
Sketching Approximability of All Finite CSPs

CHI-NING CHOU, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

ALEXANDER GOLOVNEV, Department of Computer Science, Georgetown University, Washington,

USA

MADHU SUDAN, School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

SANTHOSHINI VELUSAMY, Toyota Technological Institute, Chicago, USA

A constraint satisfaction problem (CSP),Max-CSP(F), is specified by a finite set of constraints F ⊆ {[q]k →
{0, 1}} for positive integers q and k . An instance of the problem on n variables is given bym applications of

constraints from F to subsequences of the n variables, and the goal is to find an assignment to the variables

that satisfies the maximum number of constraints. In the (γ , β)-approximation version of the problem for

parameters 0 ≤ β < γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can

be satisfied from instances where at most β fraction of the constraints can be satisfied.

In this work, we consider the approximability of this problem in the context of sketching algorithms and

give a dichotomy result. Specifically, for every family F and every β < γ , we show that either a linear sketch-

ing algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching

algorithm in o(
√
n) space. In particular, we give non-trivial approximation algorithms using polylogarithmic

space for infinitely many constraint satisfaction problems.

We also extend previously known lower bounds for general streaming algorithms to a wide variety of

problems, and in particular the case of q = k = 2, where we get a dichotomy, and the case when the satisfying

assignments of the constraints of F support a distribution on [q]k with uniform marginals.

Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed

considered the setting of Boolean variables q = 2, binary constraints k = 2, and singleton families |F | = 1

and only considered the setting where constraints are placed on literals rather than variables.

Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41],

which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases.

Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs,

with a rich collection of reductions among communication complexity problems that lie at the heart of the

negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their

results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our

techniques surprisingly allow us to get to general q-ary CSPs without negations by appealing to the same

Fourier analytic starting point over Boolean hypercubes.

C.-N. Chou is supported by NSF Awards CCF 1565264 and CNS 1618026.

M. Sudan is supported in part by a Simons Investigator Award and NSF Awards CCF 1715187 and CCF 2152413.

S. Velusamy is supported in part by a Google Ph.D. Fellowship, a Simons Investigator Award to Madhu Sudan, and NSF

Awards CCF 1715187 and CCF 2152413.

Authors’ addresses: C.-N. Chou andM. Sudan, School of Engineering and Applied Sciences, Harvard University, Cambridge,

MA, USA; e-mails: chiningchou@g.harvard.edu, madhu@cs.harvard.edu; A. Golovnev, Department of Computer Science,

Georgetown University, Washington, DC, USA; e-mail: alexgolovnev@gmail.com; S. Velusamy, Toyota Technological In-

stitute, Chicago, IL, USA; e-mail: santhoshini@ttic.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 0004-5411/2024/04-ART15

https://doi.org/10.1145/3649435

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

https://orcid.org/0000-0001-9089-2003
https://orcid.org/0000-0002-7847-1027
https://orcid.org/0000-0003-3718-6489
https://orcid.org/0000-0002-0294-5425
mailto:permissions@acm.org
https://doi.org/10.1145/3649435
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649435&domain=pdf&date_stamp=2024-04-12

15:2 C.-N. Chou et al.

CCS Concepts: • Theory of computation → Sketching and sampling; Communication complexity;

Approximation algorithms analysis;

Additional Key Words and Phrases: Streaming algorithms, communication lower bound, inapproximability,

constraint satisfaction problem

ACM Reference Format:

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. 2024. Sketching Approxima-

bility of All Finite CSPs. J. ACM 71, 2, Article 15 (April 2024), 74 pages. https://doi.org/10.1145/3649435

1 INTRODUCTION

In this article we give a complete characterization of the approximability of constraint satisfac-
tion problems (CSPs) by sketching algorithms. We describe the exact class of problems below
and give a brief history of previous work before giving our results.

1.1 CSPs

For positive integers q and k , a q-ary CSP is given by a (finite) set of constraints F ⊆ { f : [q]k →
{0, 1}}. A constraint C on x1, . . . ,xn is given by a pair (f , j), with f ∈ F and j = (j1, . . . , jk) ∈
[n]k , where the coordinates of j are all distinct.1 An assignment b ∈ [q]n satisfies C = (f , j) if
f (bj1 , . . . ,bjk) = 1. To every finite set F , we associate a maximization problem Max-CSP(F) that
is defined as follows: An instanceΨ ofMax-CSP(F) consists ofm constraintsC1, . . . ,Cm applied to
n variables x1,x2, . . . ,xn along withm non-negative integer weights w1, . . . ,wm . The value of an
assignment b ∈ [q]n on an instance Ψ = (C1, . . . ,Cm ;w1, . . . ,wm), denoted valΨ(b), is the fraction
of weight of constraints satisfied by b. The goal of the exact problem is to compute the maximum,
over all assignments, of the value of the assignment on the input instance, i.e., to compute, given
Ψ, the quantity valΨ = maxb∈[q]n {valΨ(b)}.

In this work we consider the approximation version of Max-CSP(F), which we study in terms
of the “gapped promise problems.” Specifically, given 0 ≤ β < γ ≤ 1, the (γ , β)-approximation
version of Max-CSP(F), abbreviated (γ , β)-Max-CSP(F), is the task of distinguishing between
instances from Γ = {Ψ| opt(Ψ) ≥ γ } and instances from B = {Ψ| opt(Ψ) ≤ β}. It is well known
that this distinguishability problem is a refinement of the usual study of approximation, which
usually studies the ratio of γ/β for tractable versions of (γ , β)-Max-CSP(F). See Proposition 2.5
for a formal statement in the context of streaming approximability of Max-CSP(F) problems.

1.2 Streaming Algorithms

We study the complexity of (γ , β)-Max-CSP(F) in the setting of randomized streaming algorithms.
Here, an instance Ψ = (C1, . . . ,Cm) is presented as a stream σ1,σ2, . . . ,σm , with σi = (f (i), j(i))
representing the ith constraint. We study the space required to solve the (γ , β)-approximation
version of Max-CSP(F). Specifically, we consider algorithms that are allowed to use internal ran-
domness and s bits of space. The algorithms output a single bit at the end. They are said to solve
the (γ , β)-approximation problem correctly if they output the correct answer with probability at
least 2/3 (i.e., they err with probability at most 1/3).

A sketching algorithm is a special class of a streaming algorithm, where the algorithm’s output is
determined by a small sketch it produces of the input stream, and the sketch itself has the property

1To allow repeated variables in a constraint, note that one can turn F into F′ by introducing new functions corresponding

to all the possible replications of variables of functions in F.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

https://doi.org/10.1145/3649435

Sketching Approximability of All Finite CSPs 15:3

that the sketch of the concatenation of two streams can be computed from the sketches of the two
component streams. (See Definition 2.3 for a formal definition.)

For over a decade now, there has been active research on designing streaming and sketching
algorithms for combinatorial optimization problems in various settings. See, for example:

— [6, 7, 10–12, 14, 15, 18, 20, 24, 33, 44, 47, 54, 57, 58] for results in the single-pass setting, where
the algorithm is allowed only a single pass through the stream;

— [4, 9, 13, 16, 17, 30–32, 61] for results onmulti-pass streaming algorithms, which are allowed
a constant number of passes through the stream; and

— [5, 8, 19, 34, 55, 56] for results in the random-ordering setting, where the input is randomly
shuffled in the stream.

We primarily focus on single-pass streaming algorithms, and our main dividing line is between
algorithms that work with space poly(logn) versus algorithms that require space at least nε for
some ε > 0. In informal usage we refer to a streaming problem as “easy” if it can be solved with
polylogarithmic space (the former setting) and “hard” if it requires polynomial space for sketching
algorithms. We note that all the positive results (algorithms) given in this article are linear sketch-
ing algorithms, which are more restrictive than general sketching algorithms. We also note that
many of our lower bounds work against general streaming algorithms, and we elaborate on this
in Section 1.4.

1.3 Past Work

To our knowledge, streaming algorithms for CSPs have not been investigated extensively. Here
we cover the few results we are aware of, all of which consider only the Boolean (q = 2) setting.
On the positive side, it may be surprising that there exists any non-trivial algorithm at all. (Briefly,
we say that an algorithm that outputs a constant value independent of the input is “trivial.”)

It turns out that there do exist some non-trivial approximation algorithms for Boolean CSPs.
This was established by the work of Guruswami et al. [47], who, in our notation, gave an algorithm
for the (γ , 2γ/5 − ε)-approximation version of Max-2AND, for every γ ∈ [0, 1] (Max-2AND is the
Max-CSP(F) problem corresponding to F = { fc,d |c,d ∈ {0, 1}}, where fc,d (a,b) = 1 if a = c
and b = d and fc,d (a,b) = 0 otherwise). A central ingredient in their algorithm is the ability
of streaming algorithms to approximate the �1 norm of a vector in the turnstile setting, which
allows them to estimate the “bias” of n variables (how often they occur positively in constraints,
as opposed to negatively). Subsequently, the work of Chou et al. [41] further established the utility
of such algorithms, which we refer to as bias-based algorithms, by giving optimal algorithms for
all Boolean CSPs on two variables. In particular, they give a better (optimal!) analysis of bias-based
algorithms for Max-2AND and show that Max-2SAT also has an optimal algorithm based on bias.

On the negative side, the problem that has been explored the most is Max-CUT, or in our
language Max-2XOR, which corresponds to F = { f } and f (x ,y) = x ⊕ y. Kapralov et al. [56]
showed that Max-2XOR does not have a (1, 1/2 + ε)-approximation algorithm using o(

√
n)-space,

for any ε > 0. This was subsequently improved upon by Kapralov et al. [57] and Kapralov and
Krachun [58]. The final paper [58] completely resolves Max-CUT showing that (1, 1/2 + ε)-
approximation for these problems requires Ω(n) space. Turning to other problems, the work by
[47] notices that the (1, 1/2 + ε)-inapproximability of Max-2XOR immediately yields (1, 1/2 + ε)-
inapproximability ofMax-2AND as well. In [41] more sophisticated reductions are used to improve
the inapproximability result for Max-2AND to a (γ , 4γ/9 + ε)-inapproximability for some positive
γ , which turns out to be the optimal ratio by their algorithm and analysis. As noted earlier, their

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:4 C.-N. Chou et al.

work gives algorithms for Max-CSP(F) for all F ⊆ { f : {0, 1}2 → {0, 1}},2 which are optimal if
F is closed under literals (i.e., if f (x ,y) ∈ F , then so are the functions f (¬x ,y) and f (¬x ,¬y)).

1.4 Results

Our main theorem is a decidable dichotomy theorem for (γ , β)-Max-CSP(F) with sketching
algorithms.

Theorem 1.1 (Succinct Version). For every q,k ∈ N, 0 ≤ β < γ ≤ 1 and F ⊆ { f : [q]k →
{0, 1}}, one of the following two conditions holds: Either (γ , β)-Max-CSP(F) can be solved with

O(log3 n) space by linear sketches or, for every ε > 0, every sketching algorithm for (γ − ε, β + ε)-
Max-CSP(F) requires Ω(

√
n)-space. Furthermore, there is a polynomial space algorithm that decides

which of the two conditions holds, given γ , β , and F .

Theorem 1.1 combines the more detailed Theorem 3.3 with the polynomial space decidability
coming from Theorem 3.4.

The first-order message of the theorem statement is that the known non-trivial approximation
algorithms for streaming CSPs (i.e., the algorithms for Max-2AND and Max-2SAT from [36]) can
potentially be extended to infinitely many problems. To confirm this potential, one needs to be
able to identify an infinite subclass of CSPs for which the decidability condition for non-trivial
(γ , β) pairs can be analytically shown to be “solvable in polylog space.” While we do not find such
explicit families in this article, subsequent work has succeeded in getting such an analysis [26,
39]. We elaborate further on this in Section 1.7 but note that the subsequent work [26] shows
that Max-kAND (the generalization of Max-2AND to k literals) for every k ∈ N has non-trivial
approximation algorithms, thereby confirming this potential! We believe this in itself may be a
surprising result to some given that the bias-based algorithms and their analysis did appear tailored
to the structure of Max-2AND and Max-2SAT.

The next main message is that when the class of algorithms we use cannot be used to solve a
(γ , β)-approximation problem, then there is an inherent hurdle and no sketching-based algorithm
can work. Indeed, in many cases our results rule out completely general streaming algorithms,
though we do not get a dichotomy for general streaming.

Finally, we highlight some of the descriptive strengths of the class of problems captured by
Theorem 1.1 above; we note that previous works could only handle the special case where (1) F
contains a single function f , (2) q = 2, (3) constraints are placed on “literals” rather than vari-
ables, and (4) they only capture a single-parameter approximation problem, not the more refined
two-parameter (“gapped”) version considered in this work. The difference in expressivity due to
conditions (1) through (3) is significant: To capture a problem such as Max-3SAT, one needs to
go beyond restriction (1) to allow different constraints for clauses of length 1, 2, and 3. This is
a quantitatively significant restriction in that the approximability in this case is “smaller” than
that of Max-CSP(f) for any of the constituent functions. So hard instances do involve a mix of
constraints! The lack of expressiveness induced by the second restriction of Boolean variables is
perhaps more obvious. Natural examples of CSPs that require larger alphabets areMax-q-Coloring
andUniqueGames. Next we turn to restriction (3)—the inability to capture CSP problems over vari-
ables. This restriction prevents previous works from capturing some very basic problems including
Max-CUT and Max-DICUT. Furthermore, the notion of “literals” is natural only in the setting of
Boolean variables—so overcoming this restriction seems crucial to eliminating the restriction of
the Booleanity of the variables. Notice that while for families with a single function F = { f },

2Note that whenq = 2, we switch to using {0, 1} or {−1, 1} as the domain (as opposed to {1, 2}) depending on convenience.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:5

going from constraints on literals to constraints on variables does not lead to greater expressiv-
ity, once we study Max-CSP(F) for all sets F , the study does get formally richer. Finally, the
two-parameter versions allow us to also understand the approximability of satisfiable and nearly
satisfiable instances of Max-CSP, a quest that is quite common in the literature. (See, for instance,
the works on robust satisfiability [22, 42, 63].)

In particular, Theorem 1.1 allows us also to capture the extreme case of hard problems where
no “non-trivial” algorithms exist. Such problems are usually referred to as approximation-resistant
problems. In the study of Boolean CSPs, with constraints placed on literals, “non-triviality” is de-
fined as “beating a random assignment,” and approximation resistance in the setting of polynomial
time algorithms is a well-studied topic [21, 45, 48]. Extending the definition to the setting where
constraints are placed on variables rather than literals requires some thought. We propose a defi-
nition in this article (see Definition 3.5) that uses the notion that algorithms outputting a constant
value are trivial, and a problem is approximation resistant if beating this trivial algorithm is hard.
Specifically, F is said to be approximation resistant if for every β < γ either (γ , β)-Max-CSP(F)
is solved by a “constant function” or it requires nΩ(1) space. We then show how Theorem 1.1 (or
its more detailed version Theorem 3.3) leads to a characterization of approximation resistance in
the streaming setting as well. (See Theorem 3.8.)

As mentioned earlier, the results above (and in particular the negative results) apply only to
sketching algorithms for streaming CSPs. For a general streaming algorithm, we get some partial
results. To describe our next result, we define the notion of a function supporting a one-wise in-
dependent distribution. We say that f supports one-wise independence if there exists a distribution
D supported on f −1(1) whose marginals are uniform on [q]. We say that F supports one-wise
independence if every f ∈ F supports one-wise independence.

Theorem 1.2 (Informal). If F ⊆ { f : [q]k → {0, 1}} supports one-wise independence, then it is
approximation resistant in the streaming setting.

Theorem 1.2 is formalized as Theorem 3.12 in Section 3.3.2. We also give theorems capturing
hardness in the streaming setting beyond the one-wise independent case. Stating the full theorem
requires more notions (see Section 3.3.2), but as a consequence we get the following extension of
theorem of [41].

Theorem 1.3. Let q = k = 2. Then, for every family F ⊆ { f : [q]2 → {0, 1}}, and for every
0 ≤ β < γ ≤ 1, at least one of the following always holds:

(1) (γ , β)-Max-CSP(F) has an O(log3 n)-space linear sketching algorithm.
(2) For every ε > 0, every streaming algorithm that solves (γ − ε, β + ε)-Max-CSP(F) requires

Ω(
√
n) space. If γ = 1, then (1, β + ε)-Max-CSP(F) requires Ω(

√
n) space.

Furthermore, for every � ∈ N, there is an algorithm using space poly(�) that decides which of the two
conditions holds given the truth-tables of functions in F , and γ and β as �-bit rationals.

Theorem 1.3 is proved in Section 3.3.2. [41] study the setting where constraints are applied to
literals and F contains a single function and get a tight characterization of the approximability of
Max-CSP(F).3

Our work extends theirs by allowing constraints to be applied only to variables, by allowing
families of constraint functions, and by determining the complexity of every (γ , β)-Max-CSP(F)
(and not just studying the optimal ratio of β/γ).

3By approximability of Max-CSP(F) we refer to the quantity infβ supγ {{β/γ }} over polylog space solvable (γ , β)-
Max-CSP(F) problems.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:6 C.-N. Chou et al.

For the sake of completeness we also give a simple characterization of the Max-CSP(F) prob-
lems that are solvable exactly in polylogarithmic space.

Theorem 1.4 (Succinct Version). For every q,k ∈ N and F ⊆ { f : [q]k → {0, 1}}, the
Max-CSP(F) problem is solvable exactly in deterministic logarithmic space if and only if there is a
constant σ ∈ [q] such that every satisfiable function in F is satisfied by the all σ -assignment. All
remaining families F require Ω(n) space to solve exactly.

The proof of this theorem is by elementary reductions from standard communication complexity
problems and is included in Section 9.

This version: This version of the article subsumes the works [36–38]. The paper [36], now with-
drawn, claimed a restriction of Theorem 1.1 in the streaming setting, but that version had an error
and the status of Theorem 1.1 in [36] is currently open. [37] proves the results of this article for
the special cases of F = { f }, q = 2 and constraints being applied to literals rather than vari-
ables. [38] essentially contains the same results as this article but builds upon [37]. The conference
version of [38] appeared in the proceedings of FOCS 2021 [35]. This article combines [37] and [38].

1.5 Contrast with Dichotomies in the Polynomial Time Setting

The literature on polynomial time dichotomies ofMax-CSP(f) problems is vast. One broad family
of results here [27, 71, 76] considers the exact satisfiability problems (corresponding to distin-
guishing between instances from {Ψ| opt(Ψ) = 1} and instances from {Ψ| opt(Ψ) < 1}). Another
family of results [21, 60, 67] considers the approximation versions of Max-CSP(f) and gets “near
dichotomies” along the lines of this article—i.e., they either show that the (γ , β)-approximation is
easy (in polynomial time) or, for every ε > 0, the (γ − ε, β + ε)-approximation version is hard (in
some appropriate sense). Our work resembles the latter series of works both in terms of the nature
of results obtained and the kinds of characterizations used to describe the “easy” and “hard” classes
and in the proof approaches (though of course the sketching setting is much easier to analyze, al-
lowing for simpler proofs overall and unconditional results). We summarize their results, giving
comparisons to our theorem, and then describe a principal contrast.

In a seminal work, Raghavendra [67] gave a characterization of the polynomial time approxima-
bility of theMax-CSP(f) problems based on the unique games conjecture [59]. Our Theorem 1.1 is
analogous to his theorem. A characterization of approximation-resistant functions is given by Khot
et al. [60]. Our Theorem 1.2 is analogous to this. Austrin and Mossel [21] show that all functions
supporting a pairwise independent distribution are approximation resistant. Our Theorem 3.12 is
analogous to this theorem.

While our results run in parallel to the work on polynomial time approximability, our charac-
terizations are not immediately comparable. Indeed, there are some significant differences, which
we highlight below. Of course there is the obvious difference that our negative results are un-
conditional (and not predicated on a complexity theoretic assumption like the unique games con-
jecture or P�NP). But more significantly our characterization is a bit more “explicit” than those
of [67] and [60]. In particular, the former only shows decidability of the problem, which takes
ε as an input (in addition to γ , β, and f) and distinguishes (γ , β)-approximable problems from
(γ − ε, β + ε)-inapproximable problems. The running time of their decision procedure grows with
1/ε . In contrast, our distinguishability is sharper and separates (γ , β)-approximability from “∀ε > 0,
(γ − ε, β + ε)-inapproximability,” so our algorithm does not require ε as an input—it merely takes
γ , β, and f as input. Indeed, this difference is key to the understanding of approximation resistance.
Due to the stronger form of our main theorem (Theorem 1.1), our characterization of streaming

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:7

approximation resistance is explicit (decidable in PSPACE), whereas a decidable characterization
of approximation resistance in the polynomial time setting seems to be still open.

Our characterizations also seem to differ from the previous versions in terms of the features
being exploited to distinguish the two classes. This leads to some strange gaps in our knowledge.
For instance, it would be natural to suspect that (conditional) inapproximability in the polynomial
time setting should also lead to (unconditional) inapproximability in the streaming setting. But we
do not have a formal theorem proving this. (Of course, if this were false, it would be a breakthrough
result, giving a quasi-polynomial time (even polylog space) algorithm for the unique games!)

1.6 Overview of Our Analysis

At the heart of our characterization is a family of linear sketching algorithms for Max-CSP(F).
We will describe this family soon, but the main idea of our proof is that if no algorithm in this
family solves (γ , β)-Max-CSP(F), then we can extract a pair of instances, roughly a family of
γ -satisfiable “yes” instances and a family of at most β-satisfiable “no” instances, that certify this
inability. We then show how this pair of instances can be exploited as gadgets in a negative result.
Up to this part, our approach resembles that in [67] (though of course, all the steps are quite
different). The main difference is that we are able to use the structure of the algorithm and the
lower bound construction to show that we can afford to consider only instances on k variables.
(This step involves a non-trivial choice of definitions that we elaborate on shortly.) This bound
on the number of variables allows us to get a “decidable” separation between approximable and
inapproximable problems. Specifically, we show that the distinction between the approximable
setting and the inapproximable one can be expressed by a quantified formula over the reals with
a constant number of quantifiers over 2k variables and equations—a problem that is known to be
solvable in PSPACE. We givemore details below. To simplify the discussionwe consider a singleton
function family F = { f }. Extending to multiple functions is not much harder (though as stressed
by the Max-3SAT example, this is not trivial either). We start by giving some intuition into our
framework before actually describing the framework. We remark that while this intuition may be
helpful, it is not necessary for any of our proofs.

Intuition. Our starting point is the belief that streaming algorithms working with polylogarith-
mic space can essentially extract the “bias profile” of an instance, while algorithms with much
more (specifically o(

√
n)) space cannot do much more. Here, by bias profile of an instance Φ on n

variables, we mean the n × k matrix B = B(Φ), with Bi, j representing the fraction of constraints
of Φ that have xi as the jth variable. If our belief were to be true, then the only obstacle to de-
ciding (γ , β)-Max-CSP(f) in o(

√
n) space would be two instances ΦY and ΦN on the same set of

variables with val(ΦY) ≥ γ and val(ΦN) ≤ β while the instances have the same bias profile, i.e.,
B(ΦY) = B(ΦN).

To convert our belief into a proof of Theorem 1.1, we need to do three things: (1) Given γ , β,
and f , show that the existence of such a pair of instances ΦY and ΦN can be decided (in finite
time); (2) show that if no pair of such instances exist, then (γ , β)-Max-CSP(f) can be decided by a
polylogarithmic space sketching algorithm; and (3) if such a pair of instances exists, then no o(

√
n)

space sketching algorithm can solve (γ , β)-Max-CSP(f).
While step (3) ends up taking most of the technical work in this article, it is also perhaps the

most believable. Roughly hard instances of arbitrary length can be extracted from ΦY and ΦN by
doing “random lifts”; i.e., creating many copies of each variable in ΦY and applying constraints
randomly among these copies according to ΦY or ΦN roughly preserves the values; and the fact
that the bias profiles match can be converted into a hardness result for sketching algorithms using
communication complexity-based arguments. We expand on this more below.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:8 C.-N. Chou et al.

The less believable steps (in our estimate) are steps (1) and (2), and it turns out that understand-
ing the challenge in (1) better leads to a solution to both steps. The challenge behind (1) is of course
the fact that a priori the number of variables in ΦY or ΦN cannot be bounded and so there is no
finite upper bound on the time it would take to decide their existence. The key to resolving this is
the fact (that we will argue below) that the information contained inΦY andΦN can be compressed
into smaller instances on kq variables.

To establish this, let us suppose (without loss of generality) that ΦY and ΦN are instances on
n × q variables {Xi,σ }i ∈[n],σ ∈[q]. Further suppose the assignment that establishes val(ΦY) ≥ γ is

the assignment ai,σ = σ . For permutations π1, . . . ,πq : [n] → [n], let Φπ1, ...,πq
Y

be a copy of ΦY

with variables renamed to {Xπσ (i),σ }. Similarly define Φ
π1, ...,πq
N

. Note that renaming the variables
preserves the values and the bias profiles still match, and furthermore the assignment that yields

a value of γ to Φ
π1, ...,πq
Y

is still ai,σ = σ . Thus, if we now consider the instances Φ̃Y obtained by

concatenating all the constraints of Φ
π1, ...,πq
Y

over all choices of π1, . . . ,πq , and similarly define

Φ̃N , then the resulting instances still have matching bias profiles and they still satisfy val(Φ̃Y) ≥ γ

and val(Φ̃Y) ≤ β . The gain with all these transformations is that Φ̃Y and Φ̃N are very symmetric
instances with only q equivalence classes of variables (as opposed to n general variables). And a
random constraint just picks a uniform variable from an equivalence class, conditioned on picking
a variable from that class, in any given position. (Recall that by our assumption, every constraint is

applied on k distinct variables.) Thus, the instances Φ̃Y and Φ̃N are effectively given by a distribu-
tion supported on [q]k , where the probability of (σ1, . . . ,σk)measures the frequency of constraints
on k-tuples of variables of the form (X∗,σ1 , . . . ,X∗,σk).

Thus, the instances revealing the gap between γ and β are finitely specified (or at least are
distributions over a finite space), but it is still unclear how to search for (specifications of) such
instances of value at least γ or at most β . To address this challenge one may try to reduce the

entire instance Φ̃Y into an “equivalent” instance on just q variables (by replacing all variables Xi,σ

for i ∈ [n] with a single variable Zi), but this may result in constraints where all variables are
not distinct. To exclude this possibility we replace the collection of variables Xi,σ with k variables

Z�,σ for � ∈ [k] and now compress Φ̃Y by replacing all occurrences of Xi,σ as the �th variable in
a constraint with Z�,σ . This leads to a compressed instance Φ′

Y on just kq variables. We can do a

similar reductionwith Φ̃N to get an instanceΦ′
N . These resulting instances also havematching bias

profiles. The reduction in the variables ensures val(Φ′
Y) ≥ γ since the assignment Z�,σ = σ still

satisfies a γ fraction of the constraints. However, it is no longer true that val(Φ′
N) ≤ β . This is so

since the assignment to a variable Yi,σ might depend on i , which was not a possibility considered

when bounding val(Φ̃N). What we would like at this stage is a succinct way to capture the fact

that if we try to reverse engineer Φ̃N from Φ′
N , then we would have val(Φ̃N) ≤ β . It turns out one

succinct way to capture this is to consider only those distributions on assignments to the variables
Z�,σ that are independent across variables and furthermore the distributions of Z�,σ and Z�′,σ are
identical. If we require that Φ′

N has value at most β in expectation over all such distributions of

assignments to its variables, then we effectively capture the constraint val(Φ̃N) ≤ β .
Thus, the search for instances ΦY and ΦN can be reduced to a search for instances Φ′

Y and Φ′
N

on just kq variables whose bias profiles must match and whose values satisfy some constraints.
Since the marginals of distributions supported on [q]k are captured by vectors in [0, 1]kq ⊆ Rkq ,
we get that the space of marginals of all yes instances (of the special type we care about) is given
by a subset of points in Rkq , which we denote KY

γ (F). Similarly, the space of the marginals of the

no instances is also a subset of Rkq , denoted KN
β
(F). It turns out these sets are bounded, closed,

and convex and actually described by some polynomial conditions. Thus, solving step (1) reduces

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:9

to the task of determining if KY
γ (F) and KN

β
(F) intersect. And when they do not intersect, the

separating hyperplane gives us a clue on how to solve the problem from step (2), i.e., how to solve
(γ , β)-Max-CSP(F) with polylogarithmic space.

To show that this framework works, we need to explain what our algorithms are, why they
lead to these special instances when they fail, and how to use the failure of the algorithms (or
equivalently the intersection ofKY

γ (F) andKN
β
(F)) to get the hardness of (γ , β)-Max-CSP(F). We

attempt to explain this below.

Bias-based algorithms. The class of algorithms we use are what we call “bias-based algorithms,”
which extend algorithms used forMax-DICUT and other problems in [41, 47]. Roughly, these algo-
rithms work by inspecting constraints one at a time and (linearly) updating the “preference/bias”
of variables involved in the constraint for a given assignment. This update depends on the loca-
tion of the variable within the constraint (and if there are multiple functions in the family, also
on the function itself). Thus, implicitly these algorithms maintain an n-dimensional bias vector
and at the end use some property of this vector to estimate a lower bound on the value of the
instance. If this property is computable efficiently in the turnstile streaming model, then this leads
to a space-efficient streaming algorithm.

The key questions for us are: (1) How to update the bias? and (2) What property of the vector
yields a lower bound? When dealing with specific functions as in previous papers, there are some
natural candidates for bias, and the most natural one turns out to be both useful and computable
efficiently using �1 norm estimators. For the property, one has to devise a “rounding scheme” that
takes the bias vector and uses it to create an assignment that achieves a large value (or value related
to the property being estimated).

In our case, obviously “inspection” of natural candidates will not work for item (1)—we have
infinitely many problems to inspect. But it turns out that the convex set framework, somewhat
surprisingly, completely solves both parts (1) and (2) for us. If KY

γ (F) and KN
β
(F) do not intersect,

then there is a linear separator in Rkq separating the two sets and the coefficients of this separator
are interpretable as giving kq “biases”—for i ∈ [k] and σ ∈ [k] the (i,σ)-th coefficient can be
viewed as the bias/preference of the ith variable in a constraint for taking the assignment σ ∈ [q].
This gives us an n×q bias matrix at the end that captures all the biases of variables from the whole
instance. Turning to (2), a natural property to consider at this stage is the one-infinity norm of
this matrix (i.e., the �1 norm of the n-dimensional vector whose coordinates are the �∞ norms of
the rows of the bias matrix). Informally, this corresponds to each variable acting independently
according to its bias. It turns out this norm is one of many that is known to be computable with
small space in the turnstile streaming setting, and in particular we use a result of Andoni et al. [3] to
compute this. Finally, we need a relationship between this property and a lower bound on the value,
and once again the fact that the bias came from a separating hyperplane (and the exact definition
of the sets in the convex set framework) allows us to distinguish instances with value at least γ
from instances of value at most β . (Note that these constants are already baked into our sets and
hence the separating hyperplane.) We remark that we do not give an explicit rounding procedure
for our approximation algorithm, though one can probably be extracted from the definitions of the
convex sets and analyses of the correctness of our algorithms.

Lower bounds. Finally, we turn to the lower bounds. Once again we restrict our overview to
the setting of |F | = 1 for simplicity. Both our lower bounds for sketching algorithms and for
general streaming algorithms have a common starting point. Recall we are given that there are
two distributions DY and DN on constraints that have the same one-wise marginals, and these
can be viewed as distributions on [q]k .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:10 C.-N. Chou et al.

For every pair of such distributions DY and DN in [q]k we define a two-player communication
problem we call (DY ,DN)-signal detection (SD). (So in effect these are infinitely many different
communication problems, roughly corresponding to the infinitely many different Max-CSP(F)
problems we wish to analyze.) We show that if DY and DN have the same marginals, then the
communication problem requires Ω(

√
n) communication. We give further details below but now

explain the path from this communication lower bound to the streaming lower bounds. To get
these lower bounds, we convert our SD lower bound into lower bounds on someT -players games,
for all large constants T . Instances of the T -player games immediately correspond to instances
of Max-CSP(F) and furthermore the properties of the sets KY

γ (F) and KN
β
(F) translate into the

value of these Max-CSP(F) instances.
Turning to the T -player games: In the lower bound for sketching algorithms, we first convert

the SD lower bound into a lower bound on a T -player simultaneous communication game. This
conversion is relatively standard in the streaming literature [12, 49, 53, 62]: Reduce the two-player
communication game to the T -player communication game by letting Bob play the role of one of
the players and Alice play the role of the remaining T − 1 players. By turning a sketching algo-
rithm into a protocol for the communication game, we can get a space

√
n lower bound for every

(γ , β)-Max-CSP(F) against any sketching algorithms whenever the corresponding KY and KN

intersect. (See Theorem 5.1.) For the hardness result in the streaming setting, the lower bound on
the simultaneous communication problem no longer suffices. So here we craft our own reduction
to a T -player one-way communication problem, which reduces in turn to (γ , β)-Max-CSP(F) in
the streaming setting. (This step follows the same path as [41, 56].) Unfortunately, this step works
only in some restricted cases (for instance, if DN is the uniform distribution on [q]k), and this
yields our lower bound (Theorem 3.12) in the streaming setting.

We now turn to our family of communication problems (SD), which is a distributional one-
way communication problem. In the (DY ,DN)-SD problem with length parameter n, Alice gets
a random string x∗ ∈ [q]n and Bob gets a hypermatching J = (j(1), . . . , j(m)) withm = αn edges
(where α > 0 is a constant of our choice independent of n). In other words, j(i) is a sequence of k
distinct elements of [n] and furthermore j(i) and j(i ′) are disjoint for every i � i ′ ∈ [m]. In addition,
Bob also getsm bits z = (z(1), . . . , z(m)), where z(i) is obtained by sampling b(i) ∼ DY in the YES
case (and b(i) ∼ DN in the NO case) independently for i ∈ [m] and letting z(i) = 1 iff x∗ |j(i) = b(i).
The goal of the communication problem is for Alice to send a message to Bob that allows Bob to
guess whether this is a YES instance or a NO instance. The minimum length (over all protocols
solving SD) of Alice’s message is the complexity of the (DY ,DN)-SD. It is straightforward from
the definition to get a ODY ,DN ,α (1)-bit communication protocol achieving constant advantage if
DY andDN do not have the samemarginals. Our lower bound shows that whenever the marginals
match, the communication is at least Ω(

√
n). (It is again straightforward to show distributions with

matching marginals where O(
√
n) bits of communication suffice to distinguish the two cases.)

Before giving some details on our lower bound proof of the SD problem, we briefly give some
context to the problem itself. We note that our communication game is different from those in
previous works: Specifically the problem studied in [43, 56] is called the Boolean Hidden Match-

ing (BHM) problem from [43] and the works [57, 58] study a variant called the Implicit Hidden
Partition problem. While these problems are similar, they are less expressive than our formulation,
and specifically do not seem to capture allMax-CSP(F) problems. We note that the BHM problem
is essentially well suited only for the setting k = q = 2. In particular, the definition and analysis
of BHM relies on the Fourier analysis over Fq . Increasing k leads to several possible extensions
that seemmore naturally suited to CSPs on literals rather than variables. And increasing q leads to
further complications since we do not have a natural field to work with. Thus, the choice of SD is

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:11

made carefully to allow both expressibility (we need to capture all Max-CSP(F)s) and the ability
to prove lower bounds.

Turning to our lower bound, it comes in two major steps. In the first step we resort to a different
communication problem that we call the “RandomizedMask Detection Problemwith advice”
(Advice-RMD). In this problem, defined only for q = 2, Alice and Bob are given more information
than in SD. Specifically, Alice is given as “advice” a partition of [n] into k parts with the promise
that the �th variable in every constraint is from the �th part for every � ∈ [k]. And Bob is given
the vectors (z(1), . . . , z(m)), where z(i) = x∗ |j(i) ⊕ b(i) for i ∈ [m]. This problem is closest both in
definition and in analyzability to the previous problems. Indeed, we are able to extend previous
Fourier-analytic lower bounds, in the special case where the marginals ofDY andDN over {−1, 1}
are uniform, to give an Ω(

√
n) lower bound on the communication complexity of this problem.

(See Theorem 6.2.) This immediately yields a hardness of the SD problem when DY and DN are
distributions over {−1, 1}k with uniform marginals, but we need more.

To extend the lower bound to all q and to non-uniform marginals, we use more combinato-
rial methods. Specifically, we show that we can move DY to DN in a series of steps DY =

D1, . . . ,DL = DN , where for every i , the difference between Di and Di+1 is “captured” (in a
sense we do not elaborate here) by two distributions with uniform marginals over {a,b}k for
some a,b ∈ [q]. We refer to each of these L steps as a “polarization step.” Showing that L, the
number of polarization steps, is finite leads to an interesting problem we solve in Section 7.1. (The
bound depends on q and k but not DY ,DN ,α , or n. We remark that any dependence on the first
three would have been fine for our application.) Finally we show that the lower bound on the
Advice-RMDmentioned above, in the Boolean uniform marginal setting, suffices to show that the
(Di ,Di+1)-SD problem also requires Ω(

√
n) communication. (See Theorems 6.4 and 7.4.) By a tri-

angle inequality it follows that (DY ,DN)-SD requires Ω(
√
n) communication. (See Theorem 5.4.)

1.7 Subsequent Results

Subsequent to the first announcement of this work, several follow-up results have extended and
strengthened the results of this article. We report on some of these below.

Explicit Families of Easy and Hard Problems. One of the main drawbacks of our result in Theo-
rem 1.1 is that the decision criterion is not completely explicit. This is of course natural given the
richness of the class of problems, but it is still natural to ask whether there are some clean families
of problems that can be shown to be non-trivially approximable or not by further analyzing the
tractability condition. Two subsequent works have addressed this question for infinite classes of
problems, and we report on these below.

One class of works by the authors with Shahrasbi [39] explores the “monarchy” and “weak
monarchy” predicates. The monarchy predicate is the function fmonarchy : {−1, 1}k → {0, 1} given
by f (x1, . . . ,xk) = sign((k − 2)x1 +

∑k
i=2 xi). In other words, fmonarchy(x) = 1 if x1 = 1 and at least

one other xi is 1, or if x2 = · · · = xk = 1. The monarchy family Fmonarchy is given by applying

the monarchy predicate to literals, i.e., Fmonarchy = { f b
monarchy

|b ∈ {−1, 1}k }, where f b
monarchy

(x) =
fmonarchy(x
 b). The monarchy CSP (Max-CSP(F)monarchy) is known to be approximable in the
polynomial time setting for every k [66]. In contrast, their work [39] shows that for k ≥ 5, the
monarchy CSP is approximation resistant in the sketching setting. This is of particular interest
since this is a family that is not one-wise independent but remains approximation resistant in
the sketching setting. The approximation resistance of this class for general streaming algorithms
remains open. [39] also explores weakmonarchy CSPs, i.e., CSPs on functions of the form fk, j (x) =
sign(jx1 +

∑k
i=2 xi) applied to literals. They show that for every j for all sufficiently large k, the

weak monarchy CSP based on fk, j (x) is non-trivially approximable in the sketching setting.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:12 C.-N. Chou et al.

Another work deriving explicit bounds for infinite families is due to Boyland et al. [26]. They
derive the exact form of the optimal sketching approximation ratios for several symmetric Boolean

CSPs including Max-kAND and Thk−1
k

(the “weight-at-least-(k − 1)” threshold function on k vari-
ables). In both cases they show that there are non-trivial approximation algorithms, thus establish-
ing infinitely many problems for which the exact approximation ratio can be determined using
(and further analyzing) our framework. (As an example they show that the approximation ratio
for Max-kAND is exactly 2−(k−1)(1 − k−2)(k−1)/2 for odd k ≥ 3 for sketching algorithms.) Their
work further analyzes our streaming lower bound in Theorem 3.10 and shows that for the thresh-
old function Th3

4, our streaming and sketching lower boundsmatch. (This is analogous to our result
for Max-DICUT in Section 3.4.)

o(n)-Space algorithms. In a work of the authors with Velingker [40], the space lower bound
in Theorem 3.12 is improved to Ω(n) for a subclass of function families that support one-wise
independence. In particular, they show that the subclass they consider is approximation resis-
tant with respect to o(n)-space streaming algorithms. We do not describe the exact subclass here
but mention that it suffices for them to get an “approximate” classification of all approximation
problems, Namely, for every given γ , β, and F over a q-ary alphabet, they show that either
(γ , β)-Max-CSP(F) is trivial or (γ/q, β)-Max-CSP(F) requires Ω(n) space to solve. Their work
suggests some inherent barriers in extending the full classification of the problems considered
in the current article to o(n)-space algorithms. This was later confirmed in a work of Saxena

et al. [70] where they give an Õ(
√
n) space algorithm for Max-DICUT that beats the best o(

√
n)

space algorithm. Singer [74] partially extends this result to obtain an O(n1−1/k) space algorithm
for Max-kAND that beats the optimal o(

√
n) space algorithm on “bounded-degree” instances.

Random-ordering streaming setting. While Kapralov et al. [56] show thatMax-CUT is inapprox-
imable by o(

√
n) space streaming algorithms even in the random-ordering setting, Saxena et al. [69]

give anO(logn) space streaming algorithm in this setting that beats the optimal o(
√
n) space algo-

rithm forMax-DICUT in the adversarial-ordering setting. Singer [74] extends this result to obtain
O(logn) space random-order streaming algorithms that beat the best o(

√
n) space adversarial-order

algorithms for Max-kAND, for all k!

Multi-pass streaming setting. The random-order streaming algorithms in [69, 74] can be trivially
extended to obtainO(logn) space two-pass adversarial-order streaming algorithms with the same
approximation ratio. A recent result due to Kol et al. [61] gives a complete characterization for
the exact computability of every Boolean Max-CSP(f) in the multi-pass streaming setting and
subsumes our Theorem 1.4 for this family. In particular, for every Boolean predicate f , they give an

Õ(ndeg(f)) space single-pass streaming algorithm that solvesMax-CSP(f) exactly, where deg(f) is
the degree of f when viewed asmultilinear polynomial, and show that any constant-pass streaming
algorithm requires at least Ω(ndeg(f)) space.

Variations of CSPs. It turns out that ourwork onCSPs also is helpful in analyzing some variations
of CSPs. In particular, Singer et al. [73] consider the space of “ordering CSPs” where the challenge
is to find an ordering of n variables that satisfy some specified ordering constraints. An example
is the Maximum Acyclic Subgraph (MAS) problem where the goal is to find an ordering of n
variables x1, . . . ,xn that, given many constraints of the form xi < x j , satisfies as many constraints
as possible. Prior to the work of [73], no problem (including MAS) was tightly analyzed. [73] show
that no ordering CSP has a non-trivial streaming algorithm with o(

√
n) space. Their work crucially

relies on the framework from this article and uses the approximation resistance of some CSPs
considered in this article. (See Section 3.4 for further details.) Since the problems needed in their

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:13

work fall within the subclass of problems considered in [40], their streaming lower bound actually
improves to Ω(n)-space.

1.8 Structure of Rest of the Article

Section 2 contains some of the preliminary background used in the rest of the article. In Section 3,
we describe our results in detail. In particular, we build our convex set framework and give an ex-
plicit criterion to distinguish the easy and hardMax-CSP(F) problems. We also describe sufficient
conditions for the hardness of some streaming problems in the streaming setting. In Section 4,
we describe and analyze our algorithm that yields our easiness result. In Section 5, we define the
“Signal Detection” problem and show how the communication complexity of this problem leads
to the streaming space lower bounds claimed in Section 3. In Section 6, we introduce and analyze
the Advice-RMD problem. In Section 7, we prove our general lower bound for SD assuming that a
single polarization step is hard. In Section 8, we complete this remaining step by using the Advice-
RMD lower bound to show hardness of a single polarization step, thus concluding our main lower
bound. Finally, in Section 9 we give the dichotomy for the exact computability of Max-CSP(F).

2 PRELIMINARIES

In this section we introduce notations, definitions, and some standard tools that will be used
in the rest of this article. Specifically, we define constraint satisfaction problems and some
promise problems related to their approximation (Section 2.1). Then we formally describe the
streaming and sketching models of computation along with some variants and background
material (Section 2.2). In Section 2.2.1 we explain the folklore relationship between the promise
problems defined in Section 2.1 and the standard single-parameter version of approximations,
in the context of streaming algorithms. Section 2.3 has some basic notions from probability and
some tools we will use. Section 2.4 recalls notions from Fourier analysis and mentions the tools
used from this area. Finally, Section 2.5 defines notions and results from the quantified theory of
reals. We start with some notation.

We let N denote the set of positive integers. We let [n] denote the set {1, . . . ,n}. For a finite set
Ω, let Δ(Ω) denote the space of all probability distributions over Ω, i.e.,

Δ(Ω) =
{
D : Ω → R≥0 |

∑
ω ∈Ω

D(ω) = 1

}
.

We view Δ(Ω) as being contained in R |Ω | . We use X ∼ D to denote a random variable drawn from
the distribution D. By default, a Boolean variable in this article takes value in {−1, 1}. For every
p ∈ [0, 1], Bern(p) denotes the Bernoulli distribution that takes value 1 with probability p and takes
value −1 with probability 1 − p.

We will follow the convention that n denotes the number of variables in CSPs,m denotes the
number of constraints, and k denotes the arity of the CSP.

For variables of a vector form, we write them in boldface, e.g., x ∈ [q]n , and its ith entry is
written without boldface, e.g., xi . For a variable being a vector of vectors, we write it, for example,
as b = (b(1), b(2), . . . , b(m)),where b(i) ∈ [q]k . The jth entry of the ith vector of b is thenwritten as
b(i)j . Let x and y be two vectors of the same length; x
 y denotes the entry-wise product of them.

2.1 Approximate Constraint Satisfaction

Max-CSP(F) is specified by a family of constraints F , where each constraint function f ∈ F is
such that f : [q]k → {0, 1}, for a fixed positive integer k . Given n variables x1,x2, . . . ,xn , an appli-
cation of the constraint function f to these variables, which we term simply a constraint, is given

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:14 C.-N. Chou et al.

by a k-tuple j = (j1, . . . , jk) ∈ [n]k , where the ji s are distinct and represent the application of the
constraint function f to the variables x j1 , . . . ,x jk . We use CF,n to denote the set of all constraints
ofMax-CSP(F) on n variables. (Note that CF,n is a finite set.) Specifically, an assignment b ∈ [q]n
satisfies a constraint given by (f , j) if f (bj1 , . . . ,bjk) = 1.

An instance Ψ ofMax-CSP(F) consists ofm constraintsC1, . . . ,Cm with non-negative weights
w1, . . . ,wm , where Ci = (fi , j(i)) ∈ CF,n and wi ∈ R for each i ∈ [m]. For an assignment
b ∈ [q]n , the value valΨ(b) of b on Ψ is the fraction of weight of constraints satisfied by b, i.e.,
valΨ(b) = 1

W

∑
i ∈[m]wi · fi (b|j(i)), where W =

∑m
i=1wi . The optimal value of Ψ is defined as

valΨ = maxb∈[q]n {valΨ(b)}. The approximation version of Max-CSP(F) is defined as follows.
Throughout this article we will only consider the case of Max-CSP(F) instances with integer

weights bounded by a polynomial in n.

Definition 2.1 ((γ , β)-Max-CSP(F)). Let F be a constraint family and 0 ≤ β < γ ≤ 1.
For each m ∈ N, let Γm = {Ψ = (C1, . . . ,Cm ;w1, . . . ,wm) | valΨ ≥ γ } and Bm = {Ψ =

(C1, . . . ,Cm ;w1, . . . ,wm) | valΨ ≤ β}.
The task of (γ , β)-Max-CSP(F) is to distinguish between instances from Γ = ∪m≤poly(n)Γm and

instances from B = ∪m≤poly(n)Bm . Specifically, we desire algorithms that output 1 w.p. at least 2/3
on inputs from Γ and output 1 w.p. at most 1/3 on inputs from B.

2.2 Streaming and Sketching Algorithms

We now define streaming and sketching algorithms in the context of Max-CSP(F). Note that the
input to both algorithms are sequences of weighted constraints. Rather than explicitly including
the weight, we will simply allow the sequence to repeat constraints (not necessarily successively).
The implied weight of a constraint will thus be the number of times it is repeated. (Note that we
only consider integer polynomially bounded weights. Thus, this representation only blows up the
input by a polynomial factor.) A stream is thus an element of (CF,n)∗ and we use λ to denote the
empty stream.

Definition 2.2 (Streaming Algorithm). A deterministic space s streaming algorithm ALG for
Max-CSP(F) on n variables is given by a (state-evolution) function S : {0, 1}s × CF,n → {0, 1}s
and an (output) function v : {0, 1}s → [0, 1]. Let S̃ : (CF,n)∗ → {0, 1}s given by S̃(λ) = 0s and

S̃(σ1, . . . ,σm) = S(S̃(σ1, . . . ,σm−1),σm) denote the iterated state-evolution map. Then the output

of ALG on input σ = (σ1, . . . ,σm) is v(S̃(σ)).
In a uniform randomized space s streaming algorithm the evolution map is given by S : {0, 1}s ×

CF,n ×{0, 1}r → {0, 1}s for some r ≤ s and its iterate evolution map is a random variable given by

S̃(σ1, . . . ,σm) = S(S̃(σ1, . . . ,σm−1),σm ,Rm),whereRm ∼ Unif({0, 1}r) is independent ofσ1, . . . ,σm
and R1, . . . ,Rm−1.

A non-uniform randomized space s streaming algorithm is simply a distribution on deterministic
space s streaming algorithms.

We note that non-uniform randomized algorithms can simulate uniform ones but may be much
stronger since they allow algorithms to “remember” all previous random coins without being
charged for the memory. All our upper bounds are in the uniform randomized model. Our lower
bounds are in the non-uniform randomized model (and use this extra power in the reductions).

Sketching algorithms are a special class of streaming algorithms that have been widely used in
both upper bounds and lower bounds. For the definition of sketching algorithms below, we adopt
Definition 5.21 in [28].

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:15

Definition 2.3 (Sketching Algorithms). A deterministic space s streaming algorithmALG = (S,v)
is a sketching algorithm if there exists a compression function SKETCH : (CF,n)∗ → {0, 1}s and a
combination function COMB : {0, 1}s × {0, 1}s → {0, 1}s such that the following hold:

— S(z,C) = COMB(z, SKETCH(C)) for every z ∈ {0, 1}s and C ∈ CF,n .
— For every pair of streams σ ,τ ∈ (CF,n)∗, we have

COMB(SKETCH(σ), SKETCH(τ)) = SKETCH(σ ◦ τ),
where σ ◦ τ represents the concatenation of the streams σ and τ .
A uniform randomized sketching algorithm is similarly defined with COMB : {0, 1}s ×
{0, 1}s × {0, 1}r → {0, 1}s and S(z,C,R) = COMB(z, SKETCH(C),R) for every z,C,R, where
r ≤ s . A randomized algorithm ALG is a non-uniform randomized sketching algorithm if it
is a distribution over deterministic sketching algorithms.

We remark that there can be several variants to the streaming problem above involving the
possibility of weighted constraints, deletion of constraints, and length of the input stream.

(1) Dynamic streams: In this setting constraints may be inserted, even multiple times, and later
deleted. In this setting algorithms are required to be correct on the final instance, under the
promise that constraints were deleted fewer times than they were inserted at all interme-
diate stages of the streaming process. The input stream can be unboundedly large in this
setting even while maintaining polynomially bounded integer weights (e.g., by inserting
and deleting the same constraint an arbitrary number of times). Thus, algorithms may have
restrictions on the length of input streams or have complexity growing with the length of
the stream.

All our lower bounds work in the insertion-only setting. Our upper bounds work on
dynamic streams provided they have length polynomial in n.

(2) Weighted instances: Variations of Max-CSP(F) allow constraints to have non-negative real
weights. We do not explicitly consider this setting in this article, but standard techniques
(involving roundingweights to nearby rationals) allow algorithms for polynomially bounded
integer weights to be extended to apply to this setting also.

(3) Linear Sketching: An instance Ψ ofMax-CSP(F) can be viewed as a vector in RCF,n with the
Cth coordinate representing theweight of the constraintC inΨ. A linear sketching algorithm
is one whose state is a linear function of this representation of the instance. Note that in this
representation, the stream can be viewed as a sequence of linear updates. Thus, if the state is
a linear function, the updates to the state can be computed knowing only the previous state
and the update to Ψ, thus leading to a natural streaming algorithm. Furthermore, it can be
seen that this streaming algorithm also satisfies the notion of sketchability.

The space complexity of such a sketching algorithm deserves special mention. The space
requirement of linear sketching is the space needed to represent t real numbers, where t is
the rank of the linear map used to sketch the inputs. When the weights are integers bounded
by a polynomial in n, this can be used to show that the real numbers arising in the sketch
can be represented by O(logn) bit rationals and so this translates to a small space sketch.
This possibility goes away if the input is not polynomially bounded.

All our algorithms are linear sketching algorithms as defined above.

Remark 2.4. We note that [1, 64] have shown that algorithms that work on dynamic streams
are also linear sketching algorithms. Thus, the assertion above that our algorithms are linear
sketching algorithms (Item 3) seems redundant in view of the claim that they work in the dynamic
setting (Item 1). However, the results in [1, 64] only apply to the case where the input streams
are superpolynomially long (even requiring doubly exponential length). This is even necessary as

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:16 C.-N. Chou et al.

proved by [51]. Our results, on the other hand, only hold for polynomial length streams. Thus, in
our setting, dynamic streams and linear sketching are not equivalent.

2.2.1 Relation to Single-parameter Approximability. The traditional study of approximation al-
gorithms typically focuses on a single-parameter problem. Specifically, for α ∈ [0, 1],Max-CSP(F)
is said to be α-approximable in space s in the streaming setting if there is a space s algorithm that
on input of a stream representing instance Ψ of Max-CSP(F) outputs a number in [α · valΨ, valΨ].
The connection between this single-parameter approximability and the gapped problems we study
is folklore. For the sake of completeness we describe the algorithmic implication below.

Proposition 2.5. Given F ⊆ { f : [q]k → {0, 1}}, a space complexity measure s : N → N, and
sets Easy,Hard ⊆ [0, 1] × [0, 1] such that for every (γ , β) ∈ Easy, (γ , β)-Max-CSP(F) is solvable in
s(n)-space in the sketching model, and for every (γ , β) ∈ Hard, (γ , β)-Max-CSP(F) is not solvable in
s(n)-space in the sketching model. Then for

α = inf
β ∈[0,1]

{
sup

γ ∈(β,1] s.t (γ ,β)∈Easy
{β/γ }

}
,

and for every ε > 0, there is an (α−ε)-approximation algorithm forMax-CSP(F) that usesOk,q,ε (s(n))
space in the sketching model. Conversely, for

α = inf
β ∈[0,1]

{
sup

γ ∈(β,1] s.t (γ ,β)�Hard
{β/γ }

}
,

and every ε > 0, every (α+ε)-approximation sketching algorithm forMax-CSP(F) requires s(n) space.

Proof. The negative result is simple. We prove it in the contrapositive form by showing that if
Max-CSP(F) has an (α + ε)-approximation algorithm using s(n) space, then for every (γ , β) with
β ≤ αγ , (γ , β)-Max-CSP(F) is solvable in s(n) space (and so (γ , β) � Hard). SupposeMax-CSP(F)
has an (α +ε) approximation algorithmA using s(n)-space in the sketching model. Given γ , β with
β/γ ≥ α , we can use A to solve the (γ , β)-Max-CSP(F) on input Ψ as follows: Compute A(Ψ)
and output YES if A(Ψ) ≥ β and NO otherwise. Since β ≤ αγ < (α + ε)γ , it follows that if
val(Ψ) ≥ γ , then A(Ψ) will output some number greater than β and our algorithm will output
YES. If val(Ψ) ≤ β, then A(Ψ) will output some number less than or equal to β and our algorithm
outputs NO. This yields the negative result.

For the positive result, we assume that Easy is monotone in the following sense: If (γ , β) ∈ Easy
and β ′ ≤ β, then (γ , β ′) ∈ Easy. (Note that we can assume this since an algorithm solving the (γ , β)-
Max-CSP(F) problem also solves the (γ , β ′)-Max-CSP(F) problem.) We also assume that every
constraint in F has at least one satisfying assignment. (If not we can simply remove unsatisfiable
constraints from F and ignore them in the input stream.) Due to this assumption, we have that a

random assignment satisfies at least ρ � q−k fraction of the constraints. Let τ � ε · ρ/2 and let

Aτ = {(iτ , jτ) ∈ [0, 1]2 | i, j ∈ Z≥0, (iτ , jτ) ∈ Easy}.

Thus, for every (γ ,δ) ∈ Aτ there is an s(n)-space algorithm for (γ , β)-Max-CSP(F) with error
probability 1/3. By repeating this algorithm O(log(1/τ)) times and taking majority, we may as-
sume the error probability is at most 1/(10τ 2). We refer to this amplified algorithm as the (γ , β)-
distinguisher below. In the following we consider the case where all O(τ−2) distinguishers output
correct answers, which happens with probability at least 2/3.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:17

OurOτ (s(n)) space (α −ε)-approximation algorithm forMax-CSP(F) is the following: On input
Ψ, run in parallel all the (γ , β)-distinguishers on Ψ, for every (γ , β) ∈ Aτ . Let

β0 = argmax
β

[∃γ such that the (γ , β)-distinguisher outputs YES on Ψ] .

Output β ′ = max{ρ, β0}.
We now prove that this is an (α −ε)-approximation algorithm. First note that by the correctness

of the distinguisherwe have β ′ ≤ valΨ. Letγ0 be the smallest multiple of τ satisfyingγ0 ≥ (β0+τ)/α .
By the definition of α , we have that (γ0,αγ0) ∈ Easy and so by the monotonicity assumption on
Easy we have (γ0, β0+τ) ∈ Easy. So (γ0, β0+τ) ∈ Aτ and so the (γ0, β0+τ)-distinguisher must have
output NO on Ψ (by the maximality of β0). By the correctness of this distinguisher we conclude
valΨ ≤ γ0 ≤ (β0 + τ)/α + τ ≤ (β ′ + τ)/α + τ . We now verify that (β ′ + τ)/α + τ ≤ β ′/(α − ε) and
this gives us the desired approximation guarantee. We have

(β ′ + τ)/α + τ ≤ (β ′ + 2τ)/α ≤ (β ′/α) · (1 + 2τ/ρ) = (β ′/α)(1 + ε) ≤ (β ′/(α(1 − ε))),
where the first inequality usesα ≤ 1, the second uses β ′ ≥ ρ, the equality comes from the definition
of τ , and the final inequality uses (1 + ε)(1 − ε) ≤ 1. This concludes the positive result. �

2.3 Probabilistic Notions and Tools

We recall some standard notions from probability theory and mention some results we will use.

2.3.1 Total Variation Distance. The total variation distance between probability distributions
plays an important role in our analysis.

Definition 2.6 (Total Variation Distance of Discrete RandomVariables). LetΩ be a finite probability
space and X ,Y be random variables with support Ω. The total variation distance between X and
Y is defined as follows:

‖X − Y ‖tvd :=
1

2

∑
ω ∈Ω

|Pr[X = ω] − Pr[Y = ω]| .

We will use the triangle and data processing inequalities for the total variation distance.

Proposition 2.7 (E.g., [56, Claim 6.5]). For random variables X ,Y , andW :

— (Triangle inequality) ‖X − Y ‖tvd ≥ ‖X −W ‖tvd − ‖Y −W ‖tvd .
— (Data processing inequality) IfW is independent of both X and Y , and f is a function, then
‖ f (X ,W) − f (Y ,W)‖tvd ≤ ‖X − Y ‖tvd .

2.3.2 A Concentration Inequality. We will use the following concentration inequality, which is
essentially an Azuma-Hoeffding-style inequality for submartingales. The form we use is based on
[58, Lemma 2.5] and allows for variables with different expectations. The analysis is a very slight
modification of theirs.

Lemma 2.8. Let X =
∑

i ∈[N]Xi , where Xi are Bernoulli random variables such that for every k ∈
[N], E[Xk |X1, . . . ,Xk−1] ≤ pk for some pk ∈ (0, 1). Let μ =

∑N
k=1 pk . For every Δ > 0, we have

Pr [X ≥ μ + Δ] ≤ exp

(
− Δ2

2μ + 2Δ

)
.

Proof. Let v = Δ/(μ + Δ) and u = ln(1 +v). We have

E[euX] = E

[
N∏
k=1

euXk

]
≤ (1+pN (eu −1)) ·E

[
N−1∏
k=1

euXk

]
≤

N∏
i=1

(1+pk (eu −1)) =
N∏
i=1

(1+pkv) ≤ evμ ,

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:18 C.-N. Chou et al.

where the final inequality uses 1+x ≤ ex for every x (and the definition of μ). Applying Markov’s
inequality to the above, we have

Pr [X ≥ μ + Δ] = Pr
[
euX ≥ eu(μ+Δ)

]
≤ E[euX]/eu(μ+Δ) ≤ evμ−uμ−uΔ.

From the inequality ev−v
2/2 ≤ 1 + v we infer u ≥ v − v2/2 and so the final expression above can

be bounded as

Pr [X ≥ μ + Δ] ≤ evμ−uμ−uΔ ≤ e
v2

2 (μ+Δ)−vΔ = e
− Δ2

2(μ+Δ) ,

where the final equality comes from our choice of v . �

2.4 Fourier Analysis

We will need the following basic notions from Fourier analysis over the Boolean hypercube (see,
for instance, [65]). For a Boolean function f : {−1, 1}k → R its Fourier coefficients are defined by

f̂ (v) = Ea∈{−1,1}k [f (a) · (−1)v
�a], where v ∈ {0, 1}k . We need the following two important tools.

Lemma 2.9 (Parseval’s Identity). For every function f {−1, 1}k → R,

‖ f ‖22 =
1

2k

∑
a∈{−1,1}k

f (a)2 =
∑

v∈{0,1}k
f̂ (v)2 .

Note that for every distribution f on {−1, 1}k , f̂ (0k) = 2−k . For the uniform distribution U on

{−1, 1}k , Û (v) = 0 for every v � 0k . Thus, by Lemma 2.9, for any distribution f on {−1, 1}k :

‖ f −U ‖22 =
∑

v∈{0,1}k

(
f̂ (v) − Û (v)

)2
=

∑
v∈{0,1}k \{0k }

f̂ (v)2 . (2.10)

Next, we will use the following consequence of hypercontractivity for Boolean functions as
given in [43, Lemma 6], which in turns relies on a lemma from [50].

Lemma 2.11. Let f : {−1, 1}n → {−1, 0, 1} and A = {a ∈ {−1, 1}n | f (a) � 0}. If |A| ≥ 2n−c for
some c ∈ N, then for every � ∈ {1, . . . , 4c}, we have

22n

|A|2
∑

v∈{0,1}n
‖v‖1=�

f̂ (v)2 ≤
(
4
√
2c

�

)�
.

2.5 Quantified Theory of Reals

The decidability of several characterizations in this article follows from the decidability of the
“quantified theory of the reals.” We describe the main problem and result here.

Definition 2.12 (Quantified Polynomial Sentence). A quantified polynomial sentence over K
variables, S polynomials of degree D of quantifier width w is given by (1) a Boolean formula
Ψ(Y1, . . . ,YS) on S Boolean variables; (2) a set P of S polynomials P = {Pi (X1, . . . ,XK) |
i ∈ [S]}, with each Pi being a polynomial with real coefficients and of degree at most D in
K variables; and (3) a partition Π = (X[1], . . . ,X[w]) of the set {X1, . . . ,XK } and w quantifiers
Q = (Q1, . . . ,Qw)withQ j ∈ {∃,∀} for every j ∈ w . The sentence (Ψ,P,Π,Q) is defined to be TRUE
if Q1X[1]Q2X[2] . . .QwX[w]Ψ(Y1(X1, . . . ,XK), . . . ,YS (X1, . . . ,XK)) is true, where Yi (X1, . . . ,XK) =
TRUE if and only if Pi (X1, . . . ,XS) ≤ 0.

Note that the syntax is rich enough to express conditions such as P(X) ≥ 0 and P(X) < 0 by
use of arithmetic negations (−P(X) ≤ 0) and logical negations NOT(P(X) ≥ 0), where the logical

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:19

negation is inserted into the Boolean formula Ψ. As an example, the sentence “Every positive
number can bewritten as the square of a real number” can be expressed as the sentence∀α∃β(−α ≥
0) ∨ ((α − β2) ≥ 0) ∨ (−(α − β2)) ≥ 0, which is a quantified sentence with two quantifiers, two
variables partitioned into {α } and {β} with quantifiersQ1 = ∀ andQ2 = ∃, and three polynomials
of degree at most 2. This sentence happens to be TRUE.

Theorem 2.13 ([23, Theorem 14.14, see also Remark 13.10]). The truth of a quantified formula
withw quantifiers over K variables and S degree D polynomial (potentially strict) inequalities can be

decided in space KO (w) log(SD) and time (SD)KO (w)
.

Specifically, Theorem 14.14 in [23] asserts the time complexity above, and Remark 13.10 yields
the space complexity.

3 RESULTS

In this section we introduce our convex set framework that makes our classification of “easy”
vs. “hard” sketching problems explicit. The sets are introduced in Section 3.1. We then state our
main dichotomy theorem and also state its decidability in Section 3.2. Other results of this article,
including some strengthenings to the streaming setting, are stated in Section 3.3. We work out
some example applications of the dichotomy theorem and strengthenings in Section 3.4. Finally,
in Section 3.5 we include proofs of all the simple results and corollaries of this section, leaving
only the proofs of Theorem 3.3, Theorem 3.10, and Theorem 3.16 to later sections.

3.1 The Convex Set Framework

The main objects that allow us to derive our characterization are the space of distributions on
constraints that allow either a large number of constraints to be satisfied or only a few constraints
to be satisfied. To see where the distributions come from, note that distributions of constraints
over n variables can naturally be identified with instances of the weighted constraint satisfaction
problem (where the weight associated with a constraint is simply its probability).

In this part we consider distributions of constraints over a set of kq variables denoted x =

(xi,σ | i ∈ [k],σ ∈ [q]). (We think of the variables as sitting in a k × q matrix with i indexing the

rows and σ indexing the columns.) For f ∈ F and a ∈ [q]k , let C(f , a) denote the constraint
f (x1,a1 , . . . ,xk,ak). For an assignment b = (bi,σ | i ∈ [k],σ ∈ [q]) ∈ [q]kq we use the notation

C(f , a)(b) to denote the value f (b1,a1 , . . . ,bk,ak). We let I ∈ [q]kq denote the assignment Ii,σ = σ .
(In the following section we will use I as our planted assignment.)

We now turn to defining the “marginals” of distributions. For D ∈ Δ(F × [q]k), we let μ(D) =
(μf ,i,σ)f ∈F,i ∈[k],σ ∈[q] be given by μf ,i,σ = Pr(д,a)∼D[д = f and ai = σ]. Thus, the marginal μ(D)
lies in R |F |×qk .

We often reduce our considerations to families F containing a single element. In such cases
we simplify the notion of a distribution to D ∈ Δ([q]k). For D ∈ Δ([q]k), we let μ(D) =
(μi,σ)i ∈[k],σ ∈[q] be given by μi,σ = Pra∼D[ai = σ].

Next we introduce our family of distributions that capture our “Yes” and “No” instances. “Yes”
instances are highly satisfied by our planted assignment, while “No” instances are not very satisfied
by any “column-symmetric,” independent, probabilistic assignment. The fact that we only consider
distributions on kq variables makes this a set in a finite-dimensional space.

Definition 3.1 (Space of YES/NO Distributions). For q,k ∈ N, γ ∈ [0, 1], and F ⊆ { f : [q]k →
{0, 1}}, we let

SYγ (F) =
{
D ∈ Δ(F × [q]k) | E

(f ,a)∼D
[C(f , a)(I)] ≥ γ

}
.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:20 C.-N. Chou et al.

For β ∈ [0, 1], we let

SNβ (F) =
{
D ∈ Δ(F × [q]k) | ∀(Pσ ∈ Δ([q]))σ ∈[q], E

(f ,a)∼D

[
E

b,bi,σ ∼Pσ
[C(f , a)(b)]

]
≤ β

}
.

By construction, for β < γ , the sets SYγ (F) and SN
β
(F) are disjoint. (In particular, for any

D ∈ SYγ (F), I corresponds to a (deterministic!) column symmetric assignment that satisfies γ > β

fraction of constraints, so D � SN
β
(F).) The key to the analysis of low-space sketching algorithms

is that they only seem to be able to estimate themarginals of a distribution—sowe turn to exploring
the marginals of the sets above.

Definition 3.2 (Marginals of YES/NO Distributions). For γ , β ∈ [0, 1], and F ⊆ { f : [q]k →
{0, 1}}, we let

KY
γ (F) = {μ(D) ∈ R |F |kq | D ∈ SYγ (F)} and KN

β (F) = {μ(D) ∈ R |F |kq | D ∈ SNβ (F)}.

See Section 3.4 for some examples of the sets SYγ (F), SN
β
(F),KY

γ (F),KN
β
(F).

3.2 The Dichotomy for Sketching Algorithms

The following theorem now formalizes the informal statement that low space sketching algorithms
(see Definition 2.3) can only capture the marginals of distributions.

Theorem 3.3 (Dichotomy for Sketching Algorithms). For every q,k ∈ N, every family of

functions F ⊆ { f : [q]k → {0, 1}}, and every 0 ≤ β < γ ≤ 1, the following hold:

(1) IfKY
γ (F)∩KN

β
(F) = ∅, then (γ , β)-Max-CSP(F) admits a uniform randomized linear sketching

algorithm that uses O(log3 n) space4 on instances on n variables.
(2) If KY

γ (F) ∩ KN
β
(F) � ∅, then for every ε > 0, every (non-uniform randomized) sketching

algorithm for the (γ − ε, β + ε)-Max-CSP(F) requires Ω(
√
n) space5 on instances on n variables.

Furthermore, if γ = 1, then every sketching algorithm for (1, β + ε)-Max-CSP(F) requires
Ω(

√
n) space.

We remark that Part 1 of Theorem 3.3 is actually stronger and holds even for dynamic streams
where constraints are added and deleted, provided the total length of the stream is polynomial in n.
Theorem 3.3 is proved in two parts: Theorem 4.1 proves Theorem 3.3, Part 1, while Theorem 5.1
proves Theorem 3.3, Part 2.

We now complement Theorem 3.3 by showing that the condition “KY
γ (F) ∩ KN

β
(F) = ∅?” can

be decided in polynomial space given γ and β as ratios of �-bit integers and members of F as
truth tables. (So the input is of size O(� + |F | · qk) and our algorithm needs space polynomial in
this quantity.)

Theorem 3.4. For every k,q ∈ N F ⊆ { f : [q]k → {0, 1}}, and �-bit rationals β,γ ∈ [0, 1] (i.e., β
and γ are expressible as the ratio of two integers in {−2�, . . . , 2�}), the condition “KY

γ (F)∩KN
β
(F) =

∅?” can be decided in space poly(|F |,qk , �) given truth tables of all elements of F and γ and β as
�-bit rationals.

We include a proof of Theorem 3.4 in Section 3.5.1.

4In particular, the space complexity is O (log3 n) bits, or O (log2 n) cells, where each cell is O (logn) bits long. Crucially,

while the constant in the O (·) depends on k , γ , and β , the exponent is a universal constant.
5Again, the constant hidden in the Ω notation depends on k , γ , and β .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:21

3.3 Other Results

3.3.1 Approximation Resistance of Sketching Algorithms. We now turn to the notion of “approxi-
mation resistant”Max-CSP(F) problems.We start with a discussion where F = { f }. In the setting
where constraints are applied to literals rather than variables, the notion of approximation resis-
tance is used to refer to problems where it is hard to outperform a uniform random assignment.
In other words, if ρ(f) is defined to be the probability that a random assignment satisfies f , then
Max-CSP(f) is defined to be approximation resistant if (1 − ε, ρ(f) + ε)-Max-CSP(f) is hard. In
our setting, however, where constraints are applied to variables, this notion is a bit more nuanced.
Here it may be possible to construct functions where a random assignment does poorly and yet
every instance has a much higher value.6 In our setting, the correct notion is to simply consider
the infimum value achieved over instances of Max-CSP(f). If this quantity is ρ, then it is trivial
to get a ρ-approximation for Max-CSP(f)—namely, the algorithm that outputs the constant ρ is
always correct and gives a ρ-approximation. (Equivalently, (γ , β)-Max-CSP(f) can be decided by
the algorithm that always outputs YES if β < ρ.) And if (1 − ε, ρ(f) + ε)-Max-CSP(f) is hard for
every ε > 0, then we can say that Max-CSP(f) is approximation resistant.

The only catchwith the above notion of approximation resistant is that ρmay not be computable.
To resolve this problem we introduce an alternate definition of this quantity ρ and prove that it is
equivalent and computable. We start with the definitions, generalized for all F .

Definition 3.5 (Approximation Resistance for Streaming/Sketching Algorithms). For F ⊆ { f :
[q]k → {0, 1}}, we define

ρmin(F) = lim inf
Ψ instance of Max-CSP(F)

{valΨ}.

We say thatMax-CSP(F) is approximation resistant for streaming algorithms (resp. sketching algo-
rithms) if for every ε > 0 there exists δ > 0 such that every streaming (resp. sketching) algorithm
for (1 − ε, ρmin(F) + ε)-Max-CSP(F) requires Ω(nδ) space. We also define

ρ(F) = min
DF ∈Δ(F)

{
max

D∈Δ([q])

{
E

f ∼DF,a∼Dk
[f (a)]

}}
.

The following proposition asserts the equivalence of ρmin(F) and ρ(F).

Proposition 3.6. For every q,k ∈ N, F ⊆ { f : [q]k → {0, 1}} we have ρmin(F) = ρ(F).

Proposition 3.6 allows us to show that ρ(F) is computable as asserted below.

Theorem 3.7. There is an algorithm A that, on input F ⊆ {[q]k → {0, 1}} presented as |F | truth
tables and τ ∈ R presented as an �-bit rational, answers the question “Is ρmin(F) ≤ τ ?” in space

poly(|F |,qk , �).

Theorem 3.3 immediately yields a decidable characterization ofMax-CSP(F) problems that are
approximation resistant with respect to sketching algorithms.

Theorem 3.8 (Classification of Sketching Approximation Resistance). For every q,k ∈ N,
for every family F ⊆ { f : [q]k → {0, 1}}, Max-CSP(F) is approximation resistant with respect
to sketching algorithms if and only if KY

1 (F) ∩ KN
ρ(F)(F) � ∅. Furthermore, if Max-CSP(F) is

approximation resistant with respect to sketching algorithms, then for every ε > 0 we have that
(1, ρ(F) + ε)-Max-CSP(F) requires Ω(

√
n) space for non-uniform randomized sketching algorithms.

6Take, for instance, f (x1) = 1 iff x1 = 1. The random assignment satisfies f with probability 1/q, while every instance is

satisfiable!

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:22 C.-N. Chou et al.

If Max-CSP(F) is not approximation resistant with respect to sketching algorithms, then there exists
ε > 0 such that (1 − ε, ρ(F) + ε)-Max-CSP(F) can be solved in polylogarithmic space by a uniform
randomized linear sketching algorithm. Finally, given the truth table of the functions in F , there is an

algorithm running in space poly(qk |F |) that decides whether or not Max-CSP(F) is approximation
resistant with respect to sketching algorithms.

Proposition 3.6 and Theorems 3.7 and 3.8 are proved in Section 3.5.2.

3.3.2 Lower Bounds in the Streaming Setting. We now turn to some special classes of CSPs
where we can prove lower bounds in the streaming setting as opposed to only ruling out sketching
algorithms. To describe these classes we need some definitions.

We start by defining the notion of a “one-wise independent” distribution D ∈ Δ(F × [q]k). (We
note that this is somewhat related to, but definitely not the same as, the notion of a family F that
supports one-wise independence, which was defined informally in Section 1. We will recall that
notion shortly.) We also define a broader notion of a “padded one-wise pair” of distributions.

Definition 3.9 (One-wise Independence and Padded One-wise Independence of Distributions). For
D ∈ Δ(F ×[q]k)we say thatD is one-wise independent (or has “uniformmarginals”) if its marginal
μ(D) = (μf ,i,σ)f ∈F,i ∈[k],σ ∈[q] satisfies μf ,i,σ = μf ,i,σ ′ for every f ∈ F , i ∈ [k] and σ ,σ ′ ∈ [q].
(In other words for every f0 ∈ F and i ∈ [k], the random variable ai obtained by sampling
(f , (a1, . . . ,ak)) ∼ D conditioned on f = f0 and projecting to ai is uniformly distributed over [q].)

We say that a pair of distributions (D1,D2) forms a padded one-wise pair if there exist
D0,D′

1,D′
2, and τ ∈ [0, 1] such that for every i ∈ {1, 2} we have that D′

i is one-wise indepen-
dent and Di = τD0 + (1 − τ)D′

i .

Our main lower bound in the streaming setting asserts that if SYγ (F)×SN
β
(F) contains a padded

one-wise pair (DY ,DN), then (γ , β)-Max-CSP(F) requires Ω(
√
n)-space.

Theorem 3.10 (Streaming Lower Bound). For every q,k ∈ N, every family of functions F ⊆
{ f : [q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if there exists a padded one-wise pair of distributions
DY ∈ SYγ (F) and DN ∈ SN

β
(F) then, for every ε > 0, every non-uniform randomized streaming

algorithm that solves the (γ − ε, β + ε)-Max-CSP(F) problem requires Ω(
√
n) space. Furthermore, if

γ = 1, then (1, β + ε)-Max-CSP(f) requires Ω(
√
n) space.

Theorem 3.10 is proved in Section 5.2.4. As stated above, the theorem is more complex to apply
than, say, Theorem 3.3, owing to the fact that the condition for hardness depends on the entire
distribution (and the sets SYγ and SN

β
) rather than just marginals (or the sets KY

γ and KN
β
). However,

it can be used to derive some clean results, specifically Theorems 3.12 and 1.3, that do depend only
on the marginals. We state these below after defining a notion of a function family supporting
one-wise independence.

Definition 3.11 ((Weakly/Strongly) Supporting One-wise Independence). We say that a function
f : [q]k → {0, 1} supports one-wise independence if there exists a distribution D supported on
f −1(1) whose marginals are uniform on [q]. We say that a family F strongly supports one-wise
independence if every function f ∈ F supports one-wise independence. We say that a family F
weakly supports one-wise independence if there exists F ′ ⊆ F satisfying ρ(F ′) = ρ(F) such that
every function f ∈ F ′ supports one-wise independence.

Theorem 3.12. For every q,k ∈ N and F ⊆ { f : [q]k → {0, 1}} such that F weakly supports
one-wise independence,Max-CSP(F) is approximation resistant with respect to streaming algorithms.
In particular, for every ε > 0, every non-uniform randomized streaming algorithm for (1, ρ(F) + ε)-
Max-CSP(F) requires Ω(

√
n) space.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:23

Remark 3.13. We note that Theorem 1.2 differs from Theorem 3.12 in that Theorem 1.2 asserted
hardness for F that strongly supports one-wise independence, whereas Theorem 3.12 asserts
hardness for F that weakly supports one-wise independence. Thus, Theorem 3.12 is stronger and
implies Theorem 1.2.

Finally, we turn to Theorem 1.3. Below we assert a more detailed version of the theorem along
the lines of Theorem 3.3 in this case.

Theorem 3.14. For every family F ⊆ { f : [2]2 → {0, 1}}, and for every 0 ≤ β < γ ≤ 1, the
following hold:

(1) IfKY
γ (F)∩KN

β
(F) = ∅, then (γ , β)-Max-CSP(F) admits a uniform randomized linear sketching

algorithm that uses O(log3 n) space.
(2) IfKY

γ (F)∩KN
β
(F) � ∅, then for every ε > 0, (γ −ε, β+ε)-Max-CSP(F) in the streaming setting

requires Ω(
√
n) space.7 Furthermore, if γ = 1, then (1, β + ε)-Max-CSP(F) in the streaming

setting requires Ω(
√
n) space for non-uniform randomized streaming algorithms.

Theorem 3.14 clearly implies Theorem 1.3. We prove Theorems 3.12 and 3.14 in Section 3.5.3.

3.3.3 Classification of Exact Computability. Finally, for the sake of completeness we show that
all “non-trivial” CSPs are hard to solve exactly. “Trivial” families are those where all satisfiable
constraints are satisfied by a constant assignment, as defined precisely below.

Definition 3.15 (Constant Satisfiable). For σ ∈ [q] and F ⊆ { f : [q]k → {0, 1}} we say that F is
σ -satisfiable if for every f ∈ F \ {0} we have that f (σk) = 1. We say F is constant satisfiable if
there exists σ ∈ [q] such that F is σ -satisfiable.

Our theorem below asserts that constant-satisfiable families are the only ones that are solvable
exactly. And for additive ε approximations to the maximum fraction of satisfiable constraints, they
require space growing polynomially in ε−1.

Theorem 3.16. For every q,k ∈ N, and every family of functions F ⊆ { f : [q]k → {0, 1}}, the
following hold:

(1) If F is constant satisfiable, then there exists a deterministic linear sketching algorithm that uses
O(logn) space and solves Max-CSP(F) exactly optimally.

(2) If F is not constant satisfiable, then the following hold in the streaming setting:
(a) Every probabilistic algorithm solving Max-CSP(F) exactly requires Ω(n) space.
(b) For every ε = ε(n) > 0, (1, 1−ε)-Max-CSP(F) requires Ω(min{n, ε−1})-space8 on sufficiently

large inputs.
(c) For ρmin(F) defined in Definition 3.5, for every ρmin(F) < γ < 1 and every ε = ε(n) > 0,

(γ ,γ − ε)-Max-CSP(F) requires Ω(min{n, ε−2})-space8 on sufficiently large inputs.

Theorem 3.16 is proved in Section 9.

3.4 Some Examples

We consider three basic examples of general q-CSP and illustrate how to apply Theorem 3.10 to
determine their approximability.

7The constant hidden in the Ω notation may depend on k and ε .
8 The constant hidden in the Ω depends on F, but (obviously) not on ε .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:24 C.-N. Chou et al.

The first example is Max-DICUT described below.

Example 1 (Max-DICUT).

Let f (x ,y) : [2]2 → {0, 1} with f (x ,y) = 1 if and only if x = 2 and y = 1. Note that
Max-DICUT = Max-CSP({ f }) with q = k = 2. Observe that for every distribution D ∈
Δ([q]k) with probability density vector ϕ(D) = (ϕ22,ϕ21,ϕ12,ϕ11), we have for every 0 ≤
γ , β ≤ 1 :

SYγ (F) = {D | ϕ21 ≥ γ }
and

SNβ (F) =
{
D | max

p,q∈[0,1]
p(1 − p) · ϕ22 + pq · ϕ21 + (1 − q)(1 − p) · ϕ12 + (1 − q)q · ϕ11 ≤ β

}
.

Also, note that the marginal vector μ(D) = (μ22, μ21, μ12, μ11) and ϕ(D) satisfy the follow-
ing relations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ22 = ϕ12 + ϕ22

μ21 = ϕ11 + ϕ21

μ12 = ϕ21 + ϕ22

μ11 = ϕ11 + ϕ12 .

Note that for every D ∈ Δ([q]k), we have D ∈ SN
1/4. In particular, the uniform distribu-

tion Unif([2]2) ∈ SN
1/4. Since the distribution given by the density vector (ϕ22 = 0,ϕ21 =

1/2,ϕ12 = 1/2,ϕ11 = 0) also has uniform marginals and belongs to SY
1/2, we have that for

every β ≥ 1/4, KY
1/2 ∩ KN

β
(F) � ∅. So it suffices to focus on the case where γ ≥ 1/2.

Fix γ ≥ 1/2; we want to compute the minimum β such that KY
γ (F) ∩ KN

β
(F) � ∅. The

kernel of the mapping from probability density ϕ to the marginal vector μ is spanned
by (1,−1,−1, 1). Then simple calculations show that the minimum β is achieved when
μ = (1 − γ ,γ ,γ , 1 − γ) with (0,γ , 1 − γ , 0) ∈ SYγ (F) and (1 − γ , 2γ − 1, 0, 1 − γ) ∈ SN

β
(F).

Specifically,

β = max
p,q∈[0,1]

(p(1 − p) + q(1 − q)) · (1 − γ) + pq · (2γ − 1)

= max
p,q∈[0,1]

(1 − γ)2

3 − 4γ
− 3 − 4γ

2
·
((
p +

1 − γ

4γ − 3

)2
+

(
q +

1 − γ

4γ − 3

)2)
− (2γ − 1)

2
· (p − q)2 .

When γ ≥ 2/3, the expression is maximized by p = q = 1 and hence β = 2γ − 1. When
1/2 ≤ γ ≤ 2/3, the expression is maximized by p = q = (1 − γ)/(3 − 4γ) and hence
β = (1 − γ)2/(3 − 4γ).
We thus get that the set H∩ � {(γ , β) ∈ [0, 1]2 |KY

γ ∩ KN
β
� ∅} (of hard problems) is given

by (see also Figure 1)

H∩ =

[
0,

1

2

]
×

[
1

4
, 1

]
∪

{
(γ , β)|γ ∈

[
1

2
,
2

3

]
, β ∈

[
(1 − γ)2

3 − 4γ
, 1

]}
∪

{
(γ , β)|γ ∈

[
2

3
, 1

]
, β ∈ [2γ − 1, 1]

}
.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:25

Fig. 1. A plot of H∩.

(We note that [37, Example 1] gives exactly the same set as the hard set of Max-2AND,
which is a related but not identical result.)
Finally, over γ ∈ [2/3, 1], β/γ is minimized at (γ , β) = (2/3, 1/3) and β/γ = 1/2; over
γ ∈ [1/2, 2/3], β/γ is minimized at (γ , β) = (3/5, 4/15) and β/γ = 4/9, yielding 4/9 as the
approximability threshold.
Specifically, Proposition 3.22 gives us that any pair of distributions DY ,DN ∈ Δ(F ×
[2]2),DY ∈ SY

3/5,DY ∈ SN
4/15 witnessing KY

3/5 ∩ KY
4/15 � ∅ forms a padded one-wise pair.

Finally, Theorem 3.10, applied to the padded one-wise pair (DY ,DN), implies that Max-

DICUT cannot be approximated betterwith a factor (4/9+ε) in spaceo(
√
n) in the streaming

setting, which is consistent with the findings in [41] for the Max-DICUT problem.

Example 2 (Max-qUG).

Let k = 2 and q ≥ 2. Let F = { f : [q]2 → {0, 1} | f −1(1) is a bijection}. Note that
Max-qUG = Max-CSP(F). We claim that the quantity α = infβ α(β) = 1/q, where

α(β) = supγ |KY
γ ∩KN

β
=∅{β/γ }. First, note that D ∈ SN

1/q for every D and hence implies

α ≥ 1/q.
For simplicity we work with the alphabet Zq = {0, . . . ,q − 1} instead of [q]. For τ ∈ Zq
let fτ ∈ F be the constraint fτ (x ,y) = 1 if and only if x − y = τ (mod q). Let DY be
the uniform distribution over {(fτ ,σ ,σ + τ) | σ ,τ ∈ Zq}. Note that obviously we have

DY ∈ SY1 . Now letDN be the uniform distribution over { fτ | τ ∈ Zq}×Z2q . Note that for any

assignment to two variables x1,σ1 ,x2,σ2 the probability over τ that it satisfies fτ (x1,σ1 ,x2,σ2)
is exactly 1/q. If follows that any assignment to (xi,σ)i,σ satisfies exactly 1/q fraction of
the constraints in DN and so DN ∈ SN

1/q . Observe that the marginals of DY and DN are

the same, i.e., μ(DY) = μ(DN) = μ(Unif({ fτ } ×Z2q)). This gives us μ(Unif({ fτ } × [q]2)) ∈
KY

1 ∩KN
1/q , so we have α(β) = β for β ≥ 1/q. Minimizing this over β , Theorem 3.10, applied

to the one-wise independent distribution DY and DN , gives that the problem cannot be
approximated better than 1/q in space o(

√
n) in the streaming setting, which is consistent

with the findings in [46] for the Max-qUG problem.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:26 C.-N. Chou et al.

Example 3 (Max-qCol)

Let k = 2 and q ≥ 2. Let F = { f�},where f� : [q]2 → {0, 1} is given by f�(x ,y) = 1 ⇔ x �
y. Note thatMax-qCol = Max-CSP(F). We claim that the quantity α = infβ α(β) = 1−1/q,
where α(β) = supγ |KY

γ ∩KN
β
=∅{β/γ }. First, note that D ∈ SN

1−1/q for every D and hence

implies α ≥ 1− 1/q. We now show this is also the upper bound by exhibiting DY and DN .
Let DY be the uniform distribution over {(f�,σ ,τ) | σ � τ ∈ [q]}. Note that obviously
we have DY ∈ SY1 . Now let DN be the uniform distribution over { f�} × [q]2. This leads
to β = maxPσ {E(f ,a1,a2)∼DN [Ex∼Pa1,y∼Pa2 [f (x ,y)]]}. The independence of a1 and a2 in

DN allows us to simplify this to maxP∈Δ([q]){Ex,y∼P[f�(x ,y)]}, and the latter is easily

seen to be at most 1 − 1/q. Thus, we conclude DN ∈ SN
1−1/q . Since the marginals of DY

and DN are the same, i.e., μ(DY) = μ(DN) = μ(Unif({ f�} × [2] × [q])), this gives us
μ(Unif({ f�} × [2] × [q])) ∈ KY

1 ∩ KN
1/q , so we have α(β) = β for β ≥ 1 − 1/q. Minimizing

this over β , Theorem 3.10, applied to the one-wise independent distribution DY and DN ,
gives that the problem cannot be approximated better than 1 − 1/q in space o(

√
n) in the

streaming setting.

Another example along the same vein is analyzed in a subsequent work by Singer et al. [73], who
show that (1 − 1/q, (1/2)(1 − 1/q))-Max-CSP(F) is hard for F = { f<}, where f< : [q]2 → {0, 1}
is given by f<(x ,y) = 1 if and only if x < y. This analysis forms a critical step in their improved
analysis of the Maximum Acyclic Subgraph Problem (which is not captured in our framework).

3.5 Some Proofs of Theorems Asserted in This Section

In this subsection we prove all results asserted in Sections 3.2 and 3.3, with the exception of The-
orems 3.3, 3.10, and 3.16.

3.5.1 Decidability of the Classification. We prove Theorem 3.4 in this section. The following
lemma states some basic properties of the sets SYγ (F), SN

β
(F),KY

γ (F), and KN
β
(F) and uses them

to express the condition “KY
γ (F) ∩ KN

β
(F) = ∅?” in the quantified theory of reals.

Lemma 3.17. For every k,q ∈ N β,γ ∈ [0, 1] and F ⊆ { f : [q]k → {0, 1}}, the sets SYγ (F), SN
β
(F),

KY
γ (F), andKN

β
(F) are bounded, closed, and convex. Furthermore, the conditionKY

γ (F)∩KN
β
(F) = ∅

can be expressed in the quantified theory of reals with two quantifier alternations, O(|F |qk + q2)
variables, and polynomials of degree at most k + 1.

Proof. We start by observing that Δ(F × [q]k) is a bounded convex polytope in R |F |×[q]k .

Furthermore, viewing D as a vector in R |F |×[q]k , for any given b ∈ [q]k the quantity

E(f ,a)∼D[C(f , a)(b)] is linear inD. Thus, SYγ (F) is given by a single linear constraint onΔ(F ×[q]k),
making it a bounded convex polytope as well. SN

β
(F) is a bit more complex, in that there are infin-

itely many linear inequalities defining it (one for every distribution (Pσ)σ ∈[q]). Nevertheless, this

leaves SN
β
(F) bounded, closed (as infinite intersection of closed sets is closed), and convex (though

it may no longer be a polytope). Finally, since KY
γ (F) and KN

β
(F) are linear projections of SYγ (F)

and SN
β
(F), respectively, they retain the features of being bounded, closed, and convex.

Finally, to get an effective algorithm for intersection detection, we express the intersection con-
dition in the quantified theory of the reals. To get this, we note that (Pσ)σ ∈[q] can be expressed

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:27

by q2 variables, specifically using variables Pσ (τ) for every σ ,τ ∈ [q], where Pσ (τ) denotes the
probability of τ in Pσ . In terms of these variables (which will eventually be quantified over), the
condition E(f ,a)∼D

[
Eb,bi,σ ∼Pσ [C(f , a)(b)]

]
≤ β is a multivariate polynomial inequality in (Pσ)σ

and D. (Specifically, we get a polynomial of total degree at most k in (Pσ)σ and of total degree
at most one in D.) This allows us to use the following quantified system to express the condition
KY
γ (F) ∩ KN

β
(F) � ∅:

∃DY ,DN ∈ R |F |×qk , ∀((Pσ)σ) ∈ Rq
2

s.t.

DY ,DN , (Pσ)σ ,∀σ ∈ [q] are distributions, (3.18)

∀f0 ∈ F ,∀i ∈ [k],τ ∈ [q] Pr
(f ,a)∼DY

[f = f0 and ai = τ] = Pr
(f ,a)∼DN

[f = f0 and ai = τ], (3.19)

E
(f ,a)∼DY

[C(f , a)(I)] ≥ γ , (3.20)

E
(f ,a)∼DN

[
E

b,bi,σ ∼Pσ
[C(f , a)(b)]

]
≤ β . (3.21)

Note that Equations (3.18) to (3.20) are just linear inequalities in the variables DY ,DN .
As noticed above, Equation (3.21) is an inequality in the Pσ s and DN , of total degree at most

k + 1.
We thus get that the intersection problem can be expressed in the quantified theory of the

reals by an expression with two quantifier alternations, 2|F |qk + q2 variables, and O(|F |qk + q2)
polynomial inequalities, with polynomials of degree at most k + 1. (Most of the inequalities are of
the form DY (b) ≥ 0 or DN (b) ≥ 0. We also have O(|F |kq) equalities (saying probabilities must
add to one and matching the marginals of DY and DN). Of the two remaining, Equation (3.20) is
linear; only Equation (3.21) is a higher-degree polynomial. �

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. The quantified polynomial system given by Lemma 3.17 yields param-
eters K = O(|F |qk + q2) for the number of variables and w = 2 for the number of alternations.
Applying Theorem 2.13 with these parameters yields the theorem. �

3.5.2 Approximation Resistance. We start by proving Proposition 3.6, which asserts that ρ(F) =
ρmin(F).

Proof of Proposition 3.6. We start by showing ρ(F) ≤ ρmin(F). Fix an instance Ψ of
Max-CSP(F) and let DF be the distribution on F obtained by picking a random constraint of
Ψ and looking at the function (while ignoring the variables that the constraint is applied to). By
the definition of ρ(F), there exists a distribution D ∈ Δ([q]) such that Ef ∼DF,a∼Dk [f (a)] ≥ ρ(F).
Now consider a random assignment to the variables of Ψ where variable x j is assigned a value
independently according to D. It can be verified that Ex[valΨ(x)] ≥ ρ(F) and so valΨ ≥ ρ(F). We
thus conclude that ρ(F) ≤ valΨ for all Ψ and so ρ(F) ≤ ρmin(F).

We now turn to the other direction. We prove that for every ε > 0 we have ρmin(F) ≤ ρ(F)+ ε
and the inequality follows by taking limits. Let DF be the distribution achieving the minimum in
the definition of ρ(F). Given ε > 0, letn be a sufficiently large integer and letm = O(nk/ε). LetΨ be
the instance ofMax-CSP(F) onn variables withm constraints chosen as follows: For every j ∈ [n]k
with distinct coordinates and every f ∈ F we place �DF(f)/ε� copies of the constraint (f , j).

We claim that the Ψ generated above satisfies valΨ ≤ ρ(F) + ε/2 + O(1/n), and this suffices
for the proposition. To see the claim, fix an assignment ν ∈ [q]n and let D ∈ Δ([q]) be the
distribution induced by sampling i ∈ [n] uniformly and outputting ν i . On the one hand, we have

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:28 C.-N. Chou et al.

from the definition of ρ(F) that Ef ∼DF,a∼Dk [f (a)] ≤ ρ(F). On the other hand, we have that

the distribution obtained by sampling a random constraint (f , j) of Ψ and outputting (f ,ν |j) is
ε/2 + O(1/n) close in total variation distance to sampling f ∼ DF and a ∼ Dk . (The ε/2 gap
comes from the rounding down of each constraint to an integral number, and the O(1/n) gap
comes from the fact that j is sampled from [n] without replacement.) We thus conclude that

valΨ(ν) ≤ E
f ∼DF,a∼Dk

[f (a)] + ε/2 +O(1/n) ≤ ρ(F) + ε/2 +O(1/n) ≤ ρ(F) + ε .

Since this holds for every ν , we conclude that this upper bounds valΨ as well, thus establishing
the claim and hence the proposition. �

Now we prove Theorem 3.7, which asserts that ρ(F) and thus ρmin(F) is computable.

Proof of Theorem 3.7. By Proposition 3.6, we have

ρmin(F) = ρ(F) = min
DF ∈Δ(F)

{
max

D∈Δ([q])

{
E

f ∼DF,a∼Dk
[f (a)]

}}
.

Viewing DF ∈ R |F | and D ∈ Rq and noticing that the inner expectation is a degree k + 1
polynomial in DF and D, we get, again using Theorem 2.13, that there is a space poly(|F |,qk , �)
algorithm answering the question “Is ρmin(F) ≤ τ ?” �

Finally, we prove Theorem 3.8, which shows that the classification of approximation-resistant
Max-CSP(F) problems is decidable.

Proof of Theorem 3.8. By Theorem 3.3, we have thatMax-CSP(F) is approximation resistant
if and only if KY

1−ε (F) ∩ KN
ρ(F)+ε (F) � ∅ for every small ε > 0. Taking limits as ε → 0, this

implies that Max-CSP(F) is approximation resistant if and only if KY
1 (F) ∩ KN

ρ(F)(F) � ∅. If
KY

1 (F) ∩KN
ρ(F)(F) = ∅, then by the property that these sets are closed (see Lemma 3.17), we have

that there must exist ε > 0 such that KY
1−ε (F) ∩ KN

ρ(f)+ε (F) = ∅. In turn, this implies, again by

Theorem 3.3, that the (1 − ε, ρ(F) + ε)-approximation version of Max-CSP(F) can be solved by a
streaming algorithm with O(log3 n) space.

To get the decidability result, we combine the ingredients from the proof of Theorems 3.4 and 3.7.
(We can’t use them as blackboxes since ρmin(F)may not be rational.)We create a quantified system
of polynomial inequalities using a new variable called ρ and expressing the conditions ρ = ρ(F)
(with further variables forDF andD as in the proof of Theorem 3.7) and expressing the conditions
KY

1 (F) ∩KN
ρ (F) � ∅ as in the proof of Theorem 3.4. The resulting expression is thus satisfiable if

and only if F is approximation resistant, and this satisfiability can be decided in polynomial space
in the input length qk |F | by Theorem 2.13. �

3.5.3 Streaming Lower Bounds. We now prove Theorem 3.12 (assuming Theorem 3.10), which
asserts that families that support one-wise independence are approximation resistant.

Proof of Theorem 3.12. Let F ′ ⊆ F be a family satisfying ρ(F ′) = ρ(F) such that
every function f ∈ F ′ supports one-wise independence. Let DF ∈ Δ(F ′) minimize

maxD∈Δ([q])

{
Ef ∼DF,a∼Dk [f (a)]

}
. For f ∈ F ′ let DF ∈ Δ([q]k) be the distribution with uniform

marginals supported on f −1(1). Now let DY be the distribution where (f , a) ∼ DY is sampled by
picking f ∈ DF (where DF is being viewed as an element of Δ(F)) and then sampling a ∼ DF .
Now letDN = DF×Unif([q]k). Note thatDY andDN are one-wise independent distributionswith

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:29

μ(DY) = μ(DN). In particular, this implies that (DY ,DN) are a padded one-wise pair. We claim
that DY ∈ SY1 (F) and DN ∈ SN

ρ(F)(F). The theorem then follows immediately from Theorem 3.10.

To see the claim, first note that by definition we have that (f , a) ∼ DY satisfies C(f , a)(I) =
f (a) = f0(a) = 1 with probability 1. Thus, we have E(f ,a)∼D[C(f , a)(I)] = 1 and so DY ∈ SY1 (F).
Now consider (f , a) ∼ DN . To show DN ∈ SN

ρ(F)(F) we need to show that for every family of

distributions (Pσ ∈ Δ([q]))σ ∈[q], the following holds: E(f ,a)∼D
[
Eb,bi,σ ∼Pσ [C(f , a)(b)]

]
≤ ρ(F).

Now let P be the distribution where τ ∼ P is sampled by picking σ ∼ Unif([q]) and then sampling
τ ∼ Pσ . We have

E
(f ,a)∼D

[
E

b,bi,σ ∼Pσ
[C(f , a)(b)]

]
= E

f ∼DF,a∼Unif([q]k)

[
E

b,bi,σ ∼Pσ
[C(f , a)(b)]

]
= E

f ∼DF

[
E

a∼Pk
[f (a)]

]
≤ ρ(F ′)
= ρ(F) .

This proves DN ∈ SN
ρ(F)(F) and thus proves the theorem. �

Next we turn to proving Theorem 3.14. To do so, we first prove the following simple proposition
above distributions or pairs of Boolean variables.

Proposition 3.22. If DY ,DN ∈ Δ(F × [2]2) satisfy μ(DY) = μ(DN), then (DY ,DN) form a
padded one-wise pair.

Proof. For д ∈ F , let P(д) denote the probability of sampling a constraint (f , j) ∼ DY with
function f = д and let P denote this distribution. Note that since μ(DY) = μ(DN), DN also
samples д with the same probability. Let DY |д denote DY conditioned on f = д. Similarly, let
DN |д denote DN conditioned on f = д.

Now DY |д and DN |д are distributions from Δ({д} × [2]2) with matching marginals. We’ll show
that there exist D0 |д , D′

Y |д and D′
N |д , and τд such that (1) DY |д = τдD0 |д + (1 − τд)D′

Y |д ,

(2) DN |д = τдD0 |д + (1 − τд)D′
N |д , and (3) D′

Y |д and D′
N |д are one-wise independent. Let

DY |д = (p1,1,p1,2,p2,1,p2,2), where pi, j denotes the probability Pr(a,b)∼DY |д [a = i,b = j]. If
DN |д has matching marginals with DY |д , then there exists a δд ∈ [−1, 1] such that DN |д =
(p1,1−δд ,p1,2+δд ,p2,1+δд ,p2,2−δд). Assumewithout loss of generality that δд ≥ 0. Let τд = 1−2δд ,
D0 |д =

1
1−2δд (p1,1 − δд ,p1,2,p2,1,p2,2 − δд), D′

Y |д = (1/2, 0, 0, 1/2), and D′
N |д = (0, 1/2, 1/2, 0). It

can be verified that D′
Y |д and D′

N |д are one-wise independent, DY |д = τдD0 |д + (1− τд)D′
Y |д and

DN |д = τдD0 |д + (1 − τд)D′
N |д .

Now let τ = Ef ∼P [τf], andD0 ∈ Δ(F ×[q]k) be the distribution where a = (f , b) ∈ {F }×[2]2 is
sampled with probability

P (f)·τf ·D0|f (a)
τ

, where D0 |f (a) is the probability of sampling a from D0 |f .
Note that this is a valid probability distribution as∑

f ∈F

∑
b∈[2]2

P(f) · τf · D0 |f (f , b)
τ

=
∑
f ∈F

P(f) · τf
τ

·
∑
b∈[2]2

D0 |f ((f , b)) = 1 .

Similarly, define D′
Y and D′

N such that a is sampled with probability
P (f)·(1−τf)·D′

Y |f (a)
1−τ and prob-

ability
P (f)·(1−τf)·D′

N |f (a)
1−τ , respectively. It can be verified that these choices satisfy that (1) DY =

τD0 + (1 − τ)D′
Y , (2) DN = τD0 + (1 − τ)D′

N , and (3) D′
Y and D′

N are one-wise independent. It
follows that DY and DN form a padded one-wise pair. �

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:30 C.-N. Chou et al.

Combining Proposition 3.22 and Theorem 3.10, we immediately get the following theorem,
which in turn implies Theorem 1.3.

Proof of Theorem 3.14. Part (1) is simply the specialization of Part (1) of Theorem 3.3 to the
case k = 2. For Part (2), suppose μ ∈ KY

γ ∩ KN
β
. Let DY ∈ SYγ and DN ∈ SN

β
be distributions such

that μ(DY) = μ(DN) = μ. Then, by Proposition 3.22, we have that DY and DN form a padded
one-wise pair, and so Theorem 3.10 can be applied to get Part (2). �

4 A STREAMING APPROXIMATION ALGORITHM FOR MAX-CSP(F)
In this section we give our main algorithmic result—an O(log3 n)-space linear sketching stream-
ing algorithm for (γ , β)-Max-CSP(F) if KY

γ = KY
γ (F) and KN

β
= KN

β
(F) are disjoint. (See

Definition 3.2.)
The algorithm in fact works in the (general) dynamic setting where the input instance Ψ =

(C1, . . . ,Cm ;w1, . . . ,wm) is obtained by inserting and deleting (unweighted) constraints, possi-
bly with repetitions and thus leading to an (integer) weighted instance. Formally, the instance
Ψ = (C1, . . . ,Cm ;w1, . . . ,wm) is presented as a stream σ1, . . . ,σ� , where σt = (C ′

t ,w
′
t) and

w ′
t ∈ {−1, 1} such thatwi =

∑
t ∈[�]:Ci=C ′

t
w ′
t . For the algorithmic result to hold, we require thatwi s

are non-negative at the end of the stream but the intermediate values can be arbitrary. Further-
more, the algorithm requires that the length of the stream be polynomial in n (or else there will be
a logarithmic multiplicative factor in the length of the stream in the space usage).

We now state our main theorem of this section, which simply restates Part (1) of Theorem 3.3.

Theorem 4.1. For every q,k ∈ N, every family of functions F ⊆ { f : [q]k → {0, 1}}, and for
every 0 ≤ β < γ ≤ 1, ifKY

γ (F)∩KN
β
(F) = ∅, then (γ , β)-Max-CSP(F) in the dynamic setting admits

a probabilistic linear sketching streaming algorithm that uses O(log3 n) space.

We start with a brief overview of our algorithm. Roughly, given an instanceΨ onn variables with
m constraints, our streaming algorithm (implicitly) works with an n × q bias non-negative matrix
bias whose (i,σ)th entry tries to capture how much the ith variable would like to be assigned
the value σ (according to our approximation heuristic). Note that any such matrix is too large for
our algorithm, so the algorithm does not explicitly maintain this matrix. Our heuristic ensures
that bias is updated linearly by every constraint and so the rich theory of norm approximations of
matrices under linear updates can be brought into play to compute any desired norm of this matrix.
Given the intuition that biasi,σ represents the preference of variable i for value σ , a natural norm

of interest to us is ‖bias‖1,∞ � ∑n
i=1{maxσ ∈[q]{biasi,σ }}. This norm, fortunately for us, is well

known to be computable using O(q log3 n) bits of space [3] (assuming bias is updated linearly),
and we use this algorithm as a black box.

The question then turns to asking how bias should be defined. On input of a stream σ1, . . . ,σ�
representing an instance Ψ = (C1, . . . ,Cm) with σi = (C ′

i = (j(i), b(i)),w ′
i), how should bias be

updated? Presumably the ith updatewill only involve the rows j(i)1, . . . , j(i)k , but how should these
be updated and how should this update depend on the function fi? Here is where the disjointness
of KY and KN comes into play. (We suppress F and γ and β in the notation of the sets SYγ , S

N
β

and KY
γ , KN

β
in this overview.) We show that these sets are convex and closed, and so there is a

hyperplane (with margin) separating the two sets. Let λ = (λf ,i,σ)f ∈F,i ∈[k],σ ∈[q] be the coefficients

of this separating hyperplane, and let τN < τY be thresholds such that 〈λ, μ〉 ≥ τY for μ ∈ KY and
〈λ, μ〉 ≤ τN for μ ∈ KN . It turns out that the coefficients of λ give us exactly the right information
to determine the update to the bias vector: Specifically, given an element σi of the stream with
constraint C ′

i = (fi , j(i)) and weight w ′
i and � ∈ [k] and σ ∈ [q], we add λfi , �,σ · w ′

i to biasj(i)�,σ .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:31

We are unable to provide intuition for why these updates work, but the proof that the algorithm
works is nevertheless quite short!

We now turn to describing our algorithm. Recall by Lemma 3.17 that the set SY , SN ,KY ,KN is
all convex and closed. This implies the existence of a separating hyperplane when KY and KN do
not intersect. We use a mild additional property to conclude that the coefficients of this hyperplane
are non-negative, and we later use this crucially in the computation of the bias of the instance.

Proposition 4.2. Let β,γ , and F be such that 0 ≤ β < γ ≤ 1 and KY
γ (F) ∩ KN

β
(F) = ∅. Then

there exists a non-negative vector λ = (λf ,i,σ)f ∈F,i ∈[k],σ ∈[q] and real numbers τY > τN such that

∀μ ∈ KY
γ (F), 〈λ, μ〉 ≥ τY and ∀μ ∈ KN

β (F), 〈λ, μ〉 ≤ τN .

Proof. The existence of a separating hyperplane follows from standard convexity (see, e.g., [25,
Exercise 2.22]). For us this implies there exist λ′ ∈ R |F |×kq and τ ′N < τ ′Y such that

∀μ ∈ KY
γ (F), 〈λ′, μ〉 ≥ τ ′Y and ∀μ ∈ KN

β (F), 〈λ′, μ〉 ≤ τ ′N .

But λ′ is not necessarily a positive vector. To remedy this, we use the fact that KY
γ (F) ∪KN

β
(F) is

contained in a hyperplane whose coefficients are themselves positive. In particular, we note that
for every D ∈ Δ(F × [q]k) we have 〈μ(D), 1〉 = k, where 1 ∈ R |F |×kq is the all ones vector, as
verified below:

〈μ(D), 1〉 =
∑

f ∈F,i ∈[k],σ ∈[q]
μf ,i,σ =

∑
i ∈[k]

!"#
∑

f ∈F,σ ∈[q]
μf ,i,σ

$%& =
∑
i ∈[k]

1 = k .

Let λ′min = minf ,t,σ λ
′
f ,t,σ

. Now let λ, τY , and τN be given by

λf ,t,σ = λ′f ,t,σ + |λ′min | , τY = τ
′
Y + k · |λ′min | and τN = τ

′
N + k · |λ′min | .

Observe that λ is a non-negative vector and τY > τN . We also have

∀μ ∈ KY
γ (F), 〈λ, μ〉 = 〈λ′, μ〉 + |λ′min | ≥ 〈1, μ〉 ≥ τ ′Y + k |λ

′
min | = τY ,

as desired. Similarly, we also get ∀μ ∈ KN
β
(F), 〈λ, μ〉 ≤ τN , concluding the proof. �

To use the vector λ given by Proposition 4.2, we introduce the notion of the bias matrix and the
bias of a Max-CSP(F) instance Ψ.

Definition 4.3 (Bias (Matrix)). For a non-negative vector λ = (λf ,i,σ)f ∈F,i ∈[k],σ ∈[q] ∈ R |F |kq and
instance Ψ = (C1, . . . ,Cm ;w1, . . . ,wm) of Max-CSP(F) where Ci = (fi , j(i)), where fi ∈ F and
j(i) ∈ [n]k , we let the λ-bias matrix of Ψ, denoted biasλ(Ψ), be the matrix in Rn×q given by

biasλ(Ψ)�,σ =
1

W
·

∑
i ∈[m],t ∈[k]:j(i)t=�

λfi ,t,σ ·wi ,

for � ∈ [n] and σ ∈ [q], where W =
∑

i ∈[m]wi . The λ-bias of Ψ, denoted Bλ(Ψ), is defined as
Bλ(Ψ) =

∑n
�=1 maxσ ∈[q] biasλ(Ψ)�,σ .

Key to our algorithm for approximatingMax-CSP(F) is the following algorithm to compute the
�1,∞ norm of a matrix. Recall that for a matrix M ∈ Ra×b the �1,∞ norm is the quantity ‖M ‖1,∞ =∑

i ∈[a]{maxj ∈[b]{|Mi j |}}.

Theorem 4.4 (Implied by [3, Theorem 4.5]). There exists a constant c > 0 such that the �1,∞ norm
of an n × q matrixM can be estimated by a linear sketch to within a multiplicative error of (1 + ε) in
the turnstile streaming model with O(ε−c · q · log2 n) words (or with O(ε−c · q · log3 n) bits).

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:32 C.-N. Chou et al.

We note that Theorem 4.5 in [3] is much more general. Theorem 4.4 is the special case corre-
sponding to X = �∞ and EX being simply the identity function. α(· · ·) in this case turns out to be
O(logn), leading to the bounds above [2].

Note that there is a slight distinction between the definitions of Bλ(Ψ) and ‖biasλ(Ψ)‖1,∞, but
these quantities are equal since biasλ is a non-negative matrix (which in turn follows from the fact
that λ is non-negative). We thus get the following corollary.

Corollary 4.5. There exists a constant c such that for every k,q,F , and ε > 0, there exists a linear
sketching streaming algorithm running in space O(ε−c · log3 n) that on input of a stream σ1, . . . ,σ�
representing a Max-CSP(F) instance Ψ = (C1, . . . ,Cm ;w1, . . . ,wm) on n variables outputs a (1 ± ε)
approximation to Bλ(Ψ).

We are now ready to describe our algorithm for (γ , β)-Max-CSP(F).

ALGORITHM 1: A Streaming Algorithm for (γ , β)-Max-CSP(F)
Input: A stream σ1, . . . ,σ� representing an instance Ψ of Max-CSP(F).
1: Let λ ∈ R |F |kq ,τN , and τY be as given by Proposition 4.2 separating KY

γ (f) and KN
β
(f), so λ

is non-negative and τN < τY .
2: Let ε = τY −τN

2(τY +τN) .

3: Using Corollary 4.5, compute a (1 ± ε) approximation B̃ to Bλ(Ψ), i.e.,
(1 − ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ) with probability at least 2/3.

4: if B̃ ≤ τN (1 + ε) then
Output: NO.

5: else
Output: YES.

Given Corollary 4.5, it follows that the algorithm above uses space O(log3 n) on instances on n
variables. In what follows we prove that the algorithm correctly solves (γ , β) −Max-CSP(F).

4.1 Analysis of the Correctness of Algorithm 1

Lemma 4.6. Algorithm 1 correctly solves (γ , β)-Max-CSP(F) if KY
γ (F) and KN

β
(F) are disjoint.

Specifically, for every Ψ, let τY ,τN , ε,λ, B̃ be as given in Algorithm 1, and we have

valΨ ≥ γ ⇒ Bλ(Ψ) ≥ τY and B̃ > τN (1 + ε) ,
and valΨ ≤ β ⇒ Bλ(Ψ) ≤ τN and B̃ ≤ τN (1 + ε) ,

provided (1 − ε)Bλ(Ψ) ≤ B̃ ≤ (1 + ε)Bλ(Ψ).

In the rest of this section, we will prove Lemma 4.6. The key to our analysis is a distribution
D(Ψb) ∈ Δ(F × [q]k) that we associate with every instance Ψ and assignment b ∈ [q]n to the
variables of Ψ. If Ψ is γ -satisfied by assignment b, we prove that μ(D(Ψb)) ∈ KY

γ (F). On the other

hand, if Ψ is not β-satisfiable by any assignment, we prove that for every b, μ(D(Ψb)) ∈ KN
β
(F).

Finally, we also show that the bias Bλ(Ψ) relates to λ(D(Ψb)) � 〈μ(D(Ψb),λ〉, where the latter
quantity is exactly what needs to be computed (by Proposition 4.2) to distinguish the membership
of μ(D(Ψb)) in KY

γ (F) versus the membership in KN
β
(F).

The key step is the definition of these distributions that allows the remaining steps (esp.
Lemma 4.9) to be extended, which we present now.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:33

Given an instance Ψ = (C1, . . . ,Cm ;w1, . . . ,wm) on n variables with Ci = (fi , j(i)) and an as-
signment b ∈ [q]n , the distribution D(Ψb) ∈ Δ(F × [q]k) is sampled as follows: Sample i ∈ [m]
with probabilitywi/W , whereW =

∑
i ∈[m]wi , and output (fi , b |j(i)).

We start by relating the bias Bλ(Ψ) to D(Ψ).

Lemma 4.7. For every vector b ∈ [q]n , we have λ(D(Ψb)) =
∑n

�=1 biasλ(Ψ)�,b� . Consequently, we
have Bλ(Ψ) =

∑n
�=1 maxσ ∈[q] biasλ(Ψ)�,σ = maxb∈[q]n {λ(D(Ψb))}.

Proof. We start with the first equality. Fix b ∈ [q]n . Given f ∈ F , t ∈ [k], and σ ∈ [q], we have
μ(D(Ψb))f ,t,σ = 1

W

∑m
i=1wi · 1[fi = f ,bj(i)t = σ]. Hence,

λ(D(Ψb)) =
∑

f ∈F,t ∈[k],σ ∈[q]
μ(D(Ψb))f ,t,σ · λf ,t,σ

=
1

W

∑
f ∈F,t ∈[k],σ ∈[q]

∑
i ∈[m]

wi · 1[fi = f ,bj(i)t = σ] · λf ,t,σ

=
1

W

∑
i ∈[m],t ∈[k],σ ∈[q]:bj (i)t =σ

wi · λfi ,t,σ

=

n∑
�=1

1

W

∑
i ∈[m],t ∈[k]:j(i)t=l

wi · λfi ,t,bl

=

n∑
�=1

biasλ(Ψ)�,b� .

For the final equality, observe that

Bλ(Ψ) =
n∑
�=1

max
σ ∈[q]

biasλ(Ψ)�,σ = max
b∈[q]n

n∑
�=1

biasλ(Ψ)�,b� = max
b∈[q]n

{λ(D(Ψb))}. �

The following lemmas relate valΨ to the properties of D(Ψa).

Lemma 4.8. For every Ψ ∈ Max-CSP(F) and b ∈ [q]n , if valΨ(b) ≥ γ , then D(Ψb) ∈ SYγ (F).

Proof. Follows from the fact that

E
(f ,a)∼D(Ψb)

[C(f ,a)(I)] = 1

W

m∑
i=1

wi · fi (b |j(i)) = valΨ(b) ≥ γ ,

implying D(Ψb) ∈ SYγ (F). �

Lemma 4.9. For every Ψ ∈ Max-CSP(F), if valΨ ≤ β , then for all b ∈ [q]n , we have

D(Ψb) ∈ SN
β
(F).

Proof. We prove the contrapositive. We assume that ∃b ∈ [q]n such that D(Ψb) � SN
β
(F) and

show that this implies valΨ > β . Then there exists (Pσ ∈ Δ([q]))σ ∈[q] satisfying the following

inequality: E(f ,a)∼D(Ψb)
[
Ec,ci,σ ∼Pσ [C(f , a)(c)]

]
> β .

We thus have

β < E
(f ,a)∼D(Ψb)

[
E

c,ci,σ ∼Pσ
[C(f , a)(c)]

]
= E

c,ci,σ ∼Pσ

[
E

(f ,a)∼D(Ψb)
[C(f , a)(c)]

]
J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:34 C.-N. Chou et al.

= E
c,ci,σ ∼Pσ

[
1

W

m∑
i=1

wi · fi ((ct,bj (i)t)t ∈[k])
]

=
1

W

m∑
i=1

wi · E
c,ci,σ ∼Pσ

[
fi ((ct,bj (i)t)t ∈[k])

]
=

1

W

m∑
i=1

wi · E
x,x�∼Pb�

[
fi ((x j(i)t)t ∈[k])

]
= E

x,x�∼Pb�

[
1

W

m∑
i=1

wi · fi ((x j(i)t)t ∈[k])
]

= E
x,x�∼Pb�

[valΨ(x)]

≤ max
x∈[q]n

valΨ(x)

= valΨ ,

which contradicts the assumption that valΨ ≤ β . This concludes the proof of the claim and hence
the lemma. �

The key step above is the one asserting 1
W

∑m
i=1wi · Ec,ci,σ ∼Pσ

[
fi ((ct,bj (i)t)t ∈[k])

]
= 1

W

∑m
i=1wi ·

Ex,x�∼Pb�

[
fi ((x j(i)t)t ∈[k])

]
, which relies crucially on column symmetry of the distributions used

in the definition of SN
β
(F) in Definition 3.1. Without this restriction, or even more stringent ones,

this step of the rounding would fail. And the reason we can’t use a more stringent restriction will
become clear in the proof of Theorem 3.10 (and is specifically used in the proof of Lemma 5.8). We
also note that this key equality relies on the assumption that the variables in a single constraint
are distinct. In particular, the left-hand side assumes ci,σ s are drawn independently, whereas the
right side allows this only for the distinct variables x� in a constraint.

5 SKETCHING AND STREAMING SPACE LOWER BOUNDS FOR MAX-CSP(F)
In this section, we prove our two lower bound results, modulo a communication complexity lower
bound, which is proved in Sections 6 to 8. We start by restating the results to be proved. Recall
(from Definition 3.9) the notion of a padded one-wise pair of distributions: (D1,D2) is a padded
one-wise pair if there exist D0,D′

1,D′
2 and τ ∈ [0, 1] such that for every i ∈ {1, 2},D′

i is one-wise
independent, and Di = τD0 + (1 − τ)D′

i .
The first theorem we prove is the lower bound in the streaming setting for padded one-wise

pairs of distributions. We restate the theorem below for convenience.

Theorem 3.10 (Streaming Lower Bound). For every q,k ∈ N, every family of functions F ⊆
{ f : [q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if there exists a padded one-wise pair of distributions
DY ∈ SYγ (F) and DN ∈ SN

β
(F) then, for every ε > 0, every non-uniform randomized streaming

algorithm that solves the (γ − ε, β + ε)-Max-CSP(F) problem requires Ω(
√
n) space. Furthermore, if

γ = 1, then (1, β + ε)-Max-CSP(f) requires Ω(
√
n) space.

We also restate the lower bound against sketching algorithms from Theorem 3.3 as a separate
theorem below.

Theorem 5.1 (Lower Bounds against Sketching Algorithms). For every q,k ∈ N, every
family of functions F ⊆ { f : [q]k → {0, 1}} and for every 0 ≤ β < γ ≤ 1, if KY

γ (F) ∩ KN
β
(F) � ∅,

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:35

Fig. 2. The roadmap of our lower bounds. The top two rows describe the results of this section, while the

remaining rows describe notions and results from Sections 6 to 8.

then for every ε > 0, any sketching algorithm for the (γ − ε, β + ε)-Max-CSP(F) problem requires
Ω(

√
n) space. Furthermore, if γ = 1, then any sketching algorithm for (1, β +ε)-Max-CSP(F) requires

Ω(
√
n) space.

To prove both theorems, we introduce a new communication game we call the SD in Section 5.1.
In Theorem 5.4 we state a lower bound on the communication complexity of this problem. This
lower bound is established in Sections 6 to 8. We then use this lower bound to prove Theorem 3.10
in Section 5.2 and to prove Theorem 5.1 in Section 5.3 (See Figure 2).

5.1 The Signal Detection Problem and Results

In this section we introduce our communication game and state the lower bound for this game.
We start with the definition of a general one-way communication game.

Definition 5.2 (One-way Communication Game). Given two distributions Y and N , an instance
of the two-player one-way communication game is a pair (X ,Y) drawn either from Y or from N .
Two computationally unbounded parties, Alice and Bob, receive X and Y , respectively. A protocol
Π = (ΠA,ΠB) is a pair of functions with ΠA(X) ∈ {0, 1}c denoting Alice’s message to Bob, and
ΠB (ΠA(X),Y) ∈ {YES,NO} denoting the protocol’s output. We denote this output byΠ(X ,Y). The
complexity of this protocol is the parameter c specifying the maximum length of Alice’s message
ΠA(X). The advantage of the protocol Π is the quantity'''' Pr

(X ,Y)∼Y
[Π(X ,Y) = YES] − Pr

(X ,Y)∼N
[Π(X ,Y) = YES]

'''' .
We now define the specific game we are interested in.

Definition 5.3 (Signal Detection (SD) Problem). Let n,k,q ∈ N,α ∈ (0, 1), where k , q, and α
are constants with respect to n, and αn is an integer less than n/k . Let F be a finite set. For a
pair DY and DN of distributions over F × [q]k , we consider the following two-player one-way
communication problem (F ,DY ,DN)-SD.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:36 C.-N. Chou et al.

—The generator samples the following objects:
(1) x∗ ∼ Unif([q]n).
(2) M ∈ {0, 1}kαn×n is chosen uniformly among all matrices with exactly one 1 in each row

and at most one 1 in each column. We letM = (M1, . . . ,Mαn),whereMi ∈ {0, 1}k×n is the
ith block of rows of M , where each block has exactly k rows.

(3) b = (b(1), . . . , b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) = (fi , b̃(i)) ∈ F × [q]k is sampled according to DY .

– (NO) each b(i) = (fi , b̃(i)) ∈ F × [q]k is sampled according to DN .
(4) z = (z(1), . . . , z(αn)) is determined fromM , x∗ and b = (b(1), . . . , b(αn)) as follows. Recall

that b(i) = (fi , b̃(i)). We let z(i) = (fi , z̃i) ∈ F × {0, 1}, where z̃i = 1 iff Mix
∗ = b̃(i).

— Alice receives x∗ as input.
— Bob receives M and z as input.

In the special case when the set F contains just one element, |F | = 1, we call the corresponding
communication problem (DY ,DN)-SD.

We note that our communication game is slightly different from those in previous works:
Specifically, the problem studied in [43, 56] is called the BHM problem from [43] and the works
[57, 58] study a variant called the Implicit Hidden Partition problem. While these problems are
similar, they are less expressive than our formulation and specifically do not seem to capture all
Max-CSP(f) problems.

There are two main differences between the previous settings and our setting. The first dif-
ference is the way to encode the matching matrix M . In all the previous works, each edge (or
hyperedge) is encoded by a single row in M where the corresponding columns are assigned to 1,
so thatm = αn. However, it turns out that this encoding hides too much information and hence
we do not know how to reduce the problem to generalMax-CSP. We unfold the encoding by using
k rows to encode a single k-hyperedge (leading to the setting ofm = kαn in our case). The second
difference is that we allow the masking vector b to be sampled from a more general distribution.
This is also for the purpose of establishing a reduction to generalMax-CSP. Due to the above two
differences, it is not clear how to derive communication lower bounds for general DY and DN by
reduction from the previous works.

Theorem 5.4 (Communication Lower Bound for (F ,DY ,DN)-SD). For every k,q, every
finite set F , every pair of distributions DY ,DN ∈ Δ(F × [q]k) with μ(DY) = μ(DN) there exists
α0 > 0 such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds:
Every protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n

bits of communication.

Sections 6 to 8 are devoted to proving Theorem 5.4. The specific proof can be found in Section 7.3.
In the rest of this section we use this theorem to prove Theorems 5.1 and 3.10.

5.2 The Streaming Lower Bound

The hardness of SD suggests a natural path for hardness ofMax-CSP(F) problems in the streaming
setting. Such a reduction would take two distributions DY ∈ SYγ and DN ∈ SN

β
with matching

marginals, construct distributions Y and N of RMD, and then interpret these distributions (in a
natural way) as distributions over instances of Max-CSP(f) that are indistinguishable to small-
space algorithms. While the exact details of this “interpretation” need to be spelled out, every step
in this path can be achieved. Unfortunately, this does not mean any hardness forMax-CSP(f) since
the CSPs generated by this reduction would consist of instances that have at most one constraint
per variable, and such instances are easy to solve!

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:37

To go from the instance suggested by the SD problem to hard CSP instances, we instead pick T
samples (somewhat) independently from the distributionsY andN suggested by the SD problem
and concatenate these. With an appropriate implementation of this notion (see Definition 5.5), it
turns out it is possible to use the membership of the underlying distributions in SYγ and SN

β
to

argue that the resulting instances Ψ do (almost always) have valΨ ≥ γ or valΨ ≤ β . (We prove this
after appropriate definitions in Lemma 5.8.) But now one needs to connect the streaming problem
generated from the T -fold sampled version to the SD problem.

To this end we formalize the T -fold streaming problem, which we call the (DY ,DN ,T)-
streaming-SD problem, in Definition 5.5. Unfortunately, we are not able to reduce the (DY ,DN)-
SD problem to the (DY ,DN ,T)-streaming-SD problem for all DY and DN .9 But in the setting
whereDY andDN have uniform marginals, we are able to effect the reduction and thus show that
the streaming problem requires large space. This is a special case of Lemmas 5.12 and 5.14, which
we discuss next.

We are able to extend our reduction from SD to streaming-SD slightly beyond the uniform mar-
ginal case, to the case whereDY andDN form a padded one-wise pair, but both the streaming prob-
lem and the analysis of the resulting CSP value need to be altered to deal with this case, as elabo-
rated next. Let τ ∈ [0, 1] andD0,D′

Y ,D
′
N be such that for i ∈ {Y ,N }we haveDi = τD0+(1−τ)D′

i

and D′
i has uniform marginals. Our padded streaming problem, denoted the (D′

Y ,D
′
N ,T ,D0,τ)-

padded-streaming-SD problem, includes an appropriately large number of constraints generated
according to D0, followed byT samples chosen according to the (D′

Y ,D
′
N ,T)-streaming-SD prob-

lem. See Definition 5.5 for a formal definition. In Lemma 5.8 we show that the CSP value of the
resulting streaming problem inherits the properties of DY and DN (which is not as immediate for
padded-streaming-SD as for streaming-SD). We then show effectively that (D′

Y ,D
′
N)-SD reduces

to (D′
Y ,D

′
N ,T ,D0,τ)-padded-streaming-SD. See Lemmas 5.12 and 5.14. Putting these together

leads to a proof of Theorem 3.10.

5.2.1 The (Padded) Streaming SD Problem.

Definition 5.5 ((F ,DY ,DN ,T)-streaming-SD). For k,q,T ∈ N, α ∈ (0, 1/k], a finite set F and
distributionsDY ,DN over F ×[q]k , the streaming problem (F ,DY ,DN ,T ;α ,k,q)-streaming-SD

is the task of distinguishing, for every n, σ ∼ Ystream,n from σ ∼ Nstream,n where for a given length
parameter n, the distributions Ystream = Ystream,n and Nstream = Nstream,n are defined as follows:

— Let Y be the distribution over instances of length n, i.e., triples (x∗,M, z), from the defini-
tion of (F ,DY ,DN)-SD. For x ∈ [q]n , let Y|x denote the distribution Y conditioned on
x∗ = x. The stream σ ∼ Ystream is sampled as follows: Sample x∗ uniformly from [q]n . Let
(M (1), z(1)), . . . , (M (T), z(T)) be sampled independently according toY|x∗ . Let σ (t) be the pair
(M (t), z(t)) presented as a stream of edges with labels in F × {0, 1}, i.e., z(t) = (fi , z̃i). Specif-
ically, for t ∈ [T] and i ∈ [αn], let σ (t)(i) = (e(t)(i), z(t)(i)), where e(t)(i) is the ith hyperedge
of M (t), i.e., e(t)(i) = (j(t)(k(i − 1) + 1), . . . , j(t)(k(i − 1) + k), and j(t)(�) is the unique index j

such that M (t)
j, �
= 1. Finally, we let σ = σ (1) ◦ · · · ◦ σ (T) be the concatenation of the σ (t)s.

—σ ∼ Nstream is sampled similarly except we now sample (M (1), z(1)), . . . , (M (T), z(T)) indepen-
dently according to N|x∗ , where N|x is the distribution N condition on x∗ = x.

Again, when α ,k,q are clear from context, we suppress them and simply refer to the
(F ,DY ,DN ,T)-streaming-SD problem.

9Roughly, this problem arises from the fact that the T samples (x∗(t), M (t), z(t)) are not sampled independently from Y
(or N for t ∈ [T]). Instead, they are sampled independently conditioned on x∗(1) = · · · = x∗(T). This hidden correlation

in both the YES and the NO cases turns out to be a serious problem.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:38 C.-N. Chou et al.

Remark 5.6. We note that when DN = DF × Unif([q]k) for some DF ∈ Δ(F), then the distri-
butions N|x∗ are identical for all x∗ (and the variables z(t)(i) are distributed as DF × Bern(q−k)
independently for every t , i).

For technical reasons, we need the following padded version of streaming-SD to extend our
lower bound techniques in the streaming setting beyond the setting of one-wise independent
distributions.

Definition 5.7 ((F ,DY ,DN ,T ,D0,τ)-padded-streaming-SD). For k,q,T ∈ N, α ∈ (0, 1/k],
τ ∈ [0, 1), a finite set F , and distributions DY ,DN ,D0 over F × [q]k , the streaming problem
(F ,DY ,DN ,T ,D0,τ ;α ,k,q)-padded-streaming-SD is the task of distinguishing, for every n,
σ ∼ Ypad-stream,n from σ ∼ Npad-stream,n where for a given length parameter n, the distributions
Ypad-stream = Ypad-stream,n and Npad-stream = Npad-stream,n are defined as follows: Sample x∗ from

[q]n uniformly. For each i ∈ [τ
1−τ αnT], uniformly sample a tuple e(0)(i) = (i1, . . . , ik) ∈

([n]
k

)
and (fi , b(0)(i)) ∼ D0, let σ (0)(i) = (e(0)(i), (fi , 1b(0)(i)=x∗ |

e (0)(i)
)). Next, sample σ (1), . . . ,σ (T) ac-

cording to the Yes and No distribution of (F ,DY ,DN ,T)-streaming-SD, respectively. Finally, let
σ = σ (0) ◦ · · · ◦ σ (T) be the concatenation of the σ (t)s.

Again, when α ,k,q are clear from context, we suppress them and simply refer to the (F , DY ,
DN , T , D0, τ)-padded-streaming-SD problem. Note that when τ = 0, (F , DY , DN , T , D0, τ)-
padded-streaming-SD is the same as (F ,DY ,DN ,T)-streaming-SD.

5.2.2 CSP Value of padded-streaming-SD. There is a natural way to convert instances of
padded-streaming-SD to instances of a Max-CSP(F) problem. In this section we make this con-
version explicit and show how to use properties of the underlying distributions D0,DY ,DN to
get bounds on the value of the instances produced.

Note that an instance σ of padded-streaming-SD is simply a sequence (σ (1), . . . ,σ (�)), where
each σ (i) = (j(i), z(i)) with j(i) ∈ [n]k and z(i) = (fi , z̃i) ∈ F × {0, 1}. This sequence is already syn-
tactically very close to the description of aMax-CSP(F) instance. Formally, we define an instance
Ψ(σ) of Max-CSP(F) as follows. For each σi = (j(i), z(i)) with z(i) = (fi , z̃i), if z̃i = 1, we add the
constraint fi (x|j(i)) to Ψ(σ); otherwise, we do not add any constraint to the formula.

In what follows we show that if DY ∈ SYγ , then for all sufficiently large constant T and suffi-

ciently large n, if we draw σ ∼ Ypad-stream,n , then with high probability, Ψ(σ) has value at least

γ −o(1). Conversely, ifDN ∈ SN
β
, then for all sufficiently large n, if we draw σ ∼ Npad-stream,n , then

with high probability Ψ(σ) has value at most β + o(1).

Lemma 5.8 (CSP Value of padded-streaming-SD). For every q,k ∈ N, F ⊆ { f : [q]k → {0, 1}},
0 ≤ β < γ ≤ 1, ε > 0, τ = [0, 1), and distributions DY ,DN ,D0 ∈ Δ({−1, 1}k) there exists α0 such
that for every α ∈ (0,α0] the following hold for every sufficiently large T :

(1) If τD0+ (1−τ)DY ∈ SYγ , then for every sufficiently large n, the (F ,DY ,DN ,T ,D0,τ)-padded-
streaming-SD YES instance σ ∼ Ypad-stream,n satisfies Pr[valΨ(σ) < (γ − ε)] ≤ exp(−n).10

(2) If τD0+(1−τ)DN ∈ SN
β
, then for every sufficiently largen, the (F ,DY ,DN ,T ,D0,τ)-padded-

streaming-SD NO instance σ ∼ Npad-stream,n satisfies Pr[valΨ(σ) > (β + ε)] ≤ exp(−n).

Furthermore, if γ = 1, then Prσ∼Ypad-stream,n

[
valΨ(σ) = 1

]
= 1.

10In this lemma and proof we use exp(−n) to denote functions of the form c−n for some c > 1 that does not depend on n

or T , but may depend on all other parameters including q, k, DY , DN , D0, β, γ , ε .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:39

Proof. We assume ε ≤ 1/2 (and if not we prove the lemma for ε ′ = 1
2 and this implies the

lemma also for ε). We prove the lemma for α0 =
ε

20kqk
and T0 = 1000/(ε2α). In what follows we

set η = ε
20kqk

.

In what follows we let N0 =
τ αnT
1−τ , Nt = αn for t ∈ [T] and N = N0 + TN1. Recall that an

instance of (F ,DY ,DN ,T ,D0,τ)-padded-streaming-SD consists of a stream σ = σ (0) ◦ · · · ◦σ (T),

where σ (t) = (σ (t)(i)|i ∈ [Nt]) and σ (t)(i) = (e(t)(i), (f (t)i , z̃
(t)(i)), where e(t)(i) denotes a k-uniform

hyperedge on [n] and f (t)(i) ∈ F and z̃(t)(i) ∈ {0, 1}. Finally, recall that σ (t) ∼ Y|x∗ in the YES

case and σ (t) ∼ N |x∗ in the NO case independently for each t , where x∗ ∼ Unif([q]n) is common
across all t . We use I = ({0}×[T0])∪ ([T]× [T1]) to denote the set of legal pairs of indices (t , i). We
letm denote the total number of constraints in Ψ(σ), withmt denoting the number of constraints
from σ (t) for 0 ≤ t ≤ T . (Note thatm and themt s are random variables.)

For η > 0, define x∗ to be η-good if for every σ ∈ [q], we have |{i ∈ [n] | x∗i = σ }| ∈ [(1 − η) ·
n
q
, (1 + η) · n

q
]. A straightforward application of Chernoff bounds shows that for every η > 0 the

vector x∗ is η-good with probability 1 − exp(−n).
Below we condition on a good x∗ and prove the following: (1) we show the expected value of

m is roughly q−k · N and furthermore m is sharply concentrated around its expectation, (2) in
the YES case we prove that the expected number of constraints satisfied by x∗ is roughly at least
γ ·q−k ·N and again this variable is sharply concentrated around its expectation, and (3) in theNO
case we prove that the expected number of constraints satisfied by any assignment is roughly at
most β ·q−k ·N and again this variable is sharply concentrated around its expectation. We note that
the sharp concentration part is essentially the same in all cases and it is bounding the expectations
that is different in each case. That being said, the analysis of the NO case does require sharper
concentration since we need to take a union bound over all possible assignments.

Bounding the number of constraints. We start with step (1). Fix an η-good x∗. Note that mt =∑
i ∈[Nt] z̃

(t)(i) for every 0 ≤ t ≤ T . We divide the analysis into two subparts. In step (1a) we

bound μ � E[z̃(t)(i)] (in particular this expectation does not depend on i or t). Note that m =∑T
t=0

∑
i ∈[Nt] z̃

(t)(i) and so bounding μ bounds E[m] = μ · N . Then in step (1b) we show thatm is
concentrated around its expected value.

For step (1a), let pσ denote the fraction of occurrences of the letter σ in x∗, i.e., pσ =
1
n
|{i ∈

[n]|x∗i = σ }|. Note that given a sequence b̃(t)(i) = a ∈ [q]k , the probability that z̃(t)(i) = 1 over a

random choice of e(t)(i) depends on a as well as the pσ s. (Specifically this probability is
∏k

j=1 paj ±
O(k2/n), where the additive correction term accounts for the sampling without replacement in the
choice of e(t)(i).) However, if the vector x∗ is good, this dependence has little quantitative effect. In
particular, if x∗ is η-good, we have μ ∈ (1

q
±η)k±O(k2/n) and thus we getq−k−2kη ≤ μ ≤ q−k+2kη

provided η ≤ 1/(4kq) and n is sufficiently large. This simplifies further to μ ∈ (1 ± ε
10)q

−k using

η ≤ q−kε/(20k). Summing up over (t , i) ∈ I, we get E[m] ∈ (1 ± ε
10)q

−kN .
We now turn to step (1b), i.e., proving thatm is concentrated around its expectation. (In this part

we work a little harder than necessary to prove that the failure probability is exp(−nT) rather than
exp(−n). This is not necessary but will be needed for the similar step in step (3).) Let Z̃ denote

the set of random variables {z̃(t)(i)|(t , i) ∈ I}, and for (t , i) ∈ I, let Z̃−(t,i) = Z̃ \ {z̃(t)(i)}. We

first show that for every (t , i) ∈ I we have E[z̃(t)(i) | Z̃−(t,i)] ∈ (1 ± ε
10)E[z̃

(t)(i)]. Let Bt denote

the t th block of variables, i.e., Bt = {z̃(t)(i)|i ∈ [Nt]}. Now note that the only dependence among
the z̃(t)(i)s is among the variables within a block, while the blocks themselves are independent.
Furthermore, the variables in the block B0 are independent of each other. Thus, for i ∈ [N0] we
have E[z̃(0)(i)|Z−(0,i)] = E[z̃(0)(i)]. For t > 0 we have that the variables from block Bt may depend

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:40 C.-N. Chou et al.

on each other due to the constraint that the underlying set of hyperedges is vertex disjoint. Fix
(t , i) ∈ I with t > 0 and let S be the set of variables touched by the hyperedges from block Bt ,
excluding e(t)(i). Now consider picking a hyperedge uniformly from [n] and letψ be the probability
that this hyperedge touches S . We clearly haveψ ≤ k |S |/n ≤ kα . On the other hand,ψ also upper

bounds the difference between E[z̃(t)(i) | Z̃−(t,i)] and E[z̃(t)(i)], so we have

| E[z̃(t)(i) | Z̃−(t,i)] − E[z̃(t)(i)]| ≤ ψ ≤ kα ≤ εq−k

20
≤ ε

10
E[z̃(t)(i)].

Applying Lemma 2.8 to the variables of Z̃ (arranged in some arbitrary order), we have Pr[m �
((q−k · (1 ± ε/10)3] ≤ exp(−nT). Using (1 ± ε/10)3 ⊆ (1 ± ε/2) for ε < 1, we get

Pr[m � (1 ± ε/2) · q−kN] ≤ exp(−nT). (5.9)

Lower bounding the number of satisfied constraints in the YES case. Let Z (t)(i) be the indicator

variable for the event that the ith element of σ (t) produces a constraint that is satisfied by x∗, i.e.,
Z (t)(i) = z̃(t)(i) · fi (x∗ |j(t)(i)). Note that the number of constraints satisfied by x∗ is

∑
(t,i)∈I Z

(t)(i).
Note further that Z (0)(i)s are identically distributed across i ∈ [N0], and Z (t)(i)s are also iden-
tically distributed across t ∈ [T] and i ∈ [N0]. By construction (see Definition 5.7), we have

E[Z (0)(i)] = E(f ,b)∼D0
[f (b) · Ej[1(x∗ |j = b)]]. By the η-goodness of x∗, we have that for every

b ∈ [q]k , Ej[1(x∗ |j = b)] ≥ (1− ε
10)q

−k . Thus, we get E[Z (0)(i)] ≥ (1− ε
10)q

−k ·E(f ,b)∼D0
[f (b)]. Simi-

larly, for t > 0 we have E[Z (t)(i)] = E(f ,b)∼DY
[f (b) ·Ej[1(x∗ |j = b)]] ≥ (1− ε

10)q
−k ·E(f ,b)∼DY

[f (b)].
Using linearity of expectations, we now get

E

⎡⎢⎢⎢⎢⎣
∑

(t,i)∈I
Z (t)(i)

⎤⎥⎥⎥⎥⎦ = N0 E[Z (0)(1)] +TNT E[Z (1)(1)]

= N (τ E[Z (0)(1)] + (1 − τ)E[Z (1)(1)])

≥
(
1 − ε

10

)
q−kN · (τ E

(f ,b)∼D0

[f (b)] + (1 − τ) E
(f ,b)∼DY

[f (b)])

=
(
1 − ε

10

)
q−kN · E

(f ,b)∼τD0+(1−τ)DY

[f (b)]

≥ γ ·
(
1 − ε

10

)
q−kN ,

where the final inequality usesτD0+(1−τ)DY ∈ SYγ (F). The concentration can be analyzed exactly

as in step (1b). In particular, if we let Z denote all variables Z (t)(i)s, then we have E[Z (t)(i)|Z \
{Z (t)(i)}] ≥ E[Z (t)(i)] − ε

10q
−k .

Pr

⎡⎢⎢⎢⎢⎣
∑

(t,i)∈I
Z (t)(i) ≤ (γ − 3ε

10
) · q−kN ≤ γ · (1 − ε

10
)q−kN − ε

5
q−kN

⎤⎥⎥⎥⎥⎦ ≤ exp(−nT). (5.10)

Upper bounding the number of satisfiable constraints in the NO case. Fix an assignment ν ∈ [q]k
and consider the expected number of constraints satisfied by ν . (We will later take a union bound
over all ν .) LetW (t)(i) be the indicator variable for the event that the ith element of σ (t) produces
a constraint that is satisfied by ν , i.e.,W (t)(i) = z̃(t)(i) · fi (ν |j(t)(i)). Note once again thatW (0)(i)s are
identically distributed across i andW (t)(i)s are identical across t > 0 and i . Let μ0 = E[W (0)(1)] and
μN = E[W (1)(1)]. Note that the expected number of satisfied constraints is E[

∑
(t,i)∈IW

(t)(i)] =

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:41

N · (τ μ0 + (1 − τ)μN), so we bound μ0 and μN . By construction we have

μ0 = E
(f ,b)∼D0, j

[f (ν |j) · 1(x∗ |j = b)] = E
(f ,b)∼D0, j

[1(x∗ |j = b)] · E
(f ,b)∼D0, j

[f (ν |j) | 1(x∗ |j = b)],

where j is a uniform random sequence of k distinct elements of [n]. As argued earlier, for every b

we have Ej[1(x∗ |j = b)] ≤ (1 + ε
10)q

−k for η-good x∗. So we turn to bounding the second term.
For σ , ρ ∈ [q] let Pσ (ρ) be the fraction of coordinates in ν that take the value ρ among those

coordinates where x∗ is σ , i.e., Pσ (ρ) =
| {i ∈[n] |ν i=ρ & x∗i=σ } |

| {i ∈[n] |x∗i=σ } | . Note that for every σ , Pσ is a prob-

ability distribution in Δ(q). Furthermore, conditioning on x∗ |j(�) = b(�), the distribution of ν |j(�)
is given by Pb(�). Thus, the joint distribution of ν |j is O(k2/n)-close in total variation distance to
Pb(1) × · · · × Pb(k). We thus have

E
(f ,b)∼D0, j

[f (ν |j) | 1(x∗ |j = b)] ≤ E
(f ,a)∼D0

[E
c,c�∼Pa�

[f (c)]] +O(k2/n)

= E
(f ,a)∼D0

[E
d,d�,σ ∼Pσ

[C(f , a)(d)]] +O(k2/n),

where c ∈ [q]k and d ∈ [q]k×q . Note that the final expression is simply a change of notation applied
to the middle expression above to make the expression syntactically closer to the notation in the
definition of SN

β
(F). Combining with the bound on Ej[1(x∗ |j = b)] above, we get

μ0 ≤ (1 + ε

10
)q−k · (E

(f ,a)∼D0

[E
d,d�,σ ∼Pσ

[C(f , a)(d)]]) +O(k/n).

Similarly, we get

μN ≤ (1 + ε

10
)q−k · (E

(f ,a)∼DN

[E
d,d�,σ ∼Pσ

[C(f , a)(d)]]) +O(k/n).

Now combining the two conditions above, we get

(τ μ0 + (1 − τ)μN) ≤ (1 + ε

10
)q−k ·

(
E

(f ,a)∼τD0+(1−τ)DN

[E
d,d�,σ ∼Pσ

[C(f , a)(d)]]
)
+O(k2/n)

≤ β · (1 + ε

10
)q−k +O(k2/n)

≤ β · (1 + ε

9
)q−k ,

where the final inequality uses the fact that n is sufficiently large. We thus conclude the the ex-
pected number of constraints satisfied by ν is at most β · (1 + ε

9)q
−kN . Concentration around the

mean is now similar to before. In particular, if we letW denote the set of allW (t)(i)s, then we still
have E[W (t)(i)|W \{W (t)(i)}] ≤ E[W (t)(i)]+kα ≤ E[W (t)(i)]+ ε

10q
−kN , and so by Lemma 2.8 we get

Pr

⎡⎢⎢⎢⎢⎣
∑

(t,i)∈I
W (t)(i) ≥ (β + 2ε

9
) · q−kN ≥ β(1 + ε/9)q−kN + ε

9
q−kN

⎤⎥⎥⎥⎥⎦ ≤ exp(−nT).

In particular, by usingT sufficiently large, we get that the probability that more than (β+ 2ε
9)·q

−kN
constraints are satisfied by ν is at most c−n for some c > q. So by a union bound over all possible
νs we get the following:

Pr

[
∃ν ∈ [q]k s.t. ν satisfies more than (β + 2ε

9
) · q−kN constraints

]
≤ exp(−nT). (5.11)

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:42 C.-N. Chou et al.

Putting it together. Putting the above together, we get that in the YES case with probability
1 − exp(−n) we have that x∗ is good and the number of constraints is at most (1 + ε

2)q
−kN

(by Equation (5.9)), while the number of satisfied constraints is at least (γ − 3ε
10) · q

−kN (by
Equation (5.10)). Taking ratios, we get

valΨ(σ) ≥
γ − 3ε

10

1 + ε
2

≥ γ − ε .

Similarly, in the NO case with probability at least 1 − exp(−n) we have that x∗ is good and the
number of constraints is at least (1 − ε

2)q
−kN (by Equation (5.9)), while the number of satisfied

constraints is at most (β + 2ε
9) · q

−kN (by Equation (5.11)). Taking ratios, we get

valΨ(σ) ≤
β + 2ε

9

1 − ε
2

≤ β + ε .

This proves the main part of the lemma.
The furthermore part follows from the fact that if γ = 1, then every constraint in the YES case

is satisfied by x∗. �

5.2.3 Reduction from One-way (DY ,DN)-SD to padded-streaming-SD. We start by reducing SD
to padded-streaming-SD in the special case where DN is “uniform on the variables” in the sense
defined next. We say a distribution D ∈ Δ(D × [q]k) is uniform on the variables if there exists
a distribution Df ∈ Δ(F) such that D = Df × Unif([q]k). The following lemma implies that
in this special case padded-streaming-SD is hard. Since this holds for all one-wise independent
distributions DY , by applying the lemma twice, we get that padded-streaming-SD is hard for all
one-wise independent DY and DN .

Lemma 5.12. Let F be a finite set, T ,q,k ∈ N, α ∈ (0,α0(k)], τ ∈ [0, 1), and DY ,DN ,D0 ∈
Δ(F × [q]k) with DY being one-wise independent and DN = Df ×Unif([q]k) for some Df ∈ Δ(F)
and μ(DY) = μ(DN). Suppose there is a streaming algorithmALG that solves (F ,DY ,DN ,T ,D0,τ)-
padded-streaming-SD on instances of length n with advantage Δ and space s ; then there is a one-
way protocol for (F ,DY ,DN)-SD on instances of length n using at most sT bits of communication,
achieving advantage at least Δ/T .

The proof of Lemma 5.12 is based on a hybrid argument (e.g., [56, Lemma 6.3]). We provide a
proof here based on the proof of [41, Lemma 4.11].

Proof of Lemma 5.12. Note that since we are interested in distributional advantage, we
can fix the randomness in ALG so that it becomes a deterministic algorithm. By an averaging
argument, the randomness can be chosen to ensure the advantage does not decrease. Let Γ
denote the evolution of the function of ALG as it processes a block of edges. That is, if the algo-
rithm is in state s and receives a stream σ , then it ends in state Γ(s,σ). Let s0 denote its initial state.

We consider the following collection of (jointly distributed) random variables: Let x∗ ∼
Unif({−1, 1}n). Denote Y = Ypad-stream,n and N = Npad-stream,n . Let (σ (0)

Y
,σ (1)

Y
, . . . ,σ (T)

Y
) ∼ Y|x∗ .

Similarly, let (σ (0)
N
,σ (1)

N
, . . . ,σ (T)

N
) ∼ N |x∗ . Recall by Remark 5.6 that since DN = Df × Unif([q]k),

we have that N|x∗ is independent of x∗, a feature that will be crucial to this proof.

Let SYt denote the state of ALG after processing σ (0)
Y
, . . . ,σ (t)

Y
, i.e., SY0 = Γ(s0,σ (0)

Y
) and SYt =

Γ(SYt−1,σ
(t)
Y
), where s0 is the fixed initial state (recall that ALG is deterministic). Similarly, let SNt

denote the state of ALG after processing σ (0)
N
, . . . ,σ (t)

N
. Note that since σ (0)

Y
has the same distribu-

tion (conditioned on the same x∗) as σ (0)
N

by definition, we have ‖SY0 − SN0 ‖tvd = 0.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:43

Let SY
a:b

denote the sequence of states (SYa , . . . , SYb) and similarly for SN
a:b

. Now let Δt = ‖SY0:t −
SN0:t ‖tvd . Observe that Δ0 = 0, while ΔT ≥ Δ. (The latter is based on the fact thatALG distinguishes

the two distributions with advantage Δ.) Thus, Δ ≤ ΔT −Δ0 =
∑T−1

t=0 (Δt+1−Δt) and so there exists
t∗ ∈ {0, 1, . . . ,T − 1} such that

Δt ∗+1 − Δt ∗ = ‖SY0:t ∗+1 − SN0:t ∗+1‖tvd − ‖SY0:t ∗ − SN0:t ∗ ‖tvd ≥ Δ

T
.

Now consider the random variable S̃ = Γ(SYt ∗ ,σ
(t ∗+1)
N

) (so the previous state is from the YES

distribution and the input is from the NO distribution). We claim below that ‖SYt ∗+1 − S̃ ‖tvd =
EA∼dSY0:t∗

[‖SYt ∗+1 |SY0:t∗=A − S̃ |SY
0:t∗=A

‖tvd] ≥ Δt ∗+1 −Δt ∗ . Once we have the claim, we show how to get

a spaceT · s protocol for (F ,DY ,Dn)-SD with advantage Δt ∗+1 −Δt ∗ , concluding the proof of the
lemma.

Claim 5.13. ‖SYt ∗+1 − S̃ ‖tvd ≥ Δt ∗+1 − Δt ∗ .

Proof. First, by triangle inequality for the total variation distance, we have

‖SYt ∗+1 − S̃ ‖tvd ≥ ‖SYt ∗+1 − SNt ∗+1‖tvd − ‖S̃ − SNt ∗+1‖tvd .

Recall that S̃ = Γ(SYt ∗ ,σ
(t ∗+1)
N

) and SNt ∗+1 = Γ(SNt ∗ ,σ
(t ∗+1)
N

). Also, note that σ (t ∗+1)
N

follows the product

distribution (Df ×Bern(q−k))αn and in particular is independent of SYt ∗ and S
N
t ∗ . (This is where we

rely crucially on the property DN = Df × Unif([q]k).) Furthermore, Γ is a deterministic function,

and so we can apply the data processing inequality (Item (2) of Proposition 2.7 with X = SYt ∗ ,

Y = SNt ∗ ,W = σ (t ∗+1)
N

, and f = Γ) to conclude

‖S̃ − SNt ∗+1‖tvd = ‖Γ(SYt ∗ ,σ
(t ∗+1)
N

) − Γ(SNt ∗ ,σ
(t ∗+1)
N

)‖tvd ≤ ‖SYt ∗ − SNt ∗ ‖tvd .

Combining the two inequalities above, we get

‖SYt ∗+1 − S̃ ‖tvd ≥ ‖SYt ∗+1 − SNt ∗+1‖tvd − ‖SYt ∗ − SNt ∗ ‖tvd = Δt ∗+1 − Δt ∗ ,

as desired. �

We now show how a protocol can be designed for (F ,DY ,DN)-SD that achieves advantage

at least θ = EA∼dSY0:t∗
[‖SYt ∗+1 |S0:t∗=A − S̃ |S0:t∗=A‖tvd] ≥ Δt ∗+1 − Δt ∗ , concluding the proof of the

lemma. The protocol uses the distinguisher TA : {0, 1}s → {0, 1} such that EA,SY
t∗+1, S̃

[TA(SYt ∗+1)] −
E[TA(S̃)] ≥ θ , which is guaranteed to exist by the definition of total variation distance.

Our protocol works as follows: Let Alice receive input x∗ and Bob receive inputs (M, z) sampled
from eitherYSD |x∗ orNSD |x∗ , whereYSD andNSD are the Yes and No distribution of (F ,DY ,DN)-
SD, respectively.

(1) Alice samples (σ (0),σ (1), . . . ,σ (T)) ∼ Y|x∗ and computes A = SY0:t ∗ ∈ {0, 1}(t ∗+1)s and sends
A to Bob.

(2) Bob extracts SYt ∗ from A; computes Ŝ = Γ(SYt ∗ ,σ), where σ is the encoding of (M, z) as a

stream; and outputs YES if TA(Ŝ) = 1 and NO otherwise.

Note that if (M, z) ∼ YSD |x∗ , then Ŝ ∼d SYt ∗+1 |SY0:t∗=A, while if (M, z) ∼ NSD |x∗ , then Ŝ ∼ S̃SY
0:t∗=A

. It

follows that the advantage of the protocol above exactly equals EA[TA(SYt+1)] − EA[TA(S̃)] ≥ θ ≥
Δt ∗+1 − Δt ∗ ≥ Δ/T . This concludes the proof of the lemma. �

By combining Lemma 5.12 with Theorem 5.4, we immediately have the following consequence.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:44 C.-N. Chou et al.

Lemma 5.14. For k ∈ N let α0(k) be as given by Theorem 5.4. Let T ∈ N, α ∈ (0,α0(k)], τ ∈ [0, 1),
and D0,DY ,DN , ∈ Δ(F × [q]k), where DY and DN are one-wise independent distributions with
μ(DY) = μ(DN).
Then every streaming algorithm ALG solving (F ,DY ,DN ,T ,D0,τ)-padded-streaming-SD in the

streaming setting with advantage 1/8 for all lengths n uses space Ω(
√
n).

Proof. Let ALG be an algorithm using space s solving (F ,DY ,DN ,T ,D0,τ)-padded-
streaming-SD with advantage 1/8. For д ∈ F , let pд = Pr(f ,σ)∼DY

[f = д] and let Df be the

distribution given by Df (д) = pд . Let DM = Df × Unif([q]k). Note that DM is uniform on the
variables and satisfies μ(DM) = μ(DY) = μ(DN). Then, by the triangle inequality, ALG solves
either the (F ,DY ,DM ,T ,D0,τ)-padded-streaming-SD with advantage 1/16 or the
(F ,DN ,DM ,T ,D0,τ)-padded-streaming-SD with advantage 1/16. Assume without loss of gen-
erality it is the former. Then, by Lemma 5.12, there exists a one-way protocol for (F ,DY ,DM)-SD
using at most sT bits of communication with advantage at least 1/(16T). Applying Theorem 5.4
with δ = 1/(16T) > 0, we now get that s = Ω(

√
n). �

5.2.4 Proof of the Streaming Lower Bound. We are now ready to prove Theorem 3.10.

Proof of Theorem 3.10. We combine Theorem 5.4, Lemma 5.14, and Lemma 5.8. So in particu-
lar, we set our parameters α and T so that the conditions of these statements are satisfied. Specif-

ically, k and ε > 0, let α (1)
0 be the constant from Theorem 5.4, and let α (2)

0 be the constant from

Lemma 5.8. Let α0 = min{α (1)
0 ,α

(2)
0 }. Given α ∈ (0,α0), let T0 be the constant from Lemma 5.8 and

let T = T0. (Note that these choices allow for both Theorem 5.4 and Lemma 5.8 to hold.)
Suppose there exists a streaming algorithm ALG that solves (γ − ε, β + ε)-Max-CSP(F). Let

τ ∈ [0, 1) and DY ,DN ,D0 be distributions such that (i) DY and DN are one-wise independent,
(ii) τD0 + (1 − τ)DY ∈ SYγ (F), and (iii) τD0 + (1 − τ)DN ∈ SN

β
(F).

Let n be sufficiently large and letYstream,n andNstream,n denote the distributions of YES andNO
instances of (F ,DY ,DN ,T ,D0,τ)-padded-streaming-SD of length n. Since α and T satisfy the
conditions of Lemma 5.8, we have for every sufficiently large n

Pr
σ∼Ystream,n

[
valΨ(σ) < (γ − ε)

]
= o(1) and Pr

σ∼Nstream,n

[
valΨ(σ) > (β + ε)

]
= o(1) .

We conclude that ALG can distinguish YES instances of Max-CSP(F) from NO instances with
advantage at least 1/4 − o(1) ≥ 1/8. However, since DY ,DN , and α satisfy the conditions of
Lemma 5.14 (in particular DY and DN are one-wise independent and α ∈ (0,α0(k))), such an
algorithm requires space at least Ω(

√
n). Thus, we conclude that any streaming algorithm that

solves (γ − ε, β + ε)-Max-CSP(F) requires Ω(
√
n) space.

Finally, note that if γ = 1, then in Lemma 5.8, we have valΨ = 1 with probability one.
Repeating the above reasoning with this information shows that (1, β + ε) −Max-CSP(F) requires
Ω(

√
n)-space. �

5.3 The Lower Bound against Sketching Algorithms

In the absence of a reduction from SD to streaming-SD for general DY and DN , we turn to other
means of using the hardness of SD. In particular, we use lower bounds on the communication
complexity of a T -player communication game in the simultaneous communication setting—one
that is significantly easier to obtain lower bounds for than the one-way setting. Below we de-
scribe a family of T -player simultaneous communication games, which we call (F ,DY ,DN ,T)-
simultaneous-SD. (See Definition 5.15.) We then show a simple reduction from (F ,DY ,DN)-SD

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:45

to (F ,DY ,DN ,T)-simultaneous-SD. Combining this reduction with our lower bounds on SD and
the reduction from simultaneous-SD to streaming complexity leads to the proof of Theorem 5.1.

5.3.1 T -Player Simultaneous Version of SD. In this section, we consider the complexity of T -
player number-in-hand simultaneous message-passing communication games (abbrev. T -player si-
multaneous communication games). Such games are described by two distributions Y and N . An
instance of the game is aT -tuple (X (1), . . . ,X (T)) drawn either fromY or fromN , andX (t) is given
as input to the t th player. A (simultaneous communication) protocol Π = (Π(1), . . . ,Π(T),Πref) is a
(T + 1)-tuple of functions with Π(t)(X (t)) ∈ {0, 1}c denoting the t th player’s message to the referee,

and Πref(Π(1)(X (1)), . . . ,Π(T)(X (T))) ∈ {YES,NO} denoting the protocol’s output. We denote this
output by Π(X (1), . . . ,X (T)). The complexity of this protocol is the parameter c specifying the max-
imum length of Π(1)(X (1)), . . . ,Π(T)(X (T)) (maximized over all X). The advantage of the protocol Π
is the quantity'''' Pr

(X (1), ...,X (T))∼Y
[Π(X (1), . . . ,X (T)) = YES] − Pr

(X (1), ...,X (T))∼N
[Π(X (1), . . . ,X (T)) = YES]

'''' .
Definition 5.15 ((F ,DY ,DN ,T)-simultaneous-SD). For k,T ∈ N, α ∈ (0, 1/k], a finite set F ,

distributions DY ,DN over F × [q]k , the (F ,DY ,DN ,T)-simultaneous-SD is a T -player com-
munication game given by a family of instances (Ysimul,n ,Nsimul,n)n∈N,n≥1/α , where for a given
n, Y = Ysimul,n and N = Nsimul,n are as follows: Both Y and N are supported on tuples

(x∗,M (1), . . . ,M (T), z(1), . . . , z(T)), where x∗ ∈ [q]n , M (t) ∈ {0, 1}kαn×n , and z(t) ∈ (F × {0, 1})kαn ,
where the pair (M (t), z(t)) is the t th player’s inputs for all t ∈ [T]. We now specify the distributions
of x∗, M (t), and z(t) in Y and N :

— In both Y and N , x∗ is distributed uniformly over [q]n .
— In both Y and N , the matrix M (t) ∈ {0, 1}αkn×n is chosen uniformly (and independently of
x∗) among matrices with exactly one 1 per row and at most one 1 per column.

— The vector z(t) is determined fromM (t) and x∗ as follows. Sample a random vector b(t) ∈ (F ×
[q]k)αkn whose distribution differs in Y and N . Specifically, let b(t) = (b(t)(1), . . . , b(t)(αn))
be sampled from one of the following distributions (independent of x∗ and M):

– Y: Each b(t)(i) = (fi , b̃(i)) ∈ F × [q]k is sampled independently according to DY .

– N : Each b(t)(i) = (fi , b̃(i)) ∈ F × [q]k is sampled independently according to DN .

We now set z(t) = (fi , z̃i), where z̃i = 1 iff = (M (t)x∗) = b̃(t)(i).
If F ⊆ { f : [q]k → {0, 1}}, then given an instance σ = (x∗,M (1), . . . ,M (T), z(1), . . . , z(T)), we

will let Ψ(σ) represent the associated instance of Max-CSP(F) as described in Section 5.2.2.

Note that the instance Ψ(σ) obtained in the YES andNO cases of (F ,DY ,DN ,T)-simultaneous-

SD is distributed exactly according to instances derived in the YES and NO cases of
(F ,DY ,DN ,T ,D0,τ = 0)-padded-streaming-SD and thus Lemma 5.8 can still be applied to con-
clude that YES instances usually satisfy valΨ(σ) ≥ γ − o(1) and NO instances usually satisfy
valΨ(σ) ≤ β − o(1). We will use this property when proving Theorem 5.1.

We start by showing that the simultaneous-SD problems above do not have low-communication
protocols when the marginals of DY and DN match.

Lemma 5.16. Let F be a finite set, k,q,T ∈ N, DY ,DN ∈ Δ(F × [q]k), and let α ∈ (0, 1/k].
Suppose there is a protocol Π that solves (F ,DY ,DN ,T)-simultaneous-SD on instances of length n
with advantage Δ and space s ; then there is a one-way protocol for (F ,DY ,DN)-SD on instances of
length n using at most s(T − 1) bits of communication and achieving advantage at least Δ/T .

Proof. Let us first fix the randomness in Π so that it becomes a deterministic protocol. Note
that by an averaging argument the advantage of Π does not decrease. Recall thatY andN are Yes

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:46 C.-N. Chou et al.

and No input distributions of (F ,DY ,DN ,T)-simultaneous-SD, and we have

Pr
X∼Y

[Π(X) = YES] − Pr
X∼N

[Π(X) = YES] ≥ Δ .

Now, we define the following distributions D0, . . . ,DT . Let D0 = Y and DT = N . For each
t ∈ [T −1], we defineDt to be the distribution of input instances of (F ,DY ,DN ,T)-simultaneous-

SD by sampling b(t
′)(i) independently according to DY (resp. DN) for all t ′ ≤ t (resp. t ′ > t) and

i (see Definition 5.15 to recall the definition). Next, for each t ∈ [T], let
Δt = Pr

X∼Dt

[Π(X) = YES] − Pr
X∼Dt−1

[Π(X) = YES] .

Observe that
∑

t ∈[T] Δt = Δ and hence there exists t∗ ∈ [T] such that Δt ∗ ≥ Δ/T .
Now we describe a protocol Π′ for (F ,DY ,DN)-SD as follows. On input (x∗,M, z), Alice re-

ceives x∗ and Bob receives (M, z). Alice first samples matrices M (1), . . . ,M (t ∗−1),M (t ∗+1), . . . ,M (T)

as the second item in Definition 5.15. Next, Alice samples b(t
′)(i) = (fi , b̃(t

′)(i)) according
to DY (resp. DN) for all t ′ < t∗ (resp. t ′ > t∗) and i ∈ [αnT] and sets z(t

′)(i) =
(fi , z̃i) as the third item in Definition 5.15. Note that Alice can do this because she pos-
sesses x∗. Finally, Alice sends {Π(t ′)(M (t ′), z(t

′))}t ′ ∈[T]\{t ∗ } to Bob. After receiving Alice’s mes-

sage (X (1), . . . ,X (t ∗−1),X (t ∗+1), . . . ,X (T)), Bob computes Π(t ∗)(M, z) and outputs Π′(M, z) =
Πref(X (1), . . . ,X (t ∗−1),Π(t ∗)(M, z),X (t ∗+1), . . . ,X (T)).

It is clear from the construction that the protocol Π′ uses at most s(T − 1)
bits of communication. To see Π′ has advantage at least Δ/T , note that if
(x∗,M, z) is sampled from the Yes distribution YSD of (F ,DY ,DN)-SD, then
((M (1), z(1)), . . . , (M (t ∗−1), z(t

∗−1)), (M, z), (M (t ∗+1), z(t
∗+1)), . . . , (M (T), z(T))) follows the distribu-

tion Dt ∗ . Similarly, if (x∗,M, z) is sampled from the No distributionNSD of (F ,DY ,DN)-SD, then
((M (1), z(1)), . . . , (M (t ∗−1), z(t

∗−1)), (M, z), (M (t ∗+1), z(t
∗+1)), . . . , (M (T), z(T))) follows the distribution

Dt ∗−1. Thus, the advantage of Π′ is at least

Pr
(M,z)∼YSD,Π′

[Π′(M, z) = YES] − Pr
(M,z)∼NSD,Π′

[Π′(M, z) = YES]

= Pr
X∼Dt∗

[Π(X) = YES] − Pr
X∼Dt∗−1

[Π(X) = YES] = Δt ∗ ≥ Δ/T .

We conclude that there is a one-way protocol for (F ,DY ,DN)-SD using at most s(T − 1) bits of
communication achieving advantage at least Δ/T . �

As an immediate consequence of Theorem 5.4 and Lemma 5.16, we get that (F ,DY ,DN ,T)-
simultaneous-SD requiresΩ(

√
n) bits of communicationwhen themarginals ofDY andDN match.

Lemma 5.17. For every k,q ∈ N, there exists α0 > 0 such that for every α ∈ (0,α0) and δ > 0
the following holds: For every finite set F and T ∈ N and every pair of distributions DY ,DN ∈
Δ(F ×[q]k)with μ(DY) = μ(DN), there exists τ > 0 andn0 such that for everyn ≥ n0, every protocol
for (F ,DY ,DN ,T)-simultaneous-SD achieving advantage δ on instances of length n requires τ

√
n

bits of communication.

We are now ready to prove Theorem 5.1.

5.3.2 Proof of Theorem 5.1.

Proof of Theorem 5.1. The proof is a straightforward combination of Lemma 5.8 and

Lemma 5.17 and so we pick parameters so that all these are applicable. Given ε and k , let α (1)
0

be as given by Lemma 5.8 and let α (2)
0 be as given by Lemma 5.17. Let α = min{α (1)

0 ,α
(2)
0 }. Given

this choice of α , let T0 be as given by Lemma 5.8. We set T = T0 below. Let n be sufficiently large.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:47

Throughout this proof we will be considering integer weighted instances of Max-CSP(F) on n
variables with constraints. Note that such an instance Ψ can be viewed as a vector in ZN , where
N = O(|F | × nk) represents the number of possibly distinct constraint applications on n vari-
ables. Let Γ = {Ψ|valΨ ≥ γ − ε}. Let B = {Ψ|valΨ ≤ β + ε}. Suppose there exists a sketching
algorithm ALG1 that solves (γ − ε, β + ε)-Max-CSP(F) using at most s(n) bits of space. Note that
ALG1 must achieve advantage at least 1/3 on the problem (Γ,B). By running several independent
copies of ALG1 and thresholding appropriately, we can get an algorithm ALG2 with space O(s)
and advantage 1 − 1

100 solving (Γ,B).
Now, let SKETCH and COMB be the compression and combination functions as given by this

sketching algorithm (see Definition 2.3). We use these to design a protocol for (F ,DY ,DN ,T)-
simultaneous-SD as follows.

Let (M (t), z(t)) denote the input to the t th player in (F ,DY ,DN ,T)-simultaneous-SD. Each

player turns his/her inputs into Ψ(t) = (C(t)
1 , . . . ,C

(t)
mt

), where C(t)
i corresponds to the constraint

(j(t)(i), f (t)i), with j
(t)
i ∈ [n]k the indicator vector for the ith hyperedge ofM (t). Next, the players use

shared randomness to compute the sketch of their input SKETCH(Ψ(t)) and send it to the referee.
Finally, the referee computes the sketch for all streamsCOMB(SKETCH(Ψ(1)), . . . , SKETCH(Ψ(T)))
and outputs the corresponding answer.

To analyze the above, note that the communication isO(s). Next, by the advantage of the sketch-
ing algorithm, we have that

min
Ψ∈Γ

[ALG2(Ψ) = 1] −max
Ψ∈B

[ALG2(Ψ) = 1] ≥ 1 − 12/100. (5.18)

Now we consider what happens when Ψ ∼ Ysimul,n and Ψ ∼ Nsimul,n . By Lemma 5.8, we have that
PrΨ∼Ysimul,n

[Ψ ∈ Γ] ≥ 1 − o(1) and PrΨ∼Nsimul,n
[Ψ ∈ B] ≥ 1 − o(1). Combining with Equation (5.18),

we thus get

Pr
Ψ∼Ysimul,n

[ALG2(Ψ) = 1] − Pr
Ψ∼Nsimul,n

[ALG2(Ψ) = 1] ≥ 1 − 12/100 − o(1) ≥ 1/2.

We thus get an O(s) simultaneous communication protocol for (F ,DY ,DN ,T)-simultaneous-SD

with advantage at least 1/2.
Now we conclude by applying Lemma 5.17 with δ = 1/2 to get that s = Ω(

√
n)/T = Ω(

√
n), thus

yielding the theorem. �

6 HARDNESS OF ADVICE SIGNAL DETECTION WITH UNIFORM MARGINALS

The goal of this section is to prove a variant of Theorem 5.4 that will be used in Section 7 and
Section 8 for a proof of the general case of Theorem 5.4. Recall that in the (DY ,DN)-SD prob-
lem, |F | = 1, so we omit F . The main result of this section, presented in Theorem 6.4, gives
an Ω(

√
n) lower bound on the communication complexity of (DY ,DN)-SD for distributions with

matching marginals μ(DY) = μ(DN) for the case when (i) the alphabet is Boolean {−1, 1},11 (ii)
the marginals are uniform μ(DY) = μ(DN) = 0k , but (iii) both players also receive a specific
advice vector a. We define the corresponding Advice-SD communication game below.

In order to prove the hardness of Advice-SD, we first define the Advice-RMD communication
game and prove an Ω(

√
n) lower bound on the communication complexity of this game in The-

orem 6.2. The proof of the main result of this section, Theorem 6.4, will then follow from the
corresponding lower bounds for Advice-RMD in Theorem 6.2.

11Throughout this section we use {−1, 1} to denote the Boolean domain.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:48 C.-N. Chou et al.

6.1 Hardness of Advice-RMD

In this section we state a theorem that establishes the hardness of RMD in the Boolean setting
and with uniform marginals while allowing for advice. The proof of this theorem is postponed to
Section 6.3. First we define the Advice-RMD one-way communication game.

Definition 6.1 (Advice-RMD). Let n,k ∈ N,α ∈ (0, 1), where k and α are constants with respect
to n, and αn is an integer less than n/k . For a pair DY and DN of distributions over {−1, 1}k , we
consider the following two-player one-way communication problem (DY ,DN)-Advice-RMD.

— The generator samples the following objects:
(1) x∗ ∼ Unif({−1, 1}n).
(2) Γ ∈ Sn is chosen uniformly among all permutations of n elements.
(3) We let M ∈ {0, 1}kαn×n be a partial permutation matrix capturing Γ−1(j) for j ∈ [kαn].

Specifically, Mi j = 1 if and only if j = Γ(i). We view M = (M1, . . . ,Mαn), where each

Mi ∈ {0, 1}k×n is a block of k successive rows of M .
(4) b = (b(1), . . . , b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) ∈ {−1, 1}k is sampled according to DY .
– (NO) each b(i) ∈ {−1, 1}k is sampled according to DN .

(5) z = Mx∗
 b, where
 denotes the coordinate-wise product of the elements.
(6) Define a vector a ∈ [k]n as aj = i , where i = Γ−1(j) (mod k) for every j ∈ [n].
— Alice receives x∗ and a as input.
— Bob receives M , z, and a as input.

We follow the approach of [43] to prove the following theorem showing aΩ(
√
n) communication

lower bound for Boolean Advice-RMD. We postpone the proof to Section 6.3.

Theorem 6.2 (Communication Lower Bound for Boolean Advice-RMD). For every

k ∈ N and every pair of distributions DY ,DN ∈ Δ({−1, 1}k) with uniform marginals

μ(DY) = μ(DN) = 0k there exists α0 > 0 such that for every α ≤ α0 and δ > 0 there ex-
ists τ > 0 such that every protocol for (DY ,DN)-Advice-RMD achieving advantage δ requires τ

√
n

bits of communication on instances of length n.

6.2 Hardness of Advice-SD

Let us first extend the definition of the SD problem to the following Advice-SD one-way commu-
nication game.

Definition 6.3 (Advice-SD). Let n,k,q ∈ N,α ∈ (0, 1), where k , q, and α are constants with
respect to n, and αn/k is an integer less than n. For a pair DY and DN of distributions over [q]k ,
we consider the following two-player one-way communication problem (DY ,DN)-Advice-SD.

— The generator samples the following objects:
(1) x∗ ∼ Unif([q]n).
(2) Γ ∈ Sn is chosen uniformly among all permutations of n elements.
(3) We let M ∈ {0, 1}kαn×n be a partial permutation matrix capturing Γ−1(j) for j ∈ [kαn].

Specifically, Mi j = 1 if and only if j = Γ(i). We view M = (M1, . . . ,Mαn), where each

Mi ∈ {0, 1}k×n is a block of k successive rows of M .
(4) b = (b(1), . . . , b(αn)) is sampled from one of the following distributions:

– (YES) each b(i) ∈ [q]k is sampled according to DY .
– (NO) each b(i) ∈ [q]k is sampled according to DN .

(5) z = (z1, . . . , zαn) ∈ {0, 1}αn is determined from M , x∗, and b as follows. We let zi = 1 if
Mix

∗ = b(i), and zi = 0 otherwise.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:49

(6) Define a vector a ∈ [k]n as aj = i , where i = Γ−1(j) (mod k) for every j ∈ [n].
— Alice receives x∗ and a as input.
— Bob receives M , z, and a as input.

Almost immediately we get the following corollary for the Advice-SD problem from Theo-
rem 6.2.

Theorem 6.4 (Communication Lower Bound for Boolean Advice-SD). For every k ∈ N and

every pair of distributions DY ,DN ∈ Δ({−1, 1}k) with uniform marginals μ(DY) = μ(DN) = 0k

there existsα0 > 0 such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0, such that every protocol
for (DY ,DN)-advice-SD achieving advantage δ requires τ

√
n bits of communication on instances of

length n.

Proof. We show that a protocol achieving advantage δ in the (DY ,DN)-Advice-SD game with
s bits of communication implies a protocol achieving advantage δ for the (DY ,DN)-Advice-RMD

game with s bits of communication. Then the lower bounds of Theorem 6.2 for distributions with
matching marginals will finish the proof.

Assume that there exists Bob’s algorithmB(M, z, a,Alice’s message) that distinguishes bi ∼ DY

and bi ∼ DN with advantage δ in the Advice-SD game. For the Advice-RMD game, we keep the
same algorithm for Alice and modify Bob’s algorithm as follows. Bob receivesM ∈ {0, 1}kαn×n , z ∈
{−1, 1}kαn , a, and Alice’s message, and partitions z = (z1, . . . , zαn), where zi ∈ {−1, 1}k . For each
i ∈ [αn], Bob computes z̃i ∈ {0, 1} as follows: z̃i = 1 if and only if zi = 1k . Now Bob sets
z′ = (̃z1, . . . , z̃αn) ∈ {0, 1}αn and outputs B(M, z′, a,Alice’s message). It is easy to see that in
both YES and NO cases, the distribution of the vectors z′ computed by Bob is the distribution of
vectors z sampled in the (DY ,DN)-Advice-SD game. Thus, the protocol achieves advantage δ for
the (DY ,DN)-Advice-SD game using s bits of communication as desired. �

6.3 Proof of Theorem 6.2

Our proof of Theorem 6.2 follows the methodology of [43] with some modifications as required
by the Advice-RMD formulation. Their proof uses Fourier analysis to reduce the task of proving
a communication lower bound to that of proving some combinatorial identities about randomly
chosen matchings. We follow the same approach, and this leads us to different conditions about
randomly chosen hypermatchings, which require a fresh analysis in Lemma 6.9.

Without loss of generality, in the following we assume that n is a multiple of k . A vector a ∈ [k]n
is called an advice vector if for every i ∈ [k], |{j : aj = i}| = n/k . For an advice vector a ∈ [k]n ,
we say that a partial permutation matrixM ∈ {0, 1}kαn×n of a permutation Γ is a-respecting if for
every i ∈ [kαn] and j ∈ [n],Mi j = 1 if and only if aj = i (mod k). Intuitively, a is the advice vector
that tells you which congruence class Γ(j) lies in.

For each advice vector a ∈ [k]n , each a-respecting partial permutation matrix M ∈ {0, 1}kαn×n ,
distribution D over {−1, 1}k , and a fixed Alice’s message, the posterior distribution function
pM,D,a : {−1, 1}kαn → [0, 1] is defined as follows. For each z ∈ {−1, 1}kαn , let

pM,D,a(z) := Pr
x∗ ∈{−1,1}n
b∼Dαn

[z = (Mx∗)
 b | M, a, Alice’s message] = E
x∗ ∈A

E
b∼Dαn

[1z=(Mx∗)
b] ,

where A ⊂ {−1, 1}n is the set of Alice’s inputs that correspond to the message.

Lemma 6.5. Let a ∈ [k]n , A ⊆ {−1, 1}n , and f : {−1, 1}n → {0, 1} be the indicator function of A.
Let k ∈ N and α ∈ (0, 1/100k). Let D be a distribution over {−1, 1}k such that Ea∼D[aj] = 0 for all

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:50 C.-N. Chou et al.

j ∈ [k].

E
M

M is a-resp.

[‖pM,D,a −U ‖2tvd] ≤
22n

|A|2
kαn∑
�≥2

h(�) ·
∑

v∈{0,1}n
|v |=�

f̂ (v)2 ,

where U ∼ Unif({−1, 1}kαn) and for each � ∈ [n],

h(�) = max
v� ∈{0,1}n
|v� |=�

Pr
M

M is a-resp.

[
∃s ∈ {0, 1}kαn\{0kαn}, |s(i)| � 1∀i, M�s = v�

]
.

Here, for a vector s ∈ {0, 1}kαn and integer i ∈ [αn], s(i) ∈ {0, 1}k denotes the ith group of k
coordinates of s.

Proof. Observe that

‖pM,D,a −U ‖22 =
∑

s∈{0,1}kαn

(
p̂M,D,a(s) − Û (s)

)2
=

∑
s∈{0,1}kαn\{0kαn }

p̂M,D,a(s)2 .

Now by the Cauchy–Schwarz inequality, we have that

E
M

M is a-resp.

[
‖pM,D,a −U ‖2tvd

]
≤ 22kαn E

M
M is a-resp.

[
‖pM,D,a −U ‖22

]
= 22kαn E

M
M is a-resp.

⎡⎢⎢⎢⎢⎣
∑

s∈{0,1}kαn\{0kαn }

1pM,D,a(s)2
⎤⎥⎥⎥⎥⎦ . (6.6)

The following claim shows that the Fourier coefficients of the posterior distribution pM,D,a can
be bounded from above by a certain Fourier coefficient of the indicator function f . Let’s define
GOOD := {s ∈ {0, 1}kαn | |s(i)| � 1 ∀i}.

Claim 6.7.

E
M

M is a-resp.

[‖pM,D,a −U ‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0kαn }
E
M

M is a-resp.

[
f̂ (M�s)2

]
.

Proof. Observe that1pM,D,a(s) =
1

2kαn

∑
z∈{−1,1}kαn

pM,D,a(z)
∏

i ∈[αn], j ∈[k]
s(i)j=1

z(i)j .

Recall that pM,D,a(z) = Ex∗ ∈A Eb∼Dαn [1z=Mx∗
b]; the equation becomes

=
1

2kαn
· E
x∗ ∈A

⎡⎢⎢⎢⎢⎢⎢⎣
∏

i ∈[αn], j ∈[k]
s(i)j=1

(Mx∗)i, j

⎤⎥⎥⎥⎥⎥⎥⎦ E
b∼Dαn

⎡⎢⎢⎢⎢⎢⎢⎣
∏

i ∈[αn], j ∈[k]
s(i)j=1

b(i)j

⎤⎥⎥⎥⎥⎥⎥⎦ .
Since Ea∼D[aj] = 0 for all j ∈ [k], the right-most sum is 0 if there exists i such that |s(i)| = 1. This
equation becomes

≤ 1

2kαn
·

'''''''' Ex∗ ∈A
⎡⎢⎢⎢⎢⎢⎢⎣

∏
i ∈[αn], j ∈[k]

s(i)j=1

(Mx∗)i, j

⎤⎥⎥⎥⎥⎥⎥⎦
'''''''' · 1s∈GOOD .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:51

Note that as each row and column of M has at most 1 non-zero entry, we have

=
1

2kαn
·

'''''''' Ex∗ ∈A
⎡⎢⎢⎢⎢⎢⎢⎣

∏
i ∈[n]

(M�s)i=1

x∗i

⎤⎥⎥⎥⎥⎥⎥⎦
'''''''' · 1s∈GOOD.

Now we relate the above quantity to the Fourier coefficients of f . Recall that f is the indicator
function of the set A and hence for each v ∈ {0, 1}n , we have

f̂ (v) = 1

2n

∑
x∗

f (x∗)
∏

i ∈[n]:vi=1
x∗i =

1

2n

∑
x∗ ∈A

∏
i ∈[n]:vi=1

x∗i .

Thus, the Fourier coefficient of pM can be bounded as follows:

1pM,D,a(s) ≤
1

2αkn
· 2n

|A|

''' f̂ (M�s)
''' · 1s∈GOOD . (6.8)

By plugging Equation (6.8) into Equation (6.6), we have the desired bound and complete the proof
of Claim 6.7. �

Next, by Claim 6.7, we have

E
M

M is a-resp.

[‖pM,D,a −U ‖2tvd] ≤
22n

|A|2
∑

s∈GOOD\{0αkn }
E
M

M is a-resp.

[
f̂ (M�s)2

]
.

Since for a fixed M the map M� is injective, the right-hand side of the above inequality has the
following combinatorial form:

=
22n

|A|2
∑

v∈{0,1}n\{0n }
Pr
M

M is a-resp.

[
∃s ∈ GOOD\{0kαn}, M�s = v

]
f̂ (v)2 .

By symmetry, the above probability term will be the same for v and v′ having the same Hamming
weight. Recall that

h(�) = max
v� ∈{0,1}n
|v� |=�

Pr
M

M is a-resp.

[
∃s ∈ GOOD\{0kαn}, M�s = v�

]
.

This equation becomes

≤ 22n

|A|2
n∑

�≥1
h(�) ·

∑
v∈{0,1}n
|v |=�

f̂ (v)2 .

Note that for � = 1 and every � > αkn, h(�) = 0 by definition. Thus, this expression simplifies to
the following:

=
22n

|A|2
αkn∑
�≥2

h(�) ·
∑

v∈{0,1}n
|v |=�

f̂ (v)2 .

This completes the proof of Lemma 6.5. �

Now we bound from above the combinatorial quantity h(�) from Lemma 6.5.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:52 C.-N. Chou et al.

Lemma 6.9. For every 0 < α ∈ (0, 1/100k2) and � ∈ [kαn], we have

h(�) = max
v� ∈{0,1}n
|v� |=�

Pr
M

M is a-resp.

[∃s � 0, |s(i)| � 1 ∀i, M�s = v�
]
≤

(
�

n

)�/2
(e3αk5)�/2 .

Proof. By symmetry, without loss of generality we can fix the advice vector a =

(1n/k2n/k . . .kn/k). For non-negative integers �1, . . . , �k , we say that v� ∈ {0, 1}n is an (�1, . . . , �k)-
vector if for every i ∈ [k], v has exactly �i entries equal to 1 in the ith group of n/k coordinates.
For fixed values of �i , let us define

h(�1, . . . , �k) = Pr
M

M is a-resp.

[∃s � 0, |s(i)| � 1 ∀i, M�s is a (�1, . . . , �k)-vector
]
.

We note that

h(�) = max
�1, ..., �k ≥0∑

i �i=�

h(�1, . . . , �k) . (6.10)

An equivalent way to compute the probability h(�1, . . . , �k) is to fix the matchingM = {(i,n/k+
i, . . . , (k − 1)n/k + i)|i ∈ [αn]} and to let v be a random (�1, . . . , �k)-vector . Then

h(�1, . . . , �k) = Pr
v

v is (�1, ..., �k)

[∃s � 0, |s(i)| � 1 ∀i, M�s = v
]
=

|U |
|V | , (6.11)

where V ⊆ {0, 1}n is the set of all (�1, . . . , �k)-vectors, and U = {u ∈ V : ∃s � 0, |s(i)| �
1 ∀i, M�s = u}. From �1 + · · · + �k = �, the number of (�1, . . . , �k)-vectors is

|V | =
k∏
i=1

(
n/k
�i

)
≥

(
n/k∑k
i=1 �i

)
=

(
n/k
�

)
≥

(n
k�

)�
, (6.12)

where the first inequality uses that n/k ≥ kαn ≥ � for α ≤ 1/k2.
For a vector s ∈ {0, 1}kαn , letTs = {i : |s(i)| > 0} be the set of indices of non-zero blocks of s. In

order to give an upper bound on the size ofU , first we pick a setTs, and then we choose a vector u
such that M�s = u for some s corresponding to the set Ts. Note that since for each i ∈ T , s(i) > 0
and s(i) � 1, by the definition of h(�), the size of t = |T | ≤ k/2. For every t , the number of ways to
chooseTs is

(αn
t

)
. For a fixedTs, it remains to choose the � coordinates of u among at most kt non-

zero coordinates of s. For a vector s ∈ {0, 1}kαn , letTs = {i ∈ [αn] : |s(i)| > 0} be the set of indices
of non-zero blocks of s. In order to give an upper bound on the size ofU , first we pick a setT , and
then we choose a vector u such that M�s = u for some s with (i) |s(i) � 1| for all i and (ii) Ts = T .
Note that since for each i ∈ T , s(i) > 0 and |s(i)| � 1, the size of t = |T | ≤ �/2. For every t , the
number of ways to chooseT is

(αn
t

)
. For a fixedT , it remains to choose the � coordinates of u among

at most kt non-zero coordinates of s. This gives us the following upper bound on the size of |U |:

|U | ≤ max
t ≤�/2

(
αn

t

) (
kt

�

)
. (6.13)

The second term of the upper bound in Equation (6.13) can be bounded from above by(
kt

�

)
≤

(
ekt

�

)�
≤

(
ek�/2
�

)�
=

(
ek

2

)�
.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:53

Now we’ll show that the first term of the upper bound in Equation (6.13) can be bounded from

above by
(
2ekαn

�

)�/2
. If � ≥ 2αn, then(

αn

t

)
≤ 2αn ≤ 2�/2 ≤

(
2ekαn

�

)�/2
,

where in the last inequality we use � ≤ kαn. If � < 2αn, then t ≤ �/2 < αn, and(
αn

t

)
≤

(eαn
t

)t
≤

(
2eαn

�

)�/2
<

(
2ekαn

�

)�/2
.

The above implies that

|U | ≤ max
t ≤min{αn, �/2}

(
αn

t

) (
kt

�

)
≤

(
ek

2

)� (
2ekαn

�

)�/2
≤

(n
�

)�/2
(e3αk3)�/2 . (6.14)

Finally, from Equations (6.10) to (6.12) and (6.14),

h(�) = max
�1, ..., �k ≥0∑

i �i=�

h(�1, . . . , �k) =
|U |
|V | ≤

(
k�

n

)�
·
(n
�

)�/2
(e3αk3)�/2 ≤

(
�

n

)�/2
(e3αk5)�/2. �

In Lemma 6.15 below we give the final ingredient needed for the proof of Theorem 6.2. If U is
the uniform distribution over {−1, 1}k , then we show that for every large setA ⊆ {0, 1}n of inputs
x corresponding to a fixed Alice’s message (and a fixed advice a), EM,M is a-resp.[‖pM,D,a −U ‖2

tvd
]

is small.

Lemma 6.15. For every k ∈ N there exists α0 > 0 such that for every 0 < α ≤ α0,δ ∈ (0, 1), and
c ≤ δ

√
n

100
√
αk5

the following holds for all large enough n. If D is a distribution over {−1, 1}k such that

for all j ∈ [k], Ea∼D[aj] = 0, and A ⊆ {−1, 1}n is of size |A| ≥ 2n−c , then

E
M

M is a-resp.

[‖pM,D,a −U ‖2tvd] ≤
δ 2

16
,

where U ∼ Unif({−1, 1}kαn).

Proof. Lemma 6.5 and Lemma 6.9 imply that for every A of size |A| ≥ 2n−c ,

E
M

M is a-resp.

[‖pM,D,a −U ‖2tvd] ≤
22n

|A|2 ·
kαn∑
�≥2

(
�

n

)�/2
(e3αk5)�/2

∑
v∈{0,1}n
|v |=�

f̂ (v)2 .

For every � ∈ [4c], Lemma 2.11 implies that

22n

|A|2
∑

v∈{0,1}n
|v |=�

f̂ (v)2 ≤
(
4
√
2c

�

)�
.

By the Parseval identity,
∑

v f̂ (v)2 ≤ 1. This gives us that

E
M

M is a-resp.

[‖pM,D,a −U ‖2
tvd

] ≤
4c∑
�≥2

(
�

n

)�/2
(e3αk5)�/2 ·

(
4
√
2c

�

)�
+

22n

|A|2
· max
4c<�≤kαn

{(
�

n

)�/2
(e3αk5)�/2

}
.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:54 C.-N. Chou et al.

Recall that c ≤ δ
√
n

100
√
αk5

. Let α0 =
1

2e3k5 . Then for every α ≤ α0, the max term on the right-hand

side is maximized by � = 4c + 1 for all large enough n:

≤
4c∑
�≥2

(
32e3αk5c2

n�

)�/2
+

(
8e3cαk5

n

)2c
≤

4c∑
�≥2

(
δ 2

30

)�/2
+

(
8e3δ

√
α

100
√
k3
√
n

)2c
<

δ 2

16
. �

We are ready to finish the proof of Theorem 6.2.

Proof of Theorem 6.2. Let us set τ = δ

200
√
αk5

, and let α0 be as set in Lemma 6.15. Suppose that

there exists a one-way communication protocol for (DY ,DN)-Advice-RMD that uses s = τ
√
n

bits of communication and has advantage at least δ . By the triangle inequality, there must exist a
protocol with advantage δ/2 and s bits of communication for either the (DY ,Dunif)-Advice-RMD

or the (DN ,Dunif)-Advice-RMD problem.Without loss of generality, we assume that (DY ,Dunif)-
Advice-RMD can be solved with advantage δ/2. Then,

‖pM,DY ,a − pM,Dunif ,a‖tvd ≥ δ

2
.

Without loss of generality, we can assume that Alice’s protocol is deterministic. In other words,
for every a, Alice’s s-bit communication protocol partitions the set of {−1, 1}n of inputs x into 2s

sets A1, . . . ,A2s ⊆ {−1, 1}n according to the message sent by Alice. Therefore, at least (1 − δ/4)-
fraction of inputs x ∈ {−1, 1}n belongs to setsAi of size |Ai | ≥ δ

4 · 2
n−s ≥ 2n−c for c = s + 1− logδ .

By Lemma 6.15, for every Ai of size |Ai | ≥ 2n−c ,

‖pM,DY ,a − pM,Dunif ,a‖tvd |x∗ ∈Ai = E
M

M is a-resp.

[‖pM,D,a −U ‖tvd |x∗ ∈Ai] ≤ δ/4 .

Finally,

‖pM,DY ,a − pM,Dunif ,a‖tvd ≤ Pr[x ∈ Ai : |Ai | < 2n−c]
+ Pr[x ∈ Ai : |Ai | ≥ 2n−c] · ‖pM,DY ,a − pM,Dunif ,a‖tvd |x∗ ∈Ai
≤ δ/4 + (1 − δ/4) · δ/4
< δ/2. �

7 HARDNESS OF SIGNAL DETECTION

In this section we extend the hardness result of the SD problems for the special distributions de-
scribed in Section 6 to the fully general setting, thus proving the following theorem.

Theorem 5.4 (Communication Lower Bound for (F ,DY ,DN)-SD). For every k,q, every
finite set F , every pair of distributions DY ,DN ∈ Δ(F × [q]k) with μ(DY) = μ(DN) there exists
α0 > 0 such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds:
Every protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n

bits of communication.

The bulk of this section is devoted to proving that for every pair of distributionsDY andDN , we
can find a path (a sequence) of intermediate distributions DY = D0,D1, . . . ,DL = DN such that

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:55

adjacent pairs in this sequence are indistinguishable by a “basic” argument, where a basic argu-
ment is a combination of an indistinguishability result from Theorem 7.4 and a shifting argument.

Our proof comes in the following steps:

(1) For every marginal vector μ, we identify a canonical distribution Dμ that we use as the
endpoint of the path. So it suffices to prove that for allD,D is indistinguishable fromDμ(D);
i.e., there is a path of finite length from D to Dμ(D).

(2) We give a combinatorial proof that there is a path of finite length (some function of k) that
takes us from an arbitrary distribution to the canonical one.

Putting these ingredients together along with a proof that a “basic step” is indistinguishable gives
us the final theorem.

Let Q = [q1]× · · · [qk], where ∀i,qi ∈ N. We start with the definition of the chain and the canon-
ical distribution. For a distributionD ∈ Δ(Q), its support is the set supp(D) = {a ∈ Q | D(a) > 0}.
For D ∈ Q, we define the marginal vector μ(D) = (μi,σ)i ∈[k],σ ∈[qi] as μi,σ = Pra∼D[ai = σ]. Next,
we consider the following partial order on Q. For vectors a, b ∈ Q we use the notation a ≤ b if
ai ≤ bi for every i ∈ [k]. Further, we use a < b if a ≤ b and a � b.

Definition 7.1 (Chain). We refer to a sequence a(0) < a(1) < · · · < a(�), a(i) ∈ Q for every

i ∈ {0, . . . , �}, as a chain of length �. Note that chains in Q have length at most
∑k

i=1(qi − 1).

Lemma 7.2 (Canonical Distribution). Given a vector of marginals μ = (μi,σ)i ∈[k],σ ∈[qi], there
exists a unique distribution D with matching marginals (μ(D) = μ) such that the support of D is a
chain. We call this the canonical distribution Dμ associated with μ.

Proof. We will prove the proposition by applying induction on
∑k

i=1 qi . In the base case when∑k
i=1 qi = k , there is only one point in the support of the distribution and the claim holds trivially.

For
∑k

i=1 qi > k , define h = argmini ∈[k] μi,qi and τ = μh,qh . Let q̃h = qh − 1 and q̃i = qi , for
i � h. Define a vector of marginals μ̃ = (μ̃i,σ)i ∈[k],σ ∈[q̃i] as follows: μ̃i,σ = (μi,σ − τ)/(1 − τ) if
i � h and σ = qi , and μ̃i,σ = μi,σ /(1 − τ) otherwise. By the induction hypothesis, there exists a

unique distribution D̃ supported on a chain such that μ(D̃) = μ̃. Observe that the distribution

D = (1 − τ)D̃ + τ {(q1, . . . ,qk)} has marginal μ and is supported on a chain. We will now show
that D is the unique distribution with these properties. For a distribution D ∈ Δ([q1] × · · · × [qk])
and v ∈ [q1] × · · · × [qk], we define D(v) = Prc∼D[c = v]. Note that it suffices to prove that if
D′ ∈ Δ([q1] × · · · × [qk]) is supported on a chain and μ(D′) = μ, then D′(q1, . . . ,qk) = τ . Clearly
D′(q1, . . . ,qk) ≤ τ . Let u be lexicographically the largest vector smaller than (q1, . . . ,qk) in the
support of D′. Let r be an index where ur < qr . Since D′ is supported on a chain, D′(v) = 0 for
v ∈ [q1] × · · · × [qk] such that vr = qr and v � (q1, . . . ,qk). Hence, μr,qr = D′(q1, . . . ,qk). Since
τ = mini ∈[k] μi,qi , we have τ ≤ μr,qr = D′(q1, . . . ,qk). �

For u, v ∈ Q, let u′ = min{u, v} � (min{u1,v1}, . . . ,min{uk ,vk }) and let v′ = max{u, v} �
(max{u1,v1}, . . . ,max{uk ,vk }). We say u and v are incomparable if u � v and v � u. Note that if
u and v are incomparable, then {u, v} and {u′, v′} are disjoint.12

Definition 7.3 (Polarization (Update) Operator). Given a distributionD ∈ Δ(Q) and incomparable
elements u, v ∈ Q, we define the (u, v)-polarization of D, denoted Du,v, to be the distribution as

12To see this, suppose u = u′, and then we have uj = min{uj , vj } for all j ∈ [k] and hence u ≤ v, which is a contradiction.

The same analysis works for the other cases.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:56 C.-N. Chou et al.

given below. Let ε = min{D(u),D(v)}.

Du,v(b) =
⎧⎪⎪⎨⎪⎪⎩

D(b) − ε , b ∈ {u, v}
D(b) + ε , b ∈ {u′, v′}
D(b) , otherwise.

We refer to ε(D, u, v) = min{D(u),D(v)} as the polarization amount.

It can be verified that the polarization operator preserves the marginals, i.e., μ(D) = μ(Du,v).
Note also that this operator is non-trivial, i.e., Du,v = D, if {u, v} � supp(D).

Theorem 7.4 (Indistinguishability of the Polarization Step). Let n,k,q ∈ N, α ∈ (0, 1),
where k,q,α are constants with respect to n and αn is an integer less than n/k . For a distribution

D ∈ Δ([q]k), incomparable vectors u, v ∈ [q]k , and δ > 0, there exists τ > 0 such that every protocol
for (D,Du,v)-SD achieving advantage δ requires τ

√
n bits of communication.

We defer the proof of this theorem to Section 8.2 and focus instead on the number of steps.

7.1 Finite Upper Bound on the Number of Polarization Steps

In this section we prove that there is a finite upper bound on the number of polarization steps
needed to move from a distribution D ∈ Δ(Q) to the canonical distribution with marginal μ(D),
i.e., Dμ(D). Together with the indistinguishability result from Theorem 7.4 this allows us to com-
plete the proof of Theorem 5.4 by going from DY to Dμ(DY) = Dμ(DN) and then to DN by using
the triangle inequality for indistinguishability.

In this section we extend our considerations to functions A : Q → R
≥0. Let F (Q) = {A :

Q → R
≥0}. For A ∈ F (Q) and i ∈ [k], let μ0(A) =

∑
a∈Q A(a). Note Δ(Q) ⊆ F (Q) and

A ∈ Δ(Q) if and only if A ∈ F (Q) and μ0(A) =
∑

a∈Q A(a) = 1. We extend the definition of
marginals, support, canonical distribution, and polarization operators to F (Q). In particular, we
let μ(A) = (μ0, (μi,σ)i ∈[k],σ ∈[qi]), where μi,σ =

∑
a∈Q:ai=σ A(a). We also define canonical function

and polarization operators so as to preserve μ(A). So given arbitrary A, let D = 1
μ0(A) · A. Note

D ∈ Δ(Q). For μ = (μ0, (μi,σ)i ∈[k],σ ∈[qi]), where ∀i,∑σ ∈[qi] μi,σ = μ0, we define Aμ = μ0 · Dμ′ ,
where μ′ = (μi,σ /μ0)i ∈[k],σ ∈[qi] is the canonical function associated with μ.

Definition 7.5 (Polarization Length). For distribution A ∈ F (Q), where Q = [q1] × · · · × [qk],
let N (A) be the smallest t such that there exists a sequence A = A0,A1, . . . ,At such that A0 = A,
At = Aμ(A) is canonical and for every i ∈ [t] it holds that there exists incomparable ui , vi ∈
supp(Ai−1) such thatAi = (Ai−1)ui ,vi . If no such finite sequence exists, then letN (A) be infinite. Let
N (k,q1, . . . ,qk) = supA∈F(Q){N (A)}, and Ñ (Q) = maxk,q1, ...,qk |

∑
i qi=Q N (k,q1, . . . ,qk). Again, if

N (A) = ∞ for some A or if no finite upper bound exists, Ñ (Q) is defined to be ∞.

Note that if D ∈ Δ(Q), so is every element in the sequence, so the polarization length bound
below applies also to distributions. Our main lemma in this subsection is the following:

Lemma 7.6 (A Finite Upper Bound on Ñ (Q)). Ñ (Q) is finite for every finite Q . Specifically,
Ñ (Q) ≤ (Q2 + 3)Ñ (Q − 1) . Consequently, for every k,q1, . . . ,qk , N (q1, . . . ,qk) is finite as well.

We prove Lemma 7.6 constructively in the following four steps.

Step 1: The algorithm Polarize. Let us start with some notations. For A ∈ F ([q1] × · · · × [qk])
we let A|x�=q� denote the function A restricted to the domain [q1] × · · · × [q�−1] × {q�} × [q�+1] ×
· · · × [qk]. Note that A|x�=q� is effectively a (k − 1)-dimensional function. We also define A|x�<q�
as the restriction of A to the domain [q1] × · · · × [q�−1] × [q� − 1] × [q�+1] × · · · × [qk].

The goal of the rest of the proof is to show that Algorithm 2 terminates after a finite number of
steps and outputs Aμ(A).

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:57

ALGORITHM 2: Polarize(·)
Input: A ∈ F ([q1] × · · · × [qk]).
1: if k=1 OR �i : qi ≥ 2 then
2: Output: A.

3: WLOG, let qk ≥ 2.

4: t ← 0; Q− ←
∑k

i=1(qi − 1) − 1; Q+ ←
∑k−1

i=1 (qi − 1)
5: (A0)|xk<qk ← Polarize(A|xk<qk) ; (A0)|xk=qk ← Polarize(A|xk=qk)
6: Let (1)k = at (0) < · · · < at (Q−) = (q1, . . . ,qk−1,qk − 1) be a chain supporting (At)|xk<qk .
7: Let ((1)k−1,qk) = bt (0) < · · · < bt (Q+) = (q1, . . . ,qk) be a chain supporting (At)|xk=qk .
8: while ∃(i, j) with j < Q+ s.t. max{at (i), bt (j)} = (q1, . . . ,qk) and At (at (i)),At (bt (j)) > 0 do
9: Let (it , jt) be the lexicographically smallest such pair (i, j).

10: Bt ← (At)at (it),bt (jt).
11: (At+1)|xk<qk ← Polarize(Bt |xk<qk); (At+1)|xk=qk ← (Bt)|xk=qk .
12: t ← t + 1.
13: Let (1)k = at (0) < · · · < at (Q−) = (q1, . . . ,qk − 1) be a chain supporting (At)|xk<qk .
14: Let ((1)k−1,qk) = bt (0) < · · · < bt (Q+) = (q1, . . . ,qk) be a chain supporting (At)|xk=qk .
15: Let � ∈ [k] be such that for every a ∈ [q1] × · · · × [qk] \ {(q1, . . . ,qk)} we have At (a) > 0 ⇒

a� < q� .
16: (At+1)|x�<q� ←Polarize(At)|x�<q� ; (At+1)|x�=q� ← (At)|x�=q� .
17: Output: At+1.

Step 2: Correctness assuming Polarize terminates.

Claim 7.7 (Correctness Condition of Polarize). For everyA ∈ F ([q1]×· · ·×[qk]), if Polarize
terminates, then Polarize(A) = Aμ(A). In particular, Polarize(A) has the same marginals as A and
is supported on a chain.

Proof. First, by the definition of the polarization operator (Definition 7.3), the marginals of
At are the same for every t . So in the rest of the proof, we focus on inductively showing that if
Polarize terminates, then Polarize(A) is supported on a chain.

The base case where k = 1 is trivially supported on a chain as desired.
Whenk > 1, note that when the algorithm enters the Clean-up stage, if we letm andn denote the

largest indices such that At (at (m)),At (bt (n)) > 0 and At (bt (n)) � (q1, . . . ,qk), then the condition
that max{at (m), bt (n)} � (q1, . . . ,qk) implies that there is a coordinate � such that at (m)� < q�
and bt (n)� < q� . Since every c such that At (c) > 0 and ck < qk satisfies c ≤ at (m), we have that
At (c) > 0 implies c� < q� . Similarly, for every c � (q1, . . . ,qk) such that ck = qk , we have that
At (c) > 0 implies c� < q� . We conclude thatAt is supported on {(q1, . . . ,qk)}∪ {c | c� < q�}. Thus,
by the induction hypothesis, after polarizing (At)|x�<q� and leaving (At)|x�=q� unchanged, we get
that the resulting functionAt+1 is supported on a chain as desired and complete the induction. We
conclude that if Polarize terminates, we have Polarize(A) = Aμ(A). �

Step 3: Invariant in Polarize. Now, in the rest of the proof of Lemma 7.6, the goal is to show
that for every input A, the number of iterations of the while loop in Algorithm 2 is finite. The
key claim (Claim 7.11) here asserts that the sequence of pairs (it , jt) is monotonically increasing in
lexicographic order. Once we establish this claim, it follows that there are at mostQ− ·Q+ iterations
of the while loop and so Ñ (Q) ≤ (Q2 + 3)Ñ (Q − 1) , proving Lemma 7.6. Before proving Claim 7.11,
we establish the following properties that remain invariant after every iteration of the while loop.

Claim 7.8. For every t ≥ 0, we have that (At)|xk=qk and (At)|xk<qk are both supported on chains.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:58 C.-N. Chou et al.

Proof. For (At)|xk<qk , the claim follows from the correctness of the recursive call to Polarize.
For (At)|xk=qk , we claim by induction on t that the supporting chain bt (0) < · · · < bt (Q+) never
changes (with t). To see this, note that bt (k − 1) = (q1, . . . ,ak) is the only point in the support of
(At)|xk=qk that increases in value, and this is already in the supporting chain. Thus, bt (0) < · · · <
bt (Q+) continues to be a supporting chain for (At+1)|xk=qk . �

For c ∈ [q1] × · · · × [qk], we say that a function A : [q1] × · · · × [qk] → R
≥0 is c-respecting if

for every c′ such that A(c′) > 0, we have c′ ≥ c or c′ ≤ c. We say that A is c-downward-respecting
if A is c-respecting and the points in the support of A above c form a partial chain; specifically, if
u, v > c have A(u),A(v) > 0, then either u ≥ v or v ≥ u.

Note that if A is supported on a chain, then A is c-respecting for every point c in the chain.
Conversely, if A is supported on a chain and A is c-respecting, then A is supported on a chain that
includes c.

Claim 7.9. Let A be a c-respecting function and let Ã be obtained from A by a finite sequence of

polarization updates, as in Definition 7.3. Then Ã is also c-respecting. Furthermore, ifA is c-downward-

respecting and w > c, then Ã is also c-downward-respecting and A(w) = Ã(w).
Proof. Note that it suffices to prove the claim for a single update by a polarization operator

since the rest follows by induction. So let Ã = Au,v for incomparable u, v ∈ supp(A). Since A is
c-respecting and u, v are incomparable, either u ≤ c, v ≤ c or u ≥ c, v ≥ c. Suppose the former

is true, then max{u, v} ≤ c and min{u, v} ≤ c, and hence, Ã is c-respecting. Similarly, in the case

when u ≥ c, v ≥ c, we can show that Ã is c-respecting. The furthermore part follows by noticing
that for u and v to be incomparable ifA is c-downward-respecting andA(u),A(v) > 0, then u, v ≤ c,
and so the update changes A only at points below c. �

The following claim asserts that in every iteration of the while loop, by the lexicographically
minimal choice of (it , jt), there exists a coordinate h ∈ [k − 1] such that every vector c < at (it)
in the support of At , Bt , or At+1 has ch < qh , and every vector c � (q1, . . . ,qk) in the support of
(At)|xk=qk has ch < qh .

Claim 7.10. For every t ≥ 0, ∃h ∈ [k − 1] such that ∀c ∈ [q1] × · · · × [qk], if c ∈ supp(At) ∪
supp(Bt) ∪ supp(At+1), then the following hold:

— If c < at (it), then ch < qh .
— If ck = qk and c � (q1, . . . ,qk), then ch < qh .

Proof. Since (it , jt) is lexicographically the smallest incomparable pair in the support ofAt , for
i < it , j < Q+, and At (a(i)),At (b(j)) > 0, we have max{a(i), b(j)} � (q1, . . . ,qk). Let m be the
largest index smaller than it such that At (at (m)) > 0. Similarly, let n < Q+ be the largest index
such that At (bt (n)) > 0. Then the fact that max{at (m), bt (n)} � (q1, . . . ,qk) implies that there
exists h ∈ [k − 1] such that at (m)h < qh and bt (n)h < qh . Now, using the fact (from Claim 7.8)
that (At)|xk<qk is supported on a chain, we conclude that for every c < at (it), At (c) > 0 implies
that c ≤ at (m) and hence, ch < qh . Similarly, for every vector c � (q1, . . . ,qk) in the support of
(At)|xk=qk , by the maximality of n, we have ch < qh .

We now assert that the same holds for Bt . First, recall that since Bt = (At)at (it),bt (jt), we
have that supp(Bt) ⊂ supp(At) ∪ {(q1, . . . ,qk),min{at (it), bt (jt)}}. Next, note that the only
point (other than (q1, . . . ,qk)) where Bt is larger than At is min{at (it), bt (jt)}. It suffices to
show that min{at (it), bt (jt)}h < qh . We have min{at (it), bt (jt)} ≤ bt (jt) ≤ bt (n) and hence
min{at (it), bt (jt)}h < qh .

Finally, we assert that the same holds also forAt+1. SinceAt+1 |xk=qk = Bt |xk=qk , the second item
in the claim follows trivially. To prove the first item, let us consider a′ ∈ [q1] × · · · × [qk] defined

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:59

as follows: a′
h
= qh − 1 and a′r = at (it)r for r � h. Note that Bt |xk<qk is at (it)-respecting since

potentially the only new point in its support (compared toAt |xk<qk) is min{at (it), bt (jt)} ≤ at (it).
From the previous paragraph we also have that if Bt (c) > 0 and c < at (it), then ch < qh and
hence, c ≤ a′. On the other hand, if Bt (c) > 0 and c ≥ at (it), then c ≥ a′. Therefore, Bt |xk<qk is
a′-respecting. By applying Claim 7.9, we conclude that (At+1)|xk<qk is also a′-respecting. It follows
that if c < a(it) and At+1(c) > 0, then c ≤ a′ and so ch < qh . �

Step 4: Proof of Lemma 7.6. The following claim establishes that the while loop in the Polarize
algorithm terminates after a finite number of iterations.

Claim 7.11. For every t ≥ 0, (it , jt) < (it+1, jt+1) in lexicographic ordering.

Proof. Consider the chain at+1(0) < · · · < at+1(Q−) supporting At+1 |xk<qk . Note that for
i ≥ it , At+1 |xk<qk is at (i)-respecting (since At |xk<qk and Bt |xk<qk were also so). In particular,
At |xk<qk is at (i)-respecting because it is supported on a chain containing at (i). Next Bt |xk<qk is
at (i)-respecting since potentially the only new point in its support is min{at (it), bt (jt)} ≤ at (i).
Finally, At+1 |xk<qk is also at (i)-respecting using Claim 7.9. Thus, we can build a chain containing
at (i) that supports At+1 |xk<qk . It follows that we can use at+1(i) = at (i) for i ≥ it . Now consider
i < it . We must have at+1(i) < at+1(it) = at (it). By Claim 7.10, there exists h ∈ [k − 1] such that
for i < it , at+1(i)h < qh .

We now turn to analyzing (it+1, jt+1). By definition, At+1(at+1(it+1)) > 0 and At+1(bt+1(bt+1)) >
0. First, let us show that it ≤ it+1. On the contrary, let us assume that it+1 < it . It follows
from the above paragraph that at+1(it+1)h < qh . Also, for every bt+1(j) with j < Q+ and
At+1(bt+1(j)) > 0, we have bt+1(j)h < qh . Therefore, max{a(it+1), b(jt+1)} � (q1, . . . ,qk) (in partic-
ular max{a(it+1), b(jt+1)}h < qh), which is a contradiction.

Next, we show that if it+1 = it , then jt+1 ≥ jt . By the minimality of (it , jt) in the t th round,
for j < jt such that At (bt (j)) > 0, we have max{at (it),bt (j)} � (q1, . . . ,qk). Since it+1 = it ,
at+1(it+1) = at+1(it) = at (it). We already noted in the proof of Claim 7.8 that bt (0) < · · · <
bt (Q+) is also a supporting chain for (At+1)|xk=qk . The only point where the function At+1 |xk=qk
has greater value thanAt |xk=qk is (q1, . . . ,qk). Therefore, for j < jt such thatAt+1(bt+1(j)) > 0, we
have max{at+1(it+1),bt+1(j)} � (q1, . . . ,qk) and hence, jt+1 ≥ jt .

So far, we have established that (it+1, jt+1) ≥ (it , jt) in lexicographic ordering. Finally, we will
show that (it+1, jt+1) � (it , jt) by proving that at least one of At+1(at+1(it)) and At+1(bt+1(jt))
is zero. The polarization update ensures that at least one of Bt (at (it)) and Bt (bt (jt)) is zero.
If Bt (bt (jt)) = 0, then by definition, we have At+1(bt+1(jt)) = At+1(bt (jt)) = 0. Finally, to
handle the case Bt (at (it)) = 0, let us again define a′ as: a′

h
= qh − 1 and a′r = at (it)r for

r � h, where h is as given by Claim 7.10. We assert that Bt |xk<qk is a′-downward-respecting.
As shown in the proof of Claim 7.10, we have that Bt |xk<qk is a′-respecting. The support of
Bt |xk<qk is contained in {at (0), . . . , at (Q−)}∪{min{at (it), bt (jt)}} and min{at (it), bt (jt)} < at (it),
and by Claim 7.10, min{at (it), bt (jt)} ≤ a′. It follows that Bt |xk<qk is a′-downward-respecting.
Finally, by the furthermore part of Claim 7.9 applied to Bt |xk<qk and w = at (it), we get that
At+1(at+1(it)) = At+1(at (it)) = Bt (at (it)) = 0. It follows that (it+1, jt+1) � (it , jt). �

Proof of Lemma 7.6. By Claim 7.7, we know that if Algorithm 2 terminates, then we have
Polarize(A) = Aμ(A). Hence, the maximum number of polarization updates used in Polarize (on

input from F ([q1]× · · ·×[qk])) serves as an upper bound for Ñ (Q), forQ =
∑k

i=1 qk . By Claim 7.11,

we know that there are at most Q2 iterations of the while loop and so Ñ (Q) ≤ (Q2 + 3)Ñ (Q − 1)
as desired. �

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:60 C.-N. Chou et al.

7.2 Reduction from Single Function to a Family of Functions

In this subsection, we prove the following lemma that reduces an SD problem for a single function
to an SD problem for a family of functions.

Lemma 7.12. Suppose there exists F ,DY ,DN , δ > 0 with μ(DY) = μ(DN) and a c = c(n)-
communication protocol achieving advantage δ solving (F ,DY ,DN)-SD on instances of length n
for every n ≥ n0. Then there exist D1,D2 ∈ Δ([q]k) with μ(D1) = μ(D2), δ ′ > 0, n′0, and a c-
communication protocol achieving advantage δ ′ solving (D1,D2)-SD on instances of length n ≥ n′0
using O(s) bits of communication.

We prove the lemma by a hybrid argument, where we slowly change the distribution DY to
DN by considering one function from F at a time. The crux of the lemma is in showing that two
adjacent steps in this sequence are at least as hard as some single-function SD problem, which
follows from the following lemma.

Lemma 7.13. Let n,k,q ∈ N, α ∈ (0, 1), where k,q,α are constants with respect to n and αn is an

integer less than n/k . Let F ⊆ { f : [q]k → {0, 1}}. For every ε,δ ∈ (0, 1], there exist n′ = Ω(n) and
constants α ′,δ ′ ∈ (0, 1) such that the following holds. For every distribution DY ,DN ,D0,D1,D2 ∈
Δ(F ×[q]k) such thatDY = (1−ε)D0+εD1 andDN = (1−ε)D0+εD2 and for every c ∈ N, suppose
there exists a protocol for (F ,DY ,DN)-SD with parameters n and α using c bits of communication
with advantage δ ; then there exists a protocol for (F ,D1,D2)-SD with parameters n′ and α ′ using c
bits of communication with advantage δ ′.

The proof idea of Lemma 7.13 is very similar to that of Theorem 7.4. We defer the proof to Sec-
tion 8.2 and turn to showing how Lemma 7.12 follows.

Proof of Lemma 7.12. Let ALG(x∗;M, z) be the c-bit protocol for (F ,DY ,DN)-SD achieving
advantage δ guaranteed to exist by the theorem statement. Let F = { f1, . . . , f�}. Since μ(DY) =
μ(DN) for each i ∈ [m], we have that Pr[f = fi : (f , b) ∼ DY] = Pr[f = fi : (f , b) ∼ DN]. Let us
denote this probability byw (i),w (i) = Pr[f = fi : (f , b) ∼ DY] = Pr[f = fi : (f , b) ∼ DN] for each
i ∈ [�]. For each i ∈ [�], let D(i)

Y
be the distribution of a random variable b ∈ [q]k that is sampled

from (f , b) ∼ DY conditioned on f = fi . Similarly, for each i ∈ [�], let D(i)
N

be the distribution

of b ∈ [q]k from (f , b) ∼ DN conditioned on f = fi . This way we have that DY and DN are the

mixture distributions: DY =
∑

i ∈[�]w
(i) · D(i)

Y
and DN =

∑
i ∈[�]w

(i) · D(i)
N
.

For every i ∈ {0, . . . , �}, we define a distribution D(i) as the following mixture distribution:

D(i) =
∑

j ∈{1, ...,i }
w (j) · D(j)

N
+

∑
j ∈{i+1, ..., � }

w (j) · D(j)
Y
.

Let pi = Pr[ALG(x∗;M, z) = YES : (f , b) ∼ D(i)] for every i ∈ {0, . . . , �}. Observe that p0 =
Pr[ALG(x∗;M, z) = YES : (f , b) ∼ DY] and p� = Pr[ALG(x∗;M, z) = YES : (f , b) ∼ DN]. Since
the advantage of ALG in distinguishing DY and DN is at least δ , we have that

δ = |p0 − p� | =

'''''' ∑
i ∈{0, ..., �−1}

(pi − pi+1)

'''''' ≤ ∑
i ∈{0, ..., �−1}

|pi − pi+1 | .

Let δ ′ = δ/�. We have that at least one term of this sum is |pi − pi+1 | ≥ δ ′. From this we conclude
that for some i ∈ {0, . . . , � − 1}, ALG achieves advantage at least δ ′ for (F ,D(i),D(i+1))-SD.

It remains to show that if one can distinguish D(i) and D(i+1) that differ only for (f , b) with

f = fi+1, then one can also distinguish D1 = D(i+1)
Y

and D2 = D(i+1)
N

. Since μ(D1) = μ(D2), this
will finish the proof. We show that D1 and D2 are distinguishable using Lemma 7.13.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:61

Let us define ε = wi+1, D = 1
1−ε

(∑
j ∈{1, ...,i }w

(j) · D(j)
N
+

∑
j ∈{i+2, ..., � }w

(j) · D(j)
Y

)
. Now observe

that D(i) = (1 − ε)D + εD1 and D(i+1) = (1 − ε)D + εD2. Now by Lemma 7.13, a protocol that
distinguishes D(i) and D(i+1) implies a protocol for (D1,D2)-SD with advantage δ ′′ > 0 and
communication complexity O(s). �

7.3 Putting It Together

Wenowhave the ingredients in place to prove Theorem 5.4, whichwe recall below for convenience.

Theorem 5.4 (Communication Lower Bound for (F ,DY ,DN)-SD). For every k,q, every
finite set F , every pair of distributions DY ,DN ∈ Δ(F × [q]k) with μ(DY) = μ(DN) there exists
α0 > 0 such that for every 0 < α ≤ α0 and δ > 0 there exists τ > 0 such that the following holds:
Every protocol for (F ,DY ,DN)-SD achieving advantage δ on instances of length n requires τ

√
n

bits of communication.

Proof of Theorem 5.4. Fix F ⊆ { f : [q]k → {0, 1}} and distributions DY ,DN ∈ Δ(F × [q]k)
with μ = μ(DY) = μ(DN). Lemma 7.12, applied to (F ,DY ,DN), gives us n0,δ

′, and distribu-
tions D′

Y ,D
′
N ∈ Δ([q]k) with μ′ = μ(D′

Y) = μ(D′
N) such that any c-communication protocol for

(F ,DY ,DN)-SDwith advantage δ implies a c-communication protocol for (D′
Y ,D

′
N)-SDwith ad-

vantage δ ′ for all n ≥ n0. Nowwe’ll focus on proving a lower bound for the problem (D′
Y ,D

′
N)-SD.

Lemma 7.6, applied to D′
Y , gives us D0 = D′

Y ,D1, . . . ,Dt = Dμ′ such that Di+1 = (Di)u(i),v(i);
i.e., Di is an update of Di , with t ≤ Ñ (Q) < ∞, for Q =

∑k
i=1 qk . Similarly, Lemma 7.6, applied to

D′
N , gives us D′

0 = D′
N ,D

′
1, . . . ,D′

t ′ = Dμ′ such that D′
i+1 = (D′

i)u′(i),v′(i) with t ′ ≤ Ñ (Q) < ∞.

Applying Theorem 7.4 with δ ′′ = δ ′/(2Ñ (Q)) to the pairs Di and Di+1, we get that there exists
τi such that every protocol for (Di ,Di+1)-SD requires τi

√
n bits of communication to achieve

advantage δ ′′. Similarly applying Theorem 7.4 again with δ ′′ = δ ′/(2Ñ (Q)) to the pairs D′
i and

D′
i+1, we get that there exists τ ′i such that every protocol for (D′

i ,D′
i+1)-SD requires τ ′i

√
n bits of

communication to achieve advantage δ ′′.
Letting τ ′ = min

{
mini ∈[t]{τi },mini ∈[t ′]{τ ′i }

}
, we get, using the triangle inequality for indistin-

guishability, that every protocol Π′ for (D′
Y ,D

′
N)-SD achieving advantage (t + t ′)δ ′′ ≤ δ ′ requires

τ ′
√
n bits of communication. Finally, by Lemma 7.12, every protocol Π for (F ,DY ,DN)-SD

achieving advantage δ requires τ ′
√
n bits of communication. �

8 INDISTINGUISHABILITY OF THE POLARIZATION STEP

Recall that in Definition 7.3 we define a polarization operator that polarizes a distribution D ∈
Δ([q]k) to Du,v ∈ Δ([q]k) for every incomparable pair (u, v). In this section, we show that
(D,Du,v)-SD requires Ω(

√
n) communication.

Theorem 7.4 (Indistinguishability of the Polarization Step). Let n,k,q ∈ N, α ∈ (0, 1),
where k,q,α are constants with respect to n and αn is an integer less than n/k . For a distribution

D ∈ Δ([q]k), incomparable vectors u, v ∈ [q]k , and δ > 0, there exists τ > 0 such that every protocol
for (D,Du,v)-SD achieving advantage δ requires τ

√
n bits of communication.

Let u ∨ v, u ∧ v ∈ [q]k be given by ui ∨ vi = max{ui ,vi } and ui ∧ vi = min{ui ,vi }. Let
AY = Unif({u, v}) and AN = Unif({u ∨ v, u ∧ v}). We prove Theorem 7.4 in two steps. First, we
use the Boolean hardness in Theorem 6.4 to show in Lemma 8.1 that the hardness holds for the
special case (AY ,AN)-SD. Next, we reduce (AY ,AN)-advice-SD to (D,Du,v)-SD for arbitrary

distribution D ∈ Δ([q]k).

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:62 C.-N. Chou et al.

Fig. 3. An example of shared randomness used in Lemma 8.1. Here n = 12, k = 2, q = 3, and α = 1/3. The
value of xR ∈ [q]n is listed in a table. Consider (u1,v1) = (1, 3) and (u2,v2) = (3, 2). The variables in sets

T1,T2 are marked grey. The variables corresponding to the set U are circled with red lines and the variables

corresponding to sets S1,S2 are circled with yellow dashed lines.

8.1 Reduce a Boolean SD Problem to a Non-Boolean SD Problem

In this subsection, we consider a special case of u, v ∈ [q]k where ui � vi for every i ∈ [k]. The
following key lemma of this subsection establishes the hardness of (AY ,AN)-SD via a reduction
from a Boolean SD problem to a non-Boolean version.

Lemma 8.1. Let n,k,q ∈ N, α ∈ (0, 1), where k,q,α are constants with respect to n and αn is an

integer less thann/k . For u, v ∈ [q]k satisfyingui � vi for all i ∈ [k] and δ > 0, there exists τ > 0 such
that every protocol for (AY ,AN)-SD achieving advantage δ requires τ

√
n bits of communication.

We prove Lemma 8.1 by a reduction. For such u, v, let ū, v̄ ∈ {0, 1}k be the Boolean version
given by (ūi , v̄i) = (0, 1) if ui < vi and (ūi , v̄i) = (1, 0) if ui > vi . Let ĀY = Unif({ū, v̄}) and
ĀN = Unif({ū ∨ v̄, ū ∧ v̄}). Note that both ĀY and ĀN are distributions on the Boolean domain
with uniform marginals. Thus, Theorem 6.4 shows that any protocol for (ĀY , ĀN)-advice-SD
requires Ω(

√
n) bits of communication. In the rest of this subsection, we reduce (ĀY , ĀN)-advice-

SD to (AY ,AN)-SD.
For every n̄,k, ᾱ ,q,δ , let n = 2qn̄ and α = qk−12−(k+2)ᾱ . Let Ī = (x̄, Γ̄, b̄, M̄, z̄, ā) denote an

instance of (ĀY , ĀN)-advice-SD of length n̄ with parameter ᾱ . We show below how Alice and
Bob can use their inputs and shared randomness to generate an instance I = (x, Γ, b,M, z, a) of
(AY ,AN)-advice-SD of length n with parameter α “locally” and “nearly” according to the cor-
rect distributions. Namely, we show that with high probability if Ī is a Yes (resp. No) instance of
(ĀY , ĀN)-advice-SD, then I will be a Yes (resp. No) instance of (AY ,AN)-SD.

Step 1: Specify the shared randomness. The common randomness between Alice and Bob is an in-
stance IR = (xR , ΓR , bR ,MR , zR , aR) drawn according to the Yes13 distribution of (AY ,AN)-advice-
SD of lengthn with parameter α . For j ∈ [αn], letVj denote the set of variables in the jth constraint,
i.e.,Vj = {� ∈ [n] | ΓR (�) ∈ {k(j−1)+1, . . . ,k(j−1)+k}}. For i ∈ [k], letTi be the set of variables that
are in the ith partition and take on values in {ui ,vi }, i.e., Ti = {j ∈ [n] | aj = i & (xR)i ∈ {ui ,vi }}.
Let U ⊆ [αn] be the set of constraints that work on variables in Ti , i.e.,U = {j ∈ [αn] |Vj ⊆ ∪iTi }.
See Figure 3 for an example.

If |U | ≥ ᾱn̄, we say an error of type (1) has occurred. For i ∈ [k], letXi ⊆ Ti be the set of variables
that operate on constraints in U , i.e., Xi = Ti ∩ (∪j ∈UVj). LetWi ⊆ Ti be a set of variables that
do not participate in any constraint, i.e.,Wi = Ti \ (∪j ∈[αn]Vj). Finally, let Si be any set satisfying

13The reduction also works if we used No distribution. However, the mapping between Yes and No instances would get

flipped. Namely, if Ī is a Yes (resp. No) instance of (ĀY , ĀN)-advice-SD, then I will be a No (resp. Yes) instance of

(AY , AN)-SD.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:63

|Si | = n̄/k with Xi ⊆ Si ⊆ Xi ∪Wi if such a set exists. If no such set exists, we say an error of type
(2) has occurred.

Step 2: Specify the reduction. If there is an error, we simply set I = IR . If no errors have occurred,
our reduction will embed Ī into IR by replacing the constraints in U and the variables in ∪iSi as
described next. Note that we have to specify variables (x, Γ, b,M, z). In particular, we want the
private inputs to be computed locally. We verify the local property of the reduction in Claim 8.2
and prove the correctness of the reduction in Claim 8.3.

— x: Let ρ : [n̄] → ∪iSi be a bijection satisfying āj = i ⇒ ρ(j) ∈ Si . We now define x ∈ [q]n as
follows:

x j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(xR)j if j � ∪i ∈[k]Si
ui j ∈ Si for some i ∈ [k] and ui < vi and x̄ j = 0
ui j ∈ Si for some i ∈ [k] and ui > vi and x̄ j = 1
vi j ∈ Si otherwise.

— Γ and M : Let V = {V (1), . . . ,V (n̄)} with V (j) < V (j + 1) be such that V = {j ∈ [n]|ΓR (j) ∈
∪i ∈[k]Si }. For j ∈ [n] we let

Γ(j) =
{
ΓR (j) if j � V
ρ(Γ̄(j̄)) if j = V (j̄).

It may be verified that Γ is a permutation and furthermore the constraints in Γ corresponding
to j ∈ U are derived from constraints of Ī .M is then defined as the partial permutationmatrix
capturing Γ−1(j) for j ∈ [kαn].

— b: Since b is a hidden variable and won’t be given to Alice and Bob, we postpone the speci-
fication of b to the proof of Claim 8.3.

— z: Let z(j) = z̄(V (j)) if j ∈ U and z(j) = zR (j) otherwise.

Step 3: Correctness of the reduction assuming no error occurs.

Claim 8.2 (The Reduction Can Be Computed Locally). Let Ī = (x̄, Γ̄, b̄, M̄, z̄, ā) be an instance
of (ĀY , ĀN)-advice-SD and IR = (xR , ΓR , bR ,MR , zR , aR) be the shared randomness of Alice and Bob.
The above reduction satisfies the following local properties:

— Alice can compute x using IR and (x̄, ā).
— Bob can compute (M, z) using IR and (M̄, z̄, ā).

Proof.

— Note that from the construction, it suffices to have {Si }, ā, x̄ to compute x. Since {Si } can be
obtained from IR , we conclude that Alice can compute x using IR and (x̄, ā).

— Note that from the construction, it suffices to have {Si }, ΓR , Γ̄(j), where j ∈ [kαn], to compute
M . Since Γ̄(j) is encoded in M̄ for every j ≤ kαn, and the other information can be obtained
from IR , we know that M can be computed from IR and M̄ . Finally, since z = z′, z can also
be computed from IR . We conclude that Bob can compute (M, z) using IR and (M̄, z̄, ā). �

Claim 8.3 (The Distribution of I). Let Ī = (x̄, Γ̄, b̄, M̄, z̄, ā) be an instance drawn from either the
Yes or No distribution of (ĀY , ĀN)-advice-SD and IR = (xR , ΓR , bR ,MR , zR , aR) be a instance drawn
from the Yes distribution of (AY ,AN)-advice-SD. Let I = (x, Γ, b,M, z, a) be the result of applying
the above reduction on Ī and IR . Then the following hold:

— x ∼ Unif([q]n).
—M is a uniformly random partial permutation matrix as required in item 3 of Definition 6.3.
— Suppose there is no error happening in the reduction.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:64 C.-N. Chou et al.

– If Ī is a Yes instance, then Pr[z(j) = 1] = Prb(j)∼A[(Mx)(j) = b(j)] for every j ∈ [αn].
– If Ī is a No instance, then Pr[z(j) = 1] = Prb(j)∼A′[(Mx)(j) = b(j)] for every j ∈ [αn].

Namely, if Ī is a Yes (resp. No) instance of (ĀY , ĀN)-advice-SD, then I is a Yes (resp. No) instance of
(AY ,AN)-SD.

Proof.

— To prove x ∼ Unif([q]n), observe that x is obtained from xR by flipping some of the ui to vi
(and vice versa). In particular, (i) xR ∼ Unif([q]n) and (ii) the flipping is decided by x̄, which
is uniformly sampled from {0, 1}n̄ and is independent to xR . Note that for a fixed xR , Si , and
j ∈ Si , the probability of x j being set to ui is the same as being set to vi . As a result, by
symmetry of ui and vi , we conclude that x ∼ Unif([q]n).

— By the symmetry of the n variables,M is a uniformly random partial permutation matrix as
required in item 3 of Definition 6.3.

— Suppose there is no error happening in the reduction. We consider the following two cases:
(i) j ∈ [αn]\U and (ii) j ∈ U .
(i) For each j ∈ [αn]\U , by the construction we have z(j) = zR (j), and hence when fixing

xR ,MR , we have Pr[z(j) = 1] = Pr[zR (j) = 1] = PrbR (j)∼A[(MRxR)(j) = bR (j)]. We set

b(j) = bR (j) and note that b(j) ∼ AY (resp. b(j) ∼ AN) if b̄(j) ∼ ĀY (resp. b̄(j) ∼ ĀN) for
every j ∈ U . Finally, since j � U , there exists i ∈ [k] such that (MRxR (j))i = (Mx(j))i �
{ui ,vi } and hence PrbR (j)∼AY

[(MRxR)(j) = bR (j)] = Pr[(Mx)(j) = b(j)] = 0. So we have
Pr[z(j) = 1] = Prb(j)∼AY

[(Mx)(j) = b(j)] (resp. Pr[z(j) = 1] = Prb(j)∼AN
[(Mx)(j) = b(j)]) if

Ī is a Yes (resp. No) instance as desired.
(ii) For each j ∈ U , by construction we have z(j) = z̄(V (j)). We set

b(j)i =
⎧⎪⎪⎨⎪⎪⎩

ui if ui < vi and b̄(V (j))i = 0
ui if ui > vi and b̄(V (j))i = 1
vi otherwise.

First, observe that z(j) = 1 iff (Mx)(j) = b(j). To see this, note that

z(j) = 1 ⇔ z̄(V (j)) = 1

⇔ (M̄ x̄)(V (j)) = b̄(V (j)) .

For each i ∈ [k], if ui < vi and b̄(V (j))i = (M̄ x̄)(V (j))i = 0, we have b(j)i = (Mx)(j)i = ui .
Similarly, for all the other situations we have b(j)i = (Mx)(j) and hence the equation
becomes

⇔ (Mx)(j) = b(j),

as desired.
Next, observe that if Ī is a Yes (resp. No) instance, then b(j) ∼ AY (resp. b(j) ∼ AN). We
analyze the two cases as follows:
– If Ī is a Yes instance, we have b̄(V (j)) ∼ ĀY = Unif({ū, v̄}). Recall that (ūi , v̄i) = (0, 1) if
ui < vi and (ūi , v̄i) = (1, 0) otherwise. Now observe that, by the above choice of b(j), we
have b̄(V (j)) = ū iff b(j) = u (resp. b̄(V (j)) = v̄ iff b(j) = v). Thus, we have b(j) ∼ AY , as
desired.

– If Ī is a No instance, we have b̄(V (j)) ∼ ĀN = Unif({ū ∨ v̄, ū ∧ v̄}). Recall that for
each i ∈ [k], ui ∨ vi = max{ui ,vi } and ui ∧ vi = min{ui ,vi }. Now observe that, by the
above choice of b(j), we have b̄(V (j)) = ū ∨ v̄ iff b(j) = u ∨ v (resp. b̄(V (j)) = ū ∧ v̄ iff
b(j) = u ∧ v). Thus, we have b(j) ∼ AN , as desired.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:65

To sum up, for each j ∈ U , we have Pr[z(j) = 1] = Prb(j)∼AY
[(Mx)(j) = b(j)] (resp.

Pr[z(j) = 1] = Prb(j)∼AN
[(Mx)(j) = b(j)]) if Ī is a Yes (resp. No) instance, as desired. �

Step 4: An error occurs with low probability.

Claim 8.4. When n is sufficiently large, the probability of an error happening in the reduction is

at most 2−Ω((2/q)
2kαn).

Proof. Recall that for given n̄,k, ᾱ ,q,δ , we let n = 2qn̄ and α = qk−12−(k+2)ᾱ .
Note thatU is a sum of αn i.i.d. Bern((2/q)k). So by concentration inequality, we have Pr[|U | >

2(2/q)kαn] < 2−Ω((2/q)
2kαn). By the choice of parameters, we have 2(2/q)kαn ≤ ᾱn̄. Thus, type (1)

error happens with probability at most 2−Ω((2/q)
2kαn).

Note that by the choice of parameters, we have |Xi | = |U | ≤ n̄/k and hence type (2) error
happens only when |U | + |Wi | < n̄/k for some i ∈ [k]. For each i ∈ [k], note that |Wi | is a sum
of n/k − αn i.i.d. Bern(2/q). So by concentration inequality, we have Pr[|Wi | < (n/k − αn)/q] <
2−Ω((1/q)

2(n/k−αn)). By the choice of parameters, we have (n/k − αn)/q ≥ n̄/k . Thus, type (2) error

happens with probability at most 2−Ω((1/q)
2(n/k−αn)) ≤ 2−Ω((2/q)

2kαn). �

Step 5: Proof of Lemma 8.1.

Proof of Lemma 8.1. For every n̄,k, ᾱ ,q,δ , we let n = 2qn̄ and α = qk−12−(k+2)ᾱ . Suppose there
is a protocol for (AY ,AN)-SD using C(n) bits of communication and achieving advantage δ . We
show how to get a protocol Π̄ for (ĀY , ĀN)-advice-SD with parameters (n̄, ᾱ) using C(n) bits of
communication and achieving advantage δ/2.

Let Ī = (x̄, Γ̄, b̄, M̄, z̄, ā) be an instance drawn from either the Yes or No distribution of (ĀY , ĀN)-
advice-SD where (x̄, ā) is Alice’s private input and (M̄, z̄, ā) is Bob’s private input. The protocol Π̄
works as follows. Alice and Bob first use their private input and the shared randomness to compute
x and (M, z), respectively. This can be done due to Claim 8.2. Next, Alice and Bob simply invoke
the protocol Π on the new instance x and (M, z) and output the result accordingly.

It is immediate to see that Π̄ only usesC(n) bits of communication. To show that Π̄ has advantage
at least δ/2, we first show that the joint distribution of (x,M, z) is the same as that from an instance
of (AY ,AN)-SD if there is no error in the reduction. By Claim 8.3, x ∼ Unif([q]n) and M follows
the distribution as required in item 3 of Definition 6.3.

When there is no error in the reduction and Ī is sampled from the Yes (resp. No) distribution
of (ĀY , ĀN)-advice-SD, Claim 8.3 implies that z follows the conditional distribution (conditioned
on x and M) of a Yes (resp. No) instance of (AY ,AN)-SD as required in item 5 of Definition 6.3.
Next, Claim 8.4 shows that the probability of an error happening in the reduction is at most δ/2.
Finally, by triangle inequality, we conclude that Π̄ has advantage at least δ/2 in solving (ĀY , ĀN)-
advice-SD.

To conclude, by Theorem 6.4, any protocol for (ĀY , ĀN)-advice-SDwith advantage δ/2 requires
τ̄
√
n̄ bits of communication. Thus, we have C(n) ≥ τ̄

√
n̄ ≥ τ

√
n for some constant τ > 0. �

8.2 Indistinguishability of Shifting Distributions

In this subsection, we prove the following lemma, which was used in Section 7.2 for reducing a
single-function SD to a multi-function SD, and will be used in Section 8.3 for reductions between
various SD problems.

Lemma 7.13. Let n,k,q ∈ N, α ∈ (0, 1), where k,q,α are constants with respect to n and αn is an

integer less than n/k . Let F ⊆ { f : [q]k → {0, 1}}. For every ε,δ ∈ (0, 1], there exist n′ = Ω(n) and
constants α ′,δ ′ ∈ (0, 1) such that the following holds. For every distribution DY ,DN ,D0,D1,D2 ∈

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:66 C.-N. Chou et al.

Δ(F ×[q]k) such thatDY = (1−ε)D0+εD1 andDN = (1−ε)D0+εD2 and for every c ∈ N, suppose
there exists a protocol for (F ,DY ,DN)-SD with parameters n and α using c bits of communication
with advantage δ ; then there exists a protocol for (F ,D1,D2)-SD with parameters n′ and α ′ using c
bits of communication with advantage δ ′.

Proof. Given the parameters n,α , and ε ∈ (0, 1), define n′ = εn and α ′ = 2α .
Let (x′,M ′, b′, z′) be an instance of the (F ,D1,D2)-SD problem where x′ ∈ [q]n′

, M ′ ∈
{0, 1}kα ′n′×n′

, b′ ∈ [q]kα ′n′
, z′ ∈ {0, 1}α ′n′

. Let R′ be the shared randomness defined later. We
specify the map (x′,M ′, b′, z′,R′) �→ (x,M, b, z), where x ∈ [q]n , M ∈ {0, 1}kαn×n , b ∈ [q]kαn ,
z ∈ {0, 1}αn .

A reduction from (F ,D1,D2)-SD to (F ,DY ,DN)-SD

Let y ∼ Unif([q]n−n′),w ∼ Bern(2ε)αn . Let Γ ∈ {0, 1}n×n be a uniform permutation matrix.
Let c = (c(1), . . . , c((n − n′)/k)), where c(i) ∼ D are chosen independently.

— Let R′ = (y,w, Γ, c) be the shared randomness.

Let #w (i) = |{j ∈ [i] |w j = 1}| denote the number 1s among the first i coordinates of w. If
#w (αn) ≥ α ′n′ or if αn− #w (αn) ≥ (n−n′)/k , we declare an error. Note E[#w (n)] = α ′n′/2,
so the probability of error is negligible (specifically it is exp(−n)).
Given (x′,M ′, b′, z′,R′), we now define (x,M, b, z) as follows:

— Let x = Γ(x′, y), so x is a random permutation of the concatenation of x′ and y.
— LetM ′ = (M ′

1, . . . ,M
′
α ′n′), whereM ′

i ∈ {0, 1}k×n′
. We extendM ′

i to Ni ∈ {0, 1}k×n by

adding all-zero columns to the right. For i ∈ {1, . . . , (n −n′)/k}, let Pi ∈ {0, 1}k×n be

given by (Pi)j� = 1 if and only if � = n′ + (i − 1)k + j. Next we define a matrix M̃ ∈
{0, 1}kαn×n = (M̃1, . . . , M̃αn), where M̃i ∈ {0, 1}k×n is defined as follows: If wi = 1,
then we let M̃i = N#w (i) or else we let M̃i = Pi−#w (i). Finally, we let M = M̃ · Γ−1.

— Let b = (b(1), . . . , b(αn)), where b(i) = b′(#w (i)) if wi = 1; otherwise b(i) = c(i −
#w (i)).

— Let zi = 1 if and only if Mix = b(i) for every i ∈ [αn].

Now, we verify that the reduction satisfies the following success conditions.

Success conditions for the reduction

(1) The reduction is locally well defined. Namely, there exist random strings R′ so
that (i) Alice can get x through a map (x′,R′) �→ x while Bob can get (M, z) through
a map (M ′, z′,R′) �→ (M, z).

(2) The reduction is sound and complete. Namely, (i) zi = 1 if and only ifMix = b(i)
for all i ∈ [αn]. (ii) If b′ ∼ Dα ′n′

1 , then b ∼ Dαn
Y

. Similarly, if b′ ∼ Dα ′n′
2 , then

b ∼ Dαn
N

. (iii) x ∼ Unif([q]n) and M is a uniformly random matrix conditioned on
having exactly one “1” per row and at most one “1” per column.

Claim 8.5. If #w (αn) ≤ α ′n′ and αn − #w (αn) ≤ (n −n′)/k , then the second map in the reduction
is locally well defined, sound, and complete. In particular, the error event happens with probability at
most exp(−Ω(n)) over the randomness of R′.

Proof. To see the reduction is locally well defined, first note that Alice can compute x = Γ(x′, y)
from x′ and the shared randomness R′ locally. As for Bob, note that the maximum index needed

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:67

for N and b′ (resp. P and c) is at most #w (αn) (resp. αn − #w (i)). Namely, if #w (αn) ≤ α ′n′ and
αn − #w (αn) ≤ (n − n′)/k , thenM and b are well defined. Note that this happens with probability
at least 1−2−Ω(n). Also, one can verify from the construction thatM and b can be locally computed
by M ′, b′, and the shared randomness R′.

To see the reduction is sound and complete, (i) zi = 1 if and only ifMix = b(i) for every i ∈ [αn]
directly follows from the construction, and as for (ii), if b′ ∼ Dα ′n′

1 . Now, for each i ∈ [αn],
b(i) = b′(#w (i)) with probability ε and b(i) = c(i − #w (i)) with probability 1 − ε . As b′(i ′) ∼ D1 for
every i ′ ∈ [α ′n′] and c(i ′) ∼ D0 for every i

′ ∈ [(n−n′)/k], we have b(i) ∼ (1−ε)D0+εD1 = DY as
desired. Similarly, one can show that if b′ ∼ Dα ′n′

2 , then for every i ′ ∈ [α ′n′] we have b(i ′) ∼ DN .
Finally, we have x ∼ Unif([q]n) andM is a uniformly random matrix with exactly one “1” per row
and at most one “1” per column (due to the application of a random permutation Γ) by construction.

This completes the proof of the success conditions (1) and (2) for the reduction. �

To wrap up the proof of Lemma 7.13, suppose there is a protocol Π for (F ,DY ,DN)-SD with
parameters n and α using c bits of communication with advantage δ . We describe a protocol Π′

for (F ,D1,D2)-SD with parameters n′ and α ′ using c bits of communication with advantage at
least δ − 2−Ω(n).

Let (x′,M ′, b′, z′) be an instance of the (F ,D1,D2)-SD problem where x′ ∈ [q]n′
, M ′ ∈

{0, 1}kα ′n′×n′
, b′ ∈ [q]kα ′n′

, z′ ∈ {0, 1}α ′n′
. Let R′ be the shared randomness defined above.

In the new protocol Π′, Alice and Bob compute their private inputs x and (M, z), respectively.
By Claim 8.5, the computation can be done locally with their original private inputs and the shared
randomness. Also, with probability at least 1−2−Ω(n), the Yes (resp. No) instance of (F ,D1,D2)-SD
is mapped to the Yes (resp. No) instance of (F ,DY ,DN)-SD. Namely, by directly applying Π on
the new inputs, Alice and Bob can achieve δ − 2−Ω(n) advantage on (F ,D1,D2) using the same
amount of communication as desired. �

8.3 Proof of Theorem 7.4

Let u, v be incomparable, let S = {i ∈ [k] |ui � vi }, and let k ′′ = |S |.

Step 1: Specify the auxiliary distributions:

— Let AY = Unif({u|S , v|S }) and AN = Unif({(u|S) ∨ (v|S), (u|S) ∧ (v|S)}). By Lemma 8.1,
(AY ,AN)-SD requires τ

√
n space.

— Let D1 = Unif({u, v}) and D2 = Unif({u ∨ v, u ∧ v}).
— Finally, there exists D0 such that we have D = (1 − 2ε)D0 + 2εD1 and Du,v = (1 − 2ε)D0 +

2εD2.

In the following, we are going to describe reduction from (AY ,AN)-SD with parameters
(n′′,α ′′,k ′′) to (D1,D2)-SD with parameters (n′,α ′,k). And by Lemma 7.13, there exists a reduc-
tion from (D1,D2)-SD with parameters (n′,α ′,k) to (D,Du,v)-SD with parameters (n,α ,k).

Step 2: Overview of the reduction from (AY ,AN)-SD to (D,Du,v)-SD. Let Π be a protocol for
(D,Du,v)-SD with parameter α ≤ 1/(200k) using C(n) communication bits to achieve advantage
δ on instances of length n. We let n′′ = (k ′′ε/k)n, α ′′ = (2k/k ′′)α and design a protocol Π′′

for (AY ,AN)-SD with parameter α ′′ achieving advantage at least δ/2 on instances of length n′′

using C ′′(n′′) = C(n) communication. Thus, by Lemma 8.1, there exists a constant τ ′′ > 0 such

that C(n) = C ′′(n′′) ≥ τ ′′
√
n′′ = τ ′′

√
(k ′′ε/k)

√
n, as desired.

To construct such reduction, we first reduce the above instance of (AY ,AN)-SD to an instance
of (D1,D2)-SD with parameters n′ = kn′′/k ′′ and α ′ = α ′′n′′/n′. Next, we invoke Lemma 7.13
to get a protocol Π′ (from Π), which achieves δ − 2−Ω(n) advantage on (D1,D2)-SD using C(n)
communication.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:68 C.-N. Chou et al.

Without loss of generality, we assume Π′ is deterministic and our new protocol Π′′ for
(AY ,AN)-SD uses shared randomness between Alice and Bob. The protocol Π′′ is a map:
(x′′,M ′′, b′′, z′′,R′′) �→ (x′,M ′, b′, z′).

Before describing the map, let us first state the desired conditions.

Success conditions for the reduction

(1) The reduction is locally well defined. Namely, there exists a random string R′′ so
that (i) Alice can get x′ through the maps (x′′,R′′) �→ x′ while Bob can get (M ′, z′)
through the map (M ′′, z′′,R′′) �→ (M ′, z′).

(2) The reduction is sound and complete.Namely, (i) z ′i = 1 if and only ifM ′
ix

′ = b′(i)
for all i ∈ [α ′n′]. (ii) If b′′ ∼ Aα ′′n′′

Y
, then b′ ∼ Dα ′n′

1 . Similarly, if b′′ ∼ Aα ′′n′′

N
, then

b′ ∼ Dα ′n′
2 . (iii) x′ ∼ Unif([q]n′) and M ′ is a uniformly random matrix conditioned

on having exactly one “1” per row and at most one “1” per column.

Step 3: Specify and analyze the reduction from (AY ,AN)-SD to (D1,D2)-SD. We now specify
the first map mentioned above and prove that it satisfies conditions (1) and (2).

A reduction from (AY ,AN)-SD to (D1,D2)-SD

— Let R′′ ∼ Unif([q]n′−n′′) be the shared randomness.

Given (x′′,M ′′, b′′, z′′,R′′), we define (x′,M ′, b′, z′) as follows. To get M ′, z′, and b′ we
need some more notations. First, note that α ′′n′′ = α ′n′ due to the choice of parameters.

— Let x′ = (x′′,R′′).
—M ′ can be viewed as the stacking of matrices M ′′

1 , . . . ,M
′′
α ′′n′′ ∈ {0, 1}k ′′×n′′

. We first

extend M ′′
i by adding all-zero columns at the end to get N ′

i ∈ {0, 1}k ′′×n′
. We then

stack N ′
i on top of P ′

i ∈ {0, 1}(k−k ′′)×n′
to get M ′

i , where (P ′
i)j� = 1 if and only if

� = n′′ + (i − 1)k + j. We let M ′ be the stacking of M ′
1, . . . ,M

′
α ′n′ .

— Let b′′ = (b′′(1), . . . , b′′(α ′n′)). Let ũ = (uk ′′+1, . . . ,uk) denote the common parts of
u and v. We let b′(i) = (b′′(i), ũ) and b′ = (b′(1), . . . , b′(α ′n′)).

— Let z ′i = 1 if and only if M ′
ix

′ = b′(i) for all i ∈ [α ′n′] as required.

Claim 8.6. The above reduction is locally well defined, sound, and complete.

Proof. To see the map is locally well defined, note that Alice can compute x′ = (x′′,R′′) locally.
Similarly, Bob can compute M ′ locally by construction. As for z′, note that for every i ∈ [α ′n′],
z ′i = 1 if and only if z ′′i = 1 and P ′

i x
′ = ũ. Since Bob has z′ and can locally compute P ′

i x
′ for every

i , he can also compute z′ locally.
To see the map is sound and complete, (i) z ′i = 1 if and only if M ′

ix
′ = b′(i) follows from

the construction. As for (ii), for each i ∈ [α ′n′] = [α ′′n′′], if b′′i ∼ AY = Unif({u|S , v|S }), then
b′i ∼ Unif({(u|S , ũ), (v|S , ũ)}) = Unif({u, v}) = D1, as desired. Similarly, one can show that if

b′′i ∼ AN , then b′i ∼ D1. Finally, we have x′ ∼ Unif([q]n′) by construction and hence (iii) holds.
This completes the proof of conditions (1) and (2) for the reduction. �

Step 4: Proof of Theorem 7.4.

Proof of Theorem 7.4. Let us start with setting up the parameters. Given k ∈
(0, 1/(200k)),α ,n,D, and incomparable pair (u, v) ∈ supp(D) and polarization amount

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:69

ε = ε(D, u, v), let k ′′ = |{i ∈ [k] |ui � vi }|, n′′ = (k ′′ε/k)n, α ′′ = (2k/k ′′)α , n′ = kn′′/k ′′,
α ′ = α ′′n′/n′, and δ ′′ = δ/2.

Now, for the sake of contradiction, we assume that there exists a protocol Π = (ΠA,ΠB) for
(D,Du,v)-SD with advantage δ and at most τ

√
n bits of communication.

First, by Claim 8.6, if (x′′,M ′′, z′′) is a Yes (resp. No) instance of (AY ,AN)-SD, then the output
of the reduction, i.e., (x′,M ′, z′), is a Yes (resp. No) instance of (D1,D2)-SD. Next, Alice and Bob
run the protocol Π′ from Lemma 7.13 on (x′,M ′, z′). By the correctness of the reduction as well as
the protocol Π′, we know that Alice and Bob have advantage at least δ − exp(−Ω(n)) ≥ δ/2 = δ ′′

in solving (AY ,AN)-SD with at most τ
√
n = τ

√
(k/(k ′′ε))n′′ bits of communication.

Finally, by Lemma 8.1, we know that there exists a constant τ0 > 0 such that any protocol for

(AY ,AN)-SD with advantage δ ′′ requires at least τ0
√
n′′ bits of communication. This implies that

τ ≥ τ0
√
k ′′ε/k . We conclude that any protocol for (D,Du,v)-SDwith advantage δ requires at least

τ
√
n bits of communication. �

9 DICHOTOMY FOR EXACT COMPUTATION

In this section we prove Theorem 3.16. For this, we will use tight bounds on the randomized
communication complexity of the Disjointness (Disj) and Gap Hamming Distance (GHD)
problems.

Definition 9.1 (Disjointness (Disj)). In the Disjn problem, Alice and Bob receive binary strings
x ,y ∈ {0, 1}n of Hamming weight Δ(x) = Δ(y) = n/4, respectively. If the Hamming distance
Δ(x ,y) = n/2, the players must output 1; if Δ(x ,y) < n/2, they must output 0.

Definition 9.2 (Gap Hamming Distance (GHD)). In the GHDn,t,д problem, Alice and Bob receive
binary strings x ,y ∈ {0, 1}n , respectively. If the Hamming distance Δ(x ,y) ≥ t + д, the players
must output 1; if Δ(x ,y) ≤ t − д, they must output 0; otherwise, they may output either 0 and 1.

The following results give tight bounds on the randomized communication complexity of Disj
and GHD.

Theorem 9.3 ([52, 68]). For all large enough n, any randomized protocol solving Disjn with prob-
ability 2/3 must use Ω(n) bits of communication.

Theorem 9.4 ([29, 72, 75]). For every a ∈ (0, 1/2] and every д ≥ 1 and all large enough n the
following holds. If t ∈ [an, (1−a)n], then any randomized protocol solving GHDn,t,д with probability

2/3 must use Ω(min{n,n2/д2}) bits of communication.

Equipped with these results, we are ready to prove Theorem 3.16.

Theorem 3.16. For every q,k ∈ N, and every family of functions F ⊆ { f : [q]k → {0, 1}}, the
following hold:

(1) If F is constant satisfiable, then there exists a deterministic linear sketching algorithm that uses
O(logn) space and solves Max-CSP(F) exactly optimally.

(2) If F is not constant satisfiable, then the following hold in the streaming setting:
(a) Every probabilistic algorithm solving Max-CSP(F) exactly requires Ω(n) space.
(b) For every ε = ε(n) > 0, (1, 1−ε)-Max-CSP(F) requires Ω(min{n, ε−1})-space14 on sufficiently

large inputs.
(c) For ρmin(F) defined in Definition 3.5, for every ρmin(F) < γ < 1 and every ε = ε(n) > 0,

(γ ,γ − ε)-Max-CSP(F) requires Ω(min{n, ε−2})-space8 on sufficiently large inputs.

14 The constant hidden in the Ω depends on F, but (obviously) not on ε .

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:70 C.-N. Chou et al.

While this theorem doesn’t give tight bounds on the space complexity ofMax-CSP(F) in terms
of n, the dependence on ε is tight. For every family of functions F , if we sample O(n/ε2) random
constraints, then by the Chernoff bound we preserve the values of all assignments within a factor
of 1 ± ε .

Proof. For the first item of the theorem, we note that the maximum number of simultaneously
satisfiable constraints in a σ -satisfiable formula is the number of non-zero constraints f ∈ F \ {0}
in it. This can be computed in space O(logn).

Now we turn to the proof of the second item of the theorem in the streaming setting. To this
end, first we prove that there exists an unsatisfiable instance I of Max-CSP(F \ {0}). Let I be an
instance on kq variables that has every constraint from F \ {0} applied to every (unordered) k-
tuple of distinct variables. Any assignmentν ∈ [q]kq has at least k equal coordinates. That is, there
exists σ ∈ [q] such that Σ = {i : ν i = σ } has size |Σ| ≥ k . Since F is not σ -satisfiable, there exists a
function f ∈ F \ {0} that f (σk) � 1. Thus, the corresponding constraint of I is not satisfied by ν .

Now we pick a minimal unsatisfied formula J on kq variables with constraints from F \ {0},
which is a formula such that all proper subsets of the constraints of J can be simultaneously
satisfied. Since J doesn’t have zero-constraints, J must have at least two constraints. We partition
J into two arbitrary non-empty subsets of constraints J = JA � JB . Note that by minimality of J ,
JA and JB are both satisfiable.

Observe that item 2(a) of the theorem follows from 2(b) by setting ε = Θ(1/n). In order to prove
the item 2(b), we reduce Disjm for m = |J |−1ε−1 to Max-CSP(F) on n variables. We can assume

that ε ≥ kq

n | J | , as for smaller ε the optimal lower bound of Ω(n) is implied by this setting. We

partition the n variables of Max-CSP(F) into at least m groups of size kq. Let x ,y ∈ {0, 1}m be
the inputs of Alice and Bob in the Disjm problem. If xi = 1, then Alice applies the constraints JA
to the ith block of kq variables of the formula. Similarly, if yi = 1, then Bob applies the constraints
JB to the ith block of kq variables. LetCA andCB be the sets of constraints produced by Alice and
Bob, respectively, and let Ψ = CA ∪CB . Since Δ(x) = Δ(y) =m/4, the total number of constraints
in the formula |Ψ| = |J |m/4. Note that Ψ is satisfiable if and only if Disj(x ,y) = 1. Therefore, if x
and y are disjoint, then val(CA ∪CB) = 1; otherwise,

val(Ψ) ≤ 1 − 4

|J |m < 1 − ε .

Any streaming algorithm that receives constraintsCA andCB and solves (1, 1− ε)-Max-CSP(F)
with probability 2/3 also solves the Disjm problem. Therefore, by Theorem 9.3, such an algorithm
must use space Ω(m) = Ω(1/ε).

In order to prove item 2(c), we reduce the GHDn,t,д problem to Max-CSP(F) on
nkq + O(1) = O(n) variables, where t = n(1 − γ) and д ≥ 1 will be determined later. We
will create two groups of constraints: The first group of constraints CA ∪ CB will have value
1 − O(Δ(x ,y)/n), and the second group of constraints will have value close to ρmin. By taking a
weighted combination of these two groups, we will get a formula whose value is less than γ − ε
for Δ(x ,y) ≥ t + д, and whose value is at least γ for Δ(x ,y) ≤ t .

Again, we start with a minimal unsatisfiable formula on kq variables. If |J | = 2d is even, then
we arbitrarily partition J into two sets of d constraints JA and JB . If |J | is odd, then we add one
constraint to |J | as follows. By minimality, there is an assignment that satisfies |J | − 1 constraints
of J ; let c be one of these constraints. We add another copy of c to J and partition J into two sets
of d constraints JA and JB . Note that while JA and JB are satisfiable, only 2d − 1 constraints of
JA ∪ JB can be satisfied simultaneously.

Let x ,y ∈ {0, 1}n be the inputs of Alice and Bob in the GHDn,t,д problem. If xi = 1, then Alice
applies the constraints JA to the ith block of kq variables of the formula; otherwise Alice applies

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

Sketching Approximability of All Finite CSPs 15:71

the constraint JB to these variables. Similarly, if yi = 1 or yi = 0, then Bob applies the constraints
JA or JB to the ith block of kq variables. Let CA and CB be the sets of constraints produced by
Alice and Bob, respectively. Observe that |CA | = |CB | = nd . The set of constraints added by Alice
and Bob when processing their ith coordinates is satisfiable if and only if xi = yi . When xi � yi ,
then by the construction of J , exactly 2d − 1 constraints are satisfiable. Therefore,

val(CA ∪CB) = 1 − Δ(x ,y)
2dn

.

Let γ ′ = (γ + ρmin)/2 < γ . By the definition of ρmin(F), there exists n0 and a formula Φ′ of
Max-CSP(f) such that val(Φ′) = γ ′. By taking several copies of Φ′ on the same n0 variables, we

get an instance Φ with D = |Φ| = n(2d−1)(1−γ)
γ−γ ′ = Θ(n) constraints and value val(Φ) = γ ′.

Now we output an instance Ψ of Max-CSP(F) on nkq + n0 variables that is simply a union of
CA ∪CB and Φ on disjoint sets of variables. By construction,

val(Ψ) = (2dn − Δ(x ,y)) + γ ′D

2dn + D
.

In the case when Δ(x ,y) ≤ t = (1 − γ)n, we have

val(Ψ) ≥ 2dn − (1 − γ)n + γ ′D

2dn + D
= γ .

And for the case of Δ(x ,y) ≥ t + д = (1 − γ)n + д, we have that

val(Ψ) ≤ (2dn − (1 − γ)n − д) + γ ′D

2dn + D
= γ − д

2dn + D
= γ − ε

for д = ε(2dn + D) = Θ(nε).
Therefore, any streaming algorithm for (γ ,γ − ε)-Max-CSP(F) will imply a protocol

for the GHDn,t,д problem. By Theorem 9.4, such a streaming algorithm must use at least

Ω(min{n,n2/д2}) = Ω(min{n, ε−2}) bits of communication. �

ACKNOWLEDGMENTS

We are grateful to Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song,
and Huacheng Yu for detecting a fatal error in an earlier version of this article [36] and then
for pinpointing the location of the error. As a result, the main theorem of the current article is
significantly different than the theorem claimed in the previous version.

Thanks to Johan Håstad for many pointers to the work on approximation resistance and an-
swers to many queries. Thanks to Dmitry Gavinsky, Julia Kempe, and Ronald de Wolf for prompt
and detailed answers to our queries on outdated versions of their work [43]. Thanks to Prasad
Raghavendra for answering our questions about the approximation resistance dichotomy from his
work [67]. Thanks to Saugata Basu for the pointers to the algorithms for quantified theory of the
reals. Thanks to Jelani Nelson for pointers to �1 norm estimation algorithms used in the earlier
version of this article. Thanks to Alex Andoni for pointers to �1,∞ norm estimation algorithms.
Thanks to anonymous referees of many versions of this work for their valuable comments. In
particular, we thank the referees for clarifying the gap between linear sketching algorithms and
dynamic streaming algorithms.

REFERENCES

[1] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. 2016. New characterizations in turnstile streams with applications.

In 31st Conference on Computational Complexity (CCC’16). LIPIcs, 20:1–20:22.

[2] Alexandr Andoni. 2020. Personal Communication. (December 24, 2020).

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

15:72 C.-N. Chou et al.

[3] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming algorithms via precision sampling. In

IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS’11). IEEE, 363–372. https://doi.org/10.1109/

FOCS.2011.82

[4] Sepehr Assadi. 2022. A two-pass (conditional) lower bound for semi-streaming maximum matching. In ACM-SIAM

Symposium on Discrete Algorithms (SODA’22). SIAM, 708–742.

[5] Sepehr Assadi and Soheil Behnezhad. 2021. Beating two-thirds for random-order streaming matching. In 48th Inter-

national Colloquium on Automata, Languages, and Programming (ICALP’21). LIPIcs, 19:1–19:13.

[6] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On regularity lemma and barriers in streaming

and dynamic matching. In 55th Annual ACM Symposium on Theory of Computing (STOC 2023). ACM, 131–144.

[7] Sepehr Assadi, Andrew Chen, and Glenn Sun. 2022. Deterministic graph coloring in the streaming model. In 54th

Annual ACM SIGACT Symposium on Theory of Computing (STOC’22). ACM, 261–274.

[8] Sepehr Assadi and Aditi Dudeja. 2021. Ruling sets in random order and adversarial streams. In 35th International

Symposium on Distributed Computing (DISC’21). LIPIcs, 6:1–6:18.

[9] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022. Semi-streaming bipartite matching

in fewer passes and optimal space. In ACM-SIAM Symposium on Discrete Algorithms (SODA’22). SIAM, 627–669.

[10] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On estimating maximum matching size in graph streams. In 28th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 1723–1742.

[11] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2021. Tight bounds for single-pass streaming complexity of the set cover

problem. SIAM J. Comput. 50, 3 (2021), 341–376. https://doi.org/10.1137/16M1095482

[12] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maximum matchings in dynamic graph

streams and the simultaneous communication model. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA’16). SIAM, 1345–1364.

[13] Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. 2020. Multi-pass graph streaming lower bounds

for cycle counting, MAX-CUT, matching size, and other problems. In 61st IEEE Annual Symposium on Foundations of

Computer Science (FOCS’20). IEEE, 354–364.

[14] Sepehr Assadi, Gillat Kol, and Zhijun Zhang. 2022. Rounds vs communication tradeoffs for maximal independent sets.

In 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS’22). IEEE, 1193–1204.

[15] Sepehr Assadi, Pankaj Kumar, and ParthMittal. 2022. Brooks’ theorem in graph streams: A single-pass semi-streaming

algorithm for coloring. In 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC’22). ACM, 234–247.

[16] Sepehr Assadi and Vishvajeet N. 2021. Graph streaming lower bounds for parameter estimation and property testing

via a streaming XOR lemma. In 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC’21). ACM, 612–

625.

[17] Sepehr Assadi and Ran Raz. 2020. Near-quadratic lower bounds for two-pass graph streaming algorithms. In 61st IEEE

Annual Symposium on Foundations of Computer Science (FOCS’20). IEEE, 342–353.

[18] Sepehr Assadi and Vihan Shah. 2022. An asymptotically optimal algorithm for maximum matching in dynamic

streams. In 13th Innovations in Theoretical Computer Science Conference (ITCS’22). LIPIcs, 9:1–9:23.

[19] Sepehr Assadi and Janani Sundaresan. 2023. (Noisy) gap cycle counting strikes back: Random order streaming lower

bounds for connected components and beyond. In 55th Annual ACM Symposium on Theory of Computing (STOC’23).

ACM, 183–195.

[20] Sepehr Assadi and Chen Wang. 2022. Sublinear time and space algorithms for correlation clustering via sparse-dense

decompositions. In 13th Innovations in Theoretical Computer Science Conference (ITCS’22). LIPIcs, 10:1–10:20.

[21] Per Austrin and Elchanan Mossel. 2009. Approximation resistant predicates from pairwise independence. Comput.

Complex. 18, 2 (2009), 249–271. https://doi.org/10.1007/s00037-009-0272-6

[22] Libor Barto and Marcin Kozik. 2012. Robust satisfiability of constraint satisfaction problems. In Proceedings of the 44th

Symposium on Theory of Computing Conference (STOC’12). ACM, 931–940. https://doi.org/10.1145/2213977.2214061

[23] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real Algebraic Geometry. Springer.

[24] Soheil Behnezhad. 2023. Dynamic algorithms for maximum matching size. In ACM-SIAM Symposium on Discrete Al-

gorithms (SODA’23). SIAM, 129–162.

[25] Stephen P. Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

[26] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. 2022. On sketching approxi-

mations for symmetric Boolean CSPs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX’22). LIPIcs, 38:1–38:23.

[27] Andrei A. Bulatov. 2017. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Symposium on Foundations

of Computer Science (FOCS’17). IEEE, 319–330.

[28] Amit Chakrabarti. 2020. Data stream algorithms. Lecture Notes on Data Stream Algorithms (2020), 94. https://www.cs.

dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

[29] Amit Chakrabarti andOded Regev. 2012. An optimal lower bound on the communication complexity of gap-Hamming-

distance. SIAM J. Comput. 41, 5 (2012), 1299–1317.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

https://doi.org/10.1109/FOCS.2011.82
https://doi.org/10.1137/16M1095482
https://doi.org/10.1007/s00037-009-0272-6
https://doi.org/10.1145/2213977.2214061
https://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

Sketching Approximability of All Finite CSPs 15:73

[30] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. 2021. Almost optimal

super-constant-pass streaming lower bounds for reachability. In 53rd Annual ACM SIGACT Symposium on Theory of

Computing (STOC’21). ACM, 570–583.

[31] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. 2021. Near-optimal

two-pass streaming algorithm for sampling random walks over directed graphs. In 48th International Colloquium on

Automata, Languages, and Programming (ICALP’21). LIPIcs, 52:1–52:19.

[32] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. 2023. Towards multi-

pass streaming lower bounds for optimal approximation of max-cut. In ACM-SIAM Symposium on Discrete Algorithms

(SODA’23). SIAM, 878–924.

[33] Yu Chen, Sanjeev Khanna, and Zihan Tan. 2023. Sublinear algorithms and lower bounds for estimating MST and

TSP cost in general metrics. In 50th International Colloquium on Automata, Languages, and Programming (ICALP’23).

LIPIcs, 37:1–37:16.

[34] Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. 2022. Factorial lower bounds for (almost) ran-

dom order streams. In 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS’22). IEEE, 486–497.

[35] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. 2022. Approximability of all finite

CSPs with linear sketches. In 62nd IEEE Annual Symposium on Foundations of Computer Science. IEEE, 1197–1208.

[36] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. 2021. Classification of the streaming

approximability of Boolean CSPs. CoRR abs/2102.12351v1 (February 24, 2021), 1–49. arXiv:2102.12351 https://arxiv.

org/abs/2102.12351v1

[37] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. 2021. Approximability of all Boolean

CSPs with linear sketches. CoRR abs/2102.12351v3 (April 14, 2021), 1–60. arXiv:2102.12351 https://arxiv.org/abs/2102.

12351v3

[38] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. 2021. Approximability of all finite

CSPswith linear sketches.CoRR abs/2105.01161 (May 3, 2021), 1–75. arXiv:2105.01161 https://arxiv.org/abs/2105.01161

[39] Chi-NingChou, Alexander Golovnev, Amirbehshad Shahrasbi,Madhu Sudan, and Santhoshini Velusamy. 2022. Sketch-

ing approximability of (weak) monarchy predicates. In Approximation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques (APPROX’22). LIPIcs, 35:1–35:17.

[40] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy. 2022. Linear space

streaming lower bounds for approximating CSPs. In 54th Annual ACM SIGACT Symposium on Theory of Computing

(STOC’22). ACM, 275–288.

[41] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. 2020. Optimal streaming approximations for all

Boolean Max-2CSPs and Max-kSAT. In 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS’20).

IEEE, 330–341.

[42] Víctor Dalmau and Andrei A. Krokhin. 2013. Robust satisfiability for CSPs: Hardness and algorithmic results. ACM

Trans. Comput. Theory 5, 4 (2013), 15:1–15:25. https://doi.org/10.1145/2540090

[43] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald deWolf. 2009. Exponential separation for one-

way quantum communication complexity, with applications to cryptography. SIAM J. Comput. 38, 5 (2009), 1695–1708.

[44] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication and streaming complexity of max-

imum bipartite matching. In 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). SIAM, 468–485.

[45] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses Charikar. 2011. Beating

the random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput. 40, 3 (2011), 878–914.

[46] Venkatesan Guruswami and Runzhou Tao. 2019. Streaming hardness of unique games. In APPROX 2019. LIPIcs,

5:1–5:12.

[47] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. 2017. Streaming complexity of approximating

max 2CSP and max acyclic subgraph. In Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques (APPROX’17). LIPIcs, 8:1–8:19.

[48] Johan Håstad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (2001), 798–859.

[49] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. 2015. Communication complexity of approx-

imate matching in distributed graphs. In 32nd International Symposium on Theoretical Aspects of Computer Science

(STACS’15). LIPIcs, 460–473.

[50] Jeff Kahn, Gil Kalai, and Nathan Linial. 1988. The influence of variables on Boolean functions. In 29th Annual Sympo-

sium on Foundations of Computer Science (FOCS’88). IEEE, 68–80.

[51] John Kallaugher and Eric Price. 2020. Separations and equivalences between turnstile streaming and linear sketching.

In 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC’20). ACM, 1223–1236.

[52] Bala Kalyanasundaram and Georg Schintger. 1992. The probabilistic communication complexity of set intersection.

SIAM J. Discrete Math. 5, 4 (1992), 545–557.

[53] Michael Kapralov. 2013. Better bounds for matchings in the streaming model. In SODA 2013. SIAM, 1679–1697.

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

https://arxiv.org/abs/2102.12351
https://arxiv.org/abs/2102.12351v1
https://arxiv.org/abs/2102.12351
https://arxiv.org/abs/2102.12351v3
https://arxiv.org/abs/2105.01161
https://arxiv.org/abs/2105.01161
https://doi.org/10.1145/2540090

15:74 C.-N. Chou et al.

[54] Michael Kapralov. 2021. Space lower bounds for approximating maximum matching in the edge arrival model. In

ACM-SIAM Symposium on Discrete Algorithms (SODA’21). SIAM, 1874–1893.

[55] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. 2014. Approximating matching size from random streams. In

25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 734–751.

[56] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. 2015. Streaming lower bounds for approximating MAX-CUT.

In 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). SIAM, 1263–1282.

[57] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. 2017. (1+Ω(1))-approximation toMAX-CUT

requires linear space. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). SIAM, 1703–1722.

[58] Michael Kapralov and Dmitry Krachun. 2019. An optimal space lower bound for approximating MAX-CUT. In 51st

Annual ACM SIGACT Symposium on Theory of Computing (STOC’19). ACM, 277–288.

[59] Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In 34th Annual ACM Symposium on Theory of

Computing (STOC’02). ACM, 767–775.

[60] Subhash Khot, Madhur Tulsiani, and Pratik Worah. 2014. A characterization of strong approximation resistance. In

Symposium on Theory of Computing (STOC’14). ACM, 634–643.

[61] Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, and Huacheng Yu. 2023. Characterizing the multi-pass stream-

ing complexity for solving Boolean CSPs exactly. In 14th Innovations in Theoretical Computer Science Conference

(ITCS’23). LIPIcs, 80:1–80:15.

[62] Christian Konrad. 2015. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd Annual European

Symposium (ESA’15). Springer, 840–852.

[63] Gábor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. 2012. Linear programming, width-1

CSPs, and robust satisfaction. In Innovations in Theoretical Computer Science 2012 (ITCS’12). ACM, 484–495.

[64] Yi Li, Huy L. Nguyen, and David P. Woodruff. 2014. Turnstile streaming algorithms might as well be linear sketches.

In Symposium on Theory of Computing (STOC’14). ACM, 174–183.

[65] Ryan O’Donnell. 2014. Analysis of Boolean Functions. Cambridge University Press.

[66] Aaron Potechin. 2019. On the approximation resistance of balanced linear threshold functions. In 51st Annual ACM

SIGACT Symposium on Theory of Computing (STOC’19). ACM, 430–441.

[67] Prasad Raghavendra. 2008. Optimal algorithms and inapproximability results for every CSP? In 40th Annual ACM

Symposium on Theory of Computing (STOC’08). ACM, 245–254.

[68] Alexander A. Razborov. 1990. On the distributional complexity of disjointness. In Automata, Languages and Program-

ming, 17th International Colloquium (ICALP’90). Springer, 249–253.

[69] Raghuvansh R. Saxena, Noah Singer, Madhu Sudan, and Santhoshini Velusamy. 2023. Streaming complexity of CSPs

with randomly ordered constraints. In ACM-SIAM Symposium on Discrete Algorithms (SODA’23). SIAM, 4083–4103.

[70] Raghuvansh R. Saxena, Noah G. Singer, Madhu Sudan, and Santhoshini Velusamy. 2023. Improved streaming algo-

rithms formaximum directed cut via smoothed snapshots. In 64th IEEE Annual Symposium on Foundations of Computer

Science (FOCS’23). IEEE.

[71] Thomas J. Schaefer. 1978. The complexity of satisfiability problems. In 10th Annual ACM Symposium on Theory of

Computing (STOC’78). ACM, 216–226.

[72] Alexander A. Sherstov. 2012. The communication complexity of gap Hamming distance. Theory Comput. 8, 1 (2012),

197–208.

[73] Noah Singer, Madhu Sudan, and Santhoshini Velusamy. 2021. Streaming approximation resistance of every order-

ing CSP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX’21).

LIPIcs, 17:1–17:19.

[74] Noah G. Singer. 2023. Oblivious algorithms for the Max-kAND problem. In Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques (APPROX’23).

[75] Thomas Vidick. 2012. A concentration inequality for the overlap of a vector on a large set, with application to the

communication complexity of the gap-Hamming-distance problem. Chicago J. Theor. Comput. Sci. 18, 1 (2012), 1–12.

[76] Dmitriy Zhuk. 2017. A proof of CSP dichotomy conjecture. In 58th IEEEAnnual Symposium on Foundations of Computer

Science (FOCS’17). IEEE, 331–342.

Received 14 March 2022; revised 13 September 2023; accepted 21 February 2024

J. ACM, Vol. 71, No. 2, Article 15. Publication date: April 2024.

