right. One natural
interpretation is that there are two Fermi surfaces per spin component in the intermediate
region I, leading to two charge and two spin modes. Then one of the four modes gets gapped,
giving c = 3. In the Appendix G, we will argue that a simple mean-field theory is able to
explain the existence of several Fermi surfaces and show how a flat band scenario is able to
explain a finite correlation length in the gapless system.
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To support the above picture, we indeed find that the peak of the spin-spin correlation
function 〈S⃗(q) · S⃗(q)〉 is still at 2kF =

1+x
2 (in units of 2π) in the intermediate region (see

Fig. 4(c)), while the peak of density-density correlation functions 〈N(q)N(−q)〉 shifts from
2kF to 4kF gradually in the intermediate phase I, as shown in Fig. 4(d). A gradually changing
momentum is a signature of a split Fermi surface. Based on the value of the central charge, the
phase could be either C1S2 or C2S1. We conjecture that it is C2S1 and there is only one spin
mode, given that the peak of the spin-spin correlation function seems to be pinned at 2kF . But
more analysis is needed to fully understand how a spin mode gets gapped starting from four
modes. Except for the unusually odd central charge, the phase is otherwise consistent with a
CFT. It easily converges in our numerical calculation with expected CFT behaviour.

2.2 Dip of inverse charge compressibility and Luttinger parameter

Overall at a generic filling, we find dips in both the inverse charge compressibility κ−1
c and the

Luttinger parameter Kc in the intermediate regime, shown in Fig. 5. They are extracted using
the formulas κ−1

c = ∂ µ/∂ n= L(E(N +2)+ E(N −2)−2E(N))/4 and 〈N(q)N(−q)〉= Kcq/2π
at small q. We find Kc <

1
3 quite generically, indicating strong repulsive interaction. Given that

κc =
πKc
υc

with υc as the charge velocity in a Luttinger liquid, a dip of both κ−1
c and Kc means

that the velocity υc goes down even faster than Kc . This also means that the Drude weight
Dc ∝ Kcυc gets much smaller in the intermediate region. All of these properties suggest
that the intermediate region has a large repulsive interaction and slow charge velocity. It is a
region where the charge compressibility tends to become large, while the Drude weight tends
to vanish.

2.3 Charge density wave at commensurate filling

One consequence of the small Luttinger parameter Kc is that the ground states at commen-
surate filling such as x = 1

3 , 1
2 are charge density wave(CDW) insulators. That is because the

umclapp terms become relevant for a small Luttinger parameter. To identify the insulating
nature, we computed the inverse charge compressibility κ−1

c . In the insulating phase we have
κ−1

c = L∆c/2 which means that inverse compressibility diverges when L →∞. As shown in
the inset of Fig. 5(b), at commensurate filling κ−1

c is significantly larger than the correspond-
ing one at incommensurate filling nearby. Moreover, in the insulator phase we expect that
〈N(q)N(−q)〉 ∼ q2 at small q. This is indeed the case as shown in the inset of Fig. 5(a).

3 Unconventional criticality around the region I

After we have a general understanding of the global phase diagram in the (JK , x) parameter
space, we now zoom in on the ‘critical region’ to understand the evolution from the LE phase
to the LL phase. As shown in the phase diagram, we never find a direct continuous transi-
tion between the LE phase and the LL phase. Instead, we find either a first-order transition
or another intermediate phase. The intermediate phase I appears to be well described by a
CFT with c = 3. Below we are interested in how the spin gap closes when approaching this
intermediate phase I, starting from the Luther-Emery liquid phase at small JK .

Surprisingly we find that the transition between the Luther-Emery liquid phase and the
c = 3 intermediate phase (in Region I of Fig. 2) is not described by a usual conformal field
theory(CFT). First, when approaching the critical point between the LE and the intermediate
region I around JK = 2.05, ∆s L vanishes and the uniform spin susceptibility diverges, shown
in Fig. 4(a). This is already unexpected from a usual critical point described by CFT, where we
should still expect ∆S∝

1
L and a finite ∆S L.
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Figure 5: a) Charge Luttinger parameter for different dopings x . The inset shows
density-density correlations at small q at commensurate doping x = 37/113 ≈ 0.33
to demonstrate the quadratic behaviour. b) Inverse compressibility for different
dopings x . The inset shows inverse compressibility for a commensurate doping
x = 37/113 ≈ 0.33(blue line) and incommensurate x = 35/113 ≈ 0.31(red line).
The maximum bond dimension m= 1000(finite DMRG).

Besides, when approaching the critical point from the spin-gapped phase, the correlation
length remains finite, shown in Fig. 6. At JK = 2.05, we still have a very small correlation
length ( ξS ≈ 2) in spin channel corresponding to ξ−1

S ≈ 0.46. Then across the critical point,
ξ−1

S jumps to 0. This is a clear signature that the dynamical exponent z at the critical point
must be larger than 1, because otherwise in a relativistic critical theory we should expect the
inverse spin correlation length ξ−1

S ∝∆S and also vanishes from the spin gapped side.
In summary, when approaching the critical point J c

K ≈ 2.05 from the LE phase, we find that
the spin gap ∆S goes to zero continuously, indicating a divergent correlation length ξt in the
time direction. But the correlation length ξS in the real space stays finite (around 2 even at
JK → J c

K−ε, with ε an infinitesimal number). Then if we use the conventional scaling ξt ∼ ξz
S ,

we reach a striking conclusion that z = +∞. At small JK the spin excitation has a dispersion
ω2 = c2

s (δq)2+∆2 with δq = q−π. Initially ∆ increases with JK , but then ∆ decreases when
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Figure 6: Spin-Spin correlation functions when approaching the critical point
JK = 2.05 from the spin-gapped Luther Emery liquid phase. At JK = 2.05, we still
have a finite correlation length ξ−1

S ≈ 0.46. Then ξ−1
S jumps to 0 into the interme-

diate phase with c = 3. The jump of the correlation length from finite to infinite
around J c

K ≈ 2.05 is in contrast to the continuous vanishing of ∆S L in Fig. 4(a), in-
dicating a critical point with dynamical exponent z > 1, and probably z = +∞. The
parameters are the same as in Fig. 4 with system size L = 124 in finite DMRG.

JK is close to the critical point J c
K ≈ 2.05. Note in this ansatz the inverse of the real space spin

correlation length is ξ−1
S = ∆/cs. So the only way that ξ−1

S can stay finite is that the velocity
cs also vanishes along with the gap ∆. So we are in an unusual situation: the gap is closing
while the dispersion of the excitation also becomes flat. We leave it to the future to develop
an analytical theory of this kind of exotic criticality.

4 Evidence of ultra-local criticality around region II

The intermediate region I in Fig. 2 seems to be well described by a CFT. In contrast, the inter-
mediate region II (see Fig. 2.) is much more exotic.

In the following, we provide numerical evidence for ultra-local criticality around region II
with dynamical exponent z = +∞. We will also show evidence of gapless spin fluctuations in
a range of momentum space in the dynamical spin structure factor.

Inside region II, there is a small sub-region coloured red in Fig. 2. This small regime has
a re-entrance of a spin gap. In the other places of region II, there is no spin gap. Instead,
the inverse spin susceptibility even vanishes. We will show that it has a weak ferromagnetic
moment and/or spin glass behaviour. We will discuss these two cases separately. Both of them
have signatures of ultra-local criticality at a critical point (or region) of JK .

4.1 Ultra-local criticality between LE and LE2 phase

We first look at the subregion inside region II coloured red in Fig. 2. We list results in Fig. 7
at x = 7

11 for Jcs = 0. Fig. 7(a) shows two spin-gapped phases with central charge c = 1,
which we call LE and LE2. In between them, the central charge seems to approach 2 (see
Fig. 7(c)). We use the relationship S = c

6 logξ, where ξ is the correlation length in the charge
sector (Q, Sz) = (0, 0), which serves as an effective length scale of the infinite DMRG. We then
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Figure 7: Numerical results at Jcs=0 with x = 7
11 . (a) Spin gap∆S from finite DMRG

with system size L = 99,110, 121. The bond dimension is m = 2000. The dashed
line is at JK = 1.42. One can see that there is a re-entrance of spin gapped phase
when JK > 1.42. (b) The inverse spin correlation length ξ−1

S obtained from infinite
DMRG for bond dimension m up to 3000. We use a unit cell size L = 22. (c) Central
charge from infinite DMRG. The two dashed horizontal lines label c = 1,2. (d) The
growth of the entanglement entropy S and the correlation length ξ with the bond
dimension m. We also plot the correlation length ξS in the sector (Q, Sz) = (0, 1)
and ξC in the sector (Q, Sz) = (1, 1

2). One can see that the single electron correlation
length ξC is around 3 as in finite DMRG. For the spin correlation length ξS , it reaches
ξS ≈ 12.5 for m = 6000, only slightly larger than the value from finite DMRG (see
Fig. 8 below).

get c(m) = 6 ∂ S
∂ logξ where the derivative is calculated with the values from two nearby bond

dimensions. There is one point of JK = 1.42 of particular interest. The entanglement entropy
at this point is growing faster than logξ in infinite DMRG so one can not extract a reasonable
central charge. As shown in Fig. 7(d), the entanglement entropy S scales as S ∼ log m with
the bond dimension m, as in a usual CFT. However, the correlation length ξN (obtained in the
sector (Q, S t

z ) = (0,0)) has a tendency of saturation with log m. This indicates deviation from
CFT behaviour at JK = 1.42.

Furthermore, we analyzed the behaviour of spin correlation length ξS , see Fig. 7(b). We
discovered that along with two spin-gapped phases, ξS is finite at JK = 1.42. ξS is obtained
from the transfer matrix technique in the charge sector (Q, S t

z ) = (0,1). The value at m =∞
is extrapolated with the formula ξ−1

S (m) = ξ
−1
S (m = ∞) + a 1

m + b 1
m2 . In Fig. 8 we addi-

tionally obtained the correlation length from finite DMRG at JK = 1.42. We confirm that the
spin correlation length ξS ≈ 10. We also discover that ξS becomes shorter with a larger bond
dimension (see the Appendix C). The single electron Green function has an even shorter cor-
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Figure 8: (a)(b)(c) Correlation function and fitted correlation lengths in finite DMRG
with system size L = 132, 154,176 for JK = 1.42 at filling x = 7

11 . The bond dimen-
sion is m = 6000. (d) Evolution of the density-density correlation function with the
bond dimension at L = 176. Here we fix x0 = L/4. One can see that the correlation
length ξN becomes shorter with increasing bond dimension, suggesting a finite cor-
relation length also in the density channel.

relation length of around 3 (see Fig. 8(c)). The correlation length in the density channel ξN
also appears to be finite with ξN ≈ 20 from Fig. 8(d). This is also consistent with the infinite
DMRG result in Fig. 7(d). In summary from both finite and infinite DMRG, we find that the
correlation lengths in single electron, spin and density channels are all finite, which are around
3, 10 and 20 respectively.

Here we will mainly focus on the spin channel. A finite correlation length ξS ≈ 10 is in
contradiction with a vanishing spin gap (see Fig. 7(a)) at JK = 1.42 if we assume an usual
relativistic scaling ∆S ∝ ξ−1

S with dynamical exponent z = 1. This suggests a dynamical ex-
ponent z > 1 in the spin-spin correlation. To further check the dynamical exponent, we plot
the imaginary part of the dynamical spin susceptibility Imχ+−(ω, q) in Fig. 9, which is propor-
tional to dynamical spin structure factor. The results are obtained from the TEBD algorithm
(see the Appendix D for details). We apply the operator S−(L/2) to the ground state and then
evolve the system under e−iH t to obtain 〈S†(x , t)S−(L/2,0)〉. Imχs(ω, q) is then calculated by
Fourier transformation. The total evolve time is T = 100 with a step δt = 0.15 for each TEBD
step. The maximal bond dimension is set to be m= 500 in the calculation. In Fig. 9(a)(b) we
get the expected spectroscopy results for the LL and LL* phase. One can see the gapless mode
at 2kF =

1+x
2 × 2π for the LL phase and the gapless mode at 2k∗F =

x
2 × 2π for the LL* phase

at JK = 0. For the LL* the dominant spectral weight is at the momentum Q = π from the local
spin moments. Around the gapless momentum, the dispersion is linear in agreement with a
dynamical exponent z = 1.
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Figure 9: Dynamical spin structure factor Imχ+−(ω, q) at Jcs = 0 and x = 7
11 . Here

we use a system size of L = 110 in finite DMRG. (a) Imχ+−(ω, q) for the LL phase
at JK = 2. There is a gapless mode at q = 0 and 2kF =

1+x
2 × 2π. (b) LL* phase at

JK = 0. Note that the colour bar is significantly larger than other plots due to the
large contribution from Q = π from the local spin moments. There is also a gapless
mode at q = 2k∗F =

x
2 × 2π corresponding to a small Fermi surface, but its spectral

weight is smaller than that at q = π. (c) The unusual ultra-local critical behaviour
at JK = 1.42. (d) Line cuts along several momenta q (in units of 2π

a ) at JK = 1.42.
The vertical dashed line is at 0.035J . Below 0.035J the spectral weight vanishes as
proportional to ω, but this is due to numerical accuracy with a finite time evolution.
In (a)(b)(c), the vertical red dashed line is at 2kF =

1+x
2 ×2π, while the blue dashed

line is at 2k∗F =
x
2 × 2π. In the TEBD calculation, the total time is T = 100 with a

step δt = 0.15 and the maximal bond dimension is m = 500. We use η = 0.035 for
the damping term.

In contrast, at JK = 1.42, there are gapless spin fluctuations in a range of momentum in-
stead of just one single momentum point. From the line cut at several momenta (see Fig. 9(d)),
we can see that the spectral weight grows when decreasing ω for a range of momentum until
it reaches a cutoff energy scale (around 0.035J) below which our calculation can not resolve.
We note that the TEBD calculation is not quantitatively accurate, but qualitatively these results
suggest that there is no dispersion within our numerical resolution.

As the dynamical spin structure factor ImχS(ω, q) is not accurate at the low energy limit,
it is not clear whether the local criticality can survive down to zero energy limit or not. To un-
derstand the property at the zero energy limit, we need to rely on the ground state calculation.
From the ground state calculation in finite DMRG (shown in Fig. 8) we already know that the
spin correlation length is finite with ξS ≈ 10 at JK = 1.42. For a regular phase, we must also
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Figure 10: (a)Spin gap∆S from different system sizes at filling x = 7
11 , JK = 1.42 and

Jcs = 0. ∆S is obtained as E(Sz = 1)−E(Sz = 0). The bond dimension m ranges from
1000 to 6000. For L = 176, the bond dimension is up to 8000. The dashed horizontal
line indicates a gap of 2 × 10−4. (b) Inverse charge compressibility κ−1

c with JK

obtained from finite dmrg with bond dimension m= 2000. κc =
∂ n
∂ µ . For finite size L

with N number of electron, we use the formula: κ−1
c =

L
4 (E(N+2)+E(N−2)−2E(N)).

At JK = 1.42, κ−1
c remains finite, indicating that this is still a compressible phase.

Actually, the compressibility is largest around JK = 1.42.

have a finite spin gap ∆S∝ ξ−1
S . We scale the spin gap at JK = 1.42 with bond dimension up

to m = 6000 (m = 8000 for L = 176) in Fig. 10(a). The conclusion is that there is an almost
zero spin gap ∆S ≈ 2 × 10−4. We conjecture that the gapless modes in a finite momentum
region found in ImχS(ω, q) can survive down to this scale ∆S ≈ 2× 10−4. Note that ∆S may
still become truly zero if JK is fine-tuned to a critical point J c

K ≈ 1.42. Because the calculation
is quite time-consuming, it is impossible for us to do a dense sampling around JK = 1.42.
Therefore it is still an open question whether the minimal spin gap is truly zero or not. How-
ever, even if there is a gap ∆S ≲ 2× 10−4 at true J c

K , the ultra-local criticality behaviour still
applies for the temperature scale above it. Given that almost any experimental measurement
is likely performed well above this energy scale, we may conclude that ultra-local criticality
exists for practical purposes.

Lastly, we comment on the density correlations. The inverse charge compressibility κ−1
c

in Fig. 10(b) shows a dip around JK = 1.42, indicating that this point is still a compressible
phase with zero charge gap. Meanwhile in Fig. 7(d) and Fig. 8(d), we find that the correlation
length in the density channel ξN is also finite. It is then possible that there is also ultra-local
critical behaviour in the density channel.

4.2 An intermediate weak ferromagnetic phase and ultra-local criticality

In the previous subsection, we find two spin-gapped domes for doping x around 0.61− 0.63.
Away from this narrow doping regime, we do not find another LE2 phase. Instead, there is
a very narrow but finite intermediate region which hosts a very weak ferromagnetic (FM)
moment and also ultra-local criticality around the phase boundary.

In Fig. 11 we show that the inverse spin susceptibility χ−1
S ∝ ∆S L goes to basically zero

in an intermediate region of JK at x = 4
7 for both Jcs = 0 and Jcs = 0.5J . It also happens at a

larger filling x = 21
31 (see Fig. 11(c)(d)), suggesting that this is a quite generic phenomenon.

In the following we focus on the parameter x = 21
31 and Jcs = 0.5J . A vanishing ∆S L in the
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Figure 11: (a)∆S L with JK for Jcs = 0.5J , x = 4
7 from finite DMRG for a few sys-

tem sizes. ∆S = E(Sz = 1) − E(Sz = 0) is the spin gap and ∆S L is proportional
to the inverse of the uniform static spin susceptibility. Here bond dimension is
m = 2000. (b) ∆S L at x = 4

7 for Jcs = 0. Here bond dimension is m = 2000.
(c) ∆S L at x = 21

31 and Jcs = 0.5J . (d) ∆S(Sz = 2)L at x = 21
31 and Jcs = 0.5J .

∆S(Sz = 2) = E(Sz = 2) − E(Sz = 0). In (c)(d) the two dashed vertical lines label
JK = 1.095 and JK = 1.15.

intermediate region indicates a divergence of the uniform spin susceptibility χs =
∂ Sz
∂ h where

h is the Zeeman field. It usually signatures an FM phase. However, here we find that the FM
moment is very small and only at the order of 1%. For an FM phase, we expect that∆S(Sz) = 0
for Sz < M L, where M is the ferromagnetic moment per site. In Fig. 11(d) we find that the gap
of two spin flips becomes finite in this intermediate region except in a much smaller interval.
Especially at the two boundaries JK = 1.095 and JK = 1.15 there is a finite ∆S(Sz = 2),
indicating that M < 2

L if there is an FM order.
In Fig. 12 we provide spin-spin correlation functions from JK = 1.09 to JK = 1.14 for

Jcs = 0.5J and x = 21
31 . They are obtained from finite DMRG, so boundary effects may

matter here. One can see that the correlation function saturates to a small but finite value,
which should be identified as M2, where M is the FM moment. We can see that around
JK = 1.12 − 1.14, the FM magnetic moment M is at order 10−2. At JK = 1.09, it is much
smaller and at order M ∼ 10−4, which even decreases with the system size L. We note that
a small FM moment of M ∼ 10−2 is roughly polarizing one spin in the entire system with
L ∼ 100. Hence it is even not clear whether this weak FM moment survives to the thermody-
namic limit. We tend to conjecture that the weak FM moment is only a secondary effect in this
region.
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Figure 12: Spin-spin correlation functions from finite DMRG results at Jcs = 0.5J ,
x = 21

31 . (a) JK = 1.09; (b) JK = 1.1; (c) JK = 1.12; (d) JK = 1.14.

Despite the weak FM moment, we still discover ultra-local criticality behaviour in the dy-
namical spin structure factor at the two boundaries of this intermediate phase. In Fig. 13 we
plot the imaginary dynamical spin susceptibility at the right boundary JK = 1.15 and the left
boundary JK = 1.1 of the weak FM phase at Jcs = 0.5J and x = 21

31 . At JK = 1.15, one can
see gapless spin modes in a range of momentum around q = 0. At JK = 1.1, the gapless spin
modes are mainly concentrated at q = π. From the line cuts at fixed momentum in Fig. 13(d)
we can see that Imχ(ω, q) in a range of q around q = π have constant spectral weight at inter-
mediate energy and then grows at lower energy at JK = 1.1. Within our numerical resolution,
we can not see obvious dispersion, which suggests z =∞ at least above the energy scale cor-
responding to our energy resolution (around 0.035J). Spin fluctuations around q = π should
be mainly from the localized spin moments, suggesting that they are not fully Kondo screened
at this parameter.

Inside the weak FM phase, we already know that there is a very small weak FM moment
M ∼ 1%. However, we find the real part of the dynamical spin susceptibility is still dominated
by q = π instead of q = 0 as can be seen in Fig. 14. At JK = 1.08, the system is still in a spin-
gapped phase, one can see that the imaginary part of the dynamical spin susceptibility has
spectral weights mainly around q = π with the spin gap already very small. Correspondingly,
the real part of the dynamical spin susceptibility is largest around q = π. The real susceptibility
at q = 0 is very weak here. We can also approach the weak FM phase from large JK . At
JK = 1.15 (see Fig. 14(d)) we find the real part of the dynamical spin susceptibility is large
around q = π and around q = 2kF =

1+x
2 . The susceptibility at q = 0 is again quite small

here. Then when we decrease JK to JK = 1.14, there is some feature in Reχ+−(ω, q) around
q = 0, but the region with largest susceptibility is still around q = π (see Fig. 14(c)). All of
these results suggest that the weak FM moment is likely only a secondary effect, not the main
property of this region.
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Figure 13: Dynamical spin susceptibility χ+−(ω, q) at the two boundaries of the weak
FM phase at Jcs = 0.5J and x = 21

31 . The system size is L = 62 in this calculation. (a)
Imχ+−(ω, q) at JK = 1.15. (b) Line cuts of Imχ+−(ω, q) at several q at JK = 1.15.
(c) (d) are at JK = 1.1. The calculation is done from the TEBD algorithm with total
evolution time T = 200 with a step δt = 0.1. The bond dimension is m = 2000.
We include a damping term e−ηt with η = 0.025 when performing the Fourier trans-
formation along the time direction. The dashed vertical line is at ω = 0.035J . the
momentum q is in units of 2π/a, where a is the lattice constant.

Next, we try to offer a possible explanation for the weak FM order. In the Appendix E,
we will show that the dynamical spin structure factors inside the weak FM phase (such as
JK = 1.12 and JK = 1.14) have gapless spin fluctuations in a region around q = 0. Such many
gapless fluctuations may couple to the boundary of the system and order at certain small
momentum including q = 0. Our interpretation is that the spin modes get dispersion-less in a
region around q = 0 and thus is very easy to be stuck in a profile with zero momentum or a
small momentum. In real experiments with even weak disorder, we conjecture the system will
develop a spin glass order. However, we note that the weak FM or spin glass order has only a
very small moment and we should still expect ultra-local critical behaviour above a very small
energy scale.

5 Discussion

Here we discuss the implications of the unusual behaviour we found at intermediate JK (phase
boundary between LE and region I (or region II) of Fig. 2). One common property of the

17

https://scipost.org
https://scipost.org/SciPostPhys.17.2.034


SciPost Phys. 17, 034 (2024)

Figure 14: (a) Reχ+−(ω, q) at JK = 1.08. (b)Imχ+−(ω, q) at JK = 1.08.
(c)Reχ+−(ω, q) at JK = 1.14. (d)Reχ+−(ω, q) at JK = 1.15. The parameters are
the same as in Fig. 13.

intermediate narrow region is that the spin velocity υs apparently becomes small and even
vanishes. So the question is how to understand a vanishing spin velocity or spatial correlations.

One of the ways in dealing with a Kondo lattice model is through the Abrikosov fermion
theory:

S⃗i =
1
2

f †
i;σσ⃗σσ′ fi;σ′ . (2)

Then a Kondo screened phase at large JK is captured by a simple mean-field ansatz:

HM = −b
∑

i

c†
i;σ fi;σ , (3)

where b ̸= 0 describes a Kondo-screened phase.
If we consider a model with J = 0 for the localized spin and also ignore the Ruder-

man–Kittel–Kasuya–Yosida(RKKY) interaction, then the f band is perfectly flat. In this case,

one expects b ∼ e−A t
JK and one can get a very small velocity in the JK → 0 limit. This is the

usual heavy Fermion picture.
However, the model considered in this paper is different. We have a quite sizable J = 0.5t

between the localized spin moments. Therefore, in the above theory, there is a sizable velocity
υ f for the f band itself and one should not expect a vanishing velocity in the mean field picture.
A simple way to describe the Kondo breakdown transition is to let b vanish at a critical J c

K
starting from the large JK phase [19]. However, in this picture, one does not expect υ f (or
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the bandwidth of the f band) to vanish at the Kondo breakdown transition. Therefore, we
still expect dispersion in spin fluctuations. This is in contrast to our discovery where we find
dispersion-less gapless spin fluctuations in a range of momentum space within our energy
resolution. For example, in Fig. 13(c) we can see a gapless spin fluctuation continuum in a
range of (ω, q) space around q = π. In 1D we indeed expect that the localized spin moments
contribute a gapless mode at q = π in the Kondo breakdown phase, but it should have a strong
dispersion proportional to J (for example, see Fig. 9(b) for the result at JK = 0). It is clear
that the dispersion (or spatial correlation) of the localized spin moments also gets suppressed
when approaching the critical regime. This is beyond the usual mean-field theory [19] where
only the hybridization c†

σ fσ vanishes, while the bandwidth of the f band is still proportional
to J . The lesson we learned is that in the ‘critical regime‘ between small JK and large Jk, the
spatial correlation of local spin moments can get suppressed and then they fluctuate locally
in real space. This is a property not captured by any theory we are aware of and thus offers
a theoretical challenge. One can of course argue that this property may be special to this
one-dimensional model and is irrelevant to higher dimensions. However, we note that similar
features were observed in some neutron scattering experiments of higher dimensional heavy
fermion material [17, 35]. This suggests that the ‘ultra-local critical’ phenomenon may be
universal and relevant also for the higher dimensions.

6 Conclusion

In summary, we present the DMRG results of a one-dimensional Kondo lattice model. Through
varying the Kondo coupling JK , we studied how the Kondo breakdown phase evolves to the
Kondo-screened Luttinger liquid phase. Around the intermediate regime, we discover sig-
natures of ultra-local criticality with dynamical exponent z = +∞ in the spin fluctuations.
Similar phenomena have been reported in neutron scattering experiments of certain heavy
fermion materials [17, 35]. Momentum-independent density fluctuations have also been ob-
served at optimal doping of hole-doped cuprates [39]. However, the inevitable existence of
disorder in real materials complicates the interpretations of these experimental results. Our
numerical observations in a simple translation invariant model suggest that ultra-local criti-
cality can arise intrinsically without the disorder. The fact that it shows up even in a 1D model
may suggest that the phenomenon is quite universal around small to large Fermi surface tran-
sition and may be dimension independent. Theoretically, it was proposed that local criticality
may be key to the solution of the mysterious strange metal phase [11, 34]. We plan to study
the transport properties of this model in the near future to test this idea. Given the simplicity
of a one-dimensional model, we hope future work on the current model will lead to progress
on a better understanding of ultra-local criticality and strange metal.
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A Layer selective Mott localization and Kondo lattice model in bi-
layer optical lattice

In this Appendix, we propose to simulate a Kondo lattice model in bilayer optical lattice, as has
been experimentally realized in Ref. [40]. One new requirement now is that we need to add a
potential difference ∆ between the two layers. The system is described by a bilayer Hubbard
model:

H =∆
∑

i

ni;1 − t
∑

a=1,2

∑

σ=↑,↓

∑

〈i j〉

(c†
i;aσc j;aσ + h.c.)

− t12

∑

a=1,2

∑

σ=↑,↓

∑

〈i j〉

(c†
i;1σc j;2σ + c†

i;2σc j;1σ + h.c.)− t⊥
∑

a,σ

∑

i

(c†
i;1σci;2σ + h.c.)

−µ
∑

a=1,2

∑

i

ni;a +
U
2

∑

a

∑

i

ni;a(ni;a − 1) + U ′
∑

i

ni;1ni;2 , (A.1)

where ni;a =
∑

σ c†
i;aσci;aσ is the density at site i for layer a = 1,2. ni = ni;1 + ni;2 is the total

density at site i. We also define the average density n= 1
Ns

∑

i ni , where Ns is the total number
of sites in the system. Here a = 1, 2 labels the two layers and t⊥ is the inter-layer vertical tun-
nelling. A non-zero ∆ > 0 is caused by a displacement field or a potential difference between
the two layers. We will stay in the limit U ≫ t and U ≫ U ′. We assume t⊥, t < ∆ < U − U ′.
At density n = 1, we have a Mott insulator with one particle at the layer 2. Then at density
n= 1+ x with x ∈ (0, 1), the doped additional particle enters the layer 1 to reduce the on-site
Hubbard U . In this case the layer 2 is always Mott localized and provides a spin 1/2 moment.
The itinerant electron in the layer 1 is described by a t-J model which then couples to the local
moment of the layer 2 through a Kondo coupling. At low energy we can deal with an effective
Kondo lattice model, with the same Hamiltonian as in Eq. 1 in the main text.

H = −tP
∑

<i, j>,σ

(c†
i,σc j,σ + h.c)P + Jc

∑

〈i j〉

S⃗e
i · S⃗

e
j + (V −

1
4

Jc)
∑

〈i j〉

nin j

+ J
∑

<i, j>

S⃗i · S⃗ j + JK

∑

i

S⃗e
i · S⃗i + Jcs

∑

〈i j〉

S⃗e
i · S⃗ j + S⃗i · S⃗e

j . (A.2)

The couplings of the model are related to the optical lattice parameters in the following

way: Jc = J = 4t2

U , Jcs = 2
t2
12

U−U ′−∆ + 2
t2
12

U+U ′+∆ and JK = 2
t2
⊥

U−U ′−∆ + 2
t2
⊥

U−U ′+∆ . This correspon-
dence can be derived from the second order perturbation theory. Note, that when t12 ̸= 0,
there are also three-site correlated processes when an electron hops from layer 1 to layer 2,
and then returns back to the different site. We have dropped those terms to make the analysis
of the model simpler.
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Figure 15: Spin gap and inverse correlation length at the transition between LE and
intermediate I phase. The parameters are: L = 113, x = 31/113 ≈ 0.27, Jcs = 0.5J ,
V = 4J , m= 1000.

B Spin correlation length at the critical point near the intermedi-
ate region I

In this Appendix, we elaborate more on the transition between the LE phase and the interme-
diate region I phase. Fig. 15(a) shows the spin gap in the LE phase, gradually vanishing as we
approach the transition point. Fig. 15(b) shows the inverse correlation length, extracted from
the spin-spin correlation function. Right at the transition point JKc ≈ 2.0 we again observe
the signature of the ultra criticality: the spin gap is almost zero, while the inverse correlation
length is finite ξ−1

s ≈ 0.4.
Assuming that transition between LE and I phase is of BKT type, the action in the massive

phase is

S =
1

2πKcs

1
βΩ

∑

k,n

�

ω2
n + c2

s k2 +∆2
�

φ∗k,nφk,n . (B.1)

Based on this action, the most general relation between the correlation length and the gap is
ξ−1

s = ∆/cs. The natural way to obtain finite correlation length at zero spin gap is to have
cs → 0. Note that cs is different from vs, shown in Fig. 4(a) of the main text. While vs is the
property of the gapless state, cs measures the dispersion of the excitation in the gapped phase.
Therefore, cs = 0 implies having a band of dispersionless excitations at energy ∆ above the
ground state. More detailed studies of this transition would be the purpose of our future work.

C Convergence of spin correlation length at JK = 1.42, Jcs = 0,

x =
7
11

We focus on Jcs = 0, JK = 1.42 at x = 7
11 . In the main text, we show that the spin correlation

length is finite while the spin gap is very small. Here we provide more evidence that the spin
correlation length is indeed finite. In Fig. 16 we show the spin-spin correlation function with
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Figure 16: (a)(b) Spin-Spin correlation function with bond dimension at system size
L = 154 and L = 176. Here we set the initial value x0 = L/4. One can see that
the correlation length ξS becomes shorter when increasing the bond dimension for
L = 176.

Figure 17: (a)(b) Total spin 〈Sz
t (x)〉 for system size L = 154,176 at JK = 1.42, Jcs = 0

and x = 7
11 .

bond dimension. At L = 176, we find that the correlation becomes more short-ranged when
increasing the bond dimension, in agreement with a finite correlation length at the infinite
bond dimension limit.

We also plot 〈Sz
t (x)〉 in Fig. 17. For a model with SU(2) spin rotation symmetry, we should

expect 〈Sz
t (x)〉= 0 in the ground state. At the intermediate regime such as JK = 1.42, 〈Sz

t (x)〉
vanishes quite slowly with the bond dimension. We need to use the bond dimension m= 8000
for L = 176.

Lastly in Fig. 18 we show that the same re-entrance of spin-gapped phase also exists at a
different but close filling x = 19

31 with Jcs = 0.
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Figure 18: Re-entrance of spin gapped phase at a different filling x = 19
31 .

D TEBD calculation of the dynamical spin susceptibility

We want to calculate the dynamical spin susceptibility:

χi j(t − t ′) = i〈[S⃗i(t), S⃗ j(t
′)]θ (t − t ′) . (D.1)

We can decompose χi j to be:

χi j(t − t ′) = χzz
i j (t − t ′) +χ y y

i j (t − t ′) +χzz
i j (t − t ′) . (D.2)

We define:
Cab;i j(t) = 〈Sa

i (t)S
b
j (0)〉 − 〈S

a
i 〉〈S

b
j 〉 . (D.3)

We will mainly focus on calculation χ+−i j (t − t ′). We have the following identity:

χx x;i j(t) +χy y;i j(t) = iθ (t)(
1
2
(χ+−;i j(t) +χ−+;i j(t))) , (D.4)

where
χ+−;i j(t) = iθ (t)(C+−;i j(t)− C+−; ji(−t)) , (D.5)

χ−+;i j(t) = iθ (t)(C−+;i j(t)− C−+; ji(−t)) . (D.6)

We have the equation:
C∗+−;i j(t) = C+−; ji(−t) . (D.7)

Therefore

χ+−;i j(ω) = i

∫ ∞

0

(C+−;i j(t)− C∗+−;i j(t))e
iωt , (D.8)

χ−+;i j(ω) = i

∫ ∞

0

(C−+;i j(t)− C∗−+;i j(t))e
iωt . (D.9)

In practice our evolution is limited to a finite time T , we use the following formula:

χ−+;i j(ω) = i

∫ T

0

(C−+;i j(t)− C∗−+;i j(t))e
iωt e−ηt , (D.10)

where η is a damping term.
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Figure 19: Imχ+−(ω, q). (a) JK = 3, Jcs = 0.5J and x = 21
93 with L = 93. This is

a Luttinger phase. The red and blue dashed lines are at q = 2kF =
1+x

2 × 2π and
q = 2k∗F =

x
2 × 2kF respectively. (b) JK = 1, Jcs = 0, x = 7

11 with L = 110. This is in
the spin-gapped Luther-Emery phase. In both calculations, we use bond dimension
m= 500, total time T = 100 and a step δt = 0.15. We use η = 0.025 in performing
the Fourier transformation along the time direction.

For our model, the above two quantities are the same. Therefore we focus on χ+−. By
doing Fourier transformation also in real space, we get:

χ+−(ω, q) =
∑

i

χ+−;i, j=L/2(ω) cos(q(i − L/2)) . (D.11)

Here we use cos(qx) instead of eiqx by assuming the inversion symmetry respect to
x = L/2. This can remove the artificial inversion breaking from numerical inaccuracy.

In our calculation, we use the TEBD algorithm with T = 200 (assuming the hopping t = 1)
with a step δt = 0.1. The largest bond dimension is m= 500−2000. When doing the Fourier
transformation, we typically use η = 0.035. Note that without η we will find oscillations in
χ(ω) because of the finite time T .

To benchmark the calculation, we first try two points deep inside the LL and the spin-
gapped LE phase, shown in Fig. 19. Here we only use bond dimension m = 500, but one can
see the results are already quite reasonable. In (a) we find gapless mode at q = 2kF and q = 0,
typical behaviour of a Luttinger liquid phase. There are also features at higher harmonics. In
(b) we find a clear spin gap in the LE phase. These results demonstrate the validity of the
TEBD calculation.

To check that the TEBD results converge with the bond dimension even in the intermediate
regime with ultra-local criticality, we plot Imχ+−(ω, q) at the left boundary of the weak FM
phase at Jcs = 0.5, JK = 1.1, x = 42

62 in Fig. 20. We can see that the results are qualitatively the
same for bond dimensions m = 1000 and m = 2000. Both show dispersionless gapless spin
fluctuations around q = π.

E The weak FM phase

In this section we add more discussions on the weak FM phase in the region II.
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Figure 20: Change of Imχ+−(ω, q) with the bond dimension. Here Jcs = 0.5,
JK = 1.1, L = 62 and x = 42

62 . (a)(c) bond dimension m = 1000. (b)(d) bond
dimension m= 2000.

E.1 More results at Jcs = 0.5J , x =
21
31

Here in Fig. 21 and Fig. 22 we show more data to supplement the discussions in the main text
on the weak FM regime for the parameter Jcs = 0.5J , V = 0 at the filling x = 21

31 . These results
are again obtained from the TEBD calculation with system size L = 62. From the Imχ+−(ω, q)
at Jk = 1.12, 1.14 inside the weak FM phase, we can see gapless spin fluctuations in a region
around q = 0.

E.2 Another filling

We also provide the results from a different filling x = 4
7 for the weak FM region. From infinite

DMRG in Fig. 23, we can see that there is a c = 2 region (with spin gap) in JK ∈ [1.295,1.305]
and a c = 3 region in JK ∈ [1.32,1.38]. Compared to the finite DMRG in the main text
(Fig. 11(a)), ∆S L approaches zero in the whole c = 2 region and the left part of the c = 3
region. Between JK = 1.31 and JK = 1.32, we again see that the entanglement entropy S
grows with log m while the correlation length ξN saturates. In the region JK ∈ [1.295, 1.305],
there is a quite short correlation length in the spin channel, as shown in Fig. 24(a). This is
again at odds with the vanishing ∆S L from our finite DMRG calculation in Fig. 11(a). In this
case, the charge correlation length is infinite and we have a regular central charge c = 2,
presumably from two charge modes. However, the spin modes are not simply gapped given
that ∆S L goes to zero even faster than any power of 1/L. We conjecture that in the spin
channel there is still ultra-local criticality. When JK > 1.31, we find that |〈S†(x)S−(0)〉| seems
to saturate to a finite value in the large x limit, indicating a very small FM moment.
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Figure 21: Dynamical spin susceptibility χ+−(ω, q) at JK = 1.14 and JK = 1.12.
(a)(c) Reχ+−(ω, q). (b)(d) Imχ+−(ω, q). One can see gapless spectral weights in a
region around q = 0.

Figure 22: Line cut at fixed q of Imχ+−(ω, q) inside the weak FM phase at JK = 1.12
and JK = 1.14.
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Figure 23: Infinite DMRG results at Jcs = 0.5J , x = 4
7 . We use unit cell size 22. (a)

Central charge as a function of JK . (b) The inverse of the spin correlation length ξ−1
S

as a function of JK . ξS is obtained from the transfer matrix technique in the sector
(Q, Sz) = (0,1). (c) Scaling of the entanglement entropy and correlation lengths with
bond dimension m at JK = 1.3. ξN , ξS , ξC correspond to density, spin and single
electron operators, obtained from the sector (Q, Sz) = (0, 0), (0, 1), (1, 1

2) respectively.
(d) Scaling of the entanglement entropy and correlation lengths with the bond di-
mension m at JK = 1.31.

Figure 24: Log-x plot of the spin spin correlation function 〈S†(x)S−(0)〉 from infintie
DMRG at x = 4

7 , Jcs = 0.5J . (a) JK = 1.3. (b) JK = 1.31.
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Figure 25: TEBD calculation of electron spectral function for Kondo-Heisenberg
model. Figures a)-d) correspond to the Kondo coupling JK = 1, 2.3,2.6, 4 corre-
spondingly, while other parameters are J = 0.5, t = 1. The length of the chain was
L = 80 and the number of electrons ne = 20, while the bond dimension m = 500
with the time evolution t = 12 and additional linear prediction interpolation.

F TEBD calculation of the single electron spectral density

In this appendix, we demonstrate the existence of the small and large Fermi momenta by cal-
culating the electron spectral function. The spectral function is defined as Ak(ω) = −ImGR

k (ω)
and GR

k (t) = 〈{ck(t), c†
k(0)}〉. The calculations were done for the Kondo-Heisenberg model to

ensure that the Luther-Emery phase at JK → 0 coincides with the free electrons phase.

H = −t
∑

<i, j>,σ

(c†
i,σc j,σ + h.c) + JK

∑

i

S⃗e
i S⃗i + J
∑

i

S⃗i S⃗ j . (F.1)

We studied the model at x = 0.25 and observed the same phases as in Figure 2, with
phase I being in the region JK ≈ (2.5, 2.8). Fig. 25(a) shows the small Kondo coupling regime
with the spectral function simply matching the free electron band with small Fermi momen-
tum 2kF = x/2. The spin gap should also be present but it is too small to be distinguish-
able. At larger JK the layer of spins starts to interfere and the band dispersion is modified,
see Fig. 25(b). A similar band reconstruction happens if we implement a mean-field theory.
Fig. 25(c) shows the dispersion in phase I which has a c = 3 central charge and a split in
Fermi momentum. We do not clearly see two Fermi momenta, but the bands are strongly re-
constructed and the accuracy is not enough to make a definite conclusion. Finally, at large
Kondo coupling the system is in LL phase with a large Fermi momentum 2kF = (1+ x)/2, see
Fig. 25(d).
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To obtain better frequency resolution we used a linear prediction algorithm, see [41]. We
extrapolated to times 3 times larger than the initial computation. The energies also need
to be shifted by the chemical potential. We computed it separately by using the formula
µc = (E(ne + 2)− E(ne − 2))/4.

G Mean-field theory

In this appendix, we show how some of the observations in the main part of the paper can
be explained using simple mean-field analysis. As in the previous appendix, we start with the
simpler Kondo-Heisenberg Hamiltonian

H = −t
∑

<i, j>,σ

c†
i,σc j,σ +
∑

<i, j>

�

JS⃗i S⃗ j + JcsS⃗
e
i S⃗ j

�

+ JK

∑

i

S⃗e
i S⃗i . (G.1)

We fractionalize spin S⃗ = 1/2 f †
ασαβ fβ and use Pauli identities to obtain

H = −2t cos(ka)c†
kck −

J
2

f †
iα f jα f †

jβ fiβ −
Jcs

2
f †
iαc jαc†

jβ fiβ −
JK

2
f †
iαciαc†

iβ fiβ . (G.2)

After taking a large M limit (where M is a number of spin indices), we arrive at the following
saddle-point equations:

P = −JK〈 f
†
i ci〉= −

JK

V

∑

k

〈 f †
k ck〉 ,

Q = −J〈 f †
i fi+1〉= −

J
V

∑

k

cos(ka)〈 f †
k fk〉 ,

PR= −Jcs〈 f
†
i ci+1〉= −

Jcs

V

∑

k

cos(ka)〈 f †
k ck〉 ,

1
2
=

1
V

∑

k

〈 f †
k fk〉 .

(G.3)

The corresponding free Hamiltonian is

H = (−2t cos(ka)−µ)c†
kck + (2Q cos(ka) +λ) f †

k fk

+ P(1+ 2R cos(ka))c†
k fk + P(1+ 2R cos(ka)) f †

k ck . (G.4)

We take x = 2ρc = 0.7, J = 0.5, Jcs = 0.25 and t = 1, which is close to the parameters in
the paper, and study the phase diagram as a function of JK . This requires solving Eq. G.3 self-
consistently. At small JK < 1.4 there is only a trivial solution for the mean-field P = 0 which
corresponds to an LL∗ phase with a small Fermi surface kF = πx/2. For the intermediate
JK ∈ [1.4,2] there is a nontrivial solution which corresponds to a nontrivial hybridized Fermi-
surfaces, see Fig. 26(a). There is another solution with two Fermi surfaces, see Fig. 26(b),
which proves to be unstable after a comparison of Free energies. Finally, at large JK > 2, there
is a nontrivial solution with a large Fermi surface kF = π(1+ x)/2, which correspond to an LL
phase, see Fig. 26(c).

The point of the analysis above is to show that a simple mean-field model is able to cap-
ture certain properties of the phase diagram, such as a transition from an LL∗ to an LL phase
through the intermediate phase with two FS. Though certain features, such as the spin gap,
are missing from the above analysis, the rough boundaries of the phases match our DMRG
predictions in Fig. 2.
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(a) Two FS solution at
JK = 1.8.

(b) Unstable solution at
JK = 2.7.

(c) One large FS solution at
JK = 3.

Figure 26: The energy bands of the Hamiltonian in Eq. G.4 at different JK . The
red line is a dispersion of a c particle, the dashed black line is a dispersion of an f
particle, and the blue lines are full hybridized dispersions, given by eigenvalues of H.

Now we address another question, stated in Section 4 of the paper, namely the existence
of the phase with zero gap and finite correlation length. To evaluate the correlation length,
we computed the density-density response of the Hamiltonian in Eq. G.4. Equal time density-
density correlation in Fourier space is:

〈N(q)N(−q)〉=
∑

k,ωn,qn

Gc(k+ q,ωn + qn)Gc(k,ωn) . (G.5)

For the Kondo-Heisenberg model, the Green function Gc is

Gc =
1

iωn − E+

E+ − e f

E+ − E−
+

1
iωn − E−

E− − e f

E− − E+
=

u2
+

iωn − E+
+

u2
−

iωn − E−
, (G.6)

where E+ and E− are the eigenvalues of the Hamiltonian H. The full density-density correlation
functions are

〈N(q)N(−q)〉=
∑

k

(nF (E+q)− nF (E+)nB(E+q − E+)u
2
+u2
+q + (nF (E−q)

− nF (E−)nB(E−q − E−)u
2
−u2
−q ++(nF (E+q)− nF (E−)nB(E+q − E−)u

2
−u2
+q

+ (nF (E−q)− nF (E+)nB(E−q − E+)u
2
+u2
−q, (G.7)

where each term correspond to scattering from the band Ei to the band E j , i, j = +,−. The
leading contribution will be given by the scattering in the lower band E− → E−, since this
band hosts zero-energy excitations. We computed the density-density response for the simple
mean-field model in Fig. 27(a) at two temperatures. At small temperatures, we observed a
typical power law decay with an infinite correlation length, see Fig. 27(b). However, at finite
temperatures comparable to the dispersion of the f electron, the density-density correlation
demonstrated an exponential decay, with finite correlation length and zero spin gap. Though
our DMRG calculations are done at zero temperature, there is always a finite error in energy
calculation δEs. Therefore, we can successfully explain the existence of a finite correlation
length and zero spin gap by assuming that the dispersion of the f electron is even smaller
Q≪ δEs. δEs is very small in our calculation, and the f fermion band should be almost flat,
which is quite a surprise for a finite J .
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(b) Small temperature
T = 0.001.
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(c) Finite temperature
T = 0.1.

Figure 27: (a) The hybridized bands for parameters x = 0.4, Q = −0.1, P = 0.5,
R = 0 and t = 1. (b) Density-Density response at small temperatures in logarithmic
scale shows power-law decay with ξ−1 = 0. (c) Density-density response at finite
temperatures in logarithmic scale shows exponential decay with finite correlation
length.
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