
154 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

Decoding Multivariate Multiplicity
Codes on Product Sets

Siddharth Bhandari , Prahladh Harsha, Mrinal Kumar, and Madhu Sudan

Abstract— The multiplicity Schwartz-Zippel lemma bounds the
total multiplicity of zeroes of a multivariate polynomial on a
product set. This lemma motivates the multiplicity codes of
Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how
to use this lemma to construct high-rate locally-decodable codes.
However, the algorithmic results about these codes crucially rely
on the fact that the polynomials are evaluated on a vector space
and not an arbitrary product set. In this work, we show how
to decode multivariate multiplicity codes of large multiplicities
in polynomial time over finite product sets (over fields of large
characteristic and zero characteristic). Previously such decoding
algorithms were not known even for a positive fraction of errors.
In contrast, our work goes all the way to the distance of the
code and in particular exceeds both the unique-decoding bound
and the Johnson radius. For errors exceeding the Johnson radius,
even combinatorial list-decodablity of these codes was not known.
Our algorithm is an application of the classical polynomial
method directly to the multivariate setting. In particular, we do
not rely on a reduction from the multivariate to the univariate
case as is typical of many of the existing results on decoding codes
based on multivariate polynomials. However, a vanilla application
of the polynomial method in the multivariate setting does not
yield a polynomial upper bound on the list size. We obtain a
polynomial bound on the list size by taking an alternative view
of multivariate multiplicity codes. In this view, we glue all the

Manuscript received 25 October 2022; revised 23 June 2023;
accepted 1 August 2023. Date of publication 29 August 2023; date of
current version 26 December 2023. The work of Siddharth Bhandari was
supported in part by the Department of Atomic Energy, Government of
India, under Project 12-R&D-TFR-5.01-0500; and in part by the Google
Ph.D. Fellowship. The work of Prahladh Harsha was supported in part
by the Department of Atomic Energy, Government of India, under Project
12-R&D-TFR-5.01-0500; and in part by the Swarnajayanti Fellowship and
Google Research Award. The work of Mrinal Kumar was supported by
the Department of Atomic Energy, Government of India, under Project
12-R&D-TFR-5.01-0500. The work of Madhu Sudan was supported in part
by the Simons Investigator Award and in part by the NSF under Award
CCF 1715187 and Award CCF 2152413. An earlier version of this paper
was presented at the Proceedings of the 53rd ACM Symposium on Theory
of Computing [DOI: 10.1145/3406325.3451027]. (Corresponding author:
Siddharth Bhandari.)

Siddharth Bhandari was with the Tata Institute of Fundamental Research,
Mumbai 400005, India, and also with the Simons Institute for the Theory
of Computing, Berkeley, CA 94720 USA. He is now with the Toyota
Technological Institute at Chicago, Chicago, IL 60637 USA (e-mail:
siddharth@ttic.edu).

Prahladh Harsha is with the Tata Institute of Fundamental Research,
Mumbai 400005, India (e-mail: prahladh@tifr.res.in).

Mrinal Kumar was with the Department of Computer Science and
Engineering, IIT Bombay, Mumbai 400076, India. He is now with the
Tata Institute of Fundamental Research, Mumbai 400005, India (e-mail:
mrinal.kumar@tifr.res.in).

Madhu Sudan is with the School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail:
madhu@cs.harvard.edu).

Communicated by A.-L. Horlemann-Trautmann, Associate Editor for
Coding and Decoding.

Digital Object Identifier 10.1109/TIT.2023.3306849

partial derivatives of the same order together using a fresh set z
of variables. We then apply the polynomial method by viewing
this as a problem over the field F(z) of rational functions in z.

Index Terms— Coding theory, list-decoding, multiplicity codes.

I. INTRODUCTION

THE classical Schwartz-Zippel Lemma (due to Ore [2],
Schwartz [3], Zippel [4] and DeMillo and Lipton [5])

states that if F is a field, and f ∈ F[x1, x2, . . . , xm] is a
non-zero polynomial of degree d, and S ⊆ F is an arbitrary
finite subset of F, then the number of points on the grid1 Sm

where f is zero is upper bounded by d|S|m−1. A higher order
multiplicity version of this lemma (due to Dvir et al. [6]) states
that the number of points on the grid Sm where f is zero with
multiplicity2 at least s is upper bounded by d|S|m−1

s .3

This innately basic statement about low degree polynomials
has had innumerable applications in both theoretical computer
science and discrete mathematics and has by now become a
part of the standard toolkit when working with low degree
polynomials [7], [8]. Despite this, the following natural
algorithmic version of this problem remains open.

Algorithmic SZ Question: Let F be a field, and S, d, m be
as above. Design an efficient algorithm that takes as input an
arbitrary function P : Sm → F(

s+m−1
m) and finds a polynomial

f ∈ F[x1, x2, . . . , xm] of degree at most d (if one exists) such
that the function Enc(f) : Sm → F(

s+m−1
m) defined as

Enc(f)(a) =
(
∂f

∂xe
(a) : deg(xe) < s

)
differs from P on less than 1

2

(
1− d

s|S|

)
fraction of points

on Sm.
The aforementioned multiplicity Schwartz-Zippel lemma

(henceforth, referred to as the multiplicity SZ lemma for
brevity) assures us that if there is a polynomial f ∈
F[x1, x2, . . . , xm] such that Enc(f) differs from P on less
than 1

2

(
1− d

s|S|

)
fraction of points, then it must be unique!

Thus, in some sense, the above question is essentially asking
for an algorithmic version of the multiplicity SZ lemma.

Although a seemingly natural problem, especially given the
ubiquitous presence of the SZ lemma in computer science,
this question continues to remain open for even bivariate

1We use “grids” and “product sets” interchangeably (see also Remark 1).
2This means that all the partial derivatives of f of order at most s− 1 are

zero at this point. See Section III for a formal definition.
3This bound is only interesting when |S| > d/s so that d|S|m−1

s
is less

than the trivial bound of |S|m.

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3481-6078
https://orcid.org/0000-0003-3718-6489

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 155

polynomials! In fact, even the s = 1 case, which corresponds
to an algorithmic version of the classical SZ lemma (without
multiplicities) was only very recently resolved in a beautiful
work of Kim and Kopparty [9]. Unfortunately, their algorithm
does not seem to extend to the case of s > 1, and they mention
this as one of the open problems.

In this work, we make some progress towards answering the
algorithmic SZ question. In particular, we design an efficient
deterministic algorithm for this problem when the field F has
characteristic zero or larger than the degree d, the dimension
m is an arbitrary constant and the multiplicity parameter s is
a sufficiently large constant. In fact, in this setting we prove a
stronger result, which we now informally state (see Theorem 1
for a formal statement).

Main Result: Let ε ∈ (0, 1) be an arbitrary constant, m ∈ N
be a positive constant and s be a large enough positive integer.
Over fields F of characteristic zero or characteristic larger
than d, there is a deterministic polynomial time algorithm
that on input P outputs all degree d polynomials f ∈
F[x1, x2, . . . , xm] such that Enc(f) differs from the input
function P : Sm → F(

s+m−1
m) on less than

(
1− d

s|S| − ε
)

fraction of points on the grid Sm.
We note that the fraction of errors that can be tolerated in the

above result is 1− d
s|S|−ε, which is significantly larger than the

error parameter in the algorithmic SZ question. In this regime,
we no longer have the guarantee of a unique solution f such
that the function Enc(f) which is close to P . In fact, for this
error regime, it is not even clear that the number of candidate
solutions is polynomially bounded. The algorithm stated in
the main result outputs all such candidate solutions, and in
particular, shows that their number is polynomially bounded
(for constant m). This fraction of errors is the best one can
hope for since there are functions P (for instance, the all zero’s
function) which have super-polynomially many polynomials of
degree d which are

(
1− d

s|S|

)
-close to P . (see Section I).

In the language of error correcting codes, the algorithmic SZ
question is the question of designing efficient unique-decoding
algorithms for multivariate multiplicity codes over arbitrary
product sets when the error is at most half the minimum
distance. Our main result gives an efficient algorithm for
list-decoding (which includes as a subcase the problem of
unique-decoding) these codes from relative error δ− ε, where
δ := 1 − d

s|S| is the distance of the code, provided that the
field has characteristic larger than d or zero, m is a constant
and s is large enough. In the next section, we define some of
these notions, and state and discuss the results and the prior
work in this language.

A. Multiplicity Codes

Polynomial based error correcting codes, such as the Reed-
Solomon codes and Reed-Muller codes, are a very important
family of codes in coding theory both in theory and practice.
Multiplicity codes are a natural generalization of Reed-Muller
codes wherein at each evaluation point, one not only gives the
evaluation of the polynomial f , but also all its derivatives up
to a certain order.

Formally, let F be a field, s a positive integer, S ⊂ F an
arbitrary subset of the field F, d ≤ s|S| the degree parameter

and m ≥ 1 the ambient dimension. The codewords of the
m-variate order-s multiplicity code of degree-d polynomials
over F on the grid Sm is obtained by evaluating an m-
variate polynomial of total degree at most d, along with
all its derivatives of order less than s at all points in the
grid Sm. Thus, a codeword corresponding to the polynomial
f of total degree at most d can be viewed as a function
Encs,S(f) : Sm → F|E| where E := {e ∈ Zm≥0 | 0 ≤ ∥e∥1 <
s} and

Encs,S(f)|a =
(
∂̄f

∂̄xe
(a) : e ∈ E

)
where ∂̄f

∂̄xe is the Hasse derivative of the polynomial f with
respect to xe. The s = 1 version of these multiplicity codes
corresponds to the classical Reed-Solomon codes (univariate
case, m = 1) and Reed-Muller codes (multivariate setting,
m > 1). The distance of these codes is δ := 1 − d

s|S| , which
follows from the multiplicity SZ Lemma mentioned earlier in
the introduction.

Univariate multiplicity codes were first studied by Rosen-
bloom and Tsfasman [10] and Nielsen [11]. Multiplicity codes
for general m and s were introduced by Kopparty et al. [12]
in the context of local decoding. Subsequently, Kopparty [13]
and Guruswami and Wang [14] independently proved that
the univariate multiplicity codes over prime fields (or more
generally over fields whose characteristic is larger than the
degree of the underlying polynomials) achieve “list-decoding
capacity”. In the same work, Kopparty [13] proved that
multivariate multiplicity codes are list decodable up to the
Johnson radius if the underlying set S has a nice algebraic
structure (eg., S = F).

We remark that in the case of univariate multiplicity codes
(both Reed-Solomon and larger order multiplicity codes), the
decoding algorithms work for all choices of the set S ⊂ F.
However, all decoding algorithms for the multivariate setting
(both Reed-Muller and larger order multiplicity codes) work
only when the underlying set S has a nice algebraic structure
(eg., S = F) or when the degree d is very small (cf, the
Reed-Muller list-decoding algorithm of Sudan [15] and its
multiplicity variant due to Guruswami and Sudan [16]). The
only exception to this is the unique-decoding algorithm of Kim
and Kopparty [9] of Reed-Muller codes over product sets.

B. Our Results

Below we state and contrast our results on the problem of
decoding multivariate multiplicity codes (over grids) from a
δ − ε fraction of errors for any constant ε ∈ (0, 1) where δ is
the distance of the code. Our first result is as follows.

Theorem 1 (List-Decoding of Multivariate Multiplicity
Codes With Polynomial List Size): For every ε ∈ (0, 1) and
integer m, for all s ≥ 4

ε ·
(
(20/ε)m+m

m

)
, degree parameters d,

fields F of size q and characteristic larger than d, and any set
S ⊆ F where d < s|S|, the following holds.

For an m-variate order-s multiplicity code of degree-d
polynomials over F on the grid Sm, there is an efficient
algorithm which when given a received word P , outputs all
code words with agreement at least (1− δ+ ε) with P , where
δ = 1−d/(s|S|) is the relative distance of this code. Moreover,

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

the algorithm requires poly(|S|m2
, dm

2
) operations over the

field F.
Remark 1: A general product set in Fm is of the form S1×

S2 × · · ·Sm, where each Si is a subset of F. For ease of
notation, we always work with product sets which are grids
Sm for some S ⊆ F even though all of our results hold for
general product sets.

As indicated before, this is the best one can hope for
with respect to polynomial time list-decoding algorithms for
multiplicity codes since there are super-polynomially many
codewords with minimum distance δ = 1 − d/(s|S|) (see
Section I). Until recently, it was not known if multivariate
multiplicity codes were list decodable beyond the Johnson
radius (even for the case S = F). For the case of grids
Sm, where S ⊆ F is an arbitrary set, even unique-decoding
algorithms were not known. We note that the above result does
not yield a list-decoding algorithm for all multiplicities, but
only for large enough multiplicities (based on the dimension
m and the error parameter ε).

Kopparty et al. [17] showed how to reduce the size of the list
for univariate multiplicity codes from polynomial to constant
(dependent only on the error parameter ε). We use similar
ideas, albeit in the multivariate setting, to reduce the list size in
Theorem 1 to constant (dependent only on the error parameter
ε and the dimension m).

Theorem 2 (List-Decoding of Multivariate Multiplicity
Codes With Constant List Size): For every ε ∈ (0, 1) and
integer m, for all s ≥ 4

ε ·
(
(20/ε)m+m

m

)
, degree parameter d,

fields F of size q and characteristic larger than d, and any set
S ⊆ F where d < s|S|, the following holds.

For an m-variate order-s multiplicity code of
degree-d polynomials over F on the grid Sm,
there is a randomized algorithm which requires
poly

(
dm

2
, |S|m2

, exp
(
O
(
m2

ε log3 1
ε

)))
operations over

the field F and which when given a received word P , outputs
all code words with agreement at least (1 − δ + ε) with P ,
where δ = 1− d/(s|S|) is the relative distance of this code.

Moreover, the number of such codewords is at most
exp

(
O
(
m2

ε log2 1
ε

))
.

Remark 2: We remark that by taking a slightly different
view of the list-decoding algorithm in Theorem 1 and
Theorem 2, the upper bound on the number of field operations
needed in Theorem 1 and Theorem 2 can be improved to
poly(|S|m, dm). We sketch this view in subsection IV-G and
note the runtime analysis in Remark 5.

The above two results are a generalization of (and imply)
the corresponding theorems for the univariate setting due
to Kopparty [13] and Guruswami and Wang [14] and
Kopparty et al. [17]. We remark that Kopparty et al. [17] in
the recent improvement to their earlier work prove a similar
list-decoding algorithm for multivariate multiplicity codes as
Theorem 2 for the case when S = F. Though their list-
decoding algorithm does not extend to products sets, it has
the added advantage that it is local.

As noted earlier the only previous algorithmic method for
decoding polynomial-based codes over product sets was that of
Kim and Kopparty [9]. We describe the ideas in our algorithm
shortly (in Section II), but stress here that our approach is very

different from that of Kim and Kopparty. Their work may
be viewed as an algorithmic version of the inductive proof
of the SZ lemma, and indeed recovers the SZ lemma as a
consequence. Their work uses algorithmic aspects of algebraic
decoding as a black box (to solve univariate cases). Our work,
in contrast, only relies on the multiplicity SZ lemma as a black
box. Instead, we open up the “algebraic decoding” black box
and make significant changes there, thus adding to the toolkit
available to deal with polynomial evaluations over product
sets.

C. Further Discussion and Open Problems

Our result falls short of completely resolving the algorithmic
SZ question in two respects; though it works for all dimensions
m it only works when the multiplicity parameter s is large
enough and when the characteristic of the field is either zero
or larger than the degree parameter. Making improvements on
any of these fronts is an interesting open problem.

1) All multiplicities: The algorithms presented in this paper
decode all the way up to distance if the multiplicity
parameter s is large enough. Recently, the work
of [18] addressed the unique-decoding question when
the multiplicity parameter s is small. Specifically, they
gave an algorithm to unique decode which runs in time
(sn)O(s+m) ·

(
s−1+m
m

)
. This is polynomial in the input

size, i.e.,
(
nm ·

(
s−1+m
m

))
, when (sn)s+m is polynomial

in the input size: hence, for the case of s = O(1) this
is a truly polynomial time algorithm. Combining our
algorithm with theirs, we get polynomial time unique-
decoding algorithms for all settings of the multiplicity
parameter s when the dimension m and the fractional
distance 1 − d

s|T | are constant. However, for small
multiplicities, the list-decoding problem is open. For s =
1, the result due to Kim and Kopparty [9] addresses the
unique-decoding question, but the list-decoding question
for product sets is open.

2) Fields of small characteristic: All known proofs of
list-decoding multiplicity codes beyond the Johnson
radius (both algorithmic and combinatorial) require
the field to be of zero characteristic or large enough
characteristic. The problem of list-decoding multiplicity
codes over small characteristic beyond the Johnson
radius is open even for the univariate setting. As pointed
to us by Swastik Kopparty, this problem of list-
decoding univariate multiplicity codes over fields of
small characteristic beyond the Johnson radius is
intimately related to list-decoding Reed-Solomon codes
beyond the Johnson radius.

For a more detailed discussion of multiplicity codes and
related open problems, we refer the reader to the excellent
survey by Kopparty [19].

1) Organization: The rest of this paper is organized
as follows. We begin with an overview of our proofs
in Section II followed by some preliminaries (involving
Hasse derivatives, their properties, multiplicity codes) in
Section III. We then describe and analyze the list-decoding
algorithm for multivariate multiplicity codes in Section IV,
thus proving Theorem 1. In Section V, we then show how

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 157

to further reduce the list size to a constant, thus proving
Theorem 2. In Section VI, we prove some properties of
subspace restriction of multivariate multiplicity codes needed
in Section V. In Section I, we show that there are super-
polynomially many minimum-weight codewords, thus proving
the tightness of Theorem 1 and 3 with respect to list-decoding
radius.

II. PROOF OVERVIEW

In this section, we first describe some of the hurdles
in extending the univariate algorithms of Kopparty [13]
and Guruswami and Wang [14] to the multivariate setting,
especially for product sets and then given a detailed overview
of the proofs of Theorem 1 and Theorem 2.

A. Background and Motivation for Our Algorithm

To explain our algorithm, it will be convenient to recall
the general polynomial method framework underlying the
list-decoding algorithms in the univariate setting due to
Kopparty [13] and Guruswami and Wang [14]. Let P : S →
Fs be the received word and 1 ≤ w ≤ s

• Step 1: Algebraic Explanation. Find a polynomial
Q(x, y1, . . . , yw) ∈ F[x, y1, . . . , yw] of appropriate
degree constraints that “explains” the received word P .

• Step 2: Q contains the close codewords. Show that every
low-degree polynomial f whose encoding agrees with P
in more than (1 − δ + ε)-fraction of points satisfies the
following condition.

Q

(
x, f(x),

∂̄f

∂̄x
,
∂̄f

∂̄x2
, . . . ,

∂̄f

∂̄xw−1

)
= 0.

• Step 3: Reconstruction step. Recover every polynomial f
that satisfies the above condition.

The main (and only) difference between the list-decoding
algorithms of Kopparty [13] and Guruswami and Wang [14]
is that Guruswami and Wang observe that it suffices to work
with a polynomial Q which is linear in the y-variables,4

more precisely, Q(x, y1, . . . , yw) of the form Q0(x)+Q1(x) ·
y1 + · · · + Qw(x) · yw, while Kopparty allows for larger
degrees in the y-variables. As a result, Kopparty performs
the recovery step by solving a differential equation while
Guruswami and Wang observe that due to the simple structure
of Q, the solution can be obtained by solving a linear system
of equations.

How is multivariate list-decoding performed? There are
by now two standard approaches. Inspired by the Pellikaan-
Wu [21] observation that Reed-Muller codes are a subcode
of Reed-Solomon codes over an extension field, Kopparty
performs a similar reduction of the multivariate multiplicity
code to a univariate multiplicity code over an extension field.
Another approach is to solve the multivariate case by solving
the univariate subproblem on various lines in the space.
However, both these approaches work only if the set S = F
or has some special algebraic structure.

For our proof, we take an alternate approach and always
work in the multivariate setting without resorting to a reduction

4The authors attribute this observation to Vadhan [20] in [14].

to the univariate setting. As we shall see, our approach
has some advantages over that of Kopparty [13], both in
quantitative terms, since the algorithm can tolerate a larger
number of errors, and in qualitative terms, since the underlying
set of evaluation points does not have to be an algebraically
nice subset of Fm as in [13]; evaluations on an arbitrary grid
suffice for the algorithm to work.

To extend the univariate list-decoding algorithm outlined
above to the multivariate setting, we adopt the following
approach. We consider a new set of formal variables z
and instead of directly working with the information about
partial derivatives in the received word, we think of the
partial derivatives of the same order as being glued together
using monomials in z. With this reorganized (and somewhat
mysterious) view of the partial derivatives, we follow the
outline of the univariate setting as described above. We find
a linear polynomial Q with coefficients from the field of
fractions F(z) instead of just F in the interpolation step to
explain the received word P . Thus, in this instance, the linear
system in the interpolation step is over the field F(z). We then
argue that Q contains information about all the codewords
that are close to the received word, and eventually solve Q
to recover all the codewords close to the received word. This
might seem rather strange to begin with, but these ideas of
gluing together the partial derivatives and working over the
field F(z) immediately generalize the univariate list-decoding
algorithm to the multivariate setting. Working with this field
of fractions F(z) comes with its costs; it makes some of
the steps costly and in particular, the recovery step far more
elaborate than that in the Guruswami-Wang setting. However,
this recovery step happens to be a special case of similar
step in the recent work of Guo et al. [22] and we adapt their
algorithm to our setting.

As a first attempt, a more standard way to generalize the
algorithms of Kopparty [13] and Guruswami and Wang [14]
to the multivariate setting would have been to work with the
partial derivatives directly. And, while this approach seems
alright for the interpolation step, it seems hard to work
with when we try to solve the resulting equation to recover
all the close enough codewords. In particular, it isn’t even
clear in this set up that the number of solutions of the
algebraic explanation (and hence, the number of close enough
codewords) is polynomially bounded. This mysterious step of
gluing together derivatives of the same order in a reversible
manner (in the sense that we can read off the individual
derivatives from the glued term) gets around this problem,
and makes it viable to prove a polynomial upper bound on
the number of solutions, and eventually solve the equation to
recover all the close enough codewords.

Given this background, we now give a more detailed outline
of our algorithm below.

B. Theorem 1: Multivariate List-Decoding Algorithm With
Polynomially-Sized Lists

1) Viewing the Encoding as a Formal Power Series:
Multiplicity codes are described by saying that the encoding of
a polynomial f ∈ F[x] consists of the evaluation of all partial
derivatives of f of order at most s − 1 at every point in the

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

appropriate evaluation set, e.g. the grid Sm. For our algorithm,
we think of these partial derivatives of f as being rearranged
on the basis of the order of the derivatives as follows. We take
a fresh set of formal variables z and define the following
differential operators.

∆i(f) :=
∑

e:∥e∥1=i

ze · ∂̄f(x)
∂̄xe

where ∂̄f
∂̄xe denotes the Hasse derivative5 of the polynomial f

with respect to xe.
Let ∆(f) be an s tuple of polynomials defined as follows.

∆(f) := (∆0(f),∆1(f), . . . ,∆s−1(f)) .

We view the encoding for f as giving us the evaluation of the
tuple ∆(f) ∈ F[x, z] as x varies in Sm. Note that for every
fixing of x to some a ∈ Sm, ∆(f)(a) is in F[z]s. Thus, the
alphabet size is still large. Clearly, this is just a change of
viewpoint, as we can go from the original encoding to this
and back efficiently, and at this point it is unclear that this
change of perspective would be useful.

2) Finding an Equation Satisfied by All Close Enough
Codewords: Let P be a received word. We view P as a
function P : Sm → Σs, where Σ = F[z], as discussed in
the previous step. The goal of the decoding step is to find all
the polynomials f ∈ F[x] of degree at most d, whose encoding
is close enough to P .

As a first step towards this, we find a non-zero polynomial
Q(x,y) ∈ F(z)[x,y] of the form

Q(x,y) = Q1(x)y1 + · · ·+Qw(x)yw,

which explains the received word P , i.e., for every a ∈ Sm,
Q(a, P (a)) = 0, and Q satisfies some appropriate degree
constraints. Here w ≤ s is a parameter. For technical reasons,
we also end up imposing some more constraints on Q in terms
of its partial derivatives, the details of which can be found in
Section IV-C. Each of these constraints can be viewed as a
homogeneous linear equation in the coefficients of Q over the
field F(z). We choose the degree of Q to be large enough to
ensure that this system has more variables than constraints,
and therefore, has a non-zero solution.

This step is the interpolation step which shows up in
any standard application of the polynomial method, and
our set-up is a natural generalization of the set up in the
list-decoding algorithm of Guruswami and Wang [14] for
univariate multiplicity codes.

The key property of the polynomial Q thus obtained is that
for every degree d polynomial f ∈ F[x] whose encoding is
close enough to P ,

Q(x,∆(f)) = Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

To see this, we note that from the upper bound on the
degree of Q and the fact that f has degree at most d,
the polynomial Q(x,∆(f)) ∈ F(z)[x] is of not too high
degree in x. Moreover, from the constraints imposed on Q

5Since we have both x and z variables, we use the notation ∂̄f
∂̄x

to denote
the Hasse derivative wrt variable x to explicitly indicate which variable the
derivative is being taken.

during interpolation, it follows that at every a ∈ Sm where
the encoding of f and P agree, Q(x,∆(f)) vanishes with
high multiplicity. Thus, if the parameters are favorably set,
it follows that Q(x,∆(f)) has too many zeroes of high
multiplicity on a grid, and hence by the multiplicity Schwartz-
Zippel Lemma (see Lemma 1), Q(x,∆(f)) must be identically
zero.

We note that this is the only place in the proof where we
use anything about the structure of the set of evaluation points,
i.e., the set of evaluation points is a grid.

3) Solving the Equation to Recover All Close Enough
Codewords: As the final step of our algorithm, we try to
recover all polynomials f ∈ F[x] of degree at most d such
that

Q(x,∆(f)) = Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

Q(x,∆(f)) can be viewed as a partial differential equation of
order w − 1 and degree one, and we construct all candidate
solutions f via the method of power series. We start by
trying all possible choices of field elements for coefficients
of monomials of degree at most w − 1 in f , and iteratively
recover the remaining coefficients of f by reconstructing f one
homogeneous component at a time. Moreover, we observe that
for each choice of the initial coefficients, there is a unique lift
to a degree d polynomial. Thus, the number of solutions is
upper bounded by the number of initial choices, which is at
most |F|(

w+m−1
m).

We note that this is one place where working with ∆i(f)
as opposed to having an equation in the individual partial
derivatives of f is of crucial help. Even though the equation
Q(x,∆(f)) = 0 is a partial differential equation of high order
in f , the fact that these derivatives appear in a structured
form via the operators ∆i(f) helps us prove a polynomial
upper bound on the number of such solutions and solve for f .
Without this additional structure, it is unclear if one can prove
a polynomial upper bound on the number of solutions of the
corresponding equation.

This reconstruction step is a multivariate generalization of
similar reconstruction steps in the list-decoding algorithms
of Kopparty [13] and Guruswami and Wang [14] for
univariate multiplicity codes. Interestingly, this is also a special
case of a similar reconstruction procedure in the work of
Guo et al. [22], where the polynomial Q could potentially
be of higher degree in y variables, and is given to us via
an arithmetic circuit of small size and degree and the goal
is to show that all (low degree) polynomials f , satisfying
Q(x,∆(f)) ≡ 0 have small circuits. In contrast, we are
working with Q which is linear in y and we have access to the
coefficient representation of this polynomial, and construct the
solutions f in the monomial representation. As a consequence,
the details of this step are much simpler here, when compared
to that in [22].

In this step of our algorithm viewing the encoding in terms
of the differential operators ∆i() turns out to be useful. The
iterative reconstruction outlined above crucially uses the fact
that for any homogeneous polynomial g ∈ F[x] of degree
r, ∆i(g) is a homogeneous polynomial in the x variables of
degree exactly r− i+1. The other property that we use from
∆i() is that given ∆i(g) for any homogeneous polynomial g,

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 159

we can uniquely read off all the partial derivatives of order
i − 1 of g, and via a folklore observation of Euler, uniquely
reconstruct the polynomial g itself (see Lemma 6).

Finally, we note that the precise way of gluing together the
partial derivatives of order i in the definition of the operator
∆i() is not absolutely crucial here, and as is evident in
Lemma 6, many other candidates would have satisfied the
necessary properties.

The details of this step are in Section IV-E, and essentially
complete the proof of Theorem 1.

C. Theorem 2: Reducing the List Size to a Constant

In Section V, we combine our proof of Theorem 1 with the
techniques in the recent work of Kopparty et al. [17] to show
that the list size in the decoding algorithm in Theorem 1 can
be reduced to a constant.

The key to this step is the observation that since Q(x,y)
is linear in the y variables, the solutions f of the equation
Q(x,∆(f)) ≡ 0 form an affine subspace of polynomials. The
reconstruction algorithm in Section IV-E in fact gives us an
affine subspace V ⊆ F[x] of polynomials of degree at most d
which consists of all the solutions of Q(x,∆(f)) ≡ 0.

This is precisely the setting in the work of Kop-
party et al. [17] in the context of folded Reed-Solomon codes
and univariate multiplicity codes, and we essentially apply
their ideas off the shelf, and combine them with our proof
of Theorem 1 to reduce the list size to a constant.

In general, this idea of solving Q(x,∆(f)) ≡ 0 to recover
a subspace, and then using the ideas in [17] to recover
codewords in the subspace which are close to the received
word has the added advantage that it can be applied over all
fields. As an immediate consequence, we get an analog of
Theorem 1 over infinite fields like rationals as well.

III. NOTATION & PRELIMINARIES

A. Notation

We use the following notation.
• F is the field we work over, and we assume the

characteristic of F to be either zero or larger than the
degree parameter d of the message space.

• We use bold letters to denote tuples of variables (i.e.,
x, z, y for (x1, . . . , xm), (z1, . . . , zm) and (y1, . . . , yw)
respectively).

• We work with polynomials which are in general members
of F(z)[x,y]. We denote monomials in x and z by xe (=∏
i∈[m] x

ei
i), ze (=

∏
i∈[m] z

ei
i) respectively where e ∈

Zm≥0. The degree of the monomial is ∥e∥1 =
∑m
i=1 ei.

• For e, e′ ∈ Zm≥0 we say e′ ≤ e iff for all i ∈ [m] we
have e′i ≤ ei. Also, we use

(
e
e′

)
to denote

∏
i∈[m]

(
ei
e′i

)
.

• For a natural number n, [n] denotes the set {1, 2, . . . , n}.

B. Hasse Derivatives

Throughout the paper we work with Hasse derivatives: we
interchangeably use the term partial derivatives.

Definition 1 (Hasse Derivative): For a polynomial f ∈
F[x] the Hasse derivative of type e is the coefficient of ze

in the polynomial f(x + z) ∈ F[x, z]. We denote this by ∂̄f
∂̄xe

or ∂̄f(x)
∂̄xe

We state some basic properties of Hasse Derivatives below.
Some of these are taken from [6, Proposition 4].

Proposition 1 (Basic Properties of Hasse Derivatives):
Let f, g ∈ F[x] and consider e, e′ ∈ Zm≥0.

1) ∂̄f
∂̄xe + ∂̄g

∂̄xe = ∂̄(f+g)
∂̄xe .

2) If f is a homogeneous polynomial of degree d then ∂̄f
∂̄xe

is homogeneous polynomial of degree d− ∥e∥1.
3) If f = xe′

then ∂̄f
∂̄xe =

(
e
e′

)
xe−e′

.
4) Hasse derivatives compose in the following manner:

∂̄

∂̄xe

∂̄f(x)
∂̄xe′ =

(
e + e′

e

)
· ∂̄f(x)
∂̄xe+e′ .

5) Product rule for Hasse derivatives:

∂̄
(∏

i∈[w] fi

)
∂̄xe

=
∑

u1+u2+...+uw=e

∏
i∈[w]

∂̄fi
∂̄xui

 .

Proof: Items 1 to 3 and 5 follow directly from
Definition 1. For Item 4, observe that by linearity of Hasse
derivatives we may assume WLOG that f is a monomial, say
xẽ: in this case the claim follows from Item 3 and the fact
that

(
ẽ
e

)
·
(
ẽ−e
e′

)
=
(
e+e′

e

)
·
(

ẽ
e+e′

)
. □

C. Multiplicity Code

We now define the notion of multiplicity of a polynomial
f ∈ F[x] at a point a ∈ Fm. The multiplicity of f at the origin
is ℓ iff ℓ is the highest integer such that no monomial of total
degree less than ℓ appears in the coefficient representation of
f . We formalize this below using Hasse derivatives.

Definition 2 (Multiplicity): A polynomial f ∈ F[x] is said
to have multiplicity ℓ at a point a ∈ Fm, denoted by
mult(f, a), iff ℓ is the largest integer such that for all e ∈ Zm≥0

with ∥e∥1 < ℓ we have ∂̄f
∂̄xe (a) = 0. If no such ℓ exists then

mult(f, a) =∞.
Dvir, Kopparty, Saraf and Sudan proved the following

higher order multiplicity version of the classical Schwartz-
Zippel lemma.

Lemma 1 (multiplicity SZ Lemma [6, Lemma 2.7]): Let F
be any field and let S be an arbitrary subset of F. Then, for
any non-zero m-variate polynomial P of degree at most d,∑

a∈Sm
mult(P,a) ≤ d|S|m−1.

The above lemma implies the classical SZ lemma, which states
that two distinct m-variate polynomials of degree d cannot
agree everywhere on a grid Sm for any set S of size larger than
d trivially. This in particular tells us that the grid Sm serves
as hitting set for polynomials of degree at most d provided
d < |S|.

As mentioned before, a multiplicity code over a grid Sm

consists of evaluations of the message polynomial f along
with its derivatives of various orders (up to s − 1), at the
points of the grid.

Definition 3 (multiplicity Code): Let s,m ∈ N, d ∈ Z≥0,
F a field and S ⊂ F a non-empty finite subset. The m-variate

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

order-s multiplicity code of degree-d polynomials over F on
the grid Sm is defined as follows.

Let E := {e ∈ Zm≥0 | 0 ≤ ∥e∥1 < s}. Note that |E| =(
s+m−1
m

)
. The code is over alphabet FE and has length |S|m

(where the coordinates are indexed by elements of Sm).
The code is an F-linear map from the space of degree d

polynomials in F[x] to
(
FE
)Sm

. The encoding of f ∈ F[x] at
a point a ∈ Sm is given by:

Encs,S(f)|a =
(
∂̄f

∂̄xe
(a) : e ∈ E

)
.

□
Remark 3: • The distance of the code is exactly δ :=

1− d
s|S| and the rate of the of the code is (d+mm)

(s+m−1
m)·|S|m .

• As mentioned in the introduction we can also view
the encoding by clubbing partial derivatives of the
same degree. Thus, the encoding of f at a point a is
(∆0(f)(a),∆1(f)(a), . . . ,∆s−1(f)(a)) ∈ F[z]s where
∆i(f)(a) =

∑
e:∥e∥1=i

ze · ∂̄f(x)
∂̄xe (a).

• We think of m, w and s as constants, but w much larger
than m and s is much larger than w. The precise trade-
offs will be alluded to when we need to set parameters
in our proofs.

D. Arithmetic Circuits and Related Notions

We now define the notion of arithmetic circuits and some
properties that would be helpful for some of the technical
statements later in this paper. For a detailed introduction to
arithmetic circuits and the broad area of algebraic circuit
complexity, we refer to the excellent survey of Shpilka and
Yehudayoff [23].

Definition 4 (Arithmetic Circuits): An arithmetic circuit C
over a field F and an n-tuple x of variables is a directed acyclic
graph where all the vertices of in-degree zero (referred to as
leaf gates) are labelled by variables in x or elements of the
field F and every other vertex is labelled by the symbol (+)
or the symbol × (and hence called a sum gate and a product
gate respectively). The vertices of C of out-degree zero are
referred to as output gates.

An arithmetic circuit computes a polynomial in F[x] in a
natural inductive manner: a leaf gate computes the polynomial
equal to its label, a sum gate u computes the polynomial that is
the sum of polynomials computed at all the gates v1, v2, . . . , vt
of C such that (vt, u) is an edge in C and a product gate u
computes the polynomial that is the product of polynomials
computed at all the gates v1, v2, . . . , vt of C such that (vt, u)
is an edge in C.

The size of C is the number of edges in the underlying
graph of C.

A very well studied family of polynomials in algebraic
complexity is the determinant polynomial that we now
formally define.

Definition 5 (Determinant Polynomial): Let F be any field
and n ∈ N be a natural number. Then the determinant
polynomial for n×n matrices over F that we denote by detn is
a polynomial of degree n on n2 variables {xi,j : 1 ≥ i, j ≤ n}
and is equal to the determinant of the n× n matrix X whose

(i, j) entry equals the variable xi,j , i.e.,

det
n

:=
∑
σ∈Sn

(−1)sign(σ)
n∏
i=1

xi,σ(i),

where Sn is the set of all permutations of 1, 2, . . . , n.
The following theorem gives an upper bound on the size of

arithmetic circuits computing detn.
Theorem 3 [24]: Let F be any field. There exists a constant

c such that for all sufficiently large n ∈ N, detn can be
computed by an arithmetic circuit of size at most O(nc)
over F.

Moreover, there is an algorithm that on input n, runs in
time at most O(nc) and outputs the aforementioned circuit
for detn.

We now define the notion of a hitting set that will be
crucially used in our proof.

Definition 6 (Hitting Set): Let F be any field, n be a natural
number and C be a set of polynomials on n variables with
coefficients in F. Then, a set of points H ⊆ Fn is said to be
a hitting set for C if for every non-zero polynomial P ∈ C,
there is a point a ∈ H such that P (a) ̸= 0.

One example of a hitting set that is a direct consequence of
Lemma 1 is the following. Let C be the set of all polynomials
on n variables and degree d. The any set H of the form Sn =
S × S × · · · × S for any S ⊆ F of size greater than d is a
hitting set for C.

E. Computing on Polynomial Rings

In this section, we state a few basic results that show how
to perform algebraic operations over polynomial rings.

The following lemma, proved via an easy application of
polynomial interpolation, lets us construct the coefficient
representation of a polynomial given an arithmetic circuit
for it.

Lemma 2: Let m ∈ N. There exists a deterministic
algorithm that takes as input an arithmetic circuit C of size
s that computes an m-variate polynomial P ∈ F[z] of degree
at most d and outputs the coefficient vector of P in at most
poly(dm, s) field operations over F

Proof: From Lemma 1, we know that no two degree d
polynomials can agree everywhere on a grid of size larger than
d. So, we pick an arbitrary subset S of F of size d + 1 and
evaluate the circuit C at all points on the grid |S|m. This
requires at most poly(dm, s) field operations. Now, given these
evaluations, we set up a linear system in the coefficients of
P where for every a in the grid, we have a constraint of the
form P (a) = C(a). We know that this system has a solution.
Furthermore, from Lemma 1, we know that this system has a
unique solution.

Solving this system gives us the coefficient vector of P and
requires at most dm additional field operations. □

The next lemma tells us how to perform linear algebra over
the polynomial ring F[z].

Lemma 3 (Linear Algebra Over Polynomial Rings): Let
A(z) ∈ F[z]t′×t be a matrix such that each of its entries
is a polynomial of degree at most w in the variables
z = (z1, z2, . . . , zm) and t′ ≤ t. Then, there is a deterministic
algorithm which takes as input the coefficient vectors of the

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 161

entries of A and outputs a non-zero vector u ∈ F[z]t in time
poly(wm, tm) such that A · u = 0. Moreover, every entry in
u is a polynomial of degree at most tw.

Proof: As a first step, we reduce this to the problem of
solving a linear system of the form A′ ·u′ = b, where A′ and
b have entries in F[z] of degree at most w, and A′ is a square
matrix of dimension at most t′, which is non-singular. At this
point, we can just apply Cramer’s rule to find a solution of
this system.

Since t′ ≤ t, the rank r of A(z) over F(z) is at most t′.
Thus, there is a square submatrix A′(z) of A such that det(A′)
is a non-zero polynomial of degree at most wr ≤ wt′ in F[z].
For a hitting set Hwt′,m of polynomials of degree at most
wt′ on m variables over F, we consider the set of matrices
{A(c) : c ∈ Hwt′,m}. From the guarantees of the hitting
set, we know that there is a c ∈ Hwt′,m such that A′(c) is
of rank equal to r. Let c0 ∈ Hwt′,m be such that the rank
of A(c0) over F is maximum among all matrices in the set
{A(c) : c ∈ Hwt′,m}. Moreover, let A′(z) be a submatrix
of A(z) such that rank(A′(c0)) equals rank(A(c0)). From
Lemma 1, there is an explicit hitting set Hwt′,m of size at
most (wt′ + 1)m ≤ (wt + 1)m. Thus, we can find A′(z) of
rank equal to the rank of A(z) with at most poly(wm, tm) field
operations over F. Without loss of generality, let us assume
that A′ is the top left submatrix of A of size r. Clearly, the
(r + 1)-st column of A is linearly dependent on the first r
columns of A over the field F(z). In other words, the linear
system given by

A′ · u′ = b

where b = (A1,r+1, A2,r+1, . . . , Ar,r+1), has a solution
in F(z). Moreover, for every solution u′ of this system,
where u′ = (u′1, u

′
2, . . . , u

′
r), the t dimensional vector

(u′1, u
′
2, . . . , u

′
r,−1, 0, . . . , 0) is in the kernel of A(z). Also,

since A ·u = 0 is a homogeneous linear system, for any non-
zero polynomial P (z), (P ·u′1, P ·u′2, . . . , P ·u′r,−P, 0, . . . , 0)
continues to be a non-zero vector in the kernel of A(z).

Since A′ is non-singular, u′ = (A′)−1 · b is a solution
to this system. Moreover, by Cramer’s rule, (A′)−1 =
adj(A′)/ det(A′), where adj(A′) is the adjugate matrix of A′

and det(A′) is its determinant. Since, every entry of adj(A′)
is a polynomial in F[z] of degree at most tw, we get a solution
of the form u′ = (p1/ det(A′), p2/ det(A′), . . . , pr/ det(A′))
where each pi is a polynomial in F[z] of degree at most
tw. By getting rid of the denominators by scaling by
det(A′), we get that the non-zero t dimensional vector
(p1, p2, . . . , pr,− det(A′), 0, . . . , 0) is in the kernel of A(z).

Moreover, using the fact that the determinant polynomial
has a polynomial size efficiently constructible circuit, and
Lemma 2, we can output this vector, with each entry being a
list of coefficients in F in time poly(wm, tm) via an efficient
deterministic algorithm. □

IV. LIST-DECODING THE MULTIVARIATE
MULTIPLICITY CODE

In this section, we prove Theorem 1. We follow the outline
of the proof described in Section II. We start with the
interpolation step.

A. Viewing the Encoding as a Formal Power Series

The message space is the space of m-variate polynomials
of degree at most d over F. In the standard encoding, we have
access to evaluations of the polynomial and all its derivatives
of order up to s− 1 on all points on a grid Sm ⊆ Fm.

For our proof, it will be helpful to group the derivatives of
the same order together.

Definition 7: Let f ∈ F[x] be a polynomial. Then, for any
i ∈ Z≥0, ∆i(f) is defined as

∆i(f) :=
∑

e:∥e∥1=i

ze · ∂̄f(x)
∂̄xe

.

□
So, we have a distinct monomial in z attached to each of

the derivatives. The precise form of the monomial in z is not
important, and all that we will use is that these monomials
are linearly independent over the underlying field, don’t have
very high degree and there aren’t too many variables in z.

Now, we think of the encoding of f as giving us
the evaluation of the tuple of polynomials ∆(f) =
(∆0(f(x)),∆1(f(x)), . . . ,∆s−1(x)) ∈ F(z)[x]s as x takes
values in Fm.

Note that ∆i(f) is a homogeneous polynomial of degree
equal to i in z.

B. The τ Operator

We will need to compute the Hasse derivative of ∆i(f)
with respect to xe, i.e., ∂̄∆i(f)

∂̄xe . From the definition of ∆i(f),
we have

∂̄∆i(f)
∂̄xe

=
∑

e′:∥e′∥1=i

ze′
· ∂̄

∂̄xe

∂̄f(x)
∂̄xe′

=
∑

e′:∥e′∥1=i

ze′
·
(
e + e′

e

)
· ∂̄f(x)
∂̄xe+e′

=
∑

e′:∥e′∥1=i

ze′
·
(
e + e′

e

)
· coeffze+e′ (∆i+∥e∥1f(x)).

The key point to note is that the Hasse derivative of ∆i(f) with
respect to xe can be read off the coefficients of ∆i+∥e∥1(f).

This motivates the following definition. Consider a tuple
P = (P0, P1, . . . , Ps−1), where for each i, Pi is a
homogeneous polynomial of degree i in F[z]. For any e ∈
Zm≥0, and i ≤ s− 1 such that i+ ∥e∥1 ≤ s− 1, we define

τ (i)
e (P) :=

∑
e′:∥e′∥1=i

ze′
·
(
e + e′

e

)
· coeffze+e′ (Pi+∥e∥1).

Thus, for

∆(f) = (∆0(f(x)),∆1(f(x)), . . . ,∆s−1(x)) ,

we have

τ (i)
e (∆(f)) =

∂̄∆i(f)
∂̄xe

.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

C. Interpolation Step

Let P be the received word, Thus, we are given
a collection of s-tuples of polynomials P (a) =
(P0(a), P1(a), . . . , Ps−1(a)) for every a ∈ Sm, where
each Pi(a) is a homogeneous polynomial of degree i in z.
From the earlier definition of τ , given such a P (a), we have
τ

(i)
e (P (a)) for every i ≤ w and e with ∥e∥1 ≤ s− 1− w.

Lemma 4: Let m and s be constants. For every natural
number w ≤ s−1−m, and D = 10|S|(s−w)/w1/m, there is
a non-zero polynomial Q(x,y) = Q1(x)y1+· · ·+Qw(x)yw ∈
F(z)[x,y] such that

• For every i ∈ {1, 2, . . . , w}, the x-degree of each Qi is
at most D.

• For every a ∈ Sm and every e ∈ Zm≥0 such that
0 ≤ ∥e∥1 ≤ s− 1− w, ∆e(Q)(a) = 0, where

∆e(Q)(a) :=
w∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · τ (i−1)

e−e′ (P (a)).

Here, e′ ≤ e means that e dominates e′ coordinate wise.
Moreover, the coefficients of Q are polynomials in F[z] of
degree at most O(|S|ms2m), and such a Q can be determin-
istically constructed by using at most poly(|S|m2

, sm
2
, dm)

operations over the field F.
Proof: We start by showing the existence of a polynomial

Q with the appropriate degree constraints, followed by an
analysis of the running time.

1) Existence of Q: We view the above constraints as
a system of linear equations over the field F(z), where
the variables are the coefficients of Q. The number of
homogeneous linear constraints is |S|m

(
s−w+m

m

)
and the

number of variables is w
(
D+m
m

)
.

By using the fact that m is much smaller than s, and a
crude approximation of the binomial coefficients, we have
|S|m

(
s−w+m

m

)
≤ (2e|S|(s− w)/m)m and w

(
D+m
m

)
>

w(D/m)m. Plugging in the value of D, we get w(D/m)m =
(10|S|(s− w)/m)m, which is clearly greater than the number
of constraints. (Notice that setting D > 2e|S|(s − w)/w1/m

would have sufficed). Hence, there is a non-zero solution,
where the coefficients of the polynomial are from the field
F(z), i.e., are rational functions in z.

Next we analyze the degree of these coefficients and show
that we can recover such a Q efficiently, with the appropriate
degree bounds.

2) The Running Time : For the running time, we recall that
each τ (i)

e (P) is a polynomial of degree at most w−1 in the z
variables. As a consequence, observe that the linear system we
have for the coefficients of Q is of the form A ·u = 0, where
A is a matrix with dimension at most O(|S|m(s−w)m) over
the ring F[z], and every entry of A is a polynomial in F[z] of
degree at most w. From Lemma 3, we get that we can find
a non-zero solution in F[z] using at most poly(|S|m2

, sm
2
)

field operations over F. Moreover, each of the coordinates
of this output vector is a polynomial of degree at most
O(|S|m(s− w)m) · w = O(|S|ms2m) in F[z]. □

Going forward, we work with the polynomial Q and the
degree parameter D as set in Lemma 4.

D. Close Enough Codewords Satisfy the Equation

We now show that for every polynomial f ∈ F[x] of degree
at most d whose encoding is close enough to the received word
P , f satisfies the equation Q in some sense.

Lemma 5: If f ∈ F[x] is a degree d polynomial such that
the number of a ∈ Sm which satisfy

P (a) = ∆(f)(a),

is at least T > (D + d) · |S|m−1/(s − w), then
Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) is identically zero as a
polynomial in F(z)[x].

Proof: Define the polynomial R ∈ F(z)[x] as follows

R(x) := Q(x,∆0(f),∆1(f), . . . ,∆w−1(f))

=
w∑
i=1

Qi(x) ·∆i−1(f).

R is a polynomial in x of degree at most D+d over the field
F(z). Whenever a satisfies that P (a) = ∆(f)(a), from the
definitions of τ (i)

e and ∆e, we have that for all e such that
0 ≤ ∥e∥1 ≤ s− w − 1,

∂̄R(x)
∂̄xe

(a) =
w∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · ∂̄∆i−1(f)

∂̄xe−e′ (a)

=
w∑
i=1

∑
e′≤e

∂̄Qi(x)
∂̄xe′ (a) · τ (i−1)

e−e′ (P (a))

= ∆e(Q)(a)
= 0.

Hence, at every point of agreement between ∆(f) and the
received word P , R(x) vanishes with multiplicity at least s−
w. From Lemma 1, we know that if

T (s− w) > (D + d)|S|m−1,

then R must be identically zero. □
Let us try to get a sense of the parameters here. The relative
distance of this code is δ = 1− d

s|S| . Now, in T
|S|m > D+d

|S|(s−w) ,
plugging in the value of D from the earlier discussion gives
us

T

|S|m
>

d

|S|(s− w)
+

10|S|(s− w)/w1/m

|S|(s− w)

=
10

w1/m
+
(

s

s− w

)
· d

s|S|

=
10

w1/m
+
(

w

s− w

)
· d

s|S|
+

d

s|S|
.

In our final analysis for the proof of Theorem 1, we choose
w and s large enough as a function of ε, so that this bound is
of the form ε+(1− δ), which is precisely what is claimed in
Theorem 1.

E. Solving the Equation to Find Close Enough Codewords

All that remains now is to solve equations of the form
Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) to recover f . This would
be done via iteratively constructing f one homogeneous
component at a time. We will need the following easy
observations.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 163

Lemma 6: Let F be a field of characteristic zero or larger
than d. Let f ∈ F[x] be a polynomial of degree d, and for every
i ∈ Z≥0, ∆i be the differential form of order i as defined in
Definition 7. Then, the following are true.

• For each i ∈ Z≥0, ∆i(f) is homogeneous in z and has
degree i in the z variables. Moreover, for any monomial
ze of degree i, its coefficient in ∆i(f) equals ∂̄f

∂̄xe .
• If f is a homogeneous polynomial, then, for every i ≤ d,
f can be uniquely recovered from all its partial derivatives
of order i. As a consequence, for any homogeneous f ,
given the formal polynomial ∆i(f), we can recover f .
Proof: The first item follows directly from the definition

of ∆ in Definition 7.
The second item follows from an immediate generalization

of the following well known observation of Euler to Hasse
derivatives. For any homogeneous polynomial f of degree d,

d · f =
∑
i

xi ·
∂̄f(x)
∂̄xi

.

We also have that

∂̄

∂̄xe

∂̄f(x)
∂̄xe′ =

(
e + e′

e

)
· ∂̄f(x)
∂̄xe+e′ .

Using this we can compute the first order Hasse derivatives
of ∂̄f

∂̄xe′ for all ∥e′∥1 = i − 1 from ∆i(f). So, for any i,
given all Hasse derivatives of degree i, we can recover Hasse
derivatives of degree i− 1 (using Euler’s formula), and so on,
till we recover f . □

Remark 4: We remark that the second item in Lemma 6
is false for fields of small characteristic. For instance, if the
characteristic is smaller than d, then even for a non-zero f , all
its first order derivatives could be zero, and hence f cannot
be recovered from its first order derivatives.

The following lemma shows that under very mild conditions
on Q(x,y), we can (efficiently) recover all polynomials f
of degree at most d such that Q(x,∆<w(f)) ≡ 0. This
will complete all the ingredients needed for the proof of
Theorem 1.

Lemma 7: Let F be a finite field of characteristic larger
than d and let Q(x,y) = Q1(x)y1 + · · · + Qw(x)yw be any
non-zero polynomial in F(z)[x,y] where, degx(Q) ≤ D + d,
degz(Q) ≤ Γ and Qi does not depend on y. Then, there is a
deterministic algorithm that outputs all polynomials f ∈ F[x]
of degree at most d such that

Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

Moreover, the algorithm requires at most
poly

(
Dm, dm, |F|(

w+m
w),Γm

)
arithmetic operations over the

underlying field F.
Proof: We will reconstruct f iteratively, one homoge-

neous component at a time. This iterative process has to be
started by fixing the homogeneous components of f of degree
at most w, and as will be evident from the discussion ahead,
every fixing of this initial seed can be lifted to a unique f of
degree at most d satisfying

Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

Before starting the reconstruction, we need to ensure
appropriate non-degeneracy conditions which are typical in
iterative reconstruction arguments of this kind.

1) Preprocessing: We know from the hypothesis of the
lemma that Q depends on at least one y variable. Let j be
the largest index in {1, . . . , w} such that Q depends on yj ,
i.e., Qj is non-zero and Qi is identically zero for all i > j.
For the ease of notation, we shall assume that j = w, thus,
Qw is a non-zero polynomial. Recall that f is a polynomial
in F[x] and each ∆i(f) is a polynomial in F[x, z].

Since Qw(x) ∈ F[x] is a non-zero polynomial, there is an
a ∈ Fm such that Qw(a) ̸= 0.6 Replacing the variable xi by
x′i+ ai (i.e., translating the origin), we can ensure that in this
translated coordinate system, Qw(x′ + a) is non-zero at the
origin, i.e., when x′ is set to 0. We work in this translated
coordinate system for the ease of notation. Observe that every
solution f(x) ∈ F[x] is bijectively mapped to a solution
f̃(x′) = f(x′ + a) ∈ F[x′] and given f̃ , we can efficiently
recover f . Also, note that ∆i(f)(x′ + a) = ∆i(f(x′ + a)) =
∆i(f̃(x)), i.e., taking derivatives and then setting x = x′ + a
is equivalent to first doing the translation x = x′+a and then
taking derivatives. Let

Q′(x′) := Q(x′ + a)=Q1(x′ + a)y1+· · ·+Qw(x′ + a)yw,

and let I = ⟨x′1, . . . , x′m⟩ be the ideal generated by
{x′1, . . . , x′m}.

2) Iterative Reconstruction: We are now ready to describe
the iterative reconstruction of f̃ .

• Base Case: We will try all possible values for the
coefficients of monomials of degree at most w in f̃ from
the field F. There are |F|(

w+m
m) possible choices. The next

steps are going to uniquely lift each of these candidate
solutions to a degree d polynomial, so the number of
solutions remains |F|(

w+m
m).

• Induction Step: We now assume that we have recovered
f̃0, f̃1, . . . , f̃t ∈ F[x′] for some t ≥ w, where f̃i is a
homogeneous component of f̃ of degree i. The goal is to
recover f̃t+1, the (t+1)-st homogeneous component. Let
f̃≤t = f̃0+f̃1+· · ·+f̃t. Now, let us consider the equation
Q′(x′,∆0(f̃),∆1(f̃), . . . ,∆w−1(f̃)) = 0 when we work
modulo the ideal It−w+3. Clearly, the homogeneous
components of f̃ of degree larger than t + 1 do not
contribute anything modulo It−w+3, and so we have,

Q′(x′,∆0(f̃≤t),∆1(f̃≤t), . . . ,∆w−1(f̃≤t + f̃t+1))
= 0 mod It−w+3.

Using the linearity of ∆i and the fact that Q′ is linear in
y, we get

Q′(x′,∆0(f̃≤t),∆1(f̃≤t), . . . ,∆w−1(f̃≤t))+

Qw(x′ + a) ·∆w−1(f̃t+1) = 0 mod It−w+3.

We know that the degree of ∆w−1(f̃t+1) equals t +
1 − (w − 1) = t−w + 2, and it is homogeneous in
x′. Also, we have ensured in the preprocessing phase
that Qw(x′ + a) mod I = Qw(a) is some non-zero

6This is assuming F is large enough, else we can find such an a in a large
enough extension field of F.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

constant F. Thus, this is a non-trivial linear equation
in ∆w−1(f̃t+1) and if we can use it to recover all the
partial derivatives of f̃t+1 of order w − 1, we can then
use Lemma 6 to recover f̃t+1 itself. We elaborate on the
details of this step of recovering the partial derivatives of
f̃t+1 from ∆w−1(ft+1) next.

3) Recovering Partial Derivatives of f̃t+1 From
∆w−1(f̃t+1): Recall that since f̃t+1 is a homogeneous
polynomial in F[x] of degree t + 1, each of its partial
derivatives of order w − 1 is a homogeneous polynomial in
x′ of degree equal to t+ 1− (w − 1) = t− w + 2. Thus,

∆w−1(f̃t+1) :=
∑

e:∥e∥1=w−1

ze · ∂̄f̃t+1(x′)
∂̄x′e .

is a homogeneous polynomial in both z and x′, with degree
w− 1 in z and degree t−w+2 in x′. Our goal is to recover
the coefficients of all monomials ze of degree w−1 in z when
viewing ∆w−1(f̃t+1) as a polynomial in F[x][z], and we have
access to the expression

Q′(x′,∆0(f̃≤t),∆1(f̃≤t), . . . ,∆w−1(f̃≤t))

= −Qw(a)∆w−1(f̃t+1) mod It−w+3.

As a first step, observe that the polynomial Qw(a)∆w−1(f̃t+1)
has degree at most Γ + w − 1 in z and degree exactly
t − w + 2 in x′. Moreover, since Qw(a) ∈ F[z] is non-zero,
the polynomials {Qw(a)ze : deg(ze) = w − 1} are linearly
independent as polynomials of degree at most Γ + (w − 1)
in z over the field F. Therefore, for any hitting set H ⊆ Fm
for m-variate polynomials of degree at most Γ + (w − 1),
the evaluation vectors EvalH(Qw(a)ze) of these polynomials
on H are linearly independent over F.7 So, for every x′e0

of degree w − 1, there exists an F linear combination of the
polynomials {Qw(a)∆w−1(f̃t+1)b : b ∈ H} which equals
∂̄f̃t+1(x

′)
∂̄x′e . Moreover, such a linear combination can be found

(e.g. via Gaussian Elimination over the field F) efficiently in
the size of this linear system.

Thus, to recover the partial derivatives of order w − 1 of
f̃t+1 given a monomial representation of Qw(a)∆w−1(f̃t+1),
we consider the hitting set H of size O(Γ + w)m ≤ O(Γ ·
w)m for m-variate degree Γ + (w − 1) polynomials given by
Lemma 1, compute the evaluation of the polynomials

Qw(a) ·∆w−1(f̃t+1) =
∑

e:∥e∥1=w−1

Qw(a)ze · ∂̄f̃t+1(x)
∂̄xe

,

at every b ∈ H , and take appropriate weighted linear
combinations to recover each of the partial derivatives
∂̄f̃t+1(x)
∂̄xe .
Since Q′(x′,∆0(f̃≤t),∆1(f̃≤t), . . . ,∆w−1(f̃≤t)) is a poly-

nomial of degree at most Γ + w in z and at most D + d in
x, we can do the evaluations by writing the coefficient vector
of this polynomial in time poly(Dm, dm,Γm, wm) and doing
evaluations one monomial at a time.

7Here we are setting the z variables according to inputs in the hitting set
H and looking at the resulting vectors.

4) The Running Time: Observe that we can go from the
original polynomial Q to the polynomial Q′ by finding an
appropriate a deterministically in time at most (D + d)m by
just querying all points on a large enough grid in Fm (or a
grid in an extension field of F, if F isn’t large enough). This
follows from Lemma 1.

Once we have Q′, we reconstruct f in d iterations,
so it suffices to estimate the cost of each iteration.
As we just argued in the earlier part of the proof,
every iteration just involves evaluating the polynomial
Q′(x′,∆0(f̃≤t),∆1(f̃≤t), . . . ,∆w−1(f̃≤t)) at a hitting set H
of size at most poly(Γm, wm) and solving about wm linear
systems of the same size. The straightforward implementation
of this takes no more than poly(Dm, dm,Γm, wm) field
operations. □

As is evident from the proof of Lemma 7, the following
more structured version of Lemma 7 is true.

Lemma 8: Let F be a field of characteristic zero or larger
than d and let Q(x,y) = Q1(x)y1 + · · · + Qw(x)yw be any
non-zero polynomial in F(z)[x,y] where, degx(Q) ≤ D + d,
degz(Q) ≤ Γ and Qi’s do not depend on y. Then, there
is a deterministic algorithm that outputs a linear space of
polynomials in F[x] of dimension at most

(
w+m
m

)
over F which

contains all polynomials f ∈ F[x] of degree at most d such
that

Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

Moreover, the algorithm requires at most
poly (Dm, dm,Γm) arithmetic operations over the underlying
field F.

To bound the true running time of the algorithm in
Lemma 8, we need to add a poly(log F) factor in the upper
bound on the field operations for finite fields and a polynomial
factor in the bit complexity of the input over the field of
rational numbers. While working over rationals, we might need
a bit more care to solve the linear systems appearing in the
proof of Lemma 7 efficiently, since the naive implementation
of Gaussian Elimination might blow up the bit complexity of
the numbers appearing at various intermediate stages.

F. Putting Things Together

We are now ready to prove Theorem 1.
Proof of Theorem 1: Given the error parameter ε and the

number of variables m, we choose s, w as follows.
• w =

(
20
ε

)m
,

• s = 4
ε ·
(
w+m
m

)
.

We note that for this choice of parameters, w
s−w < ε

2 and
hence,

10
w1/m

+
w

s− w
< ε.

With this choice of parameters, we use Lemma 4 to construct
a non-zero polynomial Q which explains the received word
P . Then, we use Lemma 7 to find all polynomials f ∈ F[x]
of degree at most d such that

Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

We know, from Lemma 7 that the number of such solutions
is upper bounded by |F|(

w+m
m) and from Lemma 5 that

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 165

every polynomial f of degree at most d in F[x] such that
Dist(Enc(f), P) is at most (1−δ)−ε, where δ = 1−d/(s|S|)
satisfies the equation

Q(x,∆0(f),∆1(f), . . . ,∆w−1(f)) ≡ 0.

Thus, all such polynomials f are included in the list of outputs.
The running time of the algorithm follows from the running
time guarantees in Lemma 4 and Lemma 7. □

G. Another View of the Algorithm

We now discuss an alternative description of the decoding
algorithm. In essence, this is just a rewording of the previous
algorithm, but appears to have some qualitative advantages.
For instance, the description itself seems simpler here as we
don’t need to introduce the z variables, but instead, end up
working with a system of equations over the original field F
itself. Moreover, the runtime analysis of the algorithm gives a
slightly better bound of poly(|S|m, dm) on the number of field
operations needed by the decoding algorithm as opposed to the
bound of poly(|S|m2

, dm
2
) that is claimed in Theorem 1.

Given the received word P : Sm → F(
s+m−1
m), we assume

that the coordinates of F(
s+m−1
m) are indexed by m-variate

monomials of degree at most s − 1. Let t = 10wm+1 and
for each i ∈ [s] and j ∈ [t], let ai,j ∈ F(

i−2+m
m) be vectors

such that for every i, the dimension of the space spanned
by {ai,1,ai,2, . . . , ai,t} over F equals

(
i−2+m
m

)
. Again we

think of the coordinates of ai,j as being indexed by m-variate
monomials of degree equal to i− 1.

Now, from P , we construct P1, P2, . . . , Pt where each Pj
is a function Sm to Fs, such that for every b ∈ Sm, the ith

coordinate of Pj(b) equals the weighted linear combination
of the coordinates of P (b) indexed by monomials of degree
exactly i− 1, with weights according to ai,j . In other words,
the ith coordinate of Pj(b) equals∑

e∈Zm≥0,∥e∥1=i−1

ai,j(e) · P (b)e,

where P (b)e is the coordinate of P (b) indexed by e. Now,
for the interpolation step, for each j ∈ [t], we find a
polynomial Q̃j =

∑w
i=1 Q̃i,j(x)yj of not too high degree

which explains Pj in the sense of Lemma 4. Note that each Q̃j
is now a polynomial over the original field F. An immediate
instantiation of Lemma 5 for this setting shows that if f ∈ F[x]
of degree at most d and Enc(f) and P are close enough, then
for every j ∈ [t], Q̃j(x,Ψj(f)) must be identically zero, where
Ψj(f) = (Ψj,1(f), . . . ,Ψj,w(f)) is defined as

Ψj,i(f) =
∑

e∈Zm≥ ,∥e∥1=i−1

ai,j(e) ·
∂̄f

∂̄xe
.

Before going to the reconstruction step, we note that it might
be the case that Q̃1, Q̃2, . . . , Q̃t depend on different subsets of
y variables. But since t > wm+1, by averaging, it follows that
there exist an ℓ ∈ [w] such that at least wm of the polynomials
{Q̃j : j ∈ [t]} have the property that they depend on yℓ and do
not depend on yℓ′ for any ℓ′ > ℓ. For the ease of notation, let us
assume that Q̃1, Q̃2, . . . , Q̃t′ depend on yw, where t′ = wm.

Now, to recover f , we solve the equations Q̃j(x,Ψj(f)) ≡
0 for all j ∈ [t′]. We solve for f one homogeneous component
as in the proof of Lemma 7. Assuming that we have recovered
homogeneous components of degree at most u of f , we can
follow the proof of Lemma 7 to recover Ψj,w(fu+1) for every
j ∈ [t′], where fu+1 is the homogeneous component of f
of degree u + 1.8 At this point, the choice of the vectors
ai,j , the definition of Ψj,w(fu+1) and the fact that t′ ≥ wm,
we get that we have sufficiently many linearly independent
homogeneous linear equations in all the partial derivatives of
fu+1 of order (w− 1). Thus, we can solve this linear system
to recover each of these partial derivatives and combine them
according to Lemma 6 to obtain fu+1, and proceed to the next
step. Moreover, as in Lemma 7, if we start from the correct
coefficients of f in the base case of this process, each of the
subsequent steps are unique.

Thus, instead of working with a single polynomial equation
as in a standard application of the polynomial method, this
algorithm proceeds via working simultaneously with many
equations.

We now remark on the running time.
Remark 5: We note that in algorithm sketched above, the

number of field operations needed is upper bounded by
poly(|S|m, dm). This follows from the observation that in this
algorithm we are essentially solving wm < dm linear systems
of size poly(|S|m, dm) over the underlying field F to recover
all codewords close to the received word.

V. REDUCING THE LIST SIZE TO A CONSTANT

In this section, we use the pruning algorithm due to
Kopparty et al. [17] together with Lemma 8 to obtain a shorter
list of correct polynomials, thereby improving the bound on
the list size in Theorem 1 from a polynomial (in the input size)
to an absolute constant depending only on the parameter ε and
dimension m. This would complete the proof of Theorem 2.
The first step towards the goal of recovering codewords from
a small linear space is the following theorem, which is a
natural multivariate analog of [25, Theorem 17] in the work
of Guruswami and Kopparty [25]. Our proof is essentially
the same, apart from the fact that we are in the multivariate
setting and hence have to work with Generalized Wronskians
matrices.

Theorem 4 (subspace restrictions): Let F be a field of
characteristic zero or larger than d. Let µ ≥ w ∈ N be
parameters and let W ⊆ F[x] be an F-linear subspace of m-
variate polynomials of degree at most d, such that dimension
of W is at most w. For any a ∈ Fm, let Ha be the F-linear
space of polynomials of degree at most d which vanish with
multiplicity at least µ at a. Then, for every set S ⊆ F, we have,∑

a∈Sm
dim(Ha ∩W) ≤ dw|S|m−1

(µ−w + 1)
.

We use this statement in our proof in this section, and prove
it in Section VI.

8We might have to do an initial translation of coordinates as in the proof
of Lemma 7.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

A. The Pruning Algorithm

The input to this algorithm is a received word P and a linear
subspace W of polynomials of degree at most d in F[x] of
dimension at most w. The goal is to output all polynomials in
f ∈W such that Encs,S(f) agrees with P on at least α = δ+ε
locations. The description of the algorithm has a parameter r,
which we later set to an appropriate value.

1) Algorithm A:
1) Choose a1,a2, . . . , ar independently and uniformly at

random from Sm.
2) If there is a unique polynomial f ∈ W such that

Encs,S(f) and P agree on each of a1, . . . , ar, then
output f .

Clearly, the second step of the algorithm can be implemented
efficiently via Gaussian Elimination.

The final pruning algorithm invokes Algorithm A multiple
times and outputs the union of all the lists. In the rest of this
section, we show that with high probability, this will output
the list of all codewords close to the received word that are
contained in the input linear space.

The algorithm and the analysis is precisely the same as that
in the work of Kopparty et al. [17], apart from the fact that we
invoke it for multivariate multiplicity codes, whereas in [17] it
was designed for folded Reed Solomon Codes and univariate
multiplicity codes. We briefly sketch some of the details in
the rest of this section. For brevity, we again use Enc() for
Encs,S(). We also assume that the dimension w of W is less
than the multiplicity parameter s of the code.

Lemma 9 (Analogous to [17, Lemma IV.5 (conference
version)]): For any polynomial f ∈ W such that
Dist(Enc(f), P) < α, f is output by Algorithm A with
probability at least

(1− α)r − w
(

d

|S|(s− w)

)r
.

Moreover, Algorithm A runs in polynomial time in the input
size.

Proof Sketch: The proof of the lemma is precisely the
same as that of [17, Lemma IV.5 (conference version)] except
we use Theorem 4 as opposed to an analogous statement for
folded Reed Solomon codes. □

We are now ready to prove Theorem 2.
Proof of Theorem 2: Following the proof of Theorem 1,

given the error parameter ε and the number of variables m,
we choose s, w as follows.

• w =
(

20
ε

)m
,

• s = 4
ε ·
(
w+m
m

)
.

We note that for this choice of parameters, w
s−w < ε

2 and
hence,

10
w1/m

+
w

s− w
< ε,

as is needed to invoke Lemma 4. We now use Lemma 4 to
construct the polynomial Q which explains the received word
P , and Lemma 8 to give us a subspace W of polynomials in
F[x] of dimension at most w =

(
w+m
m

)
over F, that contains

all polynomials f ∈ F[x] of degree at most d such that
Dist(Enc(f), P) < (δ − ε), where δ = 1 − d/(s|S|) is the

relative distance of the code. Let the parameter r be set as

r =
log(2 ·

(
w+m
m

)
)

log(1 + ε/4)
≤ O

(
m2 log 1/ε

ε

)
.

We now instantiate Lemma 9 with inputs being the received
word P , the subspace W of dimension at most w′ =

(
w+m
m

)
and the parameter r as set above.

A single run of Algorithm A returns at most one polynomial
f in W such that Dist(Enc(f), P) < (δ−ε). Moreover, every
such f is output with probability at least

ρ = (1− δ + ε)r − w′
(

d

|S|(s− w′)

)r
.

To simplify this, we note that from the choice of parameters

w′
(

d

|S|(s− w′)

)r
=
(
w +m

m

)(
s

(s− w′)
· (1− δ)

)r
,

and plugging in the values of s and r, we have

≤ 1
2
· (1 + ε/4)r

(
1

(1− ε/4)
· (1− δ)

)r
≤ 1

2
·
(
1 + ε/4
1− ε/4

· (1− δ)
)r

≤ 1
2
· (1− δ + ε)r,

where the last inequality follows from the fact that 1+ε/4
1−ε/4 ·

(1 − δ) ≤ (1 − δ + ε), whenever 1 + δ − ε/2 > 0, which is
always true in our setting, since δ, ε ∈ (0, 1). Thus, we get

ρ ≥ 1
2
(1− δ + ε)r.

Hence, the number of polynomials in the space W such that
Dist(Enc(f), P) < (δ − ε) is at most 1

ρ = 2
(1−δ+ε)r .

It follows from a union bound that if we run Algorithm A
about O

(
1
ρ · log

1
ρ

)
times with fresh randomness each time,

and output every polynomial obtained, with high probability,
we would have output all the polynomials f in W with
Dist(Enc(f), P) < (δ − ε). Thus the number of runs of
Algorithm A is

O

(
1
ρ
· log 1

ρ

)
= O

(
r log(1

1−δ+ε)
(1− δ + ε)r

)

≤ exp
(
O

(
m2

ε
log3 1

ε

))
.

The upper bound on the running time immediately follows
from the running time guarantees in Lemma 4, Lemma 8 and
the final pruning that happens in the process of recovering the
relevant codewords from the subspace output by Lemma 8. □

VI. SUBSPACE RESTRICTIONS OF MULTIVARIATE
MULTIPLICITY CODES

In this section, we prove Theorem 4. For the proof,
we follow the outline of Guruswami and Kopparty [25] and
essentially observe that (almost) everything works even for
multivariate polynomials. The only difference is that instead
of the Wronskian criterion for univariate polynomial, we need

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 167

to work with the following generalized Wronskian criterion
for multivariate polynomials.

Theorem 5 (Generalized Wronskian Criterion): Let f1, f2,
. . . , fw ∈ F[x] be m-variate polynomials of maximum
individual degree at most d. If the characteristic of F is zero
or larger than d, then the following is true. f1, f2, . . . , fw
are linearly independent over F if and only if there exist
monomials xe1 ,xe2 , . . . ,xew such that for every i ∈ [w],
deg(xei) ≤ i − 1, and the w × w matrix M(e1,...,ew) whose
(i, j) entry equals ∂̄fj

∂̄xei
is full rank over the field F(x).

The classical Wronskian criterion (and its generalized
counterpart) are typically proved for fields of characteristic
zero and with the usual notion of partial derivatives (cf.,
Bostan and Dumas [26, Theorem 3]). These proofs extend to
the above setting. For the sake of completeness, we provide
an alternative proof of the above theorem in subsection II.

Equipped with this criterion, we are now ready to prove
Theorem 4

Proof of Theorem 4: Let f1, f2, . . . , fw ∈ W be linearly
independent polynomials of degree at most d which span W .
Let E be a subset of µ-tuples of monomials defined as follows.

E := {(xe1 ,xe2 , . . . ,xeµ) : deg(xei) ≤ i− 1}.

For every ψ = (xe1 ,xe2 , . . . ,xeµ) in E, let Mψ ∈ F[x]µ×w
matrix defined as follows.

Mψ :=



∂̄f1
∂̄xe1

∂̄f2
∂̄xe1 . . . ∂̄fw

∂̄xe1
∂̄f1
∂̄xe2

∂̄f2
∂̄xe2 . . . ∂̄fw

∂̄xe2

...
...

...
...

...
...

...
...

∂̄f1
∂̄xeµ

∂̄f2
∂̄xeµ . . . ∂̄fw

∂̄xeµ

 .

And, let M̃ψ denote the w × w submatrix of Mψ by taking
the first w rows and columns, i.e.,

M̃ψ :=



∂̄f1
∂̄xe1

∂̄f2
∂̄xe1 . . . ∂̄fw

∂̄xe1
∂̄f1
∂̄xe2

∂̄f2
∂̄xe2 . . . ∂̄fw

∂̄xe2

...
...

...
...

...
...

...
...

∂̄f1
∂̄xew

∂̄f2
∂̄xew . . . ∂̄fw

∂̄xew

 .

From Theorem 5, we know that there exists ψ0 in E such
that M̃ψ0 (and hence, Mψ0) is full rank over F(x). Let Lψ0

denote the determinant of M̃ψ0 . Clearly, Lψ0 is a non-zero
m-variate polynomial of degree at most dw. We note that for
many choices of ψ ∈ E, the corresponding matrix Mψ could
be of rank less than w. Perhaps somewhat surprisingly, all
these matrices play a role in the proof. The proof essentially
follows from the following claim.

Claim 1: For every a ∈ Fm, the multiplicity of Lψ0(x) at
a is at least (µ−w + 1) dim(Ha ∩W).

We first complete the proof of the theorem using the above
claim and then prove the claim.

From Claim 1, we get∑
a∈Sm

(µ−w + 1) dim(Ha ∩W) ≤
∑

a∈Sm
mult(L(x), a).

From the earlier discussion, Lψ0 is a non-zero polynomial
of degree at most dw. Thus, by Lemma 1, the quantity∑

a∈Sm mult(L(x), a) is upper bounded by dw|S|m−1, and
this completes the proof of Theorem 4. □

We now prove the claim. For this, we need the following
claim.

Claim 2: For every ψ ∈ E, and for every a ∈ Fm,

rank(Mψ(a)) ≤ w − dim(Ha ∩W).

Proof of Claim 2: We just follow the definition.

dim(Ha ∩W)
= dim({b = (b1, b2, . . . , bw) ∈ Fw :

mult(
w∑
i=1

bifi,a) ≥ µ})

= dim({b = (b1, b2, . . . , bw) ∈ Fw :

∀xe s.t deg(xe) < µ,
w∑
i=1

bi
∂̄fi
∂̄xe

(a) = 0})

= dim ({b=(b1, b2, . . . , bw)∈Fw :∀ψ∈E, (Mψ(a))b = 0})
≤ min
ψ∈E

(dim(Kernel(Mψ(a))))

≤ min
ψ∈E

(w − rank(Mψ(a))) .

□
Proof of Claim 1: To show the claim, we show that for

every monomial xf of degree less than (µ−w+1) dim(Ha ∩
W), the Hasse derivative ∂̄Lψ0

∂̄xf is zero at a. Let ψ0 =
(e1, e2, . . . , ew). Then, we have (using Proposition 1: Item 4
and 5).

∂̄Lψ0

∂̄xf
(a) =

∑
u1+u2+···+uw=f

 ∏
j∈[w]

(
ej + uj

uj

)
det(M̃(e1+u1,...,ew+uw))(a).

Now, we know that
∑
j ∥uj∥1 < (µ−w + 1) dim(Ha ∩W),

so there are less than dim(Ha∩W) values of j ∈ {1, 2, . . . , w}
such that ∥uj∥1 is more than µ−w. Moreover, ∥uj∥1 ≤ µ−w
implies that ∥ej∥1 + ∥uj∥1 ≤ µ− 1. Thus, there is a ψ ∈ E,
such that there are more than w − dim(Ha ∩ W) rows of
the matrix M̃(e1+u1,...,ew+uw)(a) which are also rows in the
matrix Mψ(a). But, from Claim 2, we know that for every
ψ ∈ E, Mψ(a) has rank at most w − dim(Ha ∩W). Thus,
each of the matrices M̃(e1+u1,...,ew+uw)(a) in the summand
above is rank deficient, and hence has determinant zero. □

APPENDIX I
EXPONENTIAL NUMBER OF CODEWORDS AT A DISTANCE δ

Let T ⊆ S be an arbitrary subset of size d/s. For a variable
x1, consider the polynomial f(x) =

∏
b∈T (x1 − b)s−1.

At every point a ∈ Sm such that a1 ∈ T , f(x) vanishes
with multiplicity at least s. Moreover, the set {a ∈ Sm : a1 ∈
T} ⊆ Sm is of size exactly d

s |S|
m−1. Thus, the encoding of

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 1, JANUARY 2024

every polynomial in the set

M =

{∏
b∈T

(x1 − b)s−1 : deg(L(x)) = 1, T ⊆ S, |T | = d/s

}
under the m-variate multiplicity code, with multiplicity
parameter s agrees with the encoding of the polynomial
0 on at least d/(qs) fraction of points, i.e., the relative
distance between them is (1 − δ), where δ is the distance
of the code. Moreover, the set M is of size

(
q
d/s

)
, which

is superpolynomially growing in d. In this sense, the error
tolerance of the result in Theorem 1 is the best one could hope
for (up to the ε > 0 term) if we are hoping for polynomial
list size.

APPENDIX II
GENERALIZED WRONSKIAN CRITERION

In this section, we give a proof of the generalized Wronskian
criterion in the multivariate setting that works over fields
of positive characteristic, and using the notion of Hasse
derivatives.

We first state and prove a proposition which we will
use to prove Theorem 5. Given a sequence f1, f2, . . . , fw
of w m-variate polynomials of individual degree at most
d and a sequence e1, e2, . . . , ew of w monomials, let
M(e1,...,ew)(f1, . . . , fw) be the w × w matrix whose
(i, j)-th entry is ∂̄fj

∂̄xei
. Let W(e1,...,ew)(f1, . . . , fw) :=

det (M(e1,...,ew)(f1, . . . , fw)): so, W(e1,...,ew)(f1, . . . , fw) ∈
F[x].

We say that xe′ ≤ xe if e′ ≤ e, that is, for all i ∈ [m]:
e′i ≤ ei. Let ≲ be the graded-lexicographic order (deglex),
which is an extension of the ≤ ordering: so, for distinct e and
e′, we have xe′

≲ xe iff ∥e′∥1 < ∥e∥1 or ∥e′∥1 = ∥e∥1 and
e′i < ei where i is the first index where e′i ̸= ei. Also, for a
polynomial f ∈ F[x], let f̃ denote its monomial of minimum
degree under ≲ if f is non-zero and 0 otherwise. Thus, for
every non-zero polynomial f of the form

∑
e αe · xe with

αe ∈ F, f̃ is xe∗
where xe∗

is the least monomial among the
set of monomials {xe : αe ̸= 0}. For a monomial, ℓ = xe we
denote ∥e∥1 by |ℓ|.

Proposition 2: 1) (linear combinations) For a fixed i, let
fi = αif

′
i +

∑
j ̸=i αjfj where αj ∈ F. Then

W(e1,...,ew)(f1, . . . , fw) =

αi ·W(e1,...,ew)(f1, . . . , fi−1, f
′
i , fi+1, . . . , fw).

2) (translation) Let x+ 1 = (x1 + 1, x2 + 1, . . . , xm + 1).
Then

(W(e1,...,ew)(f1(x), . . . , fw(x)))(x + 1) =

(W(e1,...,ew)(f1(x + 1), . . . , fw(x + 1)))(x).

3) (minimum monomial) If W(e1,...,ew)(f̃1, . . . , f̃w) ̸= 0,
then

W̃(e1,...,ew)(f1, . . . , fw) =W(e1,...,ew)(f̃1, . . . , f̃w).

Proof: By linearity of Hasse derivatives we have

∂̄f ′i
∂̄xe

= αi
∂̄fi
∂̄xe

+
∑
j ̸=i

αj
∂̄fj
∂̄xe

.

Hence, M(e1,...,ew)(f1, . . . , fw) and M(e1,...,ew)(f1,
. . . , fi−1, f

′
i , fi+1, . . . , fw) are related by column elementary

operations. Thus, their determinants are the same modulo a
multiplicative factor of αi. This proves Item 1. The proof of
Item 2 follows from the fact that for any f ∈ F[x] we have
(∂̄f∂̄xe)(x + 1) = (∂̄f(x+1)

∂̄xe)(x). Also, Item 3 follows directly
by expanding out the determinant. □

Equipped with this proposition, we will now show
that if f1, . . . , fw are linearly independent over F,
then there exist monomials xe1 , . . . ,xew such that
W(xe1 ,...,xew)(f1, . . . , fw) ̸= 0 and deg (xei) < i.

Proof of Theorem 5: Using Proposition 2-Item 1 we can
WLOG assume that each fi has a distinct minimum monomial.
We can take an appropriate linear combination of the fis
of the form fi ← fi +

∑
j ̸=i αjfj (this preserves linear

independence) to clear out a minimum monomial if it repeats.
Hence, the minimal monomials f̃is are all distinct. Further,
by reordering if necessary we can assume that f̃is are in
increasing order according to ≲. Now, using Proposition 2-
Item 3, we are left to show that there are xe1 , . . . ,xew such
that deg (xei) < i and W(e1,...,ew)(f̃1, . . . , f̃w) ̸= 0. To show
this first we massage the monomials in the following manner.

1) Set t← 0 and for all i ∈ [w] let ℓ0i ← f̃i.
2) While (∃i : |ℓti| ≥ i):

a) For all i let gt+1
i = ℓti(x + 1).

b) Take appropriate linear combinations of the form
gt+1
i ← gt+1

i −
∑
j<i αj · g

t+1
j to ensure that all

g̃t+1
i s are distinct.

c) For all i set ℓt+1
i ← g̃t+1

i . Reorder to ensure that
the ℓt+1

i s are in increasing order wrt ≲.
d) t← t+ 1.

We will now show that the while loop terminates in at most
w steps and at the end we have |ℓti| < i for all i ∈ [w]. Suppose
we enter the while loop at a particular value of t. Let i∗ be the
first index such that |ℓti| ≥ i. Observe that gt+1

i∗ will include
all monomials xe′

such that e′ ≤ e where ℓti∗ = xe. This
is because the characteristic of F is larger than the maximum
individual degree. Hence, at time t+1 we will have |ℓt+1

j | < j
for all j ≤ i∗: for j < i∗ step 2(b) does not increase the degree
of gt+1

j and for j = i∗ the minimal monomial g̃t+1
i∗ will be

of degree less than i∗ as gt+1
i∗ includes a monomial of degree

i∗ − 1 which does not occur in any gt+1
j for j < i∗. Thus at

termination, we have |ℓti| < i for all i ∈ [w] and further the
ℓtis are all distinct monomials and in increasing order.

Also, by Proposition 2 we have that if
We1,...,ew(ℓ

t+1
1 , . . . , ℓt+1

w) ̸= 0, then, We1,...,ew(ℓ
t
1, . . . , ℓ

t
w) ̸=

0. At termination set ℓi = ℓti. Hence, we are left to show
that there are xe1 , . . . ,xew such that deg (xei) < i and
W(e1,...,ew)(ℓ1, . . . , ℓw) ̸= 0. Towards this end observe that
the matrix M(ℓ1,...,ℓw)(ℓ1, . . . , ℓw) is upper triangular with
all the diagonal entries as 1. For contradiction suppose that
i > j and ∂̄ℓi

∂̄ℓj
̸= 0: then ℓj > ℓi which is a contradiction.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

BHANDARI et al.: DECODING MULTIVARIATE MULTIPLICITY CODES ON PRODUCT SETS 169

Hence, W(ℓ1,...,ℓw)(ℓ1, . . . , ℓw) = 1. Thus, letting xei = ℓi
for all i ∈ [w] gives us the requisite monomials xei .

The other direction that if there are monomials xe1 , . . . ,xew

such that W(xe1 ,...,xew)(f1, . . . , fw) ̸= 0 then f1, . . . , fw
are linearly independent, is simpler. Suppose the fis
are linearly dependent and in particular,

∑
i αifi be a

non-trivial linear combination which is zero. Due to
linearity of Hasse derivatives we have (α1, . . . , αw) ∈
ker (M(xe1 ,...,xew)(f1, . . . , fw)). This completes the proof of
Theorem 5. □

ACKNOWLEDGMENT

The authors would like to thank Swastik Kopparty for many
insightful discussions on multiplicity codes and on the results
in [12] and [13].

REFERENCES

[1] S. Bhandari, P. Harsha, M. Kumar, and M. Sudan, “Decoding
multivariate multiplicity codes on product sets,” in Proc. 53rd Annu.
ACM SIGACT Symp. Theory Comput., S. Khuller and V. V. Williams,
Eds., Jun. 2021, pp. 1489–1501.

[2] Ø. Ore, “Über höhere kongruenzen (German) [about higher congru-
ences],” Norsk Mat. Forenings Skrifter, vol. 1, no. 7, p. 15, 1922.

[3] J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, pp. 701–717, Oct. 1980.

[4] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Proc.
Int. Symp. Symbolic Algebr. Comput. (EUROSAM), in Lecture Notes in
Computer Science, vol. 72, E. W. Ng, Ed. Berlin, Germany: Springer,
1979, pp. 216–226, doi: 10.1007/3-540-09519-5_73.

[5] R. A. Demillo and R. J. Lipton, “A probabilistic remark on algebraic
program testing,” Inf. Process. Lett., vol. 7, no. 4, pp. 193–195,
Jun. 1978.

[6] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, “Extensions to the method
of multiplicities, with applications to Kakeya sets and mergers,” SIAM
J. Comput., vol. 42, no. 6, pp. 2305–2328, Jan. 2013.

[7] S. Saraf, “The method of multiplicities,” Ph.D. dissertation,
Massachusetts Inst. Technol., Cambridge, MA, USA, 2011. [Online].
Available: http://hdl.handle.net/1721.1/68494

[8] L. Guth, Polynomial Methods in Combinatorics (University Lecture
Series), vol. 64. Providence, RI, USA: American Mathematical Society,
2016. [Online]. Available: https://bookstore.ams.org/ulect-64/

[9] J. Y. Kim and S. Kopparty, “Decoding Reed–Müller codes over product
sets,” Theory Comput., vol. 13, no. 1, pp. 1–38, 2017.

[10] M. Y. Rosenbloom and M. A. Tsfasman, “Codes for the m-metric,”
Problemy Peredachi Informatsii, vol. 33, no. 1, pp. 55–63, 1997.

[11] R. R. Nielsen, “List decoding of linear block codes,” Ph.D. disser-
tation, Dept. Math., Tech. Univ. Denmark, Lyngby, Denmark, 2001.
[Online]. Available: https://orbit.dtu.dk/en/publications/list-decoding-of-
linear-block-codes

[12] S. Kopparty, S. Saraf, and S. Yekhanin, “High-rate codes with sublinear-
time decoding,” J. ACM, vol. 61, no. 5, pp. 28:1–28:20, 2014.

[13] S. Kopparty, “List-decoding multiplicity codes,” Theory Comput.,
vol. 11, pp. 149–182, May 2015.

[14] V. Guruswami and C. Wang, “Linear-algebraic list decoding for variants
of Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 59, no. 6,
pp. 3257–3268, Jun. 2013.

[15] M. Sudan, “Decoding of Reed Solomon codes beyond the error-
correction bound,” J. Complex., vol. 13, no. 1, pp. 180–193, Mar. 1997.

[16] V. Guruswami and M. Sudan, “Improved decoding of Reed–Solomon
and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 1757–1767, Sep. 1999.

[17] S. Kopparty, N. Ron-Zewi, S. Saraf, and M. Wootters, “Improved
decoding of folded Reed–Solomon and multiplicity codes,” in Proc.
IEEE 59th Annu. Symp. Found. Comput. Sci. (FOCS), M. Thorup, Ed.,
Oct. 2018, pp. 212–223.

[18] S. Bhandari, P. Harsha, M. Kumar, and A. Shankar, “Algorithmizing
the multiplicity Schwartz–Zippel lemma,” in Proc.34th Annu. ACM-
SIAM Symp. Discrete Algorithms (SODA), N. Bansal, Ed., 2023,
pp. 2816–2835.

[19] S. Kopparty, “Some remarks on multiplicity codes,” in Discrete
Geometry and Algebraic Combinatorics (Contemporary Mathematics),
vol. 625, A. Barg and O. R. Musin, Eds. Providence, RI, USA: AMS,
2014, pp. 155–176.

[20] S. P. Vadhan, “Pseudorandomness,” Found. Trends Theor. Comput. Sci.,
vol. 7, nos. 1–3, pp. 1–336, 2012.

[21] R. Pellikaan and X.-W. Wu, “List decoding of q-ary Reed–üller codes,”
IEEE Trans. Inf. Theory, vol. 50, no. 4, pp. 679–682, Apr. 2004.

[22] Z. Guo, M. Kumar, R. Saptharishi, and N. Solomon, “Derandomization
from algebraic hardness,” SIAM J. Comput., vol. 51, no. 2, pp. 315–335,
Apr. 2022.

[23] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey of
recent results and open questions,” Found. Trends Theor. Comput.
Sci., vol. 5, nos. 3–4, pp. 207–388, 2009. [Online]. Available:
https://www.cs.tau.ac.il/~shpilka/publications/SY10.pdf

[24] M. Mahajan and V. Vinay, “Determinant: Combinatorics, algorithms, and
complexity,” Chicago J. Theor. Comput. Sci., vol. 1997, no. 5, pp. 1–28,
1997.

[25] V. Guruswami and S. Kopparty, “Explicit subspace designs,” Combina-
torica, vol. 36, no. 2, pp. 161–185, Apr. 2016.

[26] A. Bostan and P. Dumas, “Wronskians and linear independence,” Amer.
Math. Monthly, vol. 117, no. 8, pp. 722–727, 2010.

[27] R. Lidl and H. Niederreiter, Finite Fields (Encyclopedia of Mathematics
and its Applications), vol. 2, 2nd ed. Cambridge, U.K.: Cambridge Univ.
Press, 1996.

Siddharth Bhandari received the M.S. degree in computer science from
the Chennai Mathematical Institute in 2017 and the Ph.D. degree from the
School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai. He is currently with the Toyota Technological Institute at
Chicago. His research interests include coding theory, combinatorics, sampling
algorithms, zero-error information theory, and causal inference.

Prahladh Harsha received the bachelor’s degree in computer science and
engineering from IIT Madras in 1998 and the master’s and Ph.D. degrees in
computer science from MIT in 2000 and 2004, respectively. He is currently
a Theoretical Computer Scientist with the Tata Institute of Fundamental
Research (TIFR). Prior to joining TIFR in 2010, he was at Microsoft
Research, Silicon Valley, and the Toyota Technological Institute at Chicago.
His research interests include computational complexity, algebraic coding
theory, probabilistically checkable proofs, and hardness of approximation.

Mrinal Kumar received the Ph.D. degree from Rutgers University, under
the supervision of Swastik Kopparty and Shubhangi Saraf. He is currently a
Reader with the School of Technology and Computer Science, Tata Institute of
Fundamental Research (TIFR), Mumbai. His research interests include algebra
and computation, algebraic complexity theory, and error correcting codes.

Madhu Sudan received the bachelor’s degree from IIT Delhi in 1987 and
the Ph.D. degree from UC Berkeley in 1992. From 1992 to 2015, he was
with IBM Research, MIT, and Microsoft Research. Since 2015, he has been
a Gordon McKay Professor with the School of Engineering and Applied
Sciences, Harvard University. His research interests include mathematical
studies of communication and computation. Specifically, his research focuses
on concepts of reliability and mechanisms that are, or can be, used by
computers to interact reliably with each other. His research draws on tools
from computational complexity, which studies efficiency of computation, and
many areas of mathematics, including algebra and probability theory. He is a
fellow of ACM and AMS. He is a member of the American Academy of Arts
and Sciences and the National Academy of Sciences. He was a recipient of
the Nevanlinna Prize, the Infosys Foundation Prize in Mathematical Sciences,
and the IEEE Hamming Medal.

Authorized licensed use limited to: Harvard University SEAS. Downloaded on March 01,2025 at 20:33:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/3-540-09519-5_73

