
comput. complex. (2024) 33:6
c© The Author(s)

https://doi.org/10.1007/s00037-024-00252-5 computational complexity

STREAMING APPROXIMATION

RESISTANCE OF EVERY

ORDERING CSP

Noah G. Singer, Madhu Sudan,

and Santhoshini Velusamy

Abstract. An ordering constraint satisfaction problem (OCSP) is de-
fined by a family F of predicates mapping permutations on {1, . . . , k}
to {0, 1}. An instance of Max-OCSP(F) on n variables consists of a list
of constraints, each consisting of a predicate from F applied on k dis-
tinct variables. The goal is to find an ordering of the n variables that
maximizes the number of constraints for which the induced ordering
on the k variables satisfies the predicate. OCSPs capture well-studied
problems including ‘maximum acyclic subgraph’ (MAS) and “maximum
betweenness”. In this work, we consider the task of approximating the
maximum number of satisfiable constraints in the (single-pass) stream-
ing setting, when an instance is presented as a stream of constraints.
We show that for every F , Max-OCSP(F) is approximation-resistant to
o(n)-space streaming algorithms, i.e., algorithms using o(n) space can-
not distinguish streams where almost every constraint is satisfiable from
streams where no ordering beats the random ordering by a noticeable
amount. This space bound is tight up to polylogarithmic factors. In the
case of MAS, our result shows that for every ε > 0, MAS is not (1/2+ε)-
approximable in o(n) space. The previous best inapproximability result,
due to Guruswami & Tao (2019), only ruled out 3/4-approximations in
o(

√
n) space. Our results build on recent works of Chou et al. (2022b,

2024) who provide a tight, linear-space inapproximability theorem for
a broad class of “standard” (i.e., non-ordering) constraint satisfaction
problems (CSPs) over arbitrary (finite) alphabets. Our results are ob-
tained by building a family of appropriate standard CSPs (one for every
alphabet size q) from any given OCSP and applying their theorem to

0123456789().: V,-vol Birkhäuser

 6 Page 2 of 42 Singer, Sudan & Velusamy cc

this family of CSPs. To convert the resulting hardness results for stan-
dard CSPs back to our OCSP, we show that the hard instances from
this earlier theorem have the following “partition expansion” property
with high probability: For every partition of the n variables into small
blocks, for most of the constraints, all variables are in distinct blocks.

Keywords. Streaming algorithms, Approximation resistance, Con-
straint satisfaction problems, Ordering constraints

1. Introduction

In this work, we consider the complexity of “approximating” “or-
dering constraint satisfaction problems (OCSPs)” in the “stream-
ing model”. We introduce these notions below before describing
our results.

1.1. Orderings and constraint satisfaction problems. In
this work, we consider optimization problems where the solution
space is all possible orderings of n variables. The Traveling Sales-
person Problem and most forms of scheduling problems fit this
description, though our work considers a more concrete class of
problems, namely ordering constraint satisfaction problems (OC-
SPs). OCSPs as a class were first defined by Guruswami et al.
(2011). To describe them here, we first set up some notation and
terminology and then give some examples.

We let [n] denote the set {1, . . . , n} and Sn denote the space
of all permutations in [n]n, i.e.,

Sn
def
= {σ = (σ1, . . . , σn) ∈ [n]n : ∀i �= j, σi �= σj}.

We interpret each element σ ∈ Sn as a schedule for n tasks, labeled
1, . . . , n, such that task i is scheduled in position σi. We use bold
type to denote vectors (e.g., σ), parenthetical indices for sequences
of vectors (e.g., σ(1), . . . ,σ(m)), and normal type to denote scalar
entries (e.g., σi).

Given k distinct integers a1, . . . , ak, we define ord(a1, . . . , ak) ∈
Sk as the unique π = (π1, . . . , πk) ∈ Sk such that πi < πj iff
ai < aj for all i �= j. If a1, . . . , ak are not all distinct, we write
ord(a1, . . . , ak) = ⊥, and thus, we can view ord as a map Z

k → Sk∪

cc Streaming approximation resistance Page 3 of 42 6

{⊥}. Given σ = (σ1, . . . , σn) ∈ Sn and k indices j = (j1, . . . , jk) ∈
[n]n, we let σ|j denote (σj1 , . . . , σjk

) ∈ [n]n.

The solution space of OCSPs is precisely Sn. A k-ary ordering
constraint predicate is a function Π : Sk → {0, 1}. An ordering
constraint application (Π, j) on n variables is given by a predicate Π
and a k-tuple j ∈ [n]n of distinct indices, and (Π, j) is satisfied by an
assignment σ ∈ Sn iff Π(ord(σ|j)) = 1. In the interest of brevity,
we will often skip the term “ordering” below and further refer to
constraint predicates as “predicates” and constraint applications
as “constraints”.

A maximum ordering constraint satisfaction problem, denoted
Max-OCSP(F), is specified by a (finite) family of ordering con-
straint predicates F ⊆ ⋃

k∈N{Π : Sk → {0, 1}}. An instance of
Max-OCSP(F) on n variables is given by m constraints C1, . . . , Cm

where Ci = (Πi, j(i)) and Πi ∈ F . (We will typically specialize
to the case where the family F contains only a single predicate
Π; in this case, we write the problem as Max-OCSP(Π) and omit
Π from constraint descriptions. We’ll see below that for proving
inapproximability results, it is sufficient to consider this case; see
the Remark in Section 1.2 and the proof of Theorem 1.2 in Sec-
tion 3.) The value of an ordering σ ∈ Sn on the instance Ψ,
denoted ocsp-valΨ(σ), is the fraction of constraints satisfied by σ,
i.e.,

ocsp-valΨ(σ)
def
= 1

m

∑

i∈[m]

Πi(ord(σ|j(i))).

The optimal value of Ψ is defined as

ocsp-valΨ
def
= max

σ∈Sn

{ocsp-valΨ(σ)}.

The canonical problem that fits the Max-OCSP framework is
the maximum acyclic subgraph (MAS) problem. In this problem,
the input is a directed graph on n vertices, and the goal is to
find an ordering of the vertices that maximizes the number of
forward edges. A simple depth-first search algorithm can decide
whether a given graph G has a perfect ordering (i.e., one which
has no backward edges); however, Karp (1972), in his famous list

 6 Page 4 of 42 Singer, Sudan & Velusamy cc

of 21 NP-complete problems, proved the NP-completeness of de-
ciding whether, given a graph G and a parameter k, there ex-
ists an ordering of the vertices such that at least k edges are for-
ward. For our purposes, MAS can be viewed as a 2-ary OCSP
MAS = Max-OCSP(ΠMAS), where ΠMAS : S2 → {0, 1} denotes
the predicate given by ΠMAS(1, 2) = 1 and ΠMAS(2, 1) = 0, and
we associate vertices with variables and edges with constraints.
Indeed, a constraint (j1, j2) (where j1, j2 ∈ [n] are distinct vari-
ables) will be satisfied by an ordering σ = (σ1, . . . , σn) ∈ Sn

iff ΠMAS(ord(σ|(j1,j2))) = 1, or equivalently, iff σj1 < σj2 . In
the “scheduling” interpretation of OCSPs, a constraint (j1, j2) ex-
presses “precedence” of event j1 over event j2, since it is satisfied
iff j1 is scheduled before j2.

A second natural Max-OCSP problem is the maximum between-
ness (Max-Btwn) problem. This is a 3-ary OCSP in which an
ordering σ = (σ1, . . . , σn) satisfies a constraint (j1, j2, j3) iff σj2 is
between σj1 and σj3 , i.e., iff σj1 < σj2 < σj3 or σj1 > σj2 > σj3 , and
the goal is again to find the maximum number of satisfiable con-
straints. Thus, Max-Btwn = Max-OCSP(ΠBtwn) where we define
the constraint predicate ΠBtwn : S3 → {0, 1} by ΠBtwn(1, 2, 3) =
1, ΠBtwn(3, 2, 1) = 1, and ΠBtwn(π) = 0 for all other π ∈ S3. The
complexity Max-Btwn was originally studied by Opatrny (1979),
who proved that even deciding whether a set of betweenness con-
straints is perfectly satisfiable (i.e., whether the value of an instance
Ψ is 1) is NP-complete.

1.2. Approximability. In this work, we consider the approx-
imability of ordering constraint satisfaction problems. We say that
a (randomized) algorithm Alg is an α-approximation algorithm for
Max-OCSP(F) if for every instance Ψ, α · ocsp-valΨ ≤ Alg(Ψ) ≤
ocsp-valΨ with probability at least 2/3 over the internal coin tosses
of Alg. Thus, our approximation factors α are numbers in the
interval [0, 1].

Given an ordering predicate Π : Sk → {0, 1}, let ρ(Π) =
|{π∈Sk:Π(π)=1}|

k!
denote the probability that Π is satisfied by a ran-

dom ordering. Given a (finite) family of predicates F , let ρ(F) =

cc Streaming approximation resistance Page 5 of 42 6

minΠ∈F{ρ(Π)}. Every instance Ψ of Max-OCSP(F) satisfies

ocsp-valΨ ≥ ρ(F)

(since the right-hand side is a lower bound on the expected value of
a random assignment). Thus, the trivial algorithm that always out-
puts ρ(F) is a ρ(F)-approximation algorithm for Max-OCSP(F).
Under what conditions it is possible to beat this “trivial” approx-
imation is a major open question.

Remark 1.1. We define ρ(F) = minΠ∈F{ρ(Π)} to be the “trivial”
approximability threshold for Max-OCSP(F) because for every ε >
0 there are instances of Max-OCSP(F) with value at most ρ(F)+ε.
This is a consequence, for instance, of Lemma 3.4, which holds a
priori for the single-predicate case |F| = 1, but can be extended
to general finite families F by taking the minimum over Π ∈ F of
ρ(Π), since every instance of Max-OCSP(Π) is also an instance of
Max-OCSP(F) with the same value.

A problem is said to be approximation-resistant with respect to
a given class of algorithms if the trivial algorithm is essentially the
best. Specifically for Max-OCSP(F), we say it is approximation-
resistant for a class of algorithms if for every ε > 0, no algorithm in
the class (ρ(F) + ε)-approximates Max-OCSP(F). Ordering CSP
problems were shown to be approximation-resistant with respect to
the class of polynomial-time algorithms by Guruswami et al. (2011)
(assuming the unique games conjecture (UGC) of (Khot 2002)).
In this work, we consider the analogous question with respect to
“sublinear-space streaming algorithms”, which we define next.

1.3. Streaming algorithms. A (single-pass) streaming algo-
rithm for OCSPs is defined as follows. In Max-OCSP(F), an in-
stance Ψ is presented as a stream (C1, . . . , Cm), where each stream
element is a constraint Ci = (Πi, j(i)). A streaming algorithm Alg
updates its state with each element of the stream and at the end
produces an output Alg(Ψ) ∈ [0, 1] (which is supposed to estimate
ocsp-valΨ). The measure of complexity of interest to us is the space
used by Alg measured as a function of n, the number of variables in

 6 Page 6 of 42 Singer, Sudan & Velusamy cc

Ψ. (This is a somewhat non-standard choice in general but stan-
dard in the CSP literature. This choice is consistent with that of
measuring the complexity of graph algorithms as a function of the
number of vertices in the input instance.) In particular, we dis-
tinguish between algorithms that use space polylogarithmic in n
and space that grows polynomially (Ω(nδ) for δ > 0). (Note that
for this coarse level of distinction, measuring space as a function
of n or as a function of the input length would be qualitatively
equivalent. However, our main result is more detailed and tight up
to polylogarithmic factors when viewed as a function of n.)

We say that a problem Max-OCSP(F) is (streaming) approx-
imable if we can beat the trivial ρ(F)-approximation algorithm by
a positive constant factor. Specifically, Max-OCSP(F) is said to be
approximable if for every δ > 0 there exists ε > 0 and a space O(nδ)
algorithm that (ρ(F) + ε)-approximates Max-OCSP(F). We say
Max-OCSP(Π) is (streaming) approximation-resistant otherwise.

In recent years, investigations into CSP approximability in the
streaming model have been strikingly successful, resulting in tight
characterizations of streaming approximability for many problems
(Chou et al. 2022a,b, 2021, 2024, 2020; Guruswami & Tao 2019;
Guruswami et al. 2017; Kapralov et al. 2015, 2017; Kapralov &
Krachun 2019; Kogan & Krauthgamer 2015; Saxena et al. 2023a,b).
Most of these papers study approximability, not of ordering CSPs,
but of “standard” CSPs where the variables can take values in a
finite alphabet. ((Guruswami et al. 2017) and (Guruswami & Tao
2019) are the exceptions, and we will discuss them below.) Single-
pass streaming algorithms with subpolynomial space are not for-
mally a subclass of polynomial-time algorithms. 1 However, as far
as we are aware, all known sublinear-space streaming algorithms for
CSP approximation can be implemented as polynomial-time (of-
ten even linear-time!) algorithms. Indeed, there is essentially only
one family of techniques for achieving nontrivial approximation
ratios for CSPs via sublinear-space streaming algorithms, namely
algorithms counting “biases” (see (Chou et al. 2021, 2020; Gu-
ruswami et al. 2017; Saxena et al. 2023a)), and these algorithms

1The models are incomparable in the Ω(nδ) space regime since the stream-
ing model has no time complexity or uniformity assumptions.

cc Streaming approximation resistance Page 7 of 42 6

can be implemented as linear-time classical algorithms and only
give nontrivial guarantees for small classes of CSPs. In particu-
lar, Saxena et al. (2023a) showed that the Max-2AND problem is
0.483-approximable in the streaming setting (whereas the trivial
approximation is a 1

4
-approximation). For more background on

CSPs in the streaming model, see the surveys of Velusamy (2023),
Singer (2022), and Sudan (2022).

However, this success in obtaining non-trivial algorithms has
not extended to any OCSP problem. Indeed, given the known
(UGC-)hardness of OCSPs with respect to polynomial-time al-
gorithms (Guruswami et al. 2011), and the empirically observed
phenomenon that subpolynomial space streaming algorithms are
linear time simulatable, it would be extremely surprising to find a
non-trivial approximation algorithm for an OCSP using subpoly-
nomial space. This work confirms this expectation formally, and
unconditionally, by showing that there are no non-trivial sublinear
(in n) space streaming algorithms for approximating OCSPs.

1.4. Results. In this paper, we prove the following theorem:

Theorem 1.2 (Main theorem). For every (finite) family of order-
ing predicates F , Max-OCSP(F) is approximation-resistant (to
single-pass streaming algorithms). In particular, for every ε > 0,
every (ρ(F) + ε)-approximation algorithm for Max-OCSP(F) re-
quires Ω(n) space.

In particular, for every ε > 0, MAS is not (1/2+ε)-approximable
and Max-Btwn is not (1/3+ε)-approximable. Theorem 1.2 is proved
in Section 3, modulo several technical lemmas proven in later sec-
tions.

The linear-space bound in Theorem 1.2 is optimal, up to loga-
rithmic factors:

Theorem 1.3 (Õ(n)-space algorithm). Let F denote any (finite)
family of ordering predicates. For all c > 0 and ε > 0, there exists
a single-pass streaming algorithm Alg which, given an instance Ψ
of Max-OCSP(F) with n variables and m ≤ nc constraints, outputs
a (1−ε)-approximation to ocsp-valΨ in O(n log3 n/ε2) bits of space.

 6 Page 8 of 42 Singer, Sudan & Velusamy cc

The algorithm in Theorem 1.3 is the analogue for OCSPs of a
well-known algorithm in the setting of streaming CSPs (see, (Chou
et al. 2022b; Kapralov & Krachun 2019; Kogan & Krauthgamer
2015)): It simply sparsifies the input instance down to Õ(n/ε2)
constraints and then solves the Max-OCSP(F) problem exactly on
the sparsified instance. For completeness, we prove Theorem 1.3
in Appendix A.

1.5. Related works. As far as we know, in the streaming set-
ting, Theorem 1.2 is the first tight inapproximability result for
Max-OCSP(F) for any constraint family F in Ω(nδ) space for any
δ > 0, and it yields tight approximability results for every family
in linear space.

Theorem 1.2 parallels the classical result of Guruswami et al.
(2011), who prove that Max-OCSP(Π) is approximation-resistant
with respect to polynomial-time algorithms, for every Π, assuming
the unique games conjecture.2 In our setting of streaming algo-
rithms, the only problem that seems to have been previously ex-
plored in the literature was MAS, and even in this case, a tight
approximability result was not known.

In the case of MAS, Guruswami et al. (2017) proved that for
every ε > 0, MAS is not (7/8 + ε)-approximable in o(

√
n) space

using a gadget reduction from the Boolean hidden matching prob-
lem (Gavinsky et al. 2008). Guruswami & Tao (2019) indicated
that 3/4-approximating MAS is hard in o(

√
n) space. Their proof

first establishes o(
√

n)-space approximation resistance for a (non-
ordering) CSP called Max-UniqueGames and then reduces from
Max-UniqueGames to MAS, though this reduction is not fully ana-
lyzed.

Chakrabarti et al. (2020) recently also studied directed graph

2Without relying on the unique games conjecture, some weaker NP-
hardness results are known. For Max-Btwn, since ρ(ΠBtwn) = 1

3 , the trivial
algorithm is a 1

3 -approximation. Chor & Sudan (1998) showed that (47
48 + ε)-

approximating MaxBtwn is NP-hard, for every ε > 0. The 47
48 factor was

improved to 1
2 by Austrin et al. (2015). For MAS, the trivial algorithm is a

1
2 -approximation. Newman (2000) showed that (65

66 + ε)-approximating MAS
is NP-hard, for every ε > 0. Austrin et al. (2015) improved the 65

66 to 14
15 , and

Bhangale & Khot (2019) further improved the factor to 2
3 .

cc Streaming approximation resistance Page 9 of 42 6

ordering problems (e.g., acyclicity testing, (s, t)-connectivity, topo-
logical sorting) in the streaming setting. For the problems they
consider, they give super-linear space lower bounds even for multi-
pass streaming algorithms. In contrast, as we mentioned above,
every OCSP can be approximated arbitrarily well by simple Õ(n)-
space algorithms, even in a single pass. However, one of the prob-
lems considered by Chakrabarti et al. (2020) is close enough to MAS
to merit a more detailed comparison: the minimum feedback arc
set (MFAS) problem, the goal of which is to output the fractional
size of the smallest set of edges whose removal produces an acyclic
subgraph. In other words, the sum of the MFAS value of a graph
and the MAS value of the graph is exactly one. Chakrabarti et al.
(2020) proved that for every κ > 1, κ-approximating3 the MFAS
value requires Ω(n2) space in the streaming setting (for a single
pass, and more generally Ω(n1+Ω(1/p)/pO(1)) space for p passes). We
remark that, as is typical for pairs of minimization and maximiza-
tion problems defined in this way (that is, such that the values sum
to 1), the hard instances involved in proving optimal inapproxima-
bility are incomparable: In particular, proving κ-inapproximability
for MFAS involves constructing indistinguishable (distributions of)
instances with MAS values ≈ 1 − ε vs. ≈ 1 − κε and thus does not
imply any hardness of approximation for MAS.

A recent work of Chatziafratis & Makarychev (2023) studies
another variant of CSPs, called phylogenetic CSPs, where the so-
lution space is a set of trees,4 analogously to how for ordering
CSPs, the solution space was a set of permutations. The au-
thors prove approximation resistance of phylogenetic CSPs against
polynomial-time algorithms assuming the UGC, and their proof is
via value-preserving reductions from ordering CSPs, which were

3For minimization problems, a κ-approximation to a value v is in the in-
terval [v, κv]. Thus approximation factors are larger than 1.

4Given n variables, the ordering space to a phylogenetic CSP consists of
rooted binary, or more generally k-ary, trees with n labeled leaves, and con-
straints specify “hierarchical structure” among the leaves. For instance, in the
“triple reconstruction” problem, the constraint (a, b, c) expresses that a and
b are closer to each other than either is to c, where distance is measured as
path length in the tree. See (Chatziafratis & Makarychev 2023, §3,§9) for full
definitions.

 6 Page 10 of 42 Singer, Sudan & Velusamy cc

themselves proven approximation-resistant under the UGC by Gu-
ruswami et al. (2011). It would be interesting to see whether the
techniques in the current work could help prove streaming approxi-
mation lower bounds for phylogenetic CSPs or other CSP variants.

1.6. Techniques. Our general approach to prove hardness of
Max-OCSP problems is the following: We choose a family of (stan-
dard) CSPs where hardness results are known and then reduce
these CSPs to the OCSPs at hand. While this general approach is
not new, in order to achieve optimal streaming hardness results for
OCSPs, we need to choose the “source” CSPs carefully, so that we
can both (i) apply previously known optimal streaming hardness
results for these CSPs (in our setting, we use results due to Chou,
Golovnev, Sudan, Velingker & Velusamy (2022b)) and (ii) design
streaming reductions from these CSPs to Max-OCSPs which pro-
duce instances with (almost) optimal ratios in value between YES
and NO instances. In contrast, previous approaches (Guruswami
& Tao 2019; Guruswami et al. 2017) toward proving hardness of
Max-OCSPs (in particular MAS) were unable to achieve optimal
streaming hardness results despite starting with optimal hardness
results for the source CSP Max-UniqueGames, because of issues
in designing streaming reductions which produce sufficiently large
value gaps. In the remainder of this section, we describe and mo-
tivate this approach toward proving the approximation resistance
of Max-OCSPs.

1.6.1. Special case: The intuition for MAS. We start by
describing our proof technique for the special case of the MAS
problem. Let +q denote the modular addition operator on [q] =
{1, . . . , q}: For a, b ∈ [q], a +q b denotes the unique c ∈ [q] such
that a + b ≡ c (mod q). Thus, for instance, 1 +q q = 1.

Similarly to earlier work in the setting of streaming approx-
imability (e.g., the work of Kapralov et al. (2015)), we prove in-
approximability of MAS by exhibiting a pair of distributions over
MAS instances, which we denote Y (the “YES instances”) and N
(the “NO instances”), satisfying the following two properties:

1. Y and N are “indistinguishable” to streaming algorithms (in
a sense we define formally below).

cc Streaming approximation resistance Page 11 of 42 6

2. With high probability, Y has high MAS values (≈ 1) and N
has low MAS values (≈ 1

2
).

The existence of such distributions would suffice to establish the
theorem: there cannot be any streaming approximation for MAS,
since any such algorithm would be able to distinguish these dis-
tributions. But how are we to construct distributions Y and N
satisfying these properties?

The “recipe” which has proved successful in past works for
proving streaming approximation resistance for “standard” CSPs
is roughly to let the N instances be completely random, while Y
instances are sampled with “hidden structure” which guarantees a
very good assignment. Then, one would show that streaming algo-
rithms cannot detect the existence of such hidden structure, via a
reduction to a communication game (typically a variant of Boolean
hidden matching (Gavinsky et al. 2008; Verbin & Yu 2011)). In
the OCSP setting, we might hope that the hidden structure could
simply be an ordering; that is, we could hope to define Y by first
sampling a random ordering of the variables, then sampling con-
straints that go forward with respect to this ordering, and then
perhaps adding some noise. But unfortunately, we don’t know how
to directly prove communication lower bounds for such problems.

Hence, instead of seeking to prove indistinguishability directly,
we turn back to earlier streaming hardness-of-approximation re-
sults proven in the context of standard CSPs. In this setting,
variables take on values in a finite alphabet [q] (i.e., the solution
space is [q]n), and k-ary predicates f : [q]k → {0, 1} can be applied
to small subsets of variables to form constraints. We make two
observations about this definition. Firstly, in a CSP, two variables
may be assigned the same value in [q], whereas in an OCSP, every
variable must get a distinct value in [n]. Secondly, for a CSP or
OCSP defined by a single binary predicate, each constraint sim-
ply specifies a pair (j1, j2) of distinct indices in [n]; by extension,
instances can be viewed equivalently as directed graphs on [n] (al-
lowing multiple edges). Thus, we can view instances of binary
CSPs as instances of MAS, and vice versa.

The plan is as follows. We’ll define a binary predicate denoted
Π↓q

MAS : [q]2 → {0, 1}. Let Max-CSP(Π↓q
MAS) denote the problem of

 6 Page 12 of 42 Singer, Sudan & Velusamy cc

maximizing Π↓q
MAS constraints applied to assignments in [q]n. The

hope is that for a careful choice of the alphabet size q and the
predicate Π↓q

MAS, we can reuse indistinguishable YES/NO distri-

butions for Max-CSP(Π↓q
MAS) — in particular, those constructed in

the recent work of Chou, Golovnev, Sudan, Velingker & Velusamy
(2022b) — as YES/NO distributions for MAS. This requires us
to relate the values of an MAS instance and the corresponding
Max-CSP(Π↓q

MAS) instance. To be precise, for an MAS instance Ψ, let

Ψ↓q denote the Max-CSP(Π↓q
MAS) instance with the exact same list

of constraints and let csp-valΨ↓q denote the value of this instance.
We choose q and Π↓q

MAS so as to imply the following four properties
about the indistinguishable distributions Y and N “given to us”
by Chou et al. (2022b):

1. With high probability over Ψ ∼ Y , csp-valΨ↓q ≈ 1.

2. With high probability over Ψ ∼ N , csp-valΨ↓q ≈ 1
2
.

3. For all Ψ, ocsp-valΨ ≥ csp-valΨ↓q .

4. With high probability over Ψ ∼ N , ocsp-valΨ is not much
larger than csp-valΨ↓q .

Together, these items will suffice to prove the theorem since
2 and 4 together imply that with high probability over Ψ ∼ N ,
ocsp-valΨ ≈ 1

2
, while 1 and 3 together imply that with high proba-

bility over Ψ ∼ Y , ocsp-valΨ ≈ 1.
In order to satisfy these criteria, we define the CSP predicate as

follows. Recall that ΠMAS(1, 2) = 1 while ΠMAS(2, 1) = 0. We de-
fine the constraint predicate Π↓q

MAS : [q]2 → {0, 1} by Π↓q
MAS(b1, b2) =

1 iff b1 < b2. We call this the q-coarsening of ΠMAS, and it gives
Max-CSP(Π↓q

MAS) the following “scheduling” interpretation. Recall,
the goal of MAS is to schedule n tasks, each task i is assigned a
distinct position σi ∈ [n] in the schedule, and the goal is to max-
imize constraints of the form (j1, j2) requiring that task j1 takes
place before task j2, i.e., σj1 < σj2 . In Max-CSP(Π↓q

MAS), the goal is
to schedule n tasks in q batches : Each task i receives a (not neces-
sarily distinct!) batch σi ∈ [q], and constraints (j1, j2) still require

cc Streaming approximation resistance Page 13 of 42 6

that σj1 < σj2 , that is, j1’s assigned batch is earlier than j2. 3 fol-
lows immediately in this interpretation: Given any batched sched-
ule b ∈ [q]n, we can immediately “lift” to a non-batched schedule
b↑ ∈ Sn by arbitrarily ordering the tasks in each batch, which can
only increase the number of satisfied constraints.

Proving 4 is the meat of the argument. Note that if we set q =
n, Max-CSP(Π↓q

MAS) becomes the same problem as MAS, and hence,
4 is trivial! However, we can only apply the inapproximability
results of Chou et al. (2022b) (specifically, the indistinguishability
of their distributions Y and N) when q is a constant. Briefly, the
(Chou et al. 2022b) results roughly state that a predicate f : [q]k →
{0, 1} is inapproximable when its support satisfies a property that
they call width: it contains most of a “diagonal”, in the sense that
for some a ∈ [q]k, the set {c ∈ [q] : f(a +q (c, . . . , c)) = 1} is large.

Luckily for us, Π↓q
MAS has this property with a = (1, 2); indeed,

Π↓q
MAS(1 +q c, 2 +q c) = 1 unless c = q − 1 (in which case 1 +q c = q

while 2 +q c = 1).
To actually prove 4, then, we can no longer use the results of

Chou et al. (2022b) as a black box. Specifically, we need to un-
derstand the structure of the NO distribution N (beyond 2 and
its indistinguishability from Y). We show that instances drawn
from N are (with high probability) “small partition expanders”
in a specific sense: for every partition of the set of variables into
q blocks of roughly equal size, very few constraints, specifically a
o(1) fraction, involve two variables in the same block. (See Defini-
tion 4.8.) Now, we think of a “schedule” σ ∈ Sn as giving rise to
a “batched schedule” σ↓q ∈ [q]n in the following way: If task i is
scheduled in position σi ∈ [n], then we place it in batch ≈ σiq/n.
Thus, the first ≈ n/q scheduled tasks are placed in batch 1, the
next ≈ n/q in batch 2, etc. Hence, whenever a constraint (j1, j2)
is satisfied by σ (as an MAS constraint), it will also be satisfied
by σ↓q (as a Max-CSP(Π↓q

MAS) constraint), unless j1 and j2 end up
in the same batch, but by the small partition expansion condi-
tion, this happens only for o(1) fraction of the constraints. Hence,
ocsp-valΨ ≤ csp-valΨ↓q + o(1).

1.6.2. Extending to general ordering CSPs. Extending the
idea to other OCSPs follows the same basic outline. Given the

 6 Page 14 of 42 Singer, Sudan & Velusamy cc

constraint predicate Π : Sk → {0, 1} (of arity k) and positive
integer q, we define Π↓q : [q]k → {0, 1} analogously to Π↓q

MAS: Π↓q(b)
is Π(ord(b)) if ord(b) �= ⊥ (i.e., b’s entries are all distinct), and
0 otherwise. We then describe the YES and NO distributions of
Max-CSP(Π↓q) which the general theorem of Chou et al. (2022b)
shows are indistinguishable to o(n) space algorithms, again taking
advantage of the fact that Πq’s support mostly contains a diagonal.
Finally, we give an analysis of the partition expansion in the NO
instances arising from the construction in (Chou et al. 2022b).
Specifically, we show that the instances are now a “small partition
hypergraph expander”, in the sense that for every partition of the
n variables into q blocks of roughly equal size, very few constraints
involve even two vertices from the same block.

1.6.3. Further remarks. Our notion of coarsening is somewhat
similar to, but not the same as, that used in previous works, no-
tably (Guruswami et al. 2011). In particular, the techniques used
to compare the OCSP value (before coarsening) with the standard
CSP value (after coarsening) are somewhat different: Their analy-
sis involves more sophisticated tools such as influence of variables
and Gaussian noise stability. The proof in our setting, in contrast,
uses a more elementary analysis of the type common with random
graphs.

In the rest of the paper, in the interest of self-containedness, we
will avoid invoking the work of Chou et al. (2022b) on linear-space
streaming CSP inapproximability where possible. Instead, we will
explicitly define the distributions Y and N over Max-OCSP(Π)
instances for arbitrary ordering predicates Π and analyze them di-
rectly, without invoking any prior analyses of their coarsened CSP
values (which would require formally defining the notion of the
“width” of predicates in (Chou et al. 2022b)). Hence, we’ll only
need to invoke (Chou et al. 2022b) in the context of using com-
munication lower bounds to prove indistinguishability of Y and N .
We also manage to prove a stronger statement about the coarsened
Y distribution (though it is unnecessary for our application): Its
value is high with probability 1, as opposed to just 1− o(1) (which
would be implied by the analysis in (Chou et al. 2022b)).

cc Streaming approximation resistance Page 15 of 42 6

Organization of the rest of the paper. In Section 2, we intro-
duce some additional notation and background material. In Sec-
tion 3, we introduce two distributions on Max-OCSP(Π) instances,
the YES distribution Y and the NO distribution N ; state lemmas
asserting that these distributions are concentrated on instances
with high, and respectively low, OCSP value, and that these distri-
butions are indistinguishable to (single-pass) small-space streaming
algorithms, and then prove Theorem 1.2 modulo these lemmas. Fi-
nally, we prove the lemmas on the OCSP values in Section 4 and
prove the indistinguishability lemma in Section 5.

2. Preliminaries and definitions

2.1. Additional notation. The support of an ordering con-
straint predicate Π : Sk → {0, 1} is the set supp(Π) = {π ∈
Sk : Π(π) = 1}.

We first define a notion of “k-hypergraphs”. (These are k-
uniform ordered hypergraphs with multiple hyperedges and with-
out self-loops.) Given a finite set V , an (ordered, self-loop-free)
k-hyperedge j = (j1, . . . , jk) is a sequence of k distinct elements
j1, . . . , jk ∈ V . We stress that the ordering of vertices within an
edge is important to us. An k-hypergraph G = (V, E) is given by
a set of vertices V and a multiset E ⊆ V k of k-hyperedges on V .
A k-hyperedge j is incident on a vertex v if v appears in j. Let
Γ(j) ⊆ V denote the set of vertices to which a k-hyperedge j is
incident, and let m = m(G) denote the number of k-hyperedges in
G.

A k-hypergraph is a k-hypermatching if it has the property
that no pair of (distinct) k-hyperedges is incident on the same
vertex. We let Mk,α(n) denote the uniform distribution over all
k-hypermatchings on [n] with αn edges.

A vector b = (b1, . . . , bn) ∈ [q]n may be viewed as a q-partition
of [n] into blocks b−1(1), . . . ,b−1(q), where the i-th block b−1(i)
is defined as the set of indices {j ∈ [n] : bj = i}. Given b =
(b1, . . . , bn) ∈ [q]n and an indexing vector j = (j1, . . . , jk) ∈ [n]k,
we define b|j = (bj1 , . . . , bjk

) ∈ [q]k.
Given an instance Ψ of Max-OCSP(Π) on n variables, we de-

fine its constraint hypergraph G(Ψ) to be the k-hypergraph on [n]

 6 Page 16 of 42 Singer, Sudan & Velusamy cc

consisting of the k-hyperedge j for each constraint (Π, j) in Ψ. We
also let m(Ψ) denote the number of constraints in Ψ (equiv., the
number of k-hyperedges in G(Ψ)).

2.2. Concentration bounds. We require the following Azuma-
style concentration inequality for (not necessarily independent)
Bernoulli random variables with bounded conditional expectations
taken from Kapralov & Krachun (2019):

Lemma 2.1 (Kapralov & Krachun 2019, Lemma 2.5). Let 0 < p <
1. Let X1, . . . , Xm be {0, 1}-valued random variables such that for
every i ∈ [m], E[Xi | X1, . . . , Xi−1] ≤ p. Then for every η > 0,

Pr

[
m∑

i=1

Xi ≥ (p + η)m

]

≤ exp

(

−
(

η2

2(p + η)

)

m

)

.

We also require standard Chernoff bounds for sums of indepen-
dent Bernoulli variables which we state here for completeness:

Lemma 2.2 (Chernoff bounds). Let 0 < p < 1. Let X1, . . . , Xm

be {0, 1}-valued random variables such that for every i ∈ [m],

E[Xi] = p. Then,

(i) For every η > 0,

Pr

[
m∑

i=1

Xi ≤ (p − η)m

]

≤ exp

(

−
(

η2

2p

)

m

)

.

(ii) For all η > 0,

Pr

[∣
∣
∣
∣
∣

m∑

i=1

Xi − pm

∣
∣
∣
∣
∣
≥ ηm

]

≤ 2 exp

(

−
(

η2

3p

)

m

)

.

(Note that the lower bounds in these lemmas are trivial if η >
p.)

2.3. Stirling’s approximation. Finally, we state a standard
form of Stirling’s bound for the factorial:

cc Streaming approximation resistance Page 17 of 42 6

Lemma 2.3 (Stirling approximation). For all n ∈ N ,

√
2πn(n/e)n < n! < 2

√
2πn(n/e)n.

3. The streaming space lower bound

In this section, we prove our main theorem (Theorem 1.2), modulo
some lemmas that we prove in later sections. We focus first on the
following special case for single-predicate families:

Theorem 3.1 (Main theorem (single-predicate case)). For every
k ∈ N and every predicate Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation-resistant (to single-pass streaming algorithms). In
particular, for every ε > 0, every (ρ(Π) + ε)-approximation algo-
rithm for Max-OCSP(Π) requires Ω(n) space.

Indeed, given Theorem 3.1, Theorem 1.2 follows immediately:

Proof (Proof of Theorem 1.2). Given any family F of predi-
cates, let Π have minimal random assignment value ρ over pred-
icates in F , so that ρ(Π) = ρ(F). Then, since every instance of
Max-OCSP(Π) is also an instance of Max-OCSP(F), Theorem 3.1
immediately implies (ρ(F) + ε)-approximations for Max-OCSP(F)
require Ω(n) space. �

Our lower bound is proved, as is usual for such statements,
by showing that no small space algorithm can “distinguish” YES
instances with OCSP value at least 1 − ε/2, from NO instances
with OCSP value at most ρ(Π) + ε/2. Such a statement is in turn
proved by exhibiting two distributions, the YES distribution Y
and the NO distribution N , and showing these are indistinguish-
able. Specifically, we carefully choose some parameters q, T, α and
a permutation π ∈ Sk, and define two distributions Y = YΠ,π

q,α,T (n)

and N = N Π
q,α,T (n) over n-variable instances of Max-OCSP(Π).

We claim that for our choice of parameters Y is supported on in-
stances with value at least 1− ε/2 — this is asserted in Lemma 3.3
below. Similarly, we claim that N is mostly supported (with prob-
ability 1 − o(1)) on instances with value at most ρ(Π) + ε/2 (see
Lemma 3.4). Finally, we assert in Lemma 3.5 that any algorithm

 6 Page 18 of 42 Singer, Sudan & Velusamy cc

that distinguishes Y from N with “advantage” at least 1/8 (i.e.,
accepts Ψ ∼ Y with probability 1/8 more than Ψ ∼ N) requires
Ω(n) space.

Assuming Lemma 3.3, Lemma 3.4, and Lemma 3.5, the proof of
Theorem 3.1 is straightforward and given at the end of this section.
We prove Lemma 3.3 and Lemma 3.4 in Section 4 and Lemma 3.5
in Section 5.

3.1. Distribution of hard instances. We now formally define
our YES and NO distributions for Max-OCSP(Π).

Definition 3.2 (YΠ,π
q,α,T (n) and N Π

q,α,T (n)). For k ∈ N and Π :
Sk → {0, 1}, let q, n, T ∈ N and α > 0, q ≥ k, and let π ∈ supp(Π).
We define two distributions over Max-OCSP(Π) instances with n
variables, the YES distribution YΠ,π

q,α,T (n) and the NO distribution

N Π
q,α,T (n), as follows:

(i) Sample a uniformly random q-partition b = (b1, . . . , bn) ∈
[q]n.

(ii) Sample T hypermatchings G̃1, . . . , G̃T ∼ Mk,α(n) indepen-
dently.

(iii) For each t ∈ [T], do the following:

◦ Let Gt be an empty k-hypergraph on [n].

◦ For each k-hyperedge j = (j1, . . . , jk) ∈ E(G̃t):

– YES case: If there exists c ∈ [q] such that b|j =
π +q (c, . . . , c), add j to Gt with probability 1/q.
(Here π is viewed as k-tuple in [k]k ⊆ [q]k.)

– NO case: Add j to Gt with probability 1
qk .

(iv) Set G ← G1 ∪ · · · ∪ GT .

(v) Return the Max-OCSP(Π) instance Ψ on n variables given by
the constraint hypergraph G.

cc Streaming approximation resistance Page 19 of 42 6

We say that an algorithm Alg achieves advantage δ in distin-
guishing YΠ,π

q,α,T (n) from N Π
q,α,T (n) if there exists an n0 such that for

all n ≥ n0, we have
∣
∣
∣
∣
∣

Pr
Ψ∼YΠ,π

q,α,T (n)

[Alg(Ψ) = 1] − Pr
Ψ∼NΠ

q,α,T (n)
[Alg(Ψ) = 1]

∣
∣
∣
∣
∣
≥ δ.

We make several remarks on this definition. Firstly, note that
the constraints within YΠ,π

q,α,T (n) and N Π
q,α,T (n) do not directly de-

pend on Π. We still parameterize the distributions by Π, since
they are formally distributions over Max-OCSP(Π) instances; Π
also determines the arity k and the set of allowed permutations π
in the YES case. Secondly, we note that when sampling an in-
stance from N Π

q,α,T (n), the partition b is ignored, and so N Π
q,α,T (n)

is “random”. Hence, these instances fit into the typical streaming
lower bound “recipe” of “random graphs vs. random graphs with
hidden structure”. Finally, we observe that the number of con-
straints in both distributions is distributed as a sum of m = nαT
independent Bernoulli(1

qk) random variables.
In the following section, we state lemmas which highlight the

main properties of the distributions above. See Figure 3.1 for a
visual interpretation of the distributions in the case of MAS.

3.2. Statement of key lemmas. Our first lemma shows that
Y is supported on instances of high value.

Lemma 3.3 (Y has high Max-OCSP(Π) values). For every order-
ing constraint predicate Π : Sk → {0, 1}, every π ∈ supp(Π) and
Ψ ∼ YΠ,π

q,α,T (n), we have ocsp-valΨ ≥ 1 − k−1
q

(i.e., this occurs with

probability 1).

We prove Lemma 3.3 in Section 4.2. Next, we assert that N is
supported mostly on instances of low value.

Lemma 3.4 (N has low Max-OCSP(Π) values). For every ordering
constraint predicate Π : Sk → {0, 1}, and every ε > 0, there exists
q0 ∈ N and α0 ≥ 0 such that for all q ≥ q0 and α ≤ α0, there exists
T0 ∈ N such that for all T ≥ T0, for sufficiently large n, we have

Pr
Ψ∼NΠ

q,α,T (n)

[
ocsp-valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01.

 6 Page 20 of 42 Singer, Sudan & Velusamy cc

1
2 3

4
5

(a) Constraint graph of a sample MAS instance drawn from Y

1
2 3

4
5

(b) Constraint graph of a sample MAS instance drawn from N

Figure 3.1: The constraint graphs of MAS instances which could plausibly be
drawn from Y and N , respectively, for q = 5 and n = 12. Recall that MAS is a
binary Max-OCSP with ordering constraint function ΠMAS supported only on
(1, 2). According to the definition of Y (see Definition 3.2, with π = (1, 2)),
instances are sampled by first sampling a q-partition b = (b1, . . . , bn) ∈ [q]n,
and then sampling some constraints; every sampled constraint (j1, j2) must
satisfy bj2 ≡ bj1 + 1 (mod q). On the other hand, there are no requirements
on (bj1 , bj2) for instances sampled from N . Above, the blocks of the partition
b are labeled 1, . . . , 5, and the reader can verify that the edges satisfy the
appropriate requirements. We also color the edges in a specific way: We color
an edge (j1, j2) green, orange, or red if bj2 > bj1 , bj2 = bj1 , or bj2 < bj1 ,
respectively. This visually suggests important elements of our proofs that
Y has MAS values close to 1 and N has MAS values close to 1

2 (for formal
statements, see Lemma 3.3 and Lemma 3.4, respectively). Specifically, in the
case of Y, if we arbitrarily arrange the vertices in each block, we will get an
ordering in which every green edge is satisfied, and we expect all but 1

q fraction
of the edges to be green (i.e., all but those which go from block q to block 1).
On the other hand, if we executed a similar process in N , the resulting ordering
would satisfy all green edges and some subset of the orange edges; however, in
expectation, these account only for q(q+1)

2q2 = q+1
2q ≈ 1

2 fraction of the edges.

cc Streaming approximation resistance Page 21 of 42 6

We prove Lemma 3.4 in Section 4.3. We note that this lemma
is more technically involved than Lemma 3.3, and this is the proof
that needs the notion of “small partition expanders”. Finally, the
following lemma asserts the indistinguishability of Y and N to
small space streaming algorithms. We remark that this lemma
follows directly from the work of Chou et al. (2022b), but we prove
it for completeness in Section 5.

Lemma 3.5 (Y and N are indistinguishable). For every q ≥ k ∈
N, there exists α0(k) > 0 such that for every T ∈ N, α ∈ (0, α0(k)]
the following holds: For every ordering constraint predicate Π :
Sk → {0, 1} and π ∈ supp(Π), every streaming algorithm distin-
guishing YΠ,π

q,α,T (n) from N Π
q,α,T (n) with advantage 1/8 for all lengths

n uses space Ω(n).

3.3. Proof of Theorem 3.1. We now prove Theorem 3.1.

Proof (Proof of Theorem 3.1). Let Alg be an algorithm for
Max-OCSP(Π) that uses space s(n) and achieves a (ρ(Π) + ε)-
approximation. Fix π ∈ supp(Π). Consider the algorithm Alg′

defined as follows: on input Ψ, an instance of Max-OCSP(Π), if
Alg(Ψ) ≥ ρ(Π) + ε

2
, then Alg′ outputs 1, else, it outputs 0. Ob-

serve that Alg′ uses O(s(n)) space. Set q0 ≥ 2(k−1)
ε

such that the
condition of Lemma 3.4 holds. Set α0 ∈ (0, α0(k)] such that the
conditions of Lemma 3.4 holds. Consider any q ≥ q0 and α ≤ α0:
let T0 be set as in Lemma 3.4. Consider any T ≥ T0: since
q ≥ 2(k−1)

ε
, it follows from Lemma 3.3 that for Ψ ∼ YΠ,π

q,α,T (n),
we have ocsp-valΨ ≥ 1− ε

2
, and hence with probability at least 2/3,

Alg(Ψ) ≥ ρ(Π) + ε
2
. Therefore, EΨ∼YΠ,π

q,α,T (n)[Alg(Ψ) = 1] ≥ 2/3.

Similarly, by the choice of q0, α0, T0, it follows from Lemma 3.4
that

Pr
Ψ∼NΠ

q,α,T (n)

[
ocsp-valΨ ≥ ρ(Π) +

ε

2

]
≤ 0.01,

and hence, EΨ∼NΠ
q,α,T (n)[Alg(Ψ) = 1] ≤ 1

3
+ 0.01. Therefore, Alg′

distinguishes YΠ,π
q,α,T (n) from N Π

q,α,T (n) with advantage 1/8. By ap-
plying Lemma 3.5, we conclude that Alg uses s(n) ≥ Ω(n) space. �

 6 Page 22 of 42 Singer, Sudan & Velusamy cc

4. Bounds on Max-OCSP(Π) values of Y and N
The goal of this section is to prove our technical lemmas Lemma 3.3
and Lemma 3.4, which, respectively, lower bound the Max-OCSP(Π)
values of YΠ,π

q,α,T (n) and upper bound the Max-OCSP(Π) values of

N Π
q,α,T (n).

4.1. CSPs and coarsening. In order to prove the lemmas, we
recall the definition of (standard) constraint satisfaction problems
(CSPs), whose solution spaces are [q]n (as opposed to Sn for OC-
SPs), and define an operation called q-coarsening on Max-OCSPs,
which restricts the solution space from Sn to [q]n.

A maximum constraint satisfaction problem, Max-CSP(f), is
specified by a single constraint predicate f : [q]k → {0, 1}, for some
positive integer k. An instance of Max-CSP(f) on n variables is
given by m constraints C1, . . . , Cm where Ci = (f, j(i)), i.e., the ap-
plication of the predicate f to the variables j(i) = (j(i)1, . . . , j(i)k).
(Again, f is omitted when clear from context.) The value of
an assignment b ∈ [q]n on an instance Φ = (C1, . . . , Cm), de-
noted csp-valΦ(b), is the fraction of constraints satisfied by b, i.e.,
csp-valΦ(b) = 1

m

∑
i∈[m] f(b|j(i)), where (recall) b|j = (bj1 , . . . , bjk

)

for b = (b1, . . . , bn), j = (j1, . . . , jk). The optimal value of Φ is
defined as csp-valΦ = maxb∈[q]n{csp-valΦ(b)}.

Definition 4.1 (q-coarsening). Let Π : Sk → {0, 1} be an or-
dering predicate. For q ∈ N, the q-coarsening of Π is the predi-
cate Π↓q : [q]k → {0, 1} defined by Π↓q(a) = 1 iff Π(ord(a)) = 1
(if ord(a) = ⊥, i.e., a’s entries are not all distinct, we define
Π↓q(a) = 0). The q-coarsening of the problem Max-OCSP(Π) is
the problem Max-CSP(Π↓q), and the q-coarsening of an instance Ψ
of Max-OCSP(Π) is the instance Ψ↓q of Max-CSP(Π↓q) given by the
same constraint hypergraph.

The following lemma captures the idea that coarsening restricts
the space of possible solutions; compare to Lemma 4.10.

Lemma 4.2. If q ∈ N and Ψ is an instance of Max-OCSP(Π), then
ocsp-valΨ ≥ csp-valΨ↓q .

cc Streaming approximation resistance Page 23 of 42 6

Proof. We will show that for every assignment b ∈ [q]n to
Ψ↓q, we can construct an assignment b↑ ∈ Sn to Ψ such that
ocsp-valΨ(b↑) ≥ csp-valΨ↓q(b). Consider an assignment b ∈ [q]n.
Let b↑ be the ordering on [n] constructed by placing the blocks
b−1(1), . . . ,b−1(q) in order (within each block, we enumerate the
indices arbitrarily). Consider any constraint C = j = (j1, . . . , jk) in
Ψ which is satisfied by b in Ψ↓q. Since Π↓q(b|j) = 1, by definition of
Π↓q we have that Π(ord(b|j)) = 1 and in particular that bj1 , . . . , bjk

are distinct. The latter implies, by the construction of b↑, that
ord(b|j) = ord(b↑|j). Hence, Π(ord(b↑|j)) = 1, so b↑ satisfies C in
Ψ. Hence, ocsp-valΨ(b↑) ≥ csp-valΨ↓q(b). �

4.2. Y has high Max-OCSP(Π) values. In this section, we
prove Lemma 3.3, which states that the Max-OCSP(Π) values of
instances Ψ drawn from YΠ,π

q,α,T (n) are large. Note that we prove a

bound for every instance Ψ in the support of YΠ,π
q,α,T (n), although it

would suffice for our application to prove that such a bound holds
with high probability over the choice of Ψ.

To prove Lemma 3.3, by Lemma 4.2, it suffices to show that
csp-valΨ↓q ≥ 1 − k−1

q
. One natural approach is to consider the q-

partition b = (b1, . . . , bn) ∈ [q]n sampled when sampling Ψ and
view b as an assignment for Ψ↓q. Consider any constraint C = j =
(j1, . . . , jk) in Ψ; by the definition of YΠ,π (Definition 3.2), we have
b|j = v(c) +q π for some (unique) c ∈ [q], where v(c) denotes the
vector (c, . . . , c) ∈ [q]k. We term c the identifier of C. Now we use
the following simple fact:

Fact 4.3. Let π ∈ Sk. Then for every c ∈ {1, . . . , q − k} ∪ {q},
ord(v(c) +q π) = π.

Proof. Follows from the fact that for c in this range, and every
i, j ∈ [k] ⊂ [q], we have i < j iff i +q c < j +q c. �

Thus, C is satisfied by b iff Π(ord(v(c) +q π)) = 1. Hence,
a sufficient condition for b to satisfy C is that C’s identifier c ∈
{1, . . . , q−k}∪{q}, since in this case by Fact 4.3, we have ord(v(c)+q

π) = π. Unfortunately, when sampling the constraints, we might
get “unlucky” and get a sample that over-represents the identifiers

 6 Page 24 of 42 Singer, Sudan & Velusamy cc

{q − k + 1, . . . , q − 1}. We can resolve this issue using “shifted”
versions of b.5 The proof is as follows:

Proof (Proof of Lemma 3.3). For t ∈ [q], define the assignment

b(t) = (b
(t)
1 , . . . , b

(t)
n) to Ψ↓q via b

(t)
i = bi +q t for i ∈ [n].

Fix t ∈ [q]. Then we claim that b(t) satisfies any constraint C
with identifier c such that c +q t ∈ {1, . . . , q − k} ∪ {q}. Indeed,
if C = j is a constraint with identifier c, we have b(t)|j = v(c) +q

v(t) +q π = v(c+qt) +q π, and then, we use Fact 4.3.
Now (no longer fixing t), for each c ∈ [q], let w(c) be the fraction

of constraints in Ψ with identifier c. By the previous paragraph,
for each t ∈ [q], we have csp-val↓q

Ψ (b(t)) ≥ ∑
c:c+qt∈{1,...,q−k}∪{q} w(c).

On the other hand,
∑q

c=1 w(c) = 1 (since every constraint has some
(unique) identifier). Hence,

q∑

t=1

csp-valΨ↓q(b(t)) ≥
q∑

t=1

⎛

⎝
∑

c:c+qt∈{1,...,q−k}∪{q}
w(c)

⎞

⎠ = q − (k − 1),

since each term w(c) appears exactly q − (k − 1) times in the ex-
panded sum. Hence by averaging, there exists some t ∈ [q] such
that csp-valΨ↓q(b(t)) ≥ 1 − k−1

q
, and so csp-valΨ↓q ≥ 1 − k−1

q
, as

desired. �

4.3. N has low Max-OCSP(Π) values. In this section, we
prove Lemma 3.4, which states that the Max-OCSP(Π) value of
an instance drawn from N does not significantly exceed the ran-
dom ordering threshold ρ(Π), with high probability.

Remark 4.4. Using concentration bounds (i.e., Lemma 2.1), one
could show that the probability that a fixed solution σ ∈ Sn sat-
isfies more than ρ(Π)+1/q constraints is exponentially small in n.
However, taking a union bound over all n! permutations σ would
cause an unacceptable blowup in the probability (since by Stirling’s
approximation, n! ∼ (n/e)n).

5Alternatively, in expectation, csp-valΨ↓q (b) = 1 − k−1
q . Hence, with prob-

ability at least 99
100 , csp-valΨ↓q (b) ≥ 1 − 100(k−1)

q by Markov’s inequality; this
suffices for a “with-high-probability” statement.

cc Streaming approximation resistance Page 25 of 42 6

Instead, to prove Lemma 3.4, we take an indirect approach,
involving bounding the Max-CSP value of the q-coarsening of a
random instance and bounding the gap between the Max-OCSP
value and the q-coarsened Max-CSP value. To do this, we define
the following notions of small set expansion for k-hypergraphs:

Definition 4.5 (Lying on a set). Let G = ([n], E) be a k-hyper-
graph. Given a set S ⊆ [n], a k-hyperedge j ∈ E lies on S if it is
incident on two (distinct) vertices in S (i.e., if |Γ(j) ∩ S| ≥ 2).

Definition 4.6 (Congregating on a partition). Let G = ([n], E)
be a k-hypergraph. Given a q-partition b ∈ [q]n, a k-hyperedge j ∈
E congregates on b if it lies on a block b−1(i) = {j ∈ [n] : bj = i}
for some i ∈ [q].

Definition 4.7. (Small set hypergraph expansion (SSHE)
property) A k-hypergraph G = ([n], E) is a (γ, δ)-small set hyper-
graph expander (SSHE) if it has the following property: For every
subset S ⊆ [n] of size at most γn, the number of k-hyperedges in
E which lie on S is at most δ|E|.

Definition 4.8. (Small partition hypergraph expansion (SPHE)
property) A k-hypergraph G = ([n], E) is a (γ, δ)-small partition
hypergraph expander (SPHE) if it has the following property: For
every partition b ∈ [q]n where each block b−1(i) = {j ∈ [n] :
bj = i} has size at most γn, the number of k-hyperedges in E that
congregate on b is at most δ|E|.

In the context of Figure 3.1, the SPHE property says that for
any partition with small blocks, there cannot be too many “or-
ange” edges.

In the remainder of this subsection, we state several lemmas
and then give a formal proof of Lemma 3.4. We begin with several
short lemmas.

 6 Page 26 of 42 Singer, Sudan & Velusamy cc

Lemma 4.9 (Good SSHEs are good SPHEs). For every k ∈ N and
γ, δ > 0, if a k-hypergraph G = (V, E) is a (γ, δ)-SSHE, then it is
a (γ, δ(2/γ + 1))-SPHE.

Proof. Let n = |V |. Consider any partition b ∈ [q]n of V
where each block b−1(i) has size at most γn. WLOG, all but one
block has size at least γn

2
(if not, merge blocks until this happens,

only increasing the number of k-hyperedges that congregate on b).
Hence, � ≤ 2

γ
+ 1.6 By the SSHE property, there are at most

δm k-hyperedges that lie on each block; hence, there are at most
δ(2

γ
+ 1)m constraints that congregate on b. �

Lemma 4.10 (Coarsening roughly preserves value in SPHEs). Let
Ψ be a Max-OCSP(Π) instance on n variables, and let q ≥ 2/γ.
Suppose that the constraint hypergraph G(Ψ) of Ψ is a (γ, δ)-
SPHE. Then for sufficiently large n,

ocsp-valΨ ≤ csp-valΨ↓q + δ.

Proof. For every assignment σ = (σ1, . . . , σn) ∈ Sn to Ψ, we
will construct an assignment σ↓q = (σ↓q

1 , . . . , σ↓q
n) ∈ [q]n to Ψ↓q

such that ocsp-valΨ(σ) ≤ csp-valΨ↓q(σ↓q) + δ. Fix σ ∈ Sn. Define
σ↓q ∈ [q]n by σ↓q

i = �σi/γn� for each i ∈ [n]. We verify that since
σi ≤ n, we have

σ↓q
i ≤ �n/γn� ≤ n/γn ≤ n/(2n/q) ≤ n/(n/q) = q,

so σ↓q is a valid assignment to Ψ↓q. Also, σ↓q has the property
that for every i, j ∈ [n], if σi < σj then σ↓q

i ≤ σ↓q
j ; we call this

monotonicity of σ↓q.
Now view σ↓q as a q-partition and consider the constraint hy-

pergraph G(Ψ) of Ψ (which is the same as the constraint hyper-
graph G(Ψ↓q) of Ψ↓q). Call a constraint C = j = (j1, . . . , jk) in Ψ
good if it is both satisfied by σ, and the k-hyperedge corresponding
to it does not congregate on σ↓q. If C is good, then σ↓q

j1
, . . . , σ↓q

jk
are

6We include the +1 to account for the extra block which may have arbitrar-
ily small size. Excluding this block, there are at most n

�γn/2� ≤ n
γn/2 blocks

remaining.

cc Streaming approximation resistance Page 27 of 42 6

all distinct; together with monotonicity of σ↓q, we conclude that if
C is good, then ord(σ↓q|j) = ord(σ|j), and hence C is also satisfied
by σ↓q in Ψ↓q.

Finally, we note that each block in σ↓q has size at most γn by
definition; hence, by the SPHE property of the constraint hyper-
graph of Ψ, at most δ-fraction of the constraints of Ψ correspond to
k-hyperedges that congregate on σ↓q. Since ocsp-valΨ(σ)-fraction
of the constraints of Ψ are satisfied by σ, at least (ocsp-valΨ(σ)−δ)-
fraction of the constraints of Ψ are good, and hence, σ↓q satisfies
at least (ocsp-valΨ(σ) − δ)-fraction of the constraints of Ψ↓q, as
desired. �

The construction in this lemma was called coarsening the as-
signment σ by Guruswami et al. (2011) (cf. (Guruswami et al.
2011, Definition 4.1)).

We also include the following helpful lemma, which lets us re-
strict to the case where our sampled Max-OCSP(Π) instance has
many constraints.

Lemma 4.11 (Most instances in N have many constraints). For
every n, α, γ > 0, and q ∈ N,

Pr
Ψ∼NΠ

q,α,T (n)

[

m(Ψ) ≤
(

αT

2qk

)

n

]

≤ exp

(

−
(

αT

8qk

)

n

)

.

Proof. The number of constraints in Ψ is distributed as the
sum of nαT independent Bernoulli(1/qk) random variables. The
desired bound follows by applying a Chernoff bound (Lemma 2.2)
with η = p/2. �

Now we state the following pair of lemmas, whose more involved
proofs we defer to Section 4.3.1 and Section 4.3.2, respectively:

Lemma 4.12. For every n, α, γ > 0, and q ∈ N with α ≤ 1/(2k),

Pr
Ψ∼NΠ

q,α,T (n)

[

G(Ψ) is not a (γ, 8k2γ2)-SSHE

∣
∣
∣
∣ m(Ψ) ≥ nαT

2qk

]

≤ exp

(

−
(

γ2αT

2qk
− ln 2

)

n

)

.

 6 Page 28 of 42 Singer, Sudan & Velusamy cc

Lemma 4.13 (Satisfiability of random Max-CSP(Ψ↓q) instances).
For every n, α, η > 0,

Pr
Ψ∼NΠ

q,α,T (n)

[

csp-valΨ↓q ≥ ρ(Π) + η

∣
∣
∣
∣ m(Ψ) ≥ nαT

2qk

]

≤ exp

(

−
(

η2αT

4(ρ(Π) + η)qk
− ln q

)

n

)

.

We remark here that the proofs of both lemmas only require
union bounds over sets of size (Oε(1))n (the set of all small subsets
of [n] and of all solutions to the coarsened Max-CSP, respectively);
this lets us avoid the issue, mentioned in the Remark at the be-
ginning of this subsection, of union-bounding over the entire space
Sn of super-exponential size n! directly.

We finally give the proof of Lemma 3.4.

Proof (Proof of Lemma 3.4). Let q0
def
=

⌈
192k2

ε

⌉
and let α0

def
=

1
2k

. Suppose α ≤ α0 and q ≥ q0. Then let γ
def
= ε

96k2 and η
def
= ε

4
,

and let

T0
def
=

⌈

max

{
2(ln 2)qk

γ2α
,
4(ρ(Π) + η)qk(ln q)

η2α

}⌉

+ 1.

Now, we will prove the desired bound for any T ≥ T0.
Let E1, E2, and E3 denote, respectively, the events “m(Ψ) ≤

(αT/(2qk))n”, “G(Ψ) is not a (γ, 8k2γ2)-SSHE”, and “csp-valΨ↓q ≥
ρ(Π) + η”. Then, since α ≤ α0, Lemma 4.11, Lemma 4.12, and
Lemma 4.13 state that

Pr[E1] ≤ exp(−C1n),

Pr[E2 | E1] ≤ exp(−C2n),

Pr[E3 | E1] ≤ exp(−C3n),

respectively, where we define the constants C1 = αT
8qk , C2 = γ2αT

2qk −
ln 2, and C3 = η2αT

4(ρ(Π)+η)qk − ln q, and all probabilities are over the

choice of Ψ ∼ N Π
q,α,T (n). Now observe that for our choice of T ,

cc Streaming approximation resistance Page 29 of 42 6

C1, C2, C3 are all positive and do not depend on n, so for suf-
ficiently large n, all three probabilities are smaller than 1/1000.
This implies that Pr[E2 ∨ E3] ≤ 1/100: Indeed,

Pr[E2 ∨ E3] = Pr[E2 ∨ E3 | E1] Pr[E1] + Pr[E2 ∨ E3 | E1] Pr[E1]

(total probability)

≤ Pr[E2 ∨ E3 | E1] + Pr[E1]

(probabilities ≤ 1)

≤ Pr[E2 | E1] + Pr[E3 | E1] + Pr[E1](union bound)

and this is ≤ 3/1000 < 1/100 by assumption.
Finally, we show that when neither E2 nor E3 occurs, we have

ocsp-valΨ ≤ ρ(Π) + ε/2. Indeed, if G(Ψ) is a (γ, 8k2γ2)-SSHE,
by Lemma 4.9 it is also a (γ, δ)-SPHE for δ = 8k2γ2(2/γ + 1) ≤
8k2γ2(3/γ) = 24k2γ = ε/4. Now since q ≥ q0 ≥ 2/γ, we can apply
Lemma 4.10 and conclude that

ocsp-valΨ ≤ ρ(Π) + η + δ ≤ ρ(Π) +
ε

2
,

as desired. �

4.3.1. N is a good SSHE with high probability: Proving
Lemma 4.12. Recall that for a k-hypergraph G = (V, E) and
S ⊆ V (G), we define Γ(j) ⊆ V as the set of vertices incident on j.

Proof (Proof of Lemma 4.12). Let G̃t denote the t-th hyper-
matching sampled when sampling Ψ (as in Definition 3.2). Let

β = m(Ψ)
Tn

, and for each t ∈ [T], let βt = m(Gt)
n

, so that β =
1
T

∑T
t=1 βt. By our conditioning assumption, β ≥ α

2qk , and βt ≤ α

for each t ∈ [T]. It suffices to prove the lemma conditioned on
fixed values for β1, . . . , βT . This is equivalent to simply sampling
hypermatchings Gt ∼ Mk,βt(n) independently and including all of
their k-hyperedges as constraints.

Fix any set S ⊆ [n] of size at most γn. For each t ∈ [T], label
the k-hyperedges of Gt as j(t, 1), . . . , j(t, βtn). Consider the col-
lection of m(Ψ) = βTn random variables {Xt,i}t∈[T],i∈[βtn], each of
which is the indicator for the event that j(t, i) lies on S. Define

 6 Page 30 of 42 Singer, Sudan & Velusamy cc

X =
∑T

t=1

∑βtn
i=1 Xt,i as the number of such “lying on” edges we ob-

serve. Since m(G(Ψ)) = βTn, it suffices to bound the probability
that X ≥ 8k2γ2m and then take the union bound over all subsets
S.

For fixed t ∈ [T], we first bound E[Xt,i | Xt,1, . . . , Xt,i−1] for
each i ∈ [βtn]. Conditioned on jt,1, . . . , jt,i−1, the k-hyperedge j(t, i)
is uniformly distributed over the set of all k-hyperedges on [n] \
(Γ(jt,1) ∪ · · · ∪ Γ(jt,i−1)). It suffices to union-bound, over distinct

pairs {a, b} ∈ (
[k]
2

)
, the probability that the a-th and b-th vertices of

j(t, i) are in S (conditioned on Xt,1, . . . , Xt,i−1). We can sample the
a-th and b-th vertices of j(t, i) first (uniformly over the remaining
vertices) and then ignore the remaining vertices. Hence, we have
the upper bound

E[Xt,i | Xt,1, . . . , Xt,i−1] ≤
(

k

2

)

· |S|(|S| − 1)

(n − k(i − 1))(n − k(i − 1) − 1)

≤
(

k

2

)

·
(|S|

n − k(i − 1)

)2

≤
(

k

2

)

·
(|S|

n − kβtn

)2

≤ 4k2γ2 ,

since βt ≤ α ≤ 1
2k

.
Now, we want to apply Lemma 2.1 to the random variables

(Xt,i). Consider enumerating the Xt,i’s lexicographically as

X1,1, . . . , X1,β1n, X2,1, . . . , X2,β2n, . . . , XT,1, . . . , XT,βT n.

Now since the hypermatchings Gt are sampled independently for all
t ∈ [T], the collections of random variables (Xt,i)i∈[βtn] are indepen-
dent across t ∈ [T]. So, for all t ∈ [T] and i ∈ [βtn], the expectation
of Xt,i conditioned on the lexicographically-earlier Xt′,i′ ’s is still at
most 4k2γ2. Thus, Lemma 2.1 (at p = η = 4k2γ2) implies that

Pr
Ψ∼NΠ

q,α,T (n)

[
X ≥ 8k2γ2 m

] ≤ exp
(−k2γ2 m

) ≤ exp(−γ2 m).

Finally, we assumed m ≥ αT
2qk n, combined with the union-bound

over the ≤ 2n possible subsets S ⊆ [n], gives the desired bound. �

cc Streaming approximation resistance Page 31 of 42 6

4.3.2. N has low coarsened Max-CSP(Ψ↓q) values (w.h.p.):
Proving Lemma 4.13

Proof (Proof of Lemma 4.13). We consider the same setup as
in the first paragraph of the proof of Lemma 4.12 in the previous
subsection: We set β = m(Ψ)

Tn
and βt = m(Gt)

n
. Abbreviating m =

m(Ψ), Ψ contains m = βTn constraints. We condition on fixed
β1, . . . , βT and consider sampling hypermatchings Gt ∼ Mk,βt(n)

and we have 1
T

∑T
t=1 βt = β ≥ α/2qk. We label the k-hyperedges

of Gt as j(t, 1), . . . , j(t, βtn). Now, we view these k-hyperedges as
the constraints of Ψ↓q for Ψ ∼ N Π

q,α,T (n).

Let Xt,i for t ∈ [T], i ∈ [βtn] be the indicator for the event that,
as a constraint in Ψ↓q, j(t, i) is satisfied by b, i.e., Π↓q(b|j(t,i)) = 1.
Again, like in the proof of Lemma 4.12, we first fix t ∈ [T] and
bound E[Xt,i | Xt,1, . . . , Xt,i−1], for each i ∈ [βtn]. Conditioned on
j(t, 1), . . . , j(t, i−1), the k-hyperedge j(t, i) is uniformly distributed
over the set of all k-hyperedges on [n]\(Γ(j(t, 1))∪· · ·∪Γ(j(t, i−1))).
Now, we claim that E[Xt,i | Xt,1, . . . , Xt,i−1] ≤ ρ(Π). Indeed, the
set of possible k-hyperedges on [n] \ (Γ(j(t, 1)) ∪ · · · ∪ Γ(j(t, i −
1))) may be partitioned into blocks of size k! by mapping each
k-hyperedge to the set of vertices on which it is incident. That
is, we can consider the k! possible k-hyperedges resulting from
permuting the vertices of a given k-hyperedge j = (j1, . . . , jk). If
bj1 , . . . , bjk

are not all distinct, then ord(b|j) = ⊥ and so none of
the k-hyperedges are satisfied by b as constraints in Ψ↓q; otherwise,
ord(b|j) is some ordering in Sk, and so exactly |supp(Π)| = ρ(Π)·k!
permutations of j are satisfied as constraints in Ψ↓q.

Now, we again apply Lemma 2.1 to the random variables (Xt,i).
Using the same lexicographic enumeration of variables as in the
proof of Lemma 4.12, and the same observation that the hyper-
matchings Gt are sampled independently, we conclude that the ex-
pectation of Xt,i conditioned on the lexicographically earlier Xt′,i′ ’s
is at most ρ(Π). Again, we apply Lemma 2.1 (now with p = ρ(Π))
to deduce that

Pr

[
T∑

t=1

βtn∑

i=1

Xi ≥ (ρ(Π) + η)m

]

≤ exp

(

−
(

η2

2(ρ(Π) + η)

)

m

)

.

 6 Page 32 of 42 Singer, Sudan & Velusamy cc

Finally, we assumed m ≥ nαT/2qk, so the RHS is at most

exp

(

−
(

η2αT

4(ρ(Π) + η)

)

n

)

;

then, we union bound over b ∈ [q]n to yield the desired conclusion.
�

5. Streaming indistinguishability of Y and N
In this section, we prove Lemma 3.5 establishing the streaming
indistinguishability of the distributions Y and N . This indistin-
guishability follows directly from the work of Chou et al. (2022b),
who introduce a T -player communication problem called implicit
randomized mask detection (IRMD). Once we properly situate our
instances Y and N within the framework of Chou et al. (2022b),
Lemma 3.5 follows immediately.

We first recall their definition of the IRMD problem and state
their lower bound. The following definition is based on (Chou
et al. 2022b, Definition 3.1). In Chou et al. (2022b), the IRMD
game is parametrized by two distributions DY and DN , but hard-
ness is proved for a specific pair of distributions which suffices for
our purpose; these distributions will thus be “hardcoded” into the
definition we give.

Definition 5.1. (Implicit randomized mask detection problem)
Let q, k, n, T ∈ N, α ∈ (0, 1/k) be parameters. IRMDq,k,α,T (n) is a
T -player one-way communication game. The T players are denoted
Player1, . . . ,PlayerT . The input to the players is drawn either from
a “YES distribution” or a “NO distribution”, and their collective
goal is to distinguish these two cases. Each player Playert receives

two inputs: (i) a uniform k-hypermatching G̃t ∼ Mk,α(n) on n
vertices with αn hyperedges j(t, 1), . . . , j(t, αn), and (ii) a vector

zt = (zt,1, . . . , zt,αn) ∈ ([q]k)αn labeling the k-hyperedges of G̃t.
There is also a random partition b ∼ Unif([q]n) which is hidden,
i.e., not given to the players directly. The difference between the
YES and NO distributions is in how zt is determined by G̃t and
b:

cc Streaming approximation resistance Page 33 of 42 6

◦ YES case: Each zt,i = b|j(t,i)+qyt,i where yt,i ∼ Unif({v(c) =
(c, . . . , c) : c ∈ [q]}) independently.

◦ NO case: Each zt,i = b|j(t,i) +q yt,i where yt,i ∼ Unif([q]k)
independently.

Playert sends a private message to the Playert+1 after receiving
a message from Playert−1. The goal is for PlayerT to decide whether
(zt)t∈T has been chosen from the YES or NO distribution, and
the advantage of a protocol is defined as

∣
∣
∣ Pr
YES case

[PlayerT outputs 1] − Pr
NO case

[PlayerT outputs 1]
∣
∣
∣ .

Note that the definition of the IRMD problem does not depend
on an underlying predicate (beyond fixing q and k). Nevertheless,
we will be able to leverage IRMD’s hardness to prove Lemma 3.5
(and indeed, all hardness results in (Chou et al. 2022b) itself stem
from hardness for the IRMD problem). The following theorem of
Chou et al. (2022b) gives a lower bound on the communication
complexity of the IRMD problem:

Theorem 5.2 (Chou et al. 2022b, Theorem 3.2). For every q, k ∈
N and δ ∈ (0, 1/2), α ∈ (0, 1/k), T ∈ N there exists n0 ∈ N and
τ ∈ (0, 1) such that the following holds. For all n ≥ n0, every
protocol for IRMDq,k,α,T (n) with advantage δ requires τn bits of
communication.

Now, we use this hardness result to prove Lemma 3.5. The
following proof is based on the proof of (Chou et al. 2022b, The-
orem 4.3). However, (Chou et al. 2022b, Theorem 4.3) as written
contains both the streaming-to-communication reduction and an
analysis of the CSP values of YES and NO instances; in the fol-
lowing, we reprove only the former (and adapt the language to our
setting).

Proof (Proof of Lemma 3.5). We prove the lemma for the same
α0 as in Theorem 5.2.

Suppose Alg is a s(n)-space streaming algorithm that distin-
guishes YΠ,π

q,α,T (n) from N Π
q,α,T (n) with advantage 1/8 for all lengths

 6 Page 34 of 42 Singer, Sudan & Velusamy cc

n. We now show how to use Alg to construct a protocol Prot =
(Prot1, . . . ,ProtT) (where Prott defines the behavior of the Playert)
solving IRMDq,k,α,T (n) with advantage 1/8 for n ≥ n0, which uses
only s(n) bits of communication; Theorem 5.2 provides a constant
τ ∈ (0, 1) yielding the desired contradiction if we set s(n) ≤ τn.
As is standard, this reduction will involve the players collectively
running the streaming algorithm Alg. That is, Prot is defined as
follows: For t ∈ [T − 2], Prott adds some constraints to the stream
(in a manner to be specified below) and then sends the state of Alg
on to Playert+1. Finally, ProtT terminates the streaming algorithm
and outputs the output of Alg.

Recall, Playert’s input is a pair (G̃t, zt) consisting of a hyper-

matching G̃t and a vector zt = (zt,1, . . . , zt,αn) of labels zt,i ∈ [q]k

for each hyperedge in Mt. We define Prott’s behavior as follows: It
adds each hyperedge j(i) in G̃t to the stream iff zt,i = π.

Let Y ′(n) and N ′(n) denote the distributions of Max-OCSP(Π)
instances constructed by Prot in the YES and NO cases, respec-
tively. The crucial claim is that Y ′(n) and YΠ,π

q,α,T (n) are identical

distributions, and similarly with N ′(n) and N Π
q,α,T (n). This claim

suffices to prove the lemma since the constructed stream of con-
straints is fed into Alg, which is an s(n)-space streaming algorithm
distinguishing YΠ,π

q,α,T (n) from N Π
q,α,T (n); hence, we can conclude

that Prot is a protocol for IRMD using s(n) ≤ τn bits of commu-
nication.

It remains to prove the claim. We first consider the NO case.
N ′(n) and N Π

q,α,T (n) are both sampled by independently sampling
T hypermatchings from Mk,α(n) and then (independently) select-
ing some subset of k-hyperedges from each hypermatching to add
as constraints. It suffices by independence to prove equivalence of
how the subset of each hypermatching is sampled in each case. For
each t ∈ [T], Prott adds a hyperedge j(t, i) iff zt,i = π. But in
the NO case (even conditioned on all other zt,i′ ’s, on the hidden
partition b, and on j(t, i) itself), zt,i is a uniform value in [q]k, and
hence j(t, i) is added to the instance with probability 1/qk. This is
exactly how we defined N Π

q,α,T (n) to sample constraints.

Similarly, in the YES case, we consider the sampled q-partition
b = (b1, . . . , bn) ∈ [q]n and a hyperedge j(t, i) = (j1, . . . , jk). In this

cc Streaming approximation resistance Page 35 of 42 6

case, by the definition of IRMD, we have zt,i = b|j(t,i) +q v
(c) where

c ∼ [q] is uniform and v(c) = (c, . . . , c). Hence, Prott will add j(t, i)
iff b|j(t,i) = π +q v

(c′) where c′ ∈ [q] is the unique value such that
c′ +q c = q. Consider the event E1 that there exists any c′ ∈ [q]
such that b|j(t,i) = π +q v

(c′) and the event E2 that c +q c′ = q.
Note that if E1 does not occur, then j(t, i) is never added, while if
E1 does occur, with probability 1/q over the choice of c, E2 occurs
and hence j(t, i) is added. (Again, this holds even conditioned on
all other zt,i′ ’s, on j(t, i), and on b.) This is exactly how we defined

YΠ,π
q,α,T (n) to sample constraints. �

A. Good approximations in Õ(n) space via
sparsification

In this appendix, we prove Theorem 1.3, which gives a simple
(1 − ε)-approximation algorithm for all Max-OCSP problems given

Õ(n) space. To prove Theorem 1.3, we first develop a simple sam-
pling lemma that states that sparsifying down to Ω(n log n/ε2) con-
straints preserves the value of a Max-OCSP instance up to an ad-
ditive ±ε:

Lemma A.1 (Õ(n)-space sampling lemma). Let F =
⋃

k∈N{Π :
Sk → {0, 1}} denote the (infinite) family of all ordering predicates.
For all ε > 0 and sufficiently large n, let Ψ be an instance of
Max-OCSP(F) on n variables. Let m̃ ≥ 10n log n/ε2. Consider the

random instance Ψ̃ with n variables and m̃ constraints which is
sampled by sampling each constraint independently and uniformly
from the constraints of Ψ. Then w.p. 99% over the choice of Ψ̃,
ocsp-valΨ − ε ≤ ocsp-val

˜Ψ ≤ ocsp-valΨ + ε.

Proof. First, fix an assignment σ ∈ Sn to Ψ̃. Let Eσ denote
the event that |ocsp-val

˜Ψ(σ) − ocsp-valΨ(σ)| ≥ ε. We claim that

Pr[Eσ] ≤ 2 exp(−100n log n).

Indeed, for j ∈ [m̃], let Cj denote the j-th constraint sampled when

sampling Ψ̃, and let Xj denote the indicator for the event that Cj

is satisfied by σ. So m̃ ·ocsp-val
˜Ψ(σ) =

∑m̃
i=1 Xi. Multiplying both

 6 Page 36 of 42 Singer, Sudan & Velusamy cc

sides of the desired inequality by m̃, Eσ is the event that |∑m̃
i=1 Xi−

m̃ · ocsp-valΨ(σ)| ≥ εm̃. Since Cj is a uniform constraint from Ψ,

E[Xj] = ocsp-valΨ. Since the Cj’s are sampled independently, by
the Chernoff bound (Lemma 2.2) with η = ε and p = ocsp-valΨ we
have

Pr

[∣
∣
∣
∣
∣

m̃∑

i=1

Xi − m̃ · ocsp-valΨ
∣
∣
∣
∣
∣
≥ εm̃

]

≤ 2 exp(−2ε2m̃/ocsp-valΨ)

≤ 2 exp(−2ε2m̃).

We assumed m̃ ≥ 10n log n/ε2. Therefore, the RHS is at most
2 exp(−100n log n), as desired.

Now, let E =
⋃

σ∈Sn
Eσ denote the event that Eσ occurs for any

σ ∈ Sn. To bound Pr[E], we use a union bound:

Pr[E] < 2|Sn| exp(−100n log n).

But by Stirling’s approximation (Lemma 2.3), |Sn| ≤ 3
√

n(n/e)n,
and exp(−100n log n) ≥ n−100n (since log n > ln n), so the error

probability is (3
√

n(n/e)n)(2n−100n) < 6n−99n+ 1
2 which is less than

1/100 for sufficiently large n.
Finally, we show that conditioned on E , the desired inequality

ocsp-valΨ − ε ≤ ocsp-val
˜Ψ ≤ ocsp-valΨ + ε holds. Indeed, we have

ocsp-val
˜Ψ = max

σ∈Sn

ocsp-val
˜Ψ(σ)

≤ max
σ∈Sn

(ocsp-valΨ(σ) + ε) = ocsp-valΨ + ε

and similarly for ocsp-val
˜Ψ ≥ ocsp-val − ε. �

Remark A.2. For OCSPs, the log n factor in m̃ is required be-
cause the solution space has size Ω((n/e)n) (by Stirling’s approxi-
mation) and we take a union bound over all solutions. In contrast,
for standard CSPs over an alphabet size of q, the solution space
has size only qn, and in the analogous analysis, there would only
be a log q factor in m̃.

Given Lemma A.1, we can now prove Theorem 1.3:

cc Streaming approximation resistance Page 37 of 42 6

Proof (Proof of Theorem 1.3). Let ε′ = ερ(Π)/2, and let m̃ =
�10n log n/(ε′)2�. Consider the following streaming algorithm to

sample an instance Ψ̃ on n variables and m̃ constraints: Initial-
ize a buffer (C1, . . . , Cm̃) of constraints, and then, when the i-th
constraint C of Ψ arrives, set Cj ← C with probability 1/i (other-
wise Cj remains the same) independently for each j ∈ [m̃]. After

the stream, let Ψ̃ denote the instance formed by (C1, . . . , Cm̃), and
output ocsp-val

˜Ψ − ε′.
After all constraints of Ψ arrive, each constraint Cj is an inde-

pendent, uniformly chosen constraint from Ψ, and so we can apply
Lemma A.1 to Ψ̃ to deduce that w.h.p. ocsp-valΨ−ε′ ≤ ocsp-val

˜Ψ ≤
ocsp-valΨ + ε′. Conditioning on this event, we deduce that

ocsp-valΨ − 2ε′ ≤ ocsp-val
˜Ψ ≤ ocsp-valΨ.

The LHS is

ocsp-valΨ − 2ε′ = ocsp-valΨ − ερ(Π) ≥ (1 − ε)ocsp-valΨ

since ocsp-valΨ ≥ ρ(Π), yielding the desired conclusion. �

Acknowledgements

A previous version of this paper appeared in APPROX 2021 (Singer
et al. 2021a). The results starting from that version improve on
an earlier version of the paper (Singer et al. 2021b) that gave only
Ω(

√
n) space lower bounds for all OCSPs. Our improvement to

Ω(n) space lower bounds comes by invoking the more recent re-
sults of Chou et al. (2022b), whereas our previous version used the
strongest lower bounds for CSPs that were available at the time
from an earlier work of Chou et al. (2024).7

We would like to thank the anonymous referees at Computa-
tional Complexity and APPROX for their helpful comments.

7The conference version of (Chou et al. 2024) appeared in 2021. The results
in (Chou et al. 2024) are quantitatively weaker for the problems considered
in (Chou et al. 2022b), though their results apply to a broader collection
of problems. Interestingly, for our application, which covers all OCSPs, the
narrower set of problems considered in (Chou et al. 2022b) suffices.

 6 Page 38 of 42 Singer, Sudan & Velusamy cc

n.g.s. was supported by an NSF Graduate Research Fellowship
(Award DGE2140739). Work was done in part when swa hor was
an undergraduate student at Harvard University.

m.s. was supported in part by a Simons Investigator Award and
NSF Award CCF 1715187.

s.v. was supported in part by a Google Ph.D. Fellowship, a Si-
mons Investigator Award to Madhu Sudan, and NSF Award CCF
2152413. Work was done in part when the author was an graduate
student at Harvard University.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funding Open access funding provided by Carnegie Mellon University.

References

Per Austrin, Rajsekar Manokaran & Cenny Wenner (2015).
On the NP-hardness of Approximating Ordering-Constraint Satisfac-
tion Problems. Theory of Computing 11, 257–283. Conference version
in APPROX 2013.

Amey Bhangale & Subhash Khot (2019). UG-Hardness to NP-
Hardness by Losing Half. In 34th Computational Complexity Confer-
ence (CCC 2019), volume 137 of LIPIcs. Schloss Dagstuhl — Leibniz-
Zentrum für Informatik, New Brunswick, NJ, USA, August 18-20, 2019.

http://creativecommons.org/licenses/by/4.0/

cc Streaming approximation resistance Page 39 of 42 6

Amit Chakrabarti, Prantar Ghosh, Andrew McGregor & So-

fya Vorotnikova (2020). Vertex Ordering Problems in Directed
Graph Streams. In Proceedings of the 31st Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2020), 1786–1802. Society for
Industrial and Applied Mathematics, Salt Lake City, UT, USA, Jan-
uary 5-9, 2020.

Vaggos Chatziafratis & Konstantin Makarychev (2023).
Triplet Reconstruction and All Other Phylogenetic CSPs Are Approx-
imation Resistant. In IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS 2023), 253–284. IEEE Computer Society,
Santa Cruz, CA, USA, November 6-9, 2023.

Benny Chor & Madhu Sudan (1998). A Geometric Approach to
Betweenness. SIAM Journal on Discrete Mathematics 11(4), 511–523.
Conference version in Algorithms, ESA 1995.

Chi-Ning Chou, Alexander Golovnev, Amirbehshad

Shahrasbi, Madhu Sudan & Santhoshini Velusamy (2022a).
Sketching Approximability of (Weak) Monarchy Predicates. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX 2022), Amit Chakrabarti & Chaitanya

Swamy, editors, volume 245 of LIPIcs, 35:1–35:17. Schloss Dagstuhl
— Leibniz-Zentrum für Informatik, virtual, September 19-21, 2022.

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya

Velingker & Santhoshini Velusamy (2022b). Linear Space Stream-
ing Lower Bounds for Approximating CSPs. In Proceedings of the 54th
Annual ACM Symposium on Theory of Computing (STOC 2022). As-
sociation for Computing Machinery, Rome, Italy, June 20-24, 2022.

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan & San-

thoshini Velusamy (2021). Approximability of All Boolean CSPs
with Linear Sketches. URL https://arxiv.org/abs/2102.12351v7.
Subset of results in Chou et al. (2024).

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan & San-

thoshini Velusamy (2024). Approximability of All Finite CSPs with
Linear Sketches. Journal of the ACM Just Accepted. Conference
version in FOCS 2021.

https://arxiv.org/abs/2102.12351v7

 6 Page 40 of 42 Singer, Sudan & Velusamy cc

Chi-Ning Chou, Alexander Golovnev & Santhoshini

Velusamy (2020). Optimal Streaming Approximations for All
Boolean Max-2CSPs and Max-kSAT. In 2020 IEEE 61st Annual Sym-
posium on Foundations of Computer Science (FOCS 2020), 330–341.
IEEE Computer Society, virtual, November 16-19, 2020.

Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz

& Ronald de Wolf (2008). Exponential Separation for One-Way
Quantum Communication Complexity, with Applications to Cryptog-
raphy. SIAM Journal on Computing 38(5), 1695–1708. ISSN 0097-5397.
Conference version in STOC 2007.

Venkatesan Guruswami, Johan Håstad, Rajsekar

Manokaran, Prasad Raghavendra & Moses Charikar

(2011). Beating the Random Ordering Is Hard: Every Ordering CSP
Is Approximation Resistant. SIAM Journal on Computing 40(3),
878–914. Conference version in FOCS 2008.

Venkatesan Guruswami & Runzhou Tao (2019). Streaming Hard-
ness of Unique Games. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX 2019),
Dimitris Achlioptas & László A. Végh, editors, volume 145 of
LIPIcs, 5:1–5:12. Schloss Dagstuhl — Leibniz-Zentrum für Informatik,
Cambridge, MA, USA, September 20-22, 2019.

Venkatesan Guruswami, Ameya Velingker & Santhoshini

Velusamy (2017). Streaming Complexity of Approximating Max 2CSP
and Max Acyclic Subgraph. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX
2017), Klaus Jansen, José D. P. Rolim, David Williamson &
Santosh S. Vempala, editors, volume 81 of LIPIcs, 8:1–8:19. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, Berkeley, CA, USA, Au-
gust 16-18, 2017.

Michael Kapralov, Sanjeev Khanna & Madhu Sudan (2015).
Streaming Lower Bounds for Approximating MAX-CUT. In Proceed-
ings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), 1263–1282. Society for Industrial and Applied Mathe-
matics, San Diego, CA, USA, January 4-6, 2015.

Michael Kapralov, Sanjeev Khanna, Madhu Sudan & Ameya

Velingker (2017). (1 + ω(1))-Approximation to MAX-CUT Requires

cc Streaming approximation resistance Page 41 of 42 6

Linear Space. In Proceedings of the 28th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2017), 1703–1722. Society for
Industrial and Applied Mathematics, Barcelona, Spain, January 16-19,
2017.

Michael Kapralov & Dmitry Krachun (2019). An Optimal Space
Lower Bound for Approximating MAX-CUT. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing (STOC
2019), 277–288. Association for Computing Machinery, Phoenix, AZ,
USA, June 23-26, 2019.

Richard M. Karp (1972). Reducibility among Combinatorial Prob-
lems. In Complexity of Computer Computations, R.E. Miller, J.W.

Thatcher & J.D. Bohlinger, editors, The IBM Research Symposia
Series (IRSS), 85–103. Springer.

Subhash Khot (2002). On the Power of Unique 2-Prover 1-Round
Games. In Proceedings of the 34th Annual ACM Symposium on The-
ory of Computing (STOC 2002), 767–775. Association for Computing
Machinery, Québec, Canada, May 19-21, 2002.

Dmitry Kogan & Robert Krauthgamer (2015). Sketching Cuts in
Graphs and Hypergraphs. In Proceedings of the 6th Annual Conference
on Innovations in Theoretical Computer Science (ITCS 2015), 367–376.
Association for Computing Machinery, Rehovot, Israel, January 11-13,
2015.

Alantha Newman (2000). Approximating the Maximum Acyclic Sub-
graph. Master’s thesis, Massachusetts Institute of Technology.

Jaroslav Opatrny (1979). Total Ordering Problem. SIAM Journal
on Computing 8(1), 111–114.

Raghuvansh R. Saxena, Noah Singer, Madhu Sudan & San-

thoshini Velusamy (2023a). Improved Streaming Algorithms for
Maximum Directed Cut via Smoothed Snapshots. In 63rd Annual Sym-
posium on Foundations of Computer Science (FOCS 2023), 855–870.
IEEE Computing Society, Santa Cruz, CA, USA, November 6-9, 2023.

Raghuvansh R. Saxena, Noah G. Singer, Madhu Sudan & San-

thoshini Velusamy (2023b). Streaming Complexity of CSPs with
Randomly Ordered Constraints. In Proceedings of the 2023 Annual

 6 Page 42 of 42 Singer, Sudan & Velusamy cc

ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), 4083–
4103. Society for Industrial and Applied Mathematics, Florence, Italy,
January 22-25, 2023.

Noah Singer (2022). On Streaming Approximation Algorithms for
Constraint Satisfaction Problems. Undergraduate thesis, Harvard Uni-
versity, Cambridge, MA. URL https://nrs.harvard.edu/URN-3:
HUL.INSTREPOS:37371750.

Noah Singer, Madhu Sudan & Santhoshini Velusamy (2021a).
Streaming Approximation Resistance of Every Ordering CSP. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX 2021), Mary Wootters & Laura

Sanità, editors, volume 207 of LIPIcs, 17:1–17:19. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, virtual, August 16-18, 2021.

Noah Singer, Madhu Sudan & Santhoshini Velusamy (2021b).
Streaming Approximation Resistance of Every Ordering CSP. Original
version of this paper; proved only o(

√
n) space lower bounds.

Madhu Sudan (2022). Streaming and Sketching Complexity of
CSPs: A Survey (Invited Talk). In 49th International Colloquium
on Automata, Languages, and Programming (ICALP 2022), Miko�laj

Bojańczyk, Emanuela Merelli & David P. Woodruff, editors,
volume 229 of LIPIcs, 5:1–5:20. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik, Paris, France, July 4-8, 2022.

Santhoshini Velusamy (2023). Approximability of Constraint Sat-
isfaction Problems in the Streaming Setting. Ph.D. thesis, Harvard
University, Cambridge, MA. URL https://nrs.harvard.edu/URN-3:
HUL.INSTREPOS:37377430.

Elad Verbin & Wei Yu (2011). The Streaming Complexity of Cycle
Counting, Sorting by Reversals, and Other Problems. In Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2011), 11–25. Society for Industrial and Applied Mathematics,
San Francisco, CA, USA, January 23-25, 2011.

Manuscript received 21 June 2022

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371750
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371750
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37377430
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37377430

cc Streaming approximation resistance Page 43 of 42 6

Noah G. Singer

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15232, USA
ngsinger@cs.cmu.edu
https://noahsinger.org

Madhu Sudan

School of Engineering and Applied
Sciences

Harvard University
Cambridge, MA 02138, USA
madhu@cs.harvard.edu
http://madhu.seas.harvard.edu

Santhoshini Velusamy

Toyota Technological Institute
Chicago, IL 60637, USA
santhoshini@ttic.edu
https://sites.google.com/view/

santhoshinivelusamy

	Streaming approximation resistance of every ordering CSP
	Introduction
	Orderings and constraint satisfaction problems
	Approximability
	Streaming algorithms
	Results
	Related works
	Techniques
	Special case: The intuition for MAS
	Extending to general ordering CSPs
	Further remarks

	Preliminaries and definitions
	Additional notation
	Concentration bounds
	Stirling's approximation

	The streaming space lower bound
	Distribution of hard instances
	Statement of key lemmas
	Proof of Theorem 3.1

	Bounds on Max-OCSP() values of Y and N
	CSPs and coarsening
	Y has high Max-OCSP() values
	N has low Max-OCSP() values
	N is a good SSHE with high probability: Proving Lemma 4.12
	N has low coarsened Max-CSP("3223379 q) values (w.h.p.): Proving Lemma 4.13

	Streaming indistinguishability of Y and N
	Good approximations in O"0365O(n) space via sparsification
	Acknowledgements

