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Abstract—Elastic scheduling provides a framework under
which the utilizations of recurrent tasks are reduced by increasing
their periods in response to system overload. First proposed by
Buttazzo et al. in 1998 for uniprocessor scheduling of implicit-
deadline tasks, elastic scheduling was extended to multiprocessor
scheduling algorithms by Orr and Baruah in 2019. In this paper,
we propose and analyze improvements to elastic scheduling of
implicit-deadline tasks. (i) We evaluate a new algorithm that
we proposed as a short note in the Real-Time Systems journal,
and demonstrate that it allows for faster admission control than
Buttazzo’s algorithm when applied to uniprocessor and fluid
scheduling. (ii) We propose and analyze faster elastic scheduling
algorithms for partitioned EDF scheduling. (iii) We provide an
exact algorithm for elastic scheduling under global EDF.

Index Terms—real-time systems, elastic scheduling

I. INTRODUCTION

Elastic real-time scheduling models provide a framework for

dynamic task adaptation to guarantee schedulability even on a

system that becomes overloaded. First proposed by Buttazzo

et al. [1], [2], elastic scheduling allows tasks to reduce (“com-

press”) their utilizations, typically by increasing their periods.

Each task has a maximum utilization, representing the desired

service level at which it nominally executes given sufficient

computational resources. Each adaptable or “elastic” task is

also assigned an elastic parameter representing its relative

adaptability (e.g., based on its importance). If the system

becomes overloaded, elastic task utilizations are reduced pro-

portionally to their elasticities until schedulable. Each task is

also assigned a minimum utilization representing the minimum

service necessary to maintain correct or safe execution below

which its utilization can no longer be compressed.

While elastic scheduling models are therefore useful for

adjusting a predefined set of tasks for execution on a resource-

constrained system, Buttazzo’s original elastic scheduling

model was primarily intended to enable online adaptation in

dynamic and open systems, e.g., in response to admission of

new tasks or changes in available computational resources [1],

[2]. Therefore, it is important for elastic scheduling algorithms

to be efficient (i.e., provide bounded-time complexity guaran-

tees) for online execution while preserving quality of service

to the extent possible (i.e., tasks should be compressed only

as much as needed to maintain schedulability).

With these two concerns in mind, this paper aims to analyze

and improve upon existing approaches to elastic scheduling for

sets of implicit-deadline tasks scheduled on both uniprocessor

and multiprocessor systems. Prior algorithms can be classified

into two categories. For scheduling algorithms with a utiliza-

tion bound, a quadratic-time algorithm proposed by Buttazzo

et al. [1], [2] for uniprocessor elastic scheduling finds an exact
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solution; this same algorithm was applied to multiprocessor

fluid scheduling by Orr and Baruah [3]. For multiprocessor

scheduling algorithms where analysis does not simply check

total utilization (e.g., global EDF and partitioned EDF), Orr

and Baruah proposed to iteratively increase the “amount”

of utilization compression applied to the task system. At

each level of compression, if the system is determined to be

schedulable, the algorithm terminates; otherwise, compression

is increased. Such algorithms are tunable in their precision:

a smaller increase in compression at each iteration allows a

more precise result, but increases the algorithm’s running time.

Three key insights can be leveraged to improve these

algorithms. First, an exact solution under a utilization

bound can be obtained in quasilinear time, or in linear

time for admission control or changes in utilization bound.

We presented such an algorithm in a short note published in

the Real-Time Systems journal [4]. In §III, we evaluate its

performance in comparison to Buttazzo’s original quadratic-

time algorithm and discuss its advantages. In §IV, we also

propose an application to partitioned EDF scheduling, for

which partitioning heuristics provide an (albeit pessimistic)

utilization bound, then evaluate the speedups gained versus

pessimism in the amount of compression applied.

Second, for the inexact algorithms, an amount of compres-

sion can be found by binary, rather than linear search.

Compression is lower-bounded by 0 and upper-bounded by

the amount that takes all tasks to their minimum utilizations.

By binary searching in this range, §IV demonstrates that we

can find a result more quickly (compared to linear search) for

partitioned EDF scheduling.

Third, in §V we propose a new exact algorithm for elastic

scheduling under global EDF. Rather than searching for

an amount of compression with tunable precision, an exact

solution can be obtained in time quadratic on the number of

tasks by modifying our algorithm in [4].

II. BACKGROUND

A. Elastic Scheduling with Utilization Bounds

The elastic model for implicit-deadline tasks [1], [2] char-

acterizes each task τi=(Ci, U
min
i , Umax

i , Ui, Ei) by five non-

negative parameters. Ci is the task’s worst-case execution

time. Umax
i is its maximum utilization when executing at the

desired service level in an uncompressed state. Umin
i is its

minimum utilization, i.e., a bound on the amount its service

can degrade. Ui is the task’s assigned utilization, constrained

by Umin
i ≤ Ui ≤ Umax

i . Ei is an elastic constant, representing

“the flexibility of the task to vary its utilization” [1].

Under the original model proposed by Buttazzo et al. [1],

[2], elastic scheduling was applied to uniprocessor scheduling

algorithms with utilization bounds, e.g., EDF with its bound of



1, or rate-monotonic (RM) scheduling under Liu and Layland’s

bound [5]. It was since extended by Orr and Baruah [3] to

multiprocessor fluid scheduling [6] where the utilization bound

is equal to the number m of processors. Under these models,

a task system Γ = {τ1, . . . , τn} has a total uncompressed

utilization Umax
SUM =

∑n

i=1 U
max
i and a desired utilization UD

representing the utilization bound allowed by the scheduling

algorithm in use. In the event of system overload, i.e., if

Umax
SUM > UD, the model assigns a utilization Ui to each elastic

task τi such that (i)
∑

i Ui = UD, i.e., total utilization equals

the bound; and (ii) if Ui > Umin
i and Uj > Umin

j , then Ui and

Uj must satisfy the relationship:
(

Umax
i − Ui

Ei

)

=

(

Umax
j − Uj

Ej

)

(1)

A task system Γ for which such Ui exist for all tasks is said to

be feasible. Compression is realized by adjusting each task’s

period Ti according to its new utilization, i.e., Ti = Ci/Ui.

Buttazzo’s Algorithm: Let Γ denote a feasible task system with

Ei > 0 for all tasks τi ∈ Γ, and consider the Ui values that

satisfy the above conditions. The tasks in Γ may be partitioned

into two classes — ΓVAR (those tasks for which Ui > Umin
i ,

so their utilizations can be compressed further if necessary)

and ΓFIX (those for which Ui = Umin
i ; i.e., their utilizations

are now fixed). It has been shown [1, Eqn. 8] that for each

τi ∈ ΓVAR, the utilization Ui takes the value

Ui = Umax
i −

(

USUM − (UD −∆)

ESUM

)

× Ei (2)

where USUM =
∑

τi∈ΓVAR
Umax
i , ESUM =

∑

τi∈ΓVAR
Ei, and

∆ =
∑

τi∈ΓFIX
Umin
i . Given a set of elastic tasks Γ, the

algorithm of [1, Figure 3] starts out computing Ui values

for the tasks assuming that they are all in ΓVAR — i.e., their

Ui values are computed according to Eqn. 2. If any Ui so

computed is observed to be smaller than the corresponding

Umin
i then 1 that task is moved from ΓVAR to ΓFIX; 2

the values of USUM, ESUM, and ∆ are updated to reflect this

transfer; and 3 Ui values are recomputed for all the tasks.

The process terminates if no computed Ui value is observed

to be smaller than the corresponding Umin
i . It is easily seen that

one such iteration (i.e., computing Ui values for all the tasks)

takes O(n) time. Since an iteration is followed by another

only if some task is moved from ΓVAR to ΓFIX and there are n
tasks, the number of iterations is bounded from above by n.

The overall running time for the algorithm is therefore O(n2).

Our Improved Algorithm: In a short note in the Real-Time

Systems journal [4], we presented an algorithm that provides

better guarantees on running time in terms of computational

complexity. We defined an attribute ϕi for each elastic task τi:

ϕi
def
=

(

Umax
i − Umin

i

Ei

)

(3)

We proved in [4, Theorem 1] that in Buttazzo’s algorithm

of [1, Figure 3], tasks may be “moved” from ΓVAR to ΓFIX

in order of their ϕi parameters. Assuming that the tasks are

indexed such that ϕi ≤ ϕi+1 for all i, 1 ≤ i < n, one can

simply make a single pass through all the tasks from τ1 to

τn, identifying, and computing Ui values for, all the ones in

ΓFIX before any of the ones in ΓVAR. This can all be done in a

single pass in O(n) time with the procedure in [4, Algorithm

1]. The cost of sorting the tasks in order to arrange them

according to non-increasing ϕi parameters is O(n log n), and

hence dominates the overall run-time complexity. Determining

feasibility and computing the Ui parameters can therefore be

done in O(n log n) +O(n) = O(n log n) time.

Admission control — determining whether it is safe to

add a new task and recomputing all the Ui parameters if so

— requires that the new task be inserted at the appropriate

location in the already sorted list of preëxisting tasks. This

can be achieved in O(log n) time by implementing the list

as a sorted iteratable data structure. Once this is done, the

Ui values can be recomputed in O(n) time by the same

algorithm. Similarly, removing a task from the system and

recomputing the Ui values also takes O(n) time. Furthermore,

if UD changes — e.g., in response to changes in available

utilization due to dynamic resource reallocation — the sorted

list of tasks and their parameters do not change, and so the

Ui values can be updated in linear time.

Though we proved better asymptotic time complexity in [4],

we did not evaluate the algorithm’s performance for realistic

task sets. In §III, we perform this evaluation and extend the

algorithm to fluid scheduling.

B. Scheduling Without a Utilization Bound

In addition to fluid scheduling, in [3], Orr and Baruah also

extended elastic models to multiprocessor scheduling with

partitioned EDF and global EDF. Each of these algorithms

involves schedulability analysis that is more involved than sim-

ply checking total utilization against a bound that is constant in

the number of tasks. To deal with this, they observed that the

degree by which compression is applied to a task system can

be quantified by the relationship in Eqn. 1. In doing so, they

introduce a term λ that is representative of this relationship,

and express the utilization Ui of each task τi as:

Ui(λ)
def
= max

(

Umax
i − λEi, U

min
i

)

(4)

The value of λ beyond which the utilization Ui of task τi
takes its minimum value Umin

i can therefore be derived as:

Umin
i = Umax

i − λEi → λ =

(

Umax
i − Umin

i

Ei

)

which is equal to the value ϕi in Eqn. 3. As such, we may

hereafter refer to ϕi interchangeably as λmax
i . For a complete

set of tasks Γ we also denote the maximum compression that

may be applied to the task system as:

λmax def
= max

τi
(λmax

i ) (5)

The problem of elastic scheduling under Buttazzo’s

model [1], [2] can therefore be reduced to the problem of

finding the minimum value of λ for which a set of tasks are

schedulable. For partitioned EDF, global EDF, and algorithm



PriD, Orr and Baruah propose an approximate search tech-

nique that iterates over values of λ in the interval [0, λmax]
with some “granularity” ϵ. For each value of λ, they assess

schedulability, terminating the search once the compressed

task system is deemed schedulable.

Partitioned EDF: Under partitioned EDF scheduling, each

task is assigned to a single processor core, though each core

may be assigned multiple tasks. On an individual core, jobs

are prioritized according to their absolute deadlines — in

other words, each core schedules its tasks in an EDF manner

independently of the other cores. The problem of deciding

whether a set of tasks are schedulable on m cores under

partitioned EDF can be stated as follows:

Given a set Γ of n tasks τi, each having utilization Ui,

is there a partition of tasks into m sets such that the

sum of utilizations in any set does not exceed 1?

This is equivalent to the bin-packing problem, and is therefore

NP-hard in the strong sense. Nonetheless, there exist heuristic

algorithms to solve bin-packing problems, and Lopez et al.

have compared several in the context of partitioned EDF

scheduling [7]. For each value of λ tested, Orr and Baruah

employ the first fit, worst fit, and best fit heuristics, with tasks

τi considered in order of decreasing utilization Ui(λ). If any

one heuristic deems feasibility, the algorithm terminates.

For n tasks on m cores, sorting tasks and partitioning them

with each heuristic takes at most Θ(n log n+ n ·m) time.

As this must be performed for each tested value of λ — of

which there are up to
(⌊

λmax

ϵ

⌋

+ 1
)

— the overall complexity

is Θ
(

λmax

ϵ
· (n log n+ n ·m)

)

.

Global EDF: Under global EDF scheduling, if at any instant

there are more active jobs than processors, those jobs with

the earliest absolute deadlines are selected for execution.

Goossens et al. showed [8, Theorem 5] that a set Γ of implicit-

deadline tasks is schedulable on m processors if:
∑

τi∈Γ

Ui ≤ m− (m− 1) ·max
τi∈Γ

{Ui} (6)

Because the utilization bound includes the maximum among

task utilizations, and because that maximum may change

(indeed, the task with the maximum utilization may change)

as utilizations are compressed, Buttazzo’s algorithm cannot

be applied directly. Orr and Baruah instead perform a linear

search over the space of possible values of λ, terminating when

Eqn. 6 holds true [3]. In §V, we present a polynomial-time

algorithm that finds an exact solution, if one exists.

III. UTILIZATION BOUNDS

This section considers elastic scheduling with utilization

bounds; in particular, we consider EDF and RM scheduling

on a uniprocessor and fluid scheduling on a multiprocessor.

A. Performance Evaluation

We begin by comparing the performance of our improved

algorithm for elastic scheduling of implicit-deadline tasks

from [4] to that of Buttazzo’s algorithm in [1], [2].

Complexity of Buttazzo’s Algorithm: As noted in §II-A,

Buttazzo’s elastic scheduling algorithm [1], [2] has worst-case

execution time complexity that is quadratic in the number

of tasks. Buttazzo et al. note in [1] that this is due to the

enforcement of constraints on minimum utilization. If tasks

are not thus constrained, the algorithm can run in linear time.

Intuitively, we may consider that some tasks, representing non-

critical best-effort computation, need not be characterized with

minimum utilizations. However, we note that without these

constraints, the algorithm can assign negative utilizations.

Example 1. Consider a set Γ of implicit-deadline elastic tasks

to be scheduled by EDF on a uniprocessor as follows.

Task τi U
max

i Ei

τ1 0.9 1

τ2 0.9 1

τ3 0.2 8

The total uncompressed utilization Umax
SUM is 2.0, but the

desired utilization is UD = 1.0. Then, in the absence of a

constraint Umin
i , the utilization Ui of each task τi will be

assigned according to Eqn. 2:

Ui = Umax
i −

(

2.0− 1.0

ESUM

)

× Ei = Umax
i −

(

1

10

)

× Ei

Computing for each task, we obtain U1 = U2 = 0.8 and

U3 = −0.6. While this set of assignments does achieve a total

utilization of 1.0, these assignments are not valid: a negative

utilization does not have semantic meaning.

Thus, the elastic problem with minimum utilization con-

straints Umin
i is the only meaningful expression of the problem

in the context of task scheduling, even if the constraints are

set to 0 just for the purpose of enforcing non-negative utiliza-

tion assignments. Therefore, Buttazzo’s algorithm cannot be

guaranteed to have better than quadratic time complexity in

the number of tasks. On the other hand, our algorithm in [4]

is quasilinear in the number of tasks, and linear for admission

control or changes to the utilization bound. The remainder of

this section compares the two algorithms empirically using

synthetic task sets with randomly-generated parameters.

Implementation: Evaluations are performed on a Raspberry

Pi 3 Model B+ with a 4-core ARMv8 Cortex-A53 run-

ning at 700 MHz (to prevent throttling — see [10], [11])

and 1GB of RAM. We compile Linux kernel 6.1.21 for

the ARMv7l 32-bit ISA. We implement both algorithms in

C++ and quantify execution time performance by measuring

elapsed processor cycles, reading directly from the cycle

counter using a custom driver and kernel module that enables

access to the ARM performance monitoring unit (PMU)

from userspace. Algorithms are compiled statically using

GCC version 10.2.1 at optimization level O0, allowing us

to avoid undesirable instruction reordering, especially around

reads to the cycle counter. To avoid interference from other

processes, we disable real-time throttling by writing −1 to

the file /proc/sys/kernel/sched_rt_runtime_us,

isolate CPU core 3 from the scheduler, and run our algorithms





of our algorithm dominate the other two implementations, but

neither clearly dominates the other.

Nonetheless, we argue that our algorithm is better in prac-

tice. While there is not a clear advantage to using our algorithm

to perform compression over a complete set of tasks, there

is no clear disadvantage either. Furthermore, our algorithm

performs better in situations where initialization has already

happened, e.g. for online adjustment in response to changes

in available utilization. The worst execution times that we

observed for the array-based implementation of Sudvarg’s al-

gorithm were 3.45× faster than those of Buttazzo’s algorithm

when just compressing tasks.

Task Admission: We modify our implementations of each

algorithm to perform admission of a single task. For the

sets of n tasks of size 2–50 that we already generated, we

apply each algorithm to the first n− 1 tasks, then measure

the time to compress after admitting the nth task. Results are

also illustrated in Fig. 1. We observe that, when admitting

a new task, all implementations of our algorithm dominate

Buttazzo’s algorithm for more than 3 tasks in the average case,

and more than 10 tasks in the worst case. The array (which

enables logarithmic time search for the location to insert the

new task, then requires linear time to perform the insertion)

performs the best on average, followed by the balanced binary

tree (which allows logarithmic-time insertion, but requires

pointer chasing), then the linked list (which allows constant-

time insertion after linear time search for the insert location).

The array-based implementation of our algorithm admits tasks

2.53× faster than Buttazzo’s algorithm in the worst case.

B. Extension to Fluid Scheduling

A set of tasks are fluid schedulable on m identical processor

cores if and only if (i) their total utilization does not exceed

m, and (ii) no individual task’s utilization exceeds 1 [6]. Orr

and Baruah therefore argued that, so long as each elastic task’s

maximum utilization Umax
i ≤ 1, Buttazzo’s algorithm can be

extended to fluid scheduling simply by setting the desired

utilization UD = m.

The results and conclusions drawn in this section are

therefore applicable to fluid scheduling as well: Sudvarg’s

algorithm [4, Algorithm 1] may be used in place of Buttazzo’s

algorithm [9, Figure 9.29] to achieve faster compression (once

initialized) and admission of new tasks. Evaluations show

that the execution times of the tested implementations of

both algorithms do not depend on Umin
SUM or Umax

SUM — the

total minimum or maximum utilizations — nor the difference

between them.1 Therefore, the performance results illustrated

in Fig. 1 should also extend to fluid scheduling.

IV. PARTITIONED EDF

In this section, we propose two alternative approaches to

elastic scheduling of partitioned EDF tasks. First, we consider

a binary, rather than linear, search over the space of com-

pression allowed due to the minimum utilization constraint on

1Plots omitted for length, but are available at https://sudvarg.com/SIES24.

each task. Second, using the insight that under partitioned EDF

scheduling, a set of tasks is guaranteed to be schedulable if its

utilization does not exceed a function of the number of cores,

we apply our algorithm from [4, Algorithm 1] for compressing

to this utilization bound.

A. Binary Search

We observe that a straightforward optimization may be

applied to the approach of Orr and Baruah [3] sum-

marized in §II. Rather than iterating over all values of

λ ∈ [0, λmax] with granularity ϵ in sequential order, we can

instead perform a binary search in time Θ
(

log λmax

ϵ

)

, as

outlined in Alg. 1. Total time complexity is reduced to

Θ
(

(n logn+ n ·m) · log
(

λ
max

ϵ

))

.

Algorithm 1: Elastic Partitioned EDF(Γ,m)

Input: A list Γ of elastic tasks to schedule on m processor cores
Output: The value λ to obtain feasibility

1 λmax
← 0

2 forall τi ∈ Γ do

3 λmax

i ←
Umax

i −Umin

i

Ei

4 λmax
← max

(

λmax, λmax

i

)

5 end

6 if Γ(0) is schedulable on m cores then return 0

7 if Γ(λmax) is not schedulable on m cores then return INFEASIBLE

8 λHI ← λmax, λLO ← 0
9 do

10 λ← (λHI − λLO) /2
11 if Γ(λ) is schedulable on m cores then λHI ← λ
12 else λLO ← λ
13 while λHI − λLO > ϵ
14 return λHI

Alg. 1 uses the notation Γ(λ) from Baruah [13], denoting

the task system obtained from Γ by applying compression λ,

i.e., with each task τi having a utilization Ui(λ) according to

Eqn. 4. The algorithm first checks if Γ(0) — the uncompressed

task set — is schedulable by partitioned EDF on m cores;

schedulability may be determined according to the heuristics

employed by Orr and Baruah [3]. If so, it returns the value

λ = 0. It then checks if Γ(λmax) is schedulable; if not, the

algorithm fails. Otherwise, it performs binary search over val-

ues of λ in the range [0, λmax]: λHI (initialized to λmax) tracks

the smallest value of λ tested for which Γ(λ) is schedulable,

while λLO (initialized to 0) tracks the largest tested value for

which Γ(λ) is not schedulable. At each step, the algorithm

checks schedulability of Γ(λ); if feasibility is determined,

λHI is decreased to the tested value of λ; otherwise, λLO is

increased to the tested value of λ. The algorithm terminates

when the difference between λHI and λLO does not exceed ϵ.

Optimality: We now discuss and prove results about the

optimality of linear and binary searches for partitioned EDF

scheduling. We begin by introducing the term λ∗

Γ,m, defined

as the smallest value of λ for which Γ(λ) is schedulable by

partitioned EDF on m cores. The first result is intuitive: it

says that, once you compress a task system such that it is

schedulable, it remains schedulable when compressed more.

Lemma 1. Given a value of λ, if Γ(λ) is partitioned EDF

schedulable on m cores, then Γ(λ′) is also partitioned EDF

schedulable for every value of λ′ ≥ λ.



Proof. Consider a set Γ of n tasks τi. If Γ(λ) is partitioned

EDF schedulable on m cores, then there exists a partition

{Γ1, . . . ,Γm} of Γ such that the following condition holds:

∀j ∈ 1..m,
∑

τi∈Γj

Ui(λ) ≤ 1

Consider a value λ′ ≥ λ. For each task τi, Ui(λ
′) ≤ Ui(λ), so

∀j ∈ 1..m,
∑

τi∈Γj

Ui(λ
′) ≤

∑

τi∈Γj

Ui(λ) ≤ 1

So there remains a partition where the condition holds.

It follows that Γ(λ) is partitioned EDF schedulable for every

value of λ that exceeds λ∗

Γ,m. This allows us to say something

about the optimality of the elastic algorithms.

Theorem 1. The values of λ obtained by using the linear

approach of Orr and Baruah [3] or the binary search in Alg. 1

will be within ϵ of λ∗ if an exact test of partitioned EDF

schedulability is performed for Γ(λ) at each considered value

of λ. In other words, λ− λ∗ < ϵ.

Proof. Linear Search: The algorithm tests λ = 0 first; if

λ∗ = 0, then the algorithm returns this value. Otherwise, con-

sider the value λ returned by the algorithm: Γ(λ) is feasible,

but Γ(λ− ϵ) is not feasible. It follows from Theorem 1 that

λ∗ > λ− ϵ, which implies λ− λ∗ < ϵ.
Binary Search: The algorithm again tests λ = 0 first; if

λ∗ = 0, then the algorithm returns this value. Otherwise,

consider the value λHI returned by the algorithm: Γ(λHI) is

feasible, but Γ(λLO) is not; thus, by Theorem 1, λ∗ > λLO.

Due to the algorithm’s termination condition, we know that

λHI − λLO ≤ ϵ, and so λ− λ∗ < ϵ.

This tells us that, given an exact schedulability test for

partitioned EDF, both algorithms will find values for λ that

are within ϵ of the optimal value λ∗, and are therefore within

ϵ of each other. However, no such guarantee can be made

if schedulability is determined by heuristic, as illustrated in

Fig. 3. A corollary then follows from the above results.

Corollary 1. Given a value of λ, if Γ(λ) is identified by

heuristic to be partitioned EDF schedulable on m cores, then

Γ(λ′) might not be identifiable as such for some λ′ > λ.

The implication, then, is that while binary search is faster,

it might overcompress a set of tasks by more than ϵ when

applying heuristic partitioning (of course, the linear search

might overcompress as well). However, as we show in §IV-C,

binary search compresses, on average, only 0.054×ϵ more than

linear search for the sets of tasks we evaluated.

B. Application of Our Algorithm in [4]

In [14], it is observed that under the first fit and best fit

heuristics, a set Γ of tasks τi are schedulable on m processor

cores if their total utilization does not exceed (m+ 1)/2 and

if no single task’s utilization exceeds 1. Thus, [4, Algorithm

1] can be adopted by compressing to a desired utilization

UD=(m+ 1)/2, achieving compression in O(n log n) time.

We note that (m+ 1)/2 is an upper-bound on the utilization

required by these heuristics. Thus, the amount of compression

due to this approach might be more than necessary to achieve

partitioned EDF schedulability. It follows that the approach of

Orr and Baruah [3], though slower, might achieve better results

— both in terms of compressing utilizations less aggressively,

and by identifying more schedulable task sets.

C. Evaluation

Implementation: We implement Alg. 1 in C++, compiling and

measuring execution times using the same settings as for the

algorithms in §III-A, running them on the same Raspberry

Pi 3B+. For each value of λ tested, we attempt to find a

schedulable partition by employing the best fit decreasing

then first fit decreasing bin backing heuristics. The algorithm

terminates if either is successful.

Generating Task Sets: We generate synthetic task sets ac-

cording to Orr and Baruah’s methodology in [3]. We measure

each implementation’s time to compress the tasks to run on

platforms with m = 4, 8, and 16 identical cores. For each

value m, we consider sets of n tasks, with n = 2m, 4m,

and 8m. The maximum utilization Umax
i assigned to each

task τi is selected at random, but constrained to be no more

than a parameter α ∈ {0.6, 0.8, 1.0}. Each set of tasks

has a total maximum utilization Umax
SUM of u×m×α, where

u ∈ {1.1, 1.5, 1.9}. For each unique combination of m, n,

α, and u, we generate 1000 sets of tasks.

We use the DRS algorithm [12] to distribute the total

maximum utilization Umax
SUM across individual Umax

i values.

Individual minimum utilizations Umin
i are assigned at random,

selected uniformly from the range (0, Umax
i ]. Elastic coeffi-

cients Ei are selected at random uniformly from (1, 5].

Linear versus Binary Search: We begin by comparing the

linear algorithm from Orr and Baruah [3] to the binary search

in Alg. 1. For each set of tasks, we compute λmax using Eqn. 5,

then search for the optimal λ with granularity ϵ = λmax/1000
(the same value tested in [3]).

Fig. 2 shows, for each combination of u and α, the speedup

achieved by binary over linear search. (Dependence on values

of n and m was less significant.) Task sets not requiring

compression or deemed infeasible are excluded. Binary search

achieves significant speedups, especially for larger values of α
and u. These task sets have larger total maximum utilizations,

and therefore tend to need more compression to achieve

schedulability. In such cases, the linear search takes longer

to reach the higher λ value, so binary search is significantly

faster. Median speedups for each combination were as high as

38×, while the maximum speedup observed was 86×.

Fig. 3 shows, for each combination of m and n, the

distribution of differences between the amount of compression

achieved by binary search (λBS) and linear search (λLIN),

normalized by ϵ. We again exclude trivial or infeasible task

sets. Where outliers extend beyond the plotted boundaries,

the x-axis labels denote the maximum value. We observe

that, although the values λBS and λLIN typically do not differ





Intuitively, this says we can replace τj with a task τ∗j with

utilization and elasticity values scaled by m; schedulability

is then based on a utilization bound of m and the system

can be compressed using our algorithm [4, Algorithm 1].

However, as the task with the maximum utilization can change

during compression, the utilization bound (the RHS of Eqn. 6)

might no longer hold. Therefore, we must assume every task

may take the role of τj after compression, so we repeat this

procedure for each task. We then take the result for which

(i) the task with the maximum utilization after compression

matches the one taking the role of τj ; and (ii) if there are

multiple such consistent results, we take the one that applies

the least compression. This procedure is outlined in Alg. 2.

We note that although our compression algorithm, as written

in [4, Algorithm 1], does not return a value of λ, it can be

easily modified to do so. From Equations 2 and 4 we can see

that λ =
(

USUM−(UD−∆)
ESUM

)

. This value is computed and tracked

by our algorithm, and so it can be retrieved in constant time

for use in Line 9 of Alg. 2.

Algorithm 2: Elastic Global EDF(Γ,m)

Input: A list Γ of elastic tasks to schedule on m processor cores
Output: The value λ to obtain feasibility

1 if Γ(0) is schedulable on m cores then return 0

2 if Γ(λmax) is not schedulable on m cores then return INFEASIBLE

3 Sort Γ in non-decreasing order of ϕi (see Eqn. 3)

4 λ← λmax

5 forall τi ∈ Γ do

6 τj ← (Umax

j : mUmin

i , Umin

j : mUmin

i , Ej : mEi)

7 Γ∗
← Γ, Remove τi and insert τj into Γ∗

8 ▷ Invoke our linear-time algorithm from [4]

9 λ∗
← ELASTIC COMPRESSION(Γ∗,m)

10 if Uj/m is the maximum compressed utilization and λ∗ < λ
then λ← λ∗

11 end

12 return λ

Execution Time Complexity: For a set Γ of n tasks, sorting

in order of ϕi values takes time O(n log n). Inside the forall

loop in Alg. 2, constructing τj from τi takes constant time.

From Eqn. 3 we can see that ϕj = ϕi, so τj can replace τi
directly in constant time and Γ∗ retains it sort order. Our

compression algorithm runs in quasilinear time, but this time

is dominated by sorting the tasks [4]. Since Γ has already

been sorted, compression takes time linear in the number of

tasks. Checking whether Uj/m is the maximum compressed

utilization also takes linear time. Since each iteration of the

loop takes time O(n) and it runs once for each of the n tasks,

the total execution time complexity is O(n2).

VI. CONCLUSIONS AND FUTURE WORK

We have evaluated the execution times of Buttazzo’s and

Sudvarg’s elastic scheduling algorithms, demonstrating that

Sudvarg’s algorithm provides better performance after initial-

ization, and is therefore more suitable for online adaptation.

We have also proposed to use binary, rather than linear, search

to find the “amount” of compression necessary for elastic task

systems scheduled by algorithms without a simple utilization

bound. We demonstrated significant speedups for heuristic

schedulability analysis of partitioned EDF. Furthermore, we

considered an application of Sudvarg’s algorithm to partitioned

EDF; though pessimistic, it enables even faster adaptation than

binary search, and so may be appropriate where an online deci-

sion must be made rapidly (e.g., critical job overrun in mixed

criticality systems). Finally, we have proposed a quadratic-

time exact algorithm for elastic scheduling under global EDF.

As future work, we will evaluate other applications of binary

search for compression (e.g., to the hyperbolic bound for

rate monotonic scheduling) and develop new polynomial-time

algorithms (e.g., for elastic scheduling of algorithm PriD).
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