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Ideal-Theoretic Explanation of
Capacity-Achieving Decoding

Siddharth Bhandari , Prahladh Harsha, Mrinal Kumar , and Madhu Sudan , Fellow, IEEE

Abstract— In this work, we present an abstract framework
for some algebraic error-correcting codes with the aim of
capturing codes that are list-decodable to capacity, along with
their decoding algorithms. In the polynomial ideal framework,
a code is specified by some ideals in a polynomial ring, messages
are polynomials and the encoding of a message polynomial is
the collection of residues of that polynomial modulo the ideals.
We present an alternate way of viewing this class of codes in
terms of linear operators, and show that this alternate view
makes their algorithmic list-decodability amenable to analysis.
Our framework leads to a new class of codes that we call
affine Folded Reed-Solomon codes (which are themselves a special
case of the broader class we explore). These codes are common
generalizations of the well-studied Folded Reed-Solomon codes
and Univariate Multiplicity codes as well as the less-studied Addi-
tive Folded Reed-Solomon codes, and lead to a large family of
codes that were not previously known/studied. More significantly
our framework also captures the algorithmic list-decodability
of the constituent codes. Specifically, we present a unified view
of the decoding algorithm for ideal-theoretic codes and show
that the decodability reduces to the analysis of the distance of
some related codes. We show that a good bound on this distance
leads to a capacity-achieving performance of the underlying code,
providing a unifying explanation of known capacity-achieving
results. In the specific case of affine Folded Reed-Solomon codes,
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our framework shows that they are efficiently list-decodable
up to capacity (for appropriate setting of the parameters),
thereby unifying the previous results for Folded Reed-Solomon,
Multiplicity and Additive Folded Reed-Solomon codes.

Index Terms— Coding theory, list-decoding, folded reed-
solomon codes.

I. INTRODUCTION

REED-SOLOMON codes are obtained by evaluations of
polynomials of degree less than k at n distinct points in a

finite field F. Folded Reed-Solomon (FRS) codes are obtained
by evaluating a polynomial at sn (carefully chosen) points
that are grouped into n bundles of size s each such that each
bundle is in a ge, and then viewing the resulting sn evaluations
as n elements of Fs. A different grouping of the sn points
leads to the less-studied family of codes called the Additive-
FRS codes. Multiplicity codes are obtained by evaluating the
polynomial and s− 1 of its derivatives, and again viewing the
resulting sn evaluations as n elements of Fs.

This “bundling” (or folding, as it is called for FRS codes)
in FRS codes and multiplicity codes may be viewed at best
as a harmless operation — it does not hurt the rate and
(relative) distance of the codes, which are already optimal
in these parameters. But far from merely being harmless,
in the context of algorithmic list-decoding, bundling has led to
remarkable improvements and to two of the very few explicit
capacity achieving codes available in the literature. Indeed,
the only other codes that are known to achieve list-decoding
capacity algorithmically and do not use one of the above codes
as an ingredient are the Folded Algebraic-Geometric codes,
which also use bundling. Despite its central role, the bundling
operation is not well-understood algebraically: it seems like
an “adhoc” operation rather than a principled one. Unearthing
what bundling is and understanding when and why it turns out
to be so powerful is the primary goal of this paper, and we
make some progress towards this.

Turning to the algorithms for list-decoding the above codes
close to capacity, there are two significantly different ones
in the literature. A (later) algorithm due to Guruswami and
Wang [2]1 which seems more generalizable, and the original
algorithm of Guruswami and Rudra [4] which is significantly

1We note that the Guruswami-Wang algorithm is inspired by an idea due
to Vadhan [3, Theorem 5.24] that shows that it suffices to interpolate a
polynomial Q which is linear in the y-variables. However, the algorithm
from [3] is not applicable to our setting since it uses polynomial factorization
as well as analysis tools that are specific to Reed-Solomon codes. The further
simplifications developed in [2] are key to the applicability in our setting.
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more challenging to apply to multiplicity codes (see [5]).
In both cases, while the algorithm for FRS works in all
(reasonable) settings, the algorithms for multiplicity codes
only work when the characteristic of the field is larger than the
degrees of the polynomials in question. Looking more closely
at FRS codes, part of the careful choice of bundling in FRS
codes is to pick each bundle to be a geometric progression.
If one were to switch this to an arithmetic progression, then
one would get a less-studied family of codes called the
Additive-FRS codes. It turns out the Additive-FRS codes are
also known to be list-decodable to capacity but only via
the original algorithm. We note that the skew polynomial
machinery developed by Gopi and Guruswami [6] in the
context of local reconstruction codes provides yet another
proof of list-decodibility of these codes (See Section VIII
for more details). Thus, the short summary of algorithmic
list-decoding is that there is no short summary! Algorithms
tend to work but we need to choose carefully and read the
fine print.

The goal of this write-up is to provide a unifying alge-
braic framework that (a) captures bundling algebraically, (b)
captures most of the algorithmic success also algebraically,
leaving well-defined parts for combinatorial analysis and (c)
leads to new codes that also achieve capacity. In this work we
use basic notions from linear algebra and polynomial rings
to present a unifying definition (see Definitions 5 and 9)
that captures the codes very generally, and also their efficient
decoding properties (see Theorem 1). We also describe some
new variants of these codes (see Section III-A), that can be
analyzed using this unifying framework and shown to achieve
capacity We elaborate on these below.

A. Polynomial Ideal Codes

Our starting point is what we term “polynomial ideal
codes”. A polynomial ideal code over a finite field F and
parameters k, s is specified by n pairwise relatively prime
monic polynomials E0(X), . . . , En−1(X) ∈ F[X] of degree
equal to s.2 The encoding maps a message p ∈ Fk (interpreted
as a polynomial of degree less than k) to n symbols as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

The codes described above, Reed-Solomon, FRS, Multiplic-
ity and Additive-FRS, are all examples of polynomial ideal
codes. (A rigorous proof can be found in Section III-A). For
Reed-Solomon codes, this is folklore knowledge: the evalua-
tion point ai corresponds to going mod Ei(X) = (X−ai). By
this we mean that value a polynomial at the evaluation point ai

is the same as the remainder obtained when the polynomial
is divided by Ei(X) = (X − ai). For any bundling of the
Reed-Solomon codes this follows by taking the product of the
corresponding polynomials. For multiplicity codes of order
s, the evaluation of a polynomial and its derivatives at ai

corresponds to going modulo Ei(X) = (X − ai)s.

2Here F[X] refers to the ring of univariate polynomials in the variable X
over the field F while F<k[X] refers to the vector-space of polynomials in
F[X] of degree strictly less than k.

The abstraction of polynomial ideal codes is not new to this
work. Indeed Guruswami, Sahai and Sudan [7, Appendix A]
already proposed these codes as a good abstraction of algebraic
codes. Their framework is even more general, in particular
they even consider non-polynomial ideals such as in Z. They
suggest algorithmic possibilities but do not flesh out the
details. In this work we show (see Section VI) that polynomial
ideal codes, as we define them, are indeed list-decodable up
to the Johnson radius. We note that the proof involves some
steps not indicated in the previous work but for the most part
this confirms the previous thinking.

The abstraction above also captures “bundling” (or folding)
nicely - we get this by choosing Ei(X) to be a product of some
Eij(X). But the above abstraction thus far fails to capture the
capacity-achieving aspects of the codes (i.e., the benefits of
this bundling) and the decoding algorithms. This leads us to
the two main novel steps of this write-up:

• We present an alternate viewpoint of polynomial ideal
codes in terms of linear operators.

• We abstract the Guruswami-Wang linear-algebraic list-
decoding algorithm in terms of linear operators.

The two sets of “linear operators”, in the codes and in the
decoding algorithm, are not the same. But the linearity of both
allows them to interact nicely with each other. We elaborate
further below after introducing them.

B. Linear Operator Codes

In this write-up, a linear operator is an F-linear function
L : F[X] → F[X]. A linear operator code is characterized
by a family of linear operators L = (L0, . . . , Ls−1), a set
A = {a0, . . . , an−1} ⊆ F of evaluation points and k a degree
parameter such that k ≤ s · n. The corresponding linear
operator code, denoted by LOA

k (L), is given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))
n−1
i=0

Linear operator codes easily capture polynomial ideal codes.
For instance, the multiplicity codes are linear operator codes
wherein the linear operators are the successive derivative
operators. But they are also too general — even if we restrict
the operators to map F<k[X] to itself, an operator allows
k2 degrees of freedom.

We narrow this broad family by looking at subfamilies of
linear operators and codes. The specific subfamily we turn to
are what we call “ideal linear operators”. We say that linear
operators L0, . . . , Ls−1 are ideal linear operators with respect
to a set A of evaluation points if for every a ∈ A, the vector
space

Ia(L) = {p ∈ F[X] | L(p)(a) = 0̄}

is an ideal. (When the set of evaluation points is clear from
context, we drop the phrase “with respect to A”.) Linear
operator codes corresponding to ideal linear operators are
called ideal linear operator codes (see Definitions 7 and 9
for precise definitions).

It is not hard to see that a family of linear operators
L = (L0, . . . , Ls−1) has the ideal property if it satisfies the
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following linearly-extendibility property: There exists a matrix
M(X) ∈ F[X]s×s such that for all p ∈ F[X] we have

L(X · p(X)) = M(X) · L(p(X)).

This motivates yet another class of linear operators and codes:
We say that an operator family L is a linearly-extendible linear
operator if such a matrix M(X) exists and the resulting code
is said to be a linearly-extendible linear operator code (see
Definitions 8 and 9 for precise definitions).

It turns out that these three definitions of codes —
polynomial ideal codes, ideal linear operator codes and
linearly-extendible linear operator codes — are equivalent (see
Proposition 2 and 1 and Corrollary 1). And while the notion
of polynomial ideal codes captures the codes mentioned thus
far naturally, the equivalent notion of linearly-extendible codes
provides a path to understanding the applicability of the linear-
algebraic list-decoding algorithm of Guruswami and Wang.

While it is not the case that every linearly-extendible linear
operator code (and thus every polynomial ideal code) is
amenable to this list-decoding algorithm, it turns out that
one can extract a nice sufficient condition on the linear-
extendibility for the algorithm to be well-defined. This allows
us to turn the question of list-decodability into a quantitative
one — how many errors can be corrected. And the linear
operator framework now converts this question into analyzing
the rank of an associated matrix.

The sufficient condition we extract is the following: we say
that an operator L : F[X] → F[X] is degree-preserving if
degX(Lf) ≤ degX(f) for all f ∈ F[X]. Observe that any
degree-preserving linear operator when restricted to F<k[X]
can be represented by an upper-triangular matrix in Fk×k.
A family of linear operators obtained by repeated iteration,
L = (I = L0, L = L1, L2, . . . , Ls−1) is called an iterative
family. We associate with any degree-preserving family L =
(L0, . . . , Ls−1) of linear operators a simple matrix in Fs×k

called Diag(L), whose ith row is the diagonal of Li and
consider the code in Fk generated by Diag(L).

The following theorem now shows that for any degree-
preserving iterative linearly-extendible operator codes, the
lower bound on the distance of Diag(L) yields an upper bound
on the list size obtained by the Guruswami-Wang algorithm,
even when the number of errors approaches (1−R) where R
is the rate of the code.

Theorem 1: Suppose F is a field of size q and L : F[X] →
F[X] a degree-preserving linear operator and A a set of
evaluation points such that for L = (L0, L1, . . . , Ls−1) the
corresponding code C is a linearly-extendible linear operator
code. Furthermore, if the matrix Diag(L) ∈ Fs×k formed by
stacking the diagonals of the s linear operators as the rows
is the generator matrix of a code with distance 1 − ℓ

k , then,
C is code with rate k

sn and relative distance 1 − k−1
sn over an

alphabet of size qs, and it is list-decodable up to the distance
1 − k

(s−w+1)n − 1
w with list size qℓ for any 1 ≤ w ≤ s.

We remark that our actual theorem is more general (see
Theorem 7) where we further separate the role of linear
operators used to build the code from those that seed the
decoding algorithm. But it immediately implies Theorem 1
above, which in turn already suffices to capture the capacity

achieving decodability of FRS, multiplicity and additive-FRS
codes. The list-decodability of multipliciy and additive-FRS
codes can be proved using Theorem 1 by working with the
linear operators L(f(X)) = Xf ′(X) and L(f(X)) = X ·
(f(X + β) − f(X)) instead of the more natural operators
L(f(X)) = f ′(X) and L(f(X)) = f(X + β). It is to be
noted that using these alternate operators does not change the
underlying codes. However, this is not the approach we follow
as we use the more general Theorem 7 to establish the capacity
achieving decodability of the above mentioned codes. Indeed
the generality of the arguments allows us to capture broader
families of codes uniformly, as described next.

C. A Common Generalization

Our framework leads very naturally to a new class of
codes that we call the Affine Folded Reed-Solomon (Affine-
FRS) codes: these are codes defined by ideals of the form∏s−1

i=0 (X−ℓ(i)(a)) where ℓ(z) = αz+β is any linear form and
ℓ(i)(z) = ℓ(ℓ . . . ℓ(z) . . . )︸ ︷︷ ︸

i times

denotes the i-fold composition of

the linear form ℓ(z). These codes generalize all the previously
considered codes: The case ℓ(z) = γz are the FRS codes,
the case ℓ(z) = z are the Multiplicity codes, and the case
ℓ(z) = z + β are the Additive FRS codes!

Theorem 2 (Informal Statement – See Theorem 11): Let ℓ
be any linear form such that either ord(ℓ) ≥ k or (char(F) ≥ k
and β ̸= 0).3 Then the Affine-FRS codes corresponding to the
linear form ℓ are list-decodable up to capacity.

Previously, even for the special case of the Additive FRS
codes, list-decodability close to capacity was only achieved
by the more involved algorithm of [4] and Kopparty [5]
(see paragraph on Additive Folding and Footnote 4 in [8,
Section III]). (A similar approach can be extended to cover the
case of ord(ℓ) ≥ k in Theorem 2: however, it seems difficult
to do so for the case when ord(ℓ) is small.)

Thus, our Affine-FRS codes lead to the first common
abstraction of the three codes as well as the first com-
mon algorithm for solving the list-decoding problem for
these codes. (Furthermore, this algorithm is linear-algebraic.)‘
Arguably thus, even if the Affine-FRS codes had been studied
previously, it is not clear that the ability to decode them for
every choice of ℓ(z) would be obvious.

1) Organization: The rest of the write-up is organized as
follows. We begin with some preliminaries in Section II.
We then formally define polynomial ideal codes and lin-
ear operator codes in Sections III and IV respectively.
In Section V, we discuss list-decoding algorithms for polyno-
mial ideal codes. We first present the list-decoding algorithm
for all polynomial ideal codes up to the Johnson radius in
Section V-A and then the list-decoding algorithm beyond the
Johnson radius for special families of linear operator codes
in Section V-B. The proofs of these algorithms can be found
in Sections VI and VII respectively. Finally, we conclude by
demonstrating how these results can be used to show that
several well-known families of codes (Folded Reed-Solomon,
multiplicity, additive Folded Reed-Solomon codes) as well

3ord(ℓ) refers to the smallest positive integer u such that ℓ(u)(z) = z.
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as their common generalization affine folded Reed-Solomon
achieve list-decoding capacity in Section VIII.

II. NOTATION & PRELIMINARIES

We start with some notations that we follow in the rest of
this write-up.

• For a natural number n, [n] denotes the set {0, 1, . . . , n−
1}.

• F denotes a field.
• For a, b, i, j ∈ Z, where a, b, i, j ≥ 0 the bivariate

monomial XiY j is said to have (a, b)-weighted degree
at most d if ai + bj ≤ d. N(a, b) denotes the number of
bivariate monomials of (1, a)-weighted degree at most b.

• For a, b ∈ Z, a bivariate polynomial Q(X, Y ) is said to
have (a, b)-weighted degree at most d, if it is supported
on monomials of (a, b)-weighted degree at most d.

• We say that a function f(n) : N → N is poly(n), if there
are constants c, n0 ∈ N such that for all n ≥ n0, f(n) ≤
nc.

• F[X] is the ring of univariate polynomials with coeffi-
cients in F, and for every k ∈ N, F<k[X] denotes the set
of polynomials in F[X] of degree strictly less than k.

• For a multivariate polynomial f(X0, X1, . . . , Xn−1) ∈
F[X0, X1, . . . , Xn−1], degXi

(f) denotes the degree of f ,
when viewing it as a univariate in Xi, with coefficients
in the polynomial ring on the remaining variables over
the field F.

A. Estimates on Number of Bivariate Monomials

We rely on the following simple lemma to estimate the
number of bivariate monomials with (1, a)-weighted degree
at most b.

Lemma 1: For every a, b ∈ N, let N(a, b) denote the
number of bivariate monomials with (1, a)-weighted degree
at most b. Then, the following are true.

1) N(a − 1, b) ≥ b2/(2a).
2) For every η ∈ N, if a divides b, then

N(a, b) − N(a, b − aη) − η(b − aη + 1) =
aη(η + 1)/2.

Proof: Note that from definition of N(a, b), it follows
that N(a − 1, b) ≥ N(a, b). So to prove the first item of
the claim, it suffices to prove a lower bound on N(a, b). Let
τ = ⌊ b

a⌋. Then,

N(a, b) =
τ∑

j=0

b−aj∑
i=0

1

=
τ∑

j=0

(b−aj + 1)

= (b + 1)(τ + 1)−aτ (τ + 1)/2
= (τ + 1)/2 · (2b + 2 − aτ).

Now, plugging in the value of τ , we get the lower bound on
N(a − 1, b).

For the second item, we know that τ = b/a is an integer.
Thus,

N(a, b) = (b + a)(b + 2)/(2a).

Now, we plug in the exact simplified expression obtained for
N(a, b) above in the expression N(a, b)−N(a, b−aη)−η(b−
aη + 1) that we aim to estimate, to get the following.

N(a, b) − N(a, b − aη) − η(b − aη + 1)
= (b + a)(b + 2)/(2a)−

(b − aη + a)(b − aη + 2)/(2a) − η(b − aη + 1)

=
1
2a

((b2 + (2 + a)b + 2a)−

((b − aη)2 + (2 + a)(b − aη) + 2a)) − η(b − aη + 1)

=
1
2a

((2 + a)aη + 2abη − a2η2) − η(b − aη + 1)

= ((1 + a/2)η + bη − aη2/2) − (bη − aη2 + η)

= aη/2 + aη2/2
= aη(η + 1)/2.

□

B. Coding Theory Basics

Definition 1 (Codes, Rate, Distance): Let Σ be a finite
alphabet and n be a positive integer. Given a subset C ⊆ Σn,
define the following quantities Rc and δC :

RC :=
log|Σ|(|C|)

n
, δC := min

x,y∈C
x̸=y

{
∆(x, y)

n

}
where ∆(x, y) = |{i ∈ {1, 2, . . . , n} : xi ̸= yi}| denotes the
Hamming distance between x and y. Then, C is said to a code
of relative distance δC and rate RC with blocklength n over
the alphabet Σ.

Definition 2 (Linear Codes): Let Fq be a field and let Σ =
Fs

q for some positive integer s. We say that C ⊆ (Σ)n is a
linear code if C is an Fq-linear space when viewed as a subset
of Fsn

q .
We note that the standard definition of linear codes corre-

sponds to the case when s = 1. All the codes we consider
in this paper will be linear under this slightly more general
definition of linear codes. The above more general definition
allows the alphabet to be a linear space Fs

q instead of just a
field Fq . It is easy to check that the rate and distance of linear
codes satisfy RC =

dimFq (C)

sn and δC = min
x∈C
x̸=0

{
|x|
n

}
where

|x| = |{i ∈ {1, 2, . . . , n} : xi ̸= 0}| denotes the Hamming
weight of x ∈ (Fs

q)
n.

As a consequence of the triangle inequality for Hamming
distance, we have that for any code C ⊆ Σn with relative
distance δ and for all x ∈ Σn the number of codewords in
the ball of radius δ/2 (in terms of relative distance) centered
at x, i.e., {y ∈ Σn : ∆(x, y)/n < δ/2}, is at most 1. Hence,
δ/2 is the so-called unique-decoding radius for a code with
relative distance δ. A natural question is to ask what happens
to the number of codewords within a ball of radius larger than
δ/2 centered at x ∈ Σn. The following well-known fact shows
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that the number remains polynomial in n even when the radius
of the ball grows to 1 −

√
(1 − δ).

Theorem 3 (List-Decoding up to Johnson Radius [9, Theo-
rem 7.3.1]): Let q ∈ N be a natural number. Any code with
block length n and relative distance δ over an alphabet of
size q is (combinatorially) list decodable from (1−

√
(1 − δ))

fraction of errors with list size at most n2qδ.
We have the following bound for codes, referred to popu-

larly as the Singleton bound [10], though the bound appears
earlier in the works of Joshi [11] and Komamiya [12].

Theorem 4 (Komamiya-Joshi-Singleton bound [9, Theorem
4.3.1]): The rate R and the relative distance δ of a code satisfy
R + δ ≤ 1 + o(1).

In particular, for codes which lie on the Komamiya-Joshi-
Singleton bound, we have that they are combinatorially list
decodable from 1 −

√
R − o(1) fraction of errors with poly-

nomial list size.

C. List-Decoding Upto Capacity

Definition 3 (List-Decoding Capacity): Consider a family
of codes C = {C1, . . . , Cn, . . .} where Cn has rate ρn and
block length n with alphabet Σn. Then, C is said to achieve
list-decoding capacity if ∀ϵ > 0 there exists an n0 such that
∀n ≥ n0 and all received words w ∈ Σn, there exists at
most a polynomial number of codewords c ∈ Cn such that
δ(c, w) ≤ (1 − ρn(1 + ϵ)) where δ(c, w) is the fractional
distance between c and w, i.e., ∆(c, w)/n.

Further, if there exists an efficient algorithm for finding
all these codewords, then, C is said to achieve list-decoding
capacity efficiently. Ideally, we want to keep Σn as small as
possible.

D. Chinese Remainder Theorem

We also rely on the following version of the Chinese
Remainder Theorem for the polynomial ring.

Theorem 5 (Chinese Remainder Theorem [13, Corollary
5.3]): Let E0(X), E1(X), . . . , En−1(X) be univariate poly-
nomials of degree equal to s over a field F such that for every
distinct i, j ∈ [n], Ei and Ej are relatively prime. Then, for
every n-tuple of polynomials (r0(X), . . . , rn−1(X)) ∈ F[X]n

such that each ri is of degree strictly less than s (or zero),
there is a unique polynomial p(X) ∈ F[X] of degree at most
ns − 1 such that for all i ∈ [n],

p(X) = ri(X) mod Ei(X).

E. Polynomial Ideals

Definition 4: A subset I ⊆ F[X] of polynomials is said to
be an ideal if the following are true.

• 0 ∈ I .
• For all p(X), q(X) ∈ I , p + q ∈ I .
• For every p(X) ∈ I and q(X) ∈ F[X], p(X) · q(X) ∈ I .
For the univariate polynomial ring F[X], we also know

that every ideal I is principal, i.e., there exists a polynomial
p(X) ∈ I such that

I = {p(X)q(X) : q(X) ∈ F[X]}.

III. POLYNOMIAL IDEAL CODES

In this section, we discuss polynomial ideal codes in more
detail, and see how this framework captures some of the well
studied families of algebraic error correcting codes.

We start with the formal definition of polynomial ideal
codes.

Definition 5 (Polynomial Ideal Codes): Given a field F,
parameters s, k and n satisfying k < s·n, the polynomial ideal
code is specified by a family of n polynomials E0, . . . , En−1

in the ring F[X] of univariate polynomials over the field F
satisfying the following properties.

1) For all i ∈ [n], polynomial Ei has degree exactly s.
2) The Ei’s are monic polynomials.
3) The polynomials Ei’s are pairwise relatively prime.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

As is clear from the definition, polynomial ideal codes are
linear over F and have rate code k/(sn) and relative distance
(1 − (k − 1)/(sn)) (there can’t be too many zeros in the
encoding of a message polynomial p(X), as the product of
all Ei’s where the encoding of p(X) is zero, divides p(X)).
Since the sum of rate and relative distance satisfy the Singleton
bound, these codes are maximal-distance separable (MDS)
codes.

We note that in general, Ei’s need not have the same degree,
but for notational convenience, we work in the setting when
each of them is of degree equal to s. We also note that these
codes continue to be well-defined even if the Ei’s are not
relatively prime. In this case, the condition, k < s · n is
replaced by k being less than the degree of the lowest common
multiple of E0, E1, . . . , En−1. However, the distance of the
code suffers in this case, and such codes need not approach the
Singleton bound. We now observe that some of the standard
and well studied family of algebraic error correcting codes
are in fact instances of polynomial ideal codes for appropriate
choice of E0, E1, . . . , En−1.

A. Some Well Known Codes via Polynomial Ideals

The message space for all these codes is identified with
univariate polynomials of degree at most k − 1 in F[X].
We assume that the underlying field F is of size at least n for
this discussion, else, we work over a large enough extension
of F.

1) Reed-Solomon Codes: Let a0, a1, . . . , an−1 be n dis-
tinct elements of F. In a Reed-Solomon code, we encode a
message polynomial p(X) ∈ F[X]<k by its evaluation on
a0, a1, . . . , an−1. To view these as a polynomial ideal code,
observe that p(ai) = p(X) mod (X − ai). Thus, we can set
the polynomials Ei(X) in Definition 5 to be equal to (X−ai)
for each i ∈ [n]. Thus, s = 1. Clearly, the Ei’s are relatively
prime since a0, a1, . . . , an−1 are distinct.

2) Folded Reed-Solomon Codes [4], [14]: Let γ ∈ F∗
q be an

element of multiplicative order at least s, i.e., γ0, γ, . . . , γs−1

are all distinct field elements. Further, let the set of eval-
uation points be A = {a0, . . . , an−1} such that for any
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two distinct i and j the sets
{
ai, aiγ, . . . , aiγ

s−1
}

and{
aj , ajγ, . . . , ajγ

s−1
}

are disjoint. In a Folded Reed-Solomon
code, with block length n and folding parameter s is defined
by the following encoding function.

p(X) 7−→
(
p(ai), p(aiγ

1), . . . , p(aiγ
s−1)

)n−1

i=0

Thus, these are codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =∏s−1
j=0(X − aiγ

j). Clearly, each such Ei is a polynomial of
degree equal to s, and since for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1
}

and
{
aj , ajγ, . . . , ajγ

s−1
}

are disjoint,
the polynomials E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between these two viewpoints
observe that p(aiγ

j) = p(X) mod (X − aiγ
j). Moreover,

(X − aiγ
j) are all relatively prime as j varies in [s] for

every i ∈ [n]. Thus, by the Chinese Remainder Theorem over
F[X], there is a bijection between remainders of a polynomial
modulo {(X − aiγ

j) : j ∈ [s]} and the remainder modulo the
product Ei =

∏
j∈[s](X − aiγ

j) of these polynomials.
3) Additive Folded Reed-Solomon Codes [4]: Additive

Folded Reed-Solomon codes are a variant of the Folded
Reed-Solomon codes defined above. Let Fq have character-
istic at least s and let β ∈ F∗

q . Further, let the set of
evaluation points be A = {a0, . . . , an−1} where ai − aj /∈
{0, β, 2β, . . . , (s − 1)β} for distinct i and j. Here, s denotes
the folding parameter. The encoding is defined as follows.

p(X) 7−→ (p(ai), p(ai + β), . . . , p(ai + β(s − 1)))n−1
i=0

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =∏s−1
j=0(X−ai − βj). Clearly, each such Ei is a polynomial of

degree equal to s, and since ai−aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j, the polynomials E0, E1, . . . , En−1 are all
relatively prime.

To see the equivalence between the two definitions, the
argument is again identical to that for Folded Reed-Solomon
codes discussed earlier in this section. We just observe (X −
ai − βj) are all relatively prime j varies in [s] for every
i ∈ [n], and thus by the Chinese Remainder Theorem over
F[X], there is a bijection between remainders of a polynomial
modulo {(X − ai − βj) : j ∈ [s]} and the remainder modulo
the product Ei =

∏
j∈[s](X − ai − βj) of these polynomials.

4) Univariate Multiplicity Codes [15], [16], [17]: Uni-
variate multiplicity codes, or simply multiplicity codes are a
variant of Reed-Solomon, where in addition to the evaluation
of the message polynomial at every ai, we also give the
evaluation of its derivatives of up to order s − 1. While they
can be defined over all fields, for the exposition in this write-
up, we consider these codes over fields F of characteristic at
least sn. Moreover, we also work with the standard deriva-
tives (from analysis), as opposed to Hasse derivatives which
is typically the convention in coding theoretic context. Let
a0, a1, . . . , an−1 ∈ F be distinct field elements.

The encoding is defined as follows.

p(X) 7−→
(

p(ai),
∂p

∂X
(ai), . . . ,

∂s−1p

∂Xs−1
(ai)

)n−1

i=0

Here, ∂jp
∂Xj−1 denotes the (standard) jth order derivative of p

with respect to X .
To view these as polynomial ideal codes, we set Ei(X) =

(X − ai)s. Clearly, each such Ei is a polynomial of degree
equal to s, and since ai’s are all distinct, these polynomials
E0, E1, . . . , En−1 are all relatively prime.

The equivalence of these two definitions follows from an
application of Taylor’s theorem to univariate polynomials,
which says the following.

p(X) = p(ai + X − ai) =

p(ai) + (X − ai)
∂p

∂X
(ai) + · · ·+

1
(s − 1)!

(X − ai)s−1 ∂s−1p

∂Xs−1
(ai) + (X − ai)s · q(X),

for some polynomial q(X) ∈ F[X]. Thus,

p(X) mod (X − ai)s = p(ai)+

(X − ai)
∂p

∂X
(ai) + · · ·+

1
(s − 1)!

(X − ai)s−1 ∂s−1p

∂Xs−1
(ai).

Therefore, we can read off the evaluations of the derivatives
of p of order up to s − 1 at ai by explicitly writing p(X)
mod (X−ai)s as a polynomial in (X−ai) (via interpolation
for instance), and reading off the various coefficients. Simi-
larly, using the above expression, given the evaluation of all
the derivatives of order up to s − 1 of p at ai, we can also
reconstruct p(X) mod (X − ai)s.

5) Affine Folded Reed-Solomon Codes: We now describe a
common generalization of the codes defined above, which we
call Affine Folded Reed-Solomon Codes. Fix integers k, n, q
with n ≤ q. Let α ∈ F∗

q and β ∈ Fq such that the multiplicative
order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, βu = β ·
∑u−1

i=0 αi = 0, and
hence, ℓ(u)(X) = ℓ(0)(X). Let ord(ℓ) denote the smallest
positive integer t such that ℓ(t)(X) = X . Note that if α ̸=
1 then ord(ℓ) = u. The message space of the Affine Folded
Reed-Solomon code of degree k with block length n and
folding parameter s is polynomials of degree at most k−1 over
F[X], i.e., F<k[X] where F = Fq . Let the set of evaluation
points be A = {a0, . . . , an−1} such that for distinct i, j the
sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

The encoding function of Affine Folded Reed-Solomon
Codes is given as: (Recall that t = ord(ℓ); let s = v · t + r
where r < t.)

p(X) 7−→
p(ℓ(0)(ai)) . . . ∂v−1p

∂Xv−1 (ℓ(0)(ai)) ∂vp
∂Xv (ℓ(0)(ai))

...
...

...
...

p(ℓ(r−1)(ai))
...

... ∂vp
∂Xv (ℓ(r−1)(ai))

p(ℓ(t−1)(ai)) . . . ∂v−1p
∂Xv−1 (ℓ(t−1)(ai))


n−1

i=0

.
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Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes we set

Ei(X) =
s−1∏
j=0

(X − αjai − βj) =

r−1∏
j=0

(X − ℓ(j)(ai))v+1 ·
t−1∏
j=r

(X − ℓ(j)(ai))v.

For the choice of A as above, the polynomials Ei = Ei(X)
are pairwise co-prime. Similar to the previous cases of
Folded/Additive Reed-Solomon and Multiplicy codes we have
a bijection between the remainders of a polynomial modulo
Ei and the encoding of the polynomial at ai.

B. An Alternate Definition

We now discuss an alternate definition of polynomial ideal
codes; the advantage being that this definition ties together
the polynomials E0, E1, . . . , En−1 into a single bivariate
polynomial. This would be useful later on when we discuss the
connection between polynomial ideal codes and linear operator
codes.

Definition 6 (Polynomial Ideal Codes (in Terms of Bivariate
Polynomials)): Given a field F, parameters s, k and n satis-
fying k < s · n, the polynomial ideal code is specified by a
bivariate polynomial E(X, Y ) over the field F and a set of
n field elements a0, a1 . . . , an−1 in F satisfying the following
properties.

1) degX E(X, Y ) = s.
2) E(X,Y ) is a monic polynomial in the variable X .
3) The polynomials E(X, ai)’s are pairwise relatively

prime.
Since E is monic and has (exact) degree s in the variable
X , any polynomial p ∈ F[X] has the following unique
representation.

p(X) = Q(p)(X, Y ) · E(X, Y ) + R(p)(X, Y )

where degX(R(p)(X, Y )) < s. The encoding of the polyno-
mial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→
(
R(p)(X, ai)

)n−1

i=0
.

The equivalence of Definitions 5 and 6 is not hard to see.
We summarize this in the simple observation below.

Observation 1: Definitions 5 and 6 are equivalent.
Proof: Given a code as per Definition 5, we can view

this as a code according to Definition 6 by picking n distinct
a0, a1, . . . , an−1 ∈ F (or in a large enough extension of F of
size at least n) and use standard Lagrange interpolation to find
a bivariate polynomial E(X,Y ) such that for every i ∈ [n],

E(X, ai) = Ei.

More precisely, we define E(X, Y ) as follows.

E(X, Y ) :=
∑
i∈[n]

 ∏
j∈[n]\{i}

(Y − aj)
(ai − aj)

 · Ei(X).

Clearly, E(X, ai)’s are relatively prime, and their degree in
X equals s and E(X,Y ) is monic in X . This is because
the coefficient of Xs is a polynomial of degree at most n −
1 which takes the value 1 at a1, . . . , an, and so has to be
the constant 1. The equivalence of the encoding function also
follows immediately from the definitions.

The other direction is even simpler. Given a code as per
Definition 6, we can view this as a code as per Definition 5
by just setting Ei(X) to be equal to E(X, ai) for every i ∈ [n].
The condition on the degree of Ei and their relative primality
follows immediately from the fact that E(X,Y ) is monic in X
of degree s, and E(X, ai)’s are relatively prime. Once again,
the encoding map can be seen to be equivalent in both the
cases. □

From 1 and the discussion in Section III-A, the Reed-
Solomon codes, Folded Reed-Solomon codes, Additive Folded
Reed-Solomon codes and Multiplicity codes can also be
viewed as polynomial ideal codes as per Definition 6.

• Reed-Solomon codes: We take E(X, Y ) to be equal to
(X−Y ), the set of points a0, . . . , an−1 remain the same.

• Folded Reed-Solomon codes: We take E(X, Y ) =∏
j∈[s](X − γjY ) and the set of evaluation points

a0, . . . , an−1 are set as before, and γ ∈ F∗ is an element
of high enough order.

• Additive Folded Reed-Solomon codes: We take
E(X, Y ) =

∏
j∈[s](X−Y +βj) and the set of evaluation

points a0, . . . , an−1 are set as before. Recall that F is
taken to be a field of characteristic at least s for these
codes.

• Multiplicity codes: We take E(X, Y ) to be equal to (X−
Y )s, the set of points a0, . . . , an−1 are distinct.

• Affine Folded Reed-Solomon codes: We take
E(X, Y ) =

∏s−1
i=0 (X − ℓ(i)(Y )) where ℓ(Y ) = αY + β

with α ∈ F∗
q and β ∈ Fq . Recall that the set of

evaluation points A = {a0, . . . , an−1} is such that
for distinct i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.
It follows immediately from these definitions that all the
desired properties in Definition 6 are indeed satisfied. We skip
the remaining details.

IV. LINEAR OPERATOR CODES

In this section, we give an alternate viewpoint of polynomial
ideal codes in terms of codes defined based on linear operators
on the ring of polynomials.

Definition 7 (Linear Operators): Let L = (L0, . . . , Ls−1)
be a tuple of s linear operators where each Li : F[X] →
F[X] is a F-linear operator over the ring F. For any f ∈
F[X], it will be convenient to denote by L(f) the (row) vector
(L0(f), . . . , Ls−1(f)) ∈ F[X]s.

Given any such family L and element a ∈ F, define

Ia(L) = {p(X) ∈ F[X] | L(p)(a) = 0̄}.

If the family L of linear operators family and the set of field
elements A ⊆ F further satisfy the property that Ia(L) is an
ideal for each a ∈ A, we refer to the family L as an ideal
family of linear operators with respect to A.
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In this case, since F[X] is a principal ideal domain, for each
a ∈ A, Ia(L) = ⟨Ea(L)(X)⟩ for some monic polynomial
Ea(L) ∈ F [X].

We now define a special condition on the family of linear
operators L which will help us capture when Ia(L) forms an
ideal. □

Definition 8 (Linearly-Extendible Linear Operators): The
family L of linear operators is said to be linearly-extendible
if there exists a matrix M(X) ∈ F[X]s×s such that for all
p ∈ F [X] we have

L(X · p(X)) = M(X) · L(p(X)). (4.3)

We give two examples to illustrate the definition:
• Let L0(f(X)) = f(X) and L1(f(X)) = f ′(X) where

f ′ is the formal derivative of f . Then, by the product rule
L1(Xf(X)) = X · f ′(X) + f(X). Hence, in this case
M(X) =

(
X 0
1 X

)
.

• Let L0(f(X)) = f(X) and L1(f(X)) = f(γX) where
γ ∈ Fq is non-zero. Then, we have L1(Xf(X)) =
γXf(γX). Hence, in this case M(X) =

(
X 0
0 γX

)
.

Observation 2: Suppose L is linearly-extendible and
M(X) is the corresponding matrix from Eq. (4.3).

• For any j ≥ 0 we have L(Xj · p(X)) = (M(X))j ·
L(p(X)). Thus, by linearity we have that for any q ∈
F[X]:

L(q(X) · p(X)) = q(M(X)) · L(p(X)).

For instance if q(X) = Xj then L(Xj · p(X)) =
(M(X))j · L(p(X)).

• The family L is completely specified by L(1) and M(X).
In other words, L(p(X)) = p(M(X)) · L(1).

• For every set A of evaluation points, L is an ideal family
of linear operators with respect to A. This is because if
at a point a we have L(p)(a) = 0 then L(Xp)(a) =
(M(X) · L(p(X)))(a) = M(X = a) · L(p)(a) = 0.
This means that if p(X) ∈ Ia(L) then Xp(X) ∈ Ia(L),
and hence by linearity for any q(X) ∈ F[X] we have
q(X) · p(X) ∈ Ia(L).

Definition 9 (Linear Operator Codes): Let L =
(L0, . . . , Ls−1) be a family of linear operators,
A = {a1, . . . , an} ⊆ F be a set of evaluation points
and k a degree parameter such that k ≤ s · n. Then the linear
operator code generated by L and A, denoted by LOA

k (L) is
given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))
n
i=1

• If L is an ideal family of linear operators with respect
to A where the polynomials Ei := Eai(L), which are
the monic generator polynomials for the ideals Iai(L),
further satisfy the following:

1) For all i ∈ [n], polynomial Ei has degree exactly s.
2) The polynomials Ei’s are pairwise relatively prime.

Then the linear operator code is said to be an ideal linear
operator code and denoted by ILOA

k (L).

• If the ideal linear operator code ILOA
k (L) further satisfies

that L is linearly-extendible, then the ideal linear operator
code is said to be a linearly-extendible linear operator
code, denoted by LELOA

k (L).
Remark 1: The rate of the LOA

k (L) code is k/(sn). Further,
if the code is an ideal linear operator code, i.e., ILOA

k (L),
then its distance is 1− k−1

sn . This is because for any message
polynomial p(X), the product of all Ei’s where the encoding
of p(X) is zero, divides p(X), and hence there can’t be too
many zeros in the encoding of p(X). Hence, ILOA

k (L) is an
MDS code.

Proposition 1: Any polynomial ideal code is a linearly-
extendible linear operator code.

Proof: Consider a polynomial ideal code given by a
bivariate polynomial E(X, Y ) and a set of evaluation points
{a1, . . . , an} as in Definition 6. Recall that E(X,Y ) is a
monic polynomial in the variable X , degX E(X,Y ) = s and
the E(X, ai)’s are relatively prime. Further, any polynomial
p(X) ∈ F[X] has the following unique representation.

p(X) = Q(p)(X, Y ) · E(X, Y ) + R(p)(X,Y )

where degX(R(p)(X, Y )) < s. The encoding map of the
polynomial ideal code is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→
(
R(p)(X, ai)

)n−1

i=0
.

Let E(X, Y ) = Xs −
∑s−1

i=0 Hi(Y )Xi and R(p)(X, Y ) =∑s−1
i=0 Rp

i (Y )Xi. Define L = (L0, . . . , Ls−1) as Li(p(X)) =
Rp

i (X).4 Therefore, at any point a ∈ {a1, . . . , an} we have
R(p)(X, a) =

∑s−1
i=0 Li(p(X))(a) · Xi.

Notice, that for p(X), q(X) ∈ F[X] we have
R(p+q)(X, Y ) = R(p)(X,Y ) + R(q)(X, Y ) and thus
Rp+q

i (Y ) = Rp
i (Y ) + Rq

i (Y ) for i < s. This shows that
Li’s are indeed linear operators. Also, R(Xp)(X, Y ) =∑s−1

i=1 Rp
i−1(Y )Xi + Rp

s−1(Y ) ·
∑s−1

i=0 Hi(Y )Xi.
Therefore, we have L(Xp(X)) = M(X)L(p(X)) where
M(X)ij = I[i − 1 = j] + I[j = s − 1] · Hi(X) for
i, j ∈ {0, 1, . . . , s − 1}. More descriptively,

Ms×s =



0 0 0 . . . H0(X)
1 0 0 . . . H1(X)
0 1 0 . . . H2(X)
...

... 1 . . . H3(X)
...

...
... . . .

...
0 0 . . . 1 Hs−1(X)


Hence L forms a linearly-extendible set of linear operators.

□
Remark 2 (Degree Preserving): If the bivariate polynomial

E(X, Y ) has total degree s, then, the linear operator in
the LELO code obtained above has the property that
degX Li(Xj) ≤ j: in fact, degX Li(Xj) ≤ j − i.

Proposition 2: Any ideal linear operator code is a polyno-
mial ideal code.

Proof: Consider an ideal linear operator code ILOA
k (L).

For any polynomial p(X) ∈ F[X] and a point ai ∈ A, giving

4Note that we have changed the formal variable from Y to X in the
definition of Rp

i (X) here.
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L(p(X))(ai) is equivalent to giving p(X) mod ⟨Ei⟩ where
⟨Ei⟩ = Iai(L). However, the Eis readily satisfy Definition 5.

□
Now, we state a corollary which further corroborates the

notion of linear-extendibility.
Corollary 1 (Equivalence of ILO and LELO): From

Propositions 1 and 2 it follows that every ideal linear operator
code is also a linearly-extendible linear operator code.

Below we state some well known codes in their linear
operator descriptions (a more formal treatment is given in
Section VIII):

• Reed-Solomon Codes: Let A = {a0, . . . , an−1} be
distinct elements in Fq These are LELOL,A where L =
(I). That is the encoding of the message polynomial
p(X) ∈ F<k[X] at a point a is L(f(X))(a) = f(a).

• Folded Reed-Solomon Codes: Let γ ∈ F ∗
q with

multiplicative order at least s. FRS[k, n] with folding
parameter s are linearly-extendible linear operator codes
LELOL,A where:

– L = (L0, . . . , Ls−1) with L1(f(X)) = f(γX)
for f(X) ∈ Fq[X] and Li = Li

1 for i ∈
{0, 1, . . . , s − 1}.

– For the above family of operators M(X) is given by
M(X)ij = γiX · I[i = j] for i, j ∈ [s].

– The set of evaluation points is A = {a0, . . . , an−1}
where for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1
}

and
{
aj , ajγ, . . . , ajγ

s−1
}

are disjoint.

• Multiplicity Codes: Then, MULT [k, n] codes of order
s are linearly-extendible linear operator codes LELOL,A

where:

– L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X

for f(X) ∈ Fq[X] and Li = Li
1 for i ∈

{0, 1, . . . , s − 1}.
– For the above family of operators M(X) is given by

M(X)ij = X · I[i = j]+ i · I[i−1 = j] for i, j ∈ [s].
– The set of evaluation points is A = {a0, . . . , an−1}

where ais are all distinct.

• Additive Folded Reed-Solomon Codes: Let β ∈ Fq be a
non-zero element and the characteristic of Fq be at least
s. Then, Additive-FRS[k, n] codes with folding parameter
s are linearly-extendible linear operator codes LELOL,A

where:

– L = (L0, . . . , Ls−1) with L1(f(X)) = f(X +
β) for f(X) ∈ Fq[X] and Li = Li

1 for i ∈
{0, 1, . . . , s − 1}.

– For the above family of operators M(X) is given by
M(X)ij = (X + iβ) · I[i = j] for i, j ∈ [s].

– The set of evaluation points is A = {a0, . . . , an−1}
where ai−aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct
i and j.

• Affine Folded Reed-Solomon Codes: Let α ∈ F∗
q and

β ∈ Fq . Further, let ℓ(X) = αX + β with ord(ℓ) = u.
Then Affine-FRS[k, n] codes with folding parameter s
are linearly-extendible codes LELOL,A described below.
(See 3 for more details.)

Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)
∂X and

S1 : F[X] → F[X] as S1(f(X)) = f(ℓ(X)). Further, for
i ≥ 0 let Di = Di

1 and Si = Si
1. Recall, that the order

of α is u. For any integer r ∈ [s] let r = r1u + r0, with
r0 < u, be the unique representation of r.

– Define Lr : F[X] → F[X] as Lr(f(X)) =
Sr0(Dr1f(X)). Set L = (L0, . . . , Ls−1). Clearly, L
is a family of linear operators.

– Lr(Xf) = Sr0(Dr1Xf) = Sr0(r1 · Dr1−1f + X ·
Dr1f) = r1 · Lr−uf + Sr0(X) · Lrf : hence, L is a
set of linearly-extendible linear operators.

– The set of evaluation points A =
{a0, . . . , an−1} is such that for distinct
i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.

V. LIST-DECODING OF POLYNOMIAL IDEAL CODES

In this section, we discuss the list-decoding of polynomial
ideal codes.

A. List-Decoding Up to the Johnson Radius

We first observe that polynomial ideal codes are list decod-
able in polynomial time, up to the Johnson radius.

Theorem 6: Let k, s, n ∈ N be such that k < sn and s <
k−1. Let E0(X), E1(X), . . . , En−1(X) ∈ F[X] be relatively
prime monic polynomials of degree equal to s each. Let Enc :
F<k[X] −→ (F<s[X])n be the encoding function defined as

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0 .

Then, there is an algorithm, which takes as input a received
word c = (c0, c1, . . . , cn) ∈ F<s[X]n and for every ϵ >
0 outputs all polynomials f ∈ F<k[X] such that Enc(f) and
c agree on at least (k/(sn))1/2 + ϵ fraction of coordinates in
time poly(n, 1/ϵ).

Observe that the rate of this code is k/(sn) and distance is
1− (k−1)/(sn), and thus Theorem 6 gives us an algorithmic
analog of Theorem 3 for these codes.

The list-decoding algorithm for polynomial ideal codes
is an (almost immediate) extension of an algorithm of
Guruswami et al. [7] for list-decoding codes based on Chinese
Remainder Theorem to this setting. This algorithm, in turn,
relies on ideas in an earlier algorithm of Guruswami and
Sudan [18] for list-decoding Reed-Solomon codes up to the
Johnson radius.

As noted in the introduction, most of the ideas for the proof
of Theorem 6 were already there in the work of Guruswami,
Sahai and Sudan [7] and all we do in this section is to flush
out some of the details. The proof of this theorem is deferred
to Section VI.

B. List-Decoding Beyond the Johnson Radius

In this section, we use the linear operator viewpoint of
polynomial ideal codes to study their list-decodability beyond
the Johnson radius. We show that if the family of linear
operators L and the evaluation points satisfy some further
properties, then the linear operator code is list-decodable all
the way up to the distance of the code.
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Let G = (G0, . . . , Gw−1) and T = (T0, T1, . . . , Tr−1) be
two families of linear operators such that Gi : F[X] → F[X]
and T is a linearly-extendible family of linear operators. We
say that the pair (T ,G) list-composes in terms of L at the set
of evaluation points A if we have the following. For every
linear operator G ∈ G and field element a ∈ A, there exists a
linear function hG,a : Fs → Fr such that for every polynomial
f ∈ F[X] we have

T (G(f))(a) = hG,a(L(f)(a)).

For instance, consider the FRS code over Fq with folding
parameter s and with the set of evaluation points being A =
{a0, . . . , an−1}. The message space is polynomials of degree
at most k − 1 over Fq[X]. This code is a linearly-extendible
linear operator code where L = (L0, . . . , Ls−1) with
L1(f(X)) = f(γX) for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}. Set G = (L0, . . . , Lw−1) for some
integer w < s and T = (T0, . . . , Tr−1) with r = s−w+1 and
Ti = Li. Then, for all Gi ∈ G, Tj ∈ T and a ∈ A,
we have that for every polynomial f ∈ F[X]: Tj(Gi(f))(a) =
Li+j(f)(a). Notice that Li+j ∈ L as i+j ≤ s−1. Hence, the
pair (T ,G) list-composes in terms of L at the set of evaluation
points A.

Theorem 7: If LOA
k (L) is a linear operator code and there

exists two families of linear operators G = (G0, . . . , Gw−1)
and T = (T0, . . . , Tr−1) such that

1) (T , A) forms a linearly-extendible linear operator code
LELOA

k+nr/w(T )
2) The pair (T ,G) list-composes in terms of L at the set

of evaluation points
3) G is degree-preserving
4) Diag(G) ∈ F|G|×k is the generator matrix of a code with

distance k − ℓ.
Then, LOA

k (L) is list-decodable up to the distance 1− k
rn − 1

w
with list size qℓ.

This theorem clearly implies Theorem 1. Recall the hypoth-
esis of Theorem 1. We instantiate G, T in Theorem 7 as
(L0, . . . , Lw−1) and (L0, . . . , Lr−1) respectively, with r =
s − w + 1: properties 1, 3 and 4 above follow directly from
the hypothesis of Theorem 1. For property 2 notice that for all
Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]: Tj(Gi(f))(a) = Li+j(f)(a), and Li+j ∈ L as
i + j ≤ s − 1. Hence, the pair (T ,G) list-composes in terms
of L. Theorem 7 is proved in Section VII. We then use this
theorem to demonstrate that several families of linear operator
codes are list-decodable up to capacity in Section VIII.

VI. LIST-DECODING POLYNOMIAL IDEAL CODES (PROOF
OF THEOREM 6)

In this section we prove Theorem 6. The proof proceeds in
three steps. In the first step, we find a bivariate polynomial
Q(X, Y ) such that for every polynomial f ∈ F<k[X], if f
mod Ei = ci, then Q(X, f(X)) = 0 mod Er

i . In the second
step of the argument, we show that if f is such that Enc(f) is
close enough to c, then Q(X, f(X)) must be the identically
zero polynomial, and therefore, (Y − f(X)) is a factor of
Q(X, Y ) in the ring F[X,Y ]. In the final step of the algorithm,

we factor Q(X, Y ) to output all factors of the form (Y −
f(X)), where f has degree less than k and Enc(f) and c
have a large agreement.

We now describe some of the details.

A. Interpolating a Polynomial of an Appropriate Form

Lemma 2: Let r ∈ N be a parameter. Let D be an integer
such that (nsr(r+1)k)1/2 < D ≤ (nsr(r+1)k)1/2+1 and let
D′ ≥ D be an integer divisible by s. Then, there exist bivariate
polynomials Q(X, Y ), {Bi(X, Y ) : i ∈ [n]} and univariate
polynomials {Ai,j(X) : i ∈ [n], j ∈ {1, 2, . . . , r}} such that
the following conditions hold.

• Q is not identically zero.
• For every i ∈ [n],

Q(X, Y ) − (Y − ci)r · Bi(X, Y )+
r∑

j=1

Ei(X)j(Y − ci)r−j · Ai,j(X) = 0.

• The (1, k − 1)-weighted degree of Q is at most D.
• For each i ∈ [n], the (1, s)-weighted degree of Bi is at

most D′ − rs.
• For each i ∈ [n], j ∈ [r] \ {0}, the degree of Ai,j(X) is

at most D′ − rs.
Moreover, these polynomials can be found deterministically in
time poly(n, r, s).

Before proceeding further, we remark that this slightly
mysterious form of Q in the Lemma 2 is to ensure that for
any f ∈ F[X], and i ∈ [n], if f(X) mod Ei(X) = ci, then
Q(X, f(X)) = 0 mod Ei(X)r. We note this in the following
claim.

Claim 1: Let Q(X, Y ), {Bi : i ∈ [n]}, {Ai,j : i ∈
[n], j ∈ {1, 2, . . . , r}} be polynomials satisfying the condi-
tions in Lemma 2. For any f ∈ F[X], and i ∈ [n], if f(X)
mod Ei(X) = ci, then

Q(X, f(X)) = 0 mod Ei(X)r.

Proof: The condition f(X) mod Ei(X) = ci implies
that (f(X) − ci) = 0 mod Ei(X). Thus, for every j ∈
{0, . . . , r}, Ej

i (X) · (f(X) − ci)r−j = 0 mod Ei(X)r.
Therefore, in the expression,

Q(X, f(X)) = (f(X) − ci)r · Bi(X, Y )+
r∑

j=1

Ei(X)j(f(X) − ci)r−j · Ai,j(X),

each of the summands is divisible by Ei(X)r, and hence
Q(X, f(X)) = 0 mod Ei(X)r. □

We now move on to the proof of Lemma 2. Proof:
[Proof of Lemma 2] The proof of the lemma is by a fairly
standard argument of viewing the conditions in the second
item of Lemma 2 as homogeneous linear constraints on the
coefficients of the polynomials involved and observing that
there are more variables than homogeneous linear constraints,
and hence there is a non-zero solution which can be found
algorithmically by standard linear algebra. One subtlety here
is to note that any non-zero solution of this linear system
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leads to a non-zero polynomial Q (required by the first item
in Lemma 2). This observation is crucial to ensure that Q
is non-zero, as apriori an arbitrary non-zero solution to this
linear system could just mean that some of the coefficients of
the other polynomials (Ai,j’s and Bi’s) are non-zero, but they
somehow cancel each other out to ensure that Q remains zero.
We now argue that this cannot be the case.

Let i ∈ [n] be such that there is a solution to this linear sys-
tem where Bi, Ai,1, . . . , Ai,r are not all identically zero. If Q
is non-zero, then we are done. So, let us now assume that Q is
zero, and argue that this cannot be the case. If Bi is non-zero,
then, observe that (Y − ci)rBi(X, Y ) contains a monomial
with Y -degree at least r, and this cannot be cancelled by any
monomial in

∑r
j=1 Ei(X)j(f(X) − ci)r−j · Ai,j(X) since

the degY for this polynomial is strictly less than r. Thus, Q
cannot be identically zero. Else, if Bi is identically zero, then
let j ∈ {1, 2, . . . , r} be the smallest index such that Ai,j(X)
is non-zero. Then, the summand Ei(X)j(Y − ci)r−jAi,j(X)
contains a non-zero monomial with Y -degree equal to r − j,
which cannot be cancelled out by the rest of the summands.
Therefore, Q is non-zero.

We now count the number of homogeneous linear con-
straints in the system. Since s < k − 1, it follows that Q
must also have (1, s)-weighted degree at most D. Moreover,
since D ≤ D′, we have that for each i, the equation

Q(X, Y ) − (Y − ci)r · Bi(X, Y )+
r∑

j=1

Ei(X)j(Y − ci)r−j · Ai,j(X) = 0

only involves monomials of (1, s)-weighted degree at most
D′. Thus, from Lemma 1, each such linear constraint leads to
at most N(s, D′) homogeneous constraints on the coefficients,
where for natural numbers a, b, N(a, b) denotes the number of
bivariate monomials of (1, a)-weighted degree at most b. Since
there are n such equations, the total number of homogeneous
linear constraints is at most nN(s, D′).

To get an upper bound on the number of variables in this
homogeneous linear system, observe from the weighted degree
conditions and Lemma 1 that the number of variables to this
system contributed by Q is at least N(k − 1, D), by each Bi

is at least N(s, D′ − rs) coefficients and each Ai,j is at least
(D′−rs + 1) coefficients. Thus, the total number of variables
is at least

N(k − 1, D) + n(N(s, D′ − rs) + (D′−rs + 1)).

Thus, there exists a non-zero solution to this system of
homogeneous linear equations if

N(k − 1, D) + n(N(s, D′ − rs)+
r(D′−rs + 1)) > nN(s, D′),

or, equivalently,

N(k − 1, D) > n(N(s, D′)−
(N(s, D′ − rs) + r(D′−rs + 1))).

Now, from Lemma 1, we know that

N(k − 1, D) ≥ D2/(2k) > nsr(r + 1)/2,

and

n(N(s, D′) − (N(s, D′ − rs)+
r(D′−rs + 1))) = nsr(r + 1)/2.

This last inequality follows by invoking the second item of
Lemma 1 with a = s, b = D′, η = r (recall that D′ is divisible
by s). So, we get that

n(N(s, D′) − (N(s, D′ − rs)+
r(D′−rs + 1))) = nsr(r + 1)/2.

Thus, for our choice of parameters, we have

N(k − 1, D) + n(N(s, D′ − rs)+
r(D′−rs + 1)) > nN(s, D),

and the system of equations must have a non-zero solution.
We can find such a non-zero solution by solving the linear

system, for instance, by Gaussian elimination over F, which
runs in time polynomial in the size of the system. This
completes the proof of the lemma. □

B. Close Enough Codewords Satisfy the Equation

We now prove the following lemma which is the second
step for the proof of Theorem 6.

Lemma 3: Let D be as in Lemma 2 and let Q(X, Y ), {Bi :
i ∈ [n]}, {Ai,j : i ∈ [n], j ∈ {1, 2, . . . , r}} be polynomials
satisfying the conditions in Lemma 2. And, let f ∈ F<k[X]
be such that Enc(f) and c agree on greater than D/(rs)
coordinates. Then, Q(X, f(X)) is identically zero.

Proof: From 1, we know for any i ∈ [n], f(X)
mod Ei = ci implies that Q(X, f(X)) = 0 mod Er

i .
We also know from the statement of Theorem 6 that
E0, E1, . . . , En−1 are relatively prime. Therefore, if S ⊂ [n]
such that for all i ∈ S, i ∈ [n], f(X) mod Ei = ci, then by
the Chinese Remainder Theorem (see Theorem 5), we have

Q(X, f(X)) = 0 mod
∏
i∈S

Er
i .

We know that the degree of Q(X, f(X)) is at most the (1, k−
1)-weighted degree of Q which is at most D. Moreover, the
degree of

∏
i∈S Er

i equals |S|sr, which is strictly larger than
D if |S| > D/(rs). Thus, in this case, Q(X, f(X)) = 0
mod

∏
i∈S Er

i implies that Q(X, f(X)) must be identically
zero as a polynomial in F[X]. □

C. Reconstruction of All Close Enough Codewords

Finally, from Lemma 3, we know that for any f ∈ F<k[X]
such that Enc(f) and c agree on at least D/(rs) coordinates,
Q(X, f(X)) must be identically zero. Thus, to recover all such
f , we use any standard polynomial factorization algorithm
(e.g. the algorithm due to Kaltofen [19]) to factor Q(X, Y ),
and for every factor of the form Y − f(X) such that f(X)
has degree less than k and Enc(f) and c agree on greater than
D/(rs) coordinates, include f in the output list. The list size
is clearly bounded by the degree of Q, which is poly(n, r, s).
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Thus, we have an efficient algorithm which outputs all
codewords which agree with the received word on greater than

D/(nrs) ≤ 1/(nrs) · ((nsr(r + 1)k)1/2 + 1) ≤
(1/(nrs) + (k/(sn))1/2 · (1 + 1/r)1/2)

fraction of coordinates. Choosing r to be large enough, based
on ϵ, e.g. r = Θ(1/ϵ), we get Theorem 6.

VII. LIST-DECODING OF LINEAR OPERATOR CODES
(PROOF OF THEOREM 7)

In this section, we prove Theorem 7. To this end, we follow
the framework of Guruswami and Wang; the key observation
being that the framework is general enough to be applicable
to all families of codes with properties as stated in Theorem
7, and not just Folded Reed-Solomon codes and Multiplicity
codes, as shown by Guruswami and Wang. Before we proceed,
we need some notation.

For a natural number n, [n] denotes the set {0, 1, . . . , n−1}.
Recall that the alphabet of the code is Fs, and the block length
is |A| = n. We denote the received word by c ∈ Fsn. For
notational convenience, we identify the set [n] with the set A
via an arbitrary ordering of the elements of A. Thus, for every
a ∈ A, we use ca ∈ Fs to denote the ath coordinate of c.

Recall that since T is linearly-extendible, it follows that
there exists a matrix MT such that for every polynomial
q(X) ∈ F[X]

T (q(X) · p(X)) = q(MT (X)) · T (p(X)).

The proof of Theorem 7, which follows the high level outline
of the proof of Guruswami and Wang, follows from Lemmas 4
to 5. Lemma 6. Lemma 4 shows that we can interpolate a low
degree polynomial Q, with appropriately nice structure and
low enough degree, which explains the received word c in
some sense. We then move on to observe in Lemma 5 that
any polynomial f such that Enc(f) is close enough to the
received word c in Hamming distance satisfies an equation
depending upon Q. Finally, in Lemma 6, we solve this
equation, which is a system of homogeneous linear equations
on the coefficients of f to recover all low degree polynomials
f such that Enc(f) and c are close enough. Because of the
linear nature of constraints, all such solutions are contained in
a low dimensional linear space. As we shall observe, each of
these steps in the decoding procedure just involves doing some
basic linear algebra over the underlying field, and hence the
decoding can be done in polynomial time by a deterministic
algorithm.

We now proceed with the details of each of these steps.

A. Interpolating a Polynomial

Lemma 4: There exists a non-zero polynomial
Q(X,U0, U1, . . . , Uw−1) ∈ F[X,u] of the form

Q(X,u) =
w−1∑
i=0

Qi(X) · Ui,

such that
• For every i ∈ [w], deg(Qi) is at most D = nr/w.

• For every a ∈ A,∑
i∈[w]

Qi(MT )(a) · hGi,a · ca

 = 0,

where, (by a slight abuse of notation), we also use hGi,a to
denote the matrix associated with the linear transformation
hGi,a.

Moreover, such a polynomial Q can be constructed
deterministically with at most poly(n) operations over the
underlying field F.

Proof: The properties desired from Q in the lemma can
be viewed as a system of linear constraints on the coefficients
of Q. More precisely, for every a ∈ A, the condition∑

i∈[w]

Qi(MT )(a) · hGi,a · ca

 = 0

imposes r homogeneous linear constraints on the coeffi-
cients of Q. The existence of a non-zero polynomial Q =∑

i∈[w] QiUi satisfying these constraints now just follows
from the fact that the number of homogeneous linear con-
straints is at most nr, whereas the number of variables is
(D + 1)w = (nr/w + 1)w > nr. Thus, there is always a
non-zero solution.

Since the size of the linear system is polynomially bounded
in n, a non-zero Q satisfying the conditions can be found by
solving the linear system, which can be done with poly(n)
field operations using standard linear algebra algorithms. □

B. Close Enough Codewords Satisfy the Equation

We now argue that any polynomial f ∈ F[x] of degree at
most k − 1, whose encoding is close enough to the received
word c must satisfy an appropriate equation (depending upon
Q).

Lemma 5: If f ∈ F[X] is a polynomial of degree
less than k such that for at least n · (1/w + k/(nr)) +
1 points a ∈ A, Enc(f)(a) = ca, then the polynomial
Q(X, G0(f), G1(f), . . . , Gw−1(f)) ∈ F[X] is identically
zero.

Proof: Let R(X) be defined as

R(X) := Q(X, G0(f), G1(f), . . . , Gw−1(f)) =∑
i∈[w]

Qi(X) · Gi(f).

Since f is of degree at most k − 1 and the operators Gi do
not increase the degree, R is a polynomial of degree at most
D + k − 1 ≤ nr/w + k − 1.

Let a ∈ A be such that Enc(f)(a) = ca, then, we will
show that T (R) is zero at a. Also, from the linearity of T ,
it follows that

T (R) = T

∑
i∈[w]

Qi(x) · Gi(f)

 =

∑
i∈[w]

T (Qi(X) · Gi(f))

 .
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Using linear extendibility of T , we get

T (R) =

∑
i∈[w]

Qi(MT ) · T (Gi(f))

 .

Now, since (T ,G) list composes in terms of L at the set of
evaluation points A, we know that for every i ∈ [w], and
a ∈ A, T (Gi(f))(a) = hGi,a(L(f)(a)). Therefore,

T (R)(a) =

∑
i∈[w]

Qi(MT )(a) · hGi,a(L(f)(a))

 .

Since Enc(f)(a) = L(f)(a) = ca, we get that

T (R)(a) =

∑
i∈[w]

Qi(MT )(a) · hGi,a · ca

 .

Here, we abuse notation and also use hGi,a to denote the
matrix associated to the linear transformation given by hGi,a.
Now, from the constraints on the polynomial Q in Lemma 4,
we know that the right-hand side of the above equation is zero
for all a ∈ A. Thus, T (R)(a) is zero, whenever Enc(f)(a) =
ca for an a ∈ A.

We now recall that since the operators T give us a code with
rate (D + k)/(rn) = 1/w + k/(rn) and distance (1− 1/w −
k/(rn)). Thus, if Enc(f) and c have agreed on greater than
(1/w+k/(rn)) fraction of points in A, R must be identically
zero. □

C. Solving the Equation to Recover the Codewords

We now show that we can solve equations of the form

Q(X, G0(f), G1(f), . . . , Gw−1(f)) = 0,

to recover a (small) list of all polynomials f of degree at most
k − 1 which satisfy the above equation.

Lemma 6: The set of polynomials f(X) ∈ F[X] of degree
at most k − 1 such that the polynomial Q0(X)G0(f) +
Q1(X)G1(f) + · · ·+ Qw−1(X) ·Gw−1(f) is identically zero
form a linear space of dimension at most ℓ over the underlying
field F.

Moreover, there is a deterministic algorithm which runs in
polynomial time and given Q,G as input outputs a basis for
this linear space.

Proof: From the linearity of G, and the fact that Q(X,u)
is linear in the u variables, it immediately follows that the set
of polynomials f of degree at most k − 1 such that

Q0(X)G0(f) + Q1(X)G1(f) + · · ·+
Qw−1(X) · Gw−1(f) ≡ 0

form a linear space. Moreover, given the polynomial Q, and
a description of G, we can set up this linear system in terms
of the coefficients of f and solve the system in time poly(n).
So, all that remains for the proof of the lemma is to argue
that the dimension of this solution space is not too large. For
this, we will crucially rely on the property of G that Diag(G)
is the generator matrix of a code of distance k − ℓ. We start
with setting up some notation.

Let d = maxj∈[w] deg(Qj), and Qj(X) =
∑d

i=0 qj,iX
i.

From the definition of d, it follows that the vector q̃ =
(q0,d, q1,d, . . . , qw−1,d) is not the all zeros vector. For every
i, i′ ∈ [k], let gj

i ∈ Fk denote the ith row of the matrix
Gj (here we are interpreting Gj : F<k[X] → F<k[x] as
a kxk matrix) and let gj

i,i′ denotes the (i, i′) element of
Gj . We also note that since G is a degree preserving set of
linear operators, each of these matrices Gj are upper triangular
(here we interpret Gj acting on vectors whose ith coordinate
corresponds to the coefficient of Xi and so on). Our goal is
to find the set of all vectors coeff(f) = (fk−1, fk−2, . . . , f0)
where f =

∑k−1
j=0 fjx

j satisfies the equation

Q0(X)G0(f) + Q1(X)G1(f) + · · ·+
Qw−1(X) · Gw−1(f) ≡ 0.

We note that this is equivalent to saying that the coefficient of
every monomial in X on the left hand side is zero. Moreover,
the Q0(X)G0(f)+Q1(X)G1(f)+ · · ·+Qw−1(X) ·Gw−1(f)
is a polynomial of degree d + k − 1. We now chase down
some of these coefficients in decreasing order of their degree,
as summarised in the following simple claim.

Claim 2: For each i < k, the coefficient of Xd+k−1−i in
Q0(X)G0(f) + Q1(X)G1(f) + · · · + Qw−1(X) · Gw−1(f)
equals

∑
j∈[w]

(
i∑

i′=0

qj,d−i′ · ⟨gj
k−1−(i−i′), coeff(f)⟩

)
.

From the degree preserving property of G, we also know
that the coefficient of Xd+k−1−i in the above claim only
depends on fk−1−i, fk−i, . . . fk−1. In particular, if we set up
a linear system where the ith constraint equates the coefficient
of Xd+k−1−i obtained in 2 to zero, then resulting linear
system in (fk−1, fk−2, . . . , f1, f0) is lower triangular, and
the diagonal elements of the matrix of linear constraints
which equals the coefficient of fk−1−i in the expression∑

j∈[w]

(∑i
i′=0 qj,d−i′ · ⟨gj

k−1−(i−i′), coeff(f)⟩
)

is precisely∑
j∈[w]

qj,dg
j
k−1−i,k−1−i.

We can view
∑

j∈[w] qj,dg
j
k−1−i,k−1−i as an inner product of

the (non-zero) vector q̃ = (q0,d, . . . , qw−1,d) with the vector
vi = (g0

k−1−i,k−1−i, . . . , g
w−1
k−1−i,k−1−i). Now, we know that

q is a non-zero vector. So, if we can ensure that at most ℓ
of the coordinates of the vector (⟨q̃, vi⟩ : i ∈ [k]) are zero,
we would have the desired bound of ℓ on the dimension of
the solution space.

To this end, consider the k×w matrix W , whose ith row is
the vector vi. From the definition of vi, we can observe that
the jth column of this matrix are precisely the main diagonal
of the matrix Gj . From the last item in the hypothesis of
Theorem 7, we know that this matrix W is code of distance
k − ℓ. Thus, the vector W · q̃ can be zero on at most ℓ of
its coordinates. This gives us an ℓ dimensional linear space
containing all the solutions f of this equation, and therefore
a bound of |F|ℓ on the size of this solution space. □
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Remark 3: Notice that in Lemma 6 we recovered the coeffi-
cients of the polynomial f in decreasing order of their degree.
The advantage to recovering the coefficients in this order is as
follows. The degree preserving nature of the G’s ensures that
the coefficient fi doesn’t play a role in the coefficient of Xd′

in Q0(X)G0(f)+Q1(X)G1(f)+ · · ·+Qw−1(X) ·Gw−1(f)
when d′ is larger that d−i. This leads to a triangular system of
equations whose rank can be easily inferred from the diagonal
elements.

VIII. EXAMPLE OF CODES ACHIEVING LIST-DECODING
CAPACITY

In this section we will use Theorem 7 to (re)prove the
list-decoding capacity of the Folded Reed-Solomon codes,
multiplicity codes and additive Folded Reed-Solomon codes.
We then introduce a common generalization of all these codes,
which we refer to as affine Folded Reed-Solomon codes and
prove the list-decoding up to capacity of these codes.

We recall that Guruswami and Rudra [4] proved the
list-decoding capacity of FRS codes, first introduced by
Krachkovsky [14] while Kopparty [5] proved the list-decoding
capacity of multiplicity codes. Guruswami and Wang [2] then
gave an alternative and simpler linear-algebraic framework to
prove the list-decoding capacity of both FRS and multiplicity
codes. The list-decoding capacity of additive FRS codes is
proved using the more involved algorithm of Guruswami and
Rudra [4] and an observation of Kopparty [5] (see paragraph
on Additive Folding and Footnote 4 in [8, Section III]).
More recently (subsequent to the conference version of this
paper), Gopi and Guruswami [6] used skew polynomials to
construct improved maximally recoverable local reconstruction
codes (MR LRCs). It can be shown that the machinery of
skew polynomials can be used to give yet another proof of
list-decodability of FRS, multiplicity and additive FRS codes
(see [6, Appendix C]). We remark that it is apriori unclear
how to prove list-decodability of affine FRS codes using skew
polynomials (or via the previous frameworks of [2] and [4]).

A. Folded Reed-Solomon (FRS) Codes

Fix integers k, n, q with n ≤ q. Fix γ ∈ F∗
q of multiplicative

order at least s. The message space of the FRSγ
s [k, n] code

with folding parameter s is polynomials of degree at most
k − 1 over F[X], i.e., F<k[X] where F = Fq . Then, FRS
codes are linearly-extendible linear operator codes LELOL,A

where:
• L = (L0, . . . , Ls−1) with L1(f(X)) = f(γX) for

f(X) ∈ Fq[X] and Li = Li
1 for i ∈ {0, 1, . . . , s − 1}.

• For the above family of operators M(X) is given by
M(X)ij = γiX · I[i = j] for i, j ∈ [s].

• The set of evaluation points is A = {a0, . . . , an−1} where
for any two distinct i and j the sets

{
ai, aiγ, . . . , aiγ

s−1
}

and
{
aj , ajγ, . . . , ajγ

s−1
}

are disjoint.
Remark 4:
1) Recall that the bivariate polynomial E(X, Y ) corre-

sponding to the polynomial ideal code representation is
E(X, Y ) =

∏s−1
i=0 (X − γiY ).

2) For the choice of A as above, the rate of the code is
k
sn and its distance is 1− k−1

sn as the polynomials Ei =
E(X, ai) are pairwise co-prime.

Theorem 8 [2]: Let γ ∈ F∗
q be an element of order

at least k. Further, let A = {a0, . . . , an−1} be a set of
evaluation points where for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1
}

and
{
aj , ajγ, . . . , ajγ

s−1
}

are disjoint.
For every ϵ > 0 there exists s large enough (s ≥ Ω(1/ϵ2))
such that FRSγ

s [k, n] at the set of evaluation points A can be
efficiently list-decoded up to distance 1 − k

sn − ϵ.
Proof: We will prove this by applying Theorem 7. Set

G = (L0, . . . , Lw−1) for some integer w < s to be set later
and T = (T0, . . . , Tr−1) with r = s − w + 1 and Ti = Li.

Theorem 7-Item 1: Clearly, (T , A) forms a
linearly-extendible linear operator code LELOA

k+nr/w(T )
which is FRSγ

r [k + nr/w, n] at the set of evaluation points
A.

Theorem 7-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A,
we have that for every polynomial f ∈ F[X]: Tj(Gi(f))(a) =
Li+j(f)(a). Notice that Li+j ∈ L as i + j ≤ s − 1.

Theorem 7-Item 3: Gi(xj) = γijXj , and hence G is degree
preserving.

Theorem 7-Item 4: The matrix Diag(G) is given by
Diag(G)ij = γij for i ∈ [w] and j ∈ [k]. Hence, as long as γ
has order at least k this is the generator matrix of RS[w−1, k]
and hence its distance is k − w + 1.

Thus FRSγ
s [k, n] can be efficiently list-decoded up to

distance 1− k−1
rn − 1

w with list size qw−1. By choosing a large
enough w and s we can ensure that 1− k−1

rn − 1
w > 1− k

sn −ϵ.
□

B. Multiplicity (MULT ) Codes

Fix integers k, n, q with n ≤ q. The message space of the
MULTs[k, n] code of order s is polynomials of degree at
most k − 1 over F[X], i.e., F<k[X] where F = Fq . Then,
MULTs[k, n] codes are linearly-extendible linear operator
codes LELOL,A where:

• L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X for

f(X) ∈ Fq[X] and Li = Li
1 for i ∈ {0, 1, . . . , s − 1}.

• For the above family of operators M(X) is given by
M(X)ij = X · I[i = j] + i · I[i − 1 = j] for i, j ∈ [s].

• The set of evaluation points is A = {a0, . . . , an−1} where
ais are all distinct.

Remark 5:
1) Recall that the bivariate polynomial E(X, Y ) corre-

sponding to the polynomial ideal code representation is
E(X, Y ) = (X − Y )s.

2) For the choice of A as above, MULTs[k, n] is a code
with rate k

sn and distance 1 − k−1
sn as the polynomials

Ei = E(X, ai) are pairwise co-prime.
Theorem 9 [2]: Let the characteristic of Fq be at least

max(s, k). Further, let the set of evaluation points be A =
{a0, . . . , an−1} where ais are all distinct. Then, for every
ϵ > 0 there exists s large enough (s ≥ Ω(1/ϵ2)) such that
MULTs[k, n] can be efficiently list-decoded up to distance
1 − k

sn − ϵ.
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Proof: We will again appeal to Theorem 7. Set G =
(G0, . . . , Gw−1) where Gi = Xi

i! ·Li for i ∈ {0, 1, . . . , w − 1}
for some integer w < s to be set later and T = (T0, . . . , Tr−1)
with r = s − w + 1 and Ti = Li.

Theorem 7-Item 1: Clearly, (T , A) forms a
linearly-extendible linear operator code LELOA

k+nr/w(T )
which is MULTr[k + nr/w, n] of order r at the set of
evaluation points A.

Theorem 7-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A,
we have that for every polynomial f ∈ F[X]:

Tj(Gi(f))(a) =(
j∑

b=0

(
j

b

)(
i

b

)
· (b!/i!) · Xi−bLi+b(f)

)
(a).

Notice that the above expression only involves Lis where i <
s.

Theorem 7-Item 3: Gi(Xj) =
(
j
i

)
· Xj , and hence G is

degree preserving.
Theorem 7-Item 4: The matrix Diag(G) is given by

Diag(G)ij =
(
j
i

)
for i ∈ [w] and j ∈ [k]. This matrix can

be transformed via elementary row operations to a RS[w, k]
generator matrix with points of evaluations as 0, 1, . . . , k − 1;
thus, as long as the characteristic of Fq is at least k we have
that the distance of Diag(G) is k − w + 1.

Thus MULTs[k, n] can be efficiently list-decoded up to
distance 1− k−1

rn − 1
w with list size qw−1. By choosing a large

enough w and s we can ensure that 1− k−1
rn − 1

w > 1− k
sn −ϵ.

□

C. Additive Folded Reed-Solomon (Additive-FRS) Codes

Fix integers k, n, q with n ≤ q. Let β ∈ Fq be a non-zero
element and characteristic of Fq is at least s. The message
space of the Additive-FRSβ

s [k, n] code with folding parameter
s is polynomials of degree at most k − 1 over F[X], i.e.,
F<k[X] where F = Fq . Then, Additive-FRSβ

s [k, n] codes are
linearly-extendible linear operator codes LELOL,A where:

• L = (L0, . . . , Ls−1) with L1(f(X)) = f(X + β) for
f(X) ∈ Fq[X] and Li = Li

1 for i ∈ {0, 1, . . . , s − 1}.
• For the above family of operators M(X) is given by

M(X)ij = (X + iβ) · I[i = j] for i, j ∈ [s].
• The set of evaluation points is A = {a0, . . . , an−1} where

ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j.
Remark 6:
1) Recall that the bivariate polynomial E(X, Y ) corre-

sponding to the polynomial ideal code representation is
E(X,Y ) =

∏s−1
i=0 (X − Y − iβ).

2) For the choice of A as above, Additive-FRSβ
s [k, n] is

a code with rate k
sn and distance 1 − k−1

sn as the
polynomials Ei = E(X, ai) are pairwise co-prime.

Theorem 10: Let the characteristic of Fq be at least
max(s, k) and β ∈ Fq be a non-zero element. Further, let
the set of evaluation points A = {a0, . . . , an−1} be such that
ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j. Then,
for every ϵ > 0 there exists s large enough (s ≥ Ω(1/ϵ2)) such
that Additive-FRSβ

s [k, n] over the set of evaluation points A
can be efficiently list-decoded up to distance 1 − k

sn − ϵ.

Proof: We will again appeal to Theorem 7. To define
G = (G0, . . . , Gw−1) for some integer w < s, we need the
following definitions. Let B ∈ Fw×w

q be a matrix where Bij =
(j)i for i, j ∈ [w], i.e, the transpose of the Vandermonde
matrix at the points {0, 1, . . . , w − 1}: these points are distinct
since the characteristic of the field is at least k. Further, let
bi ∈ Fw

q be a vector such that Bbi = ei for i ∈ [w] where
eis are the standard basis vectors: bis exist because B is full
rank. Now, define Gi = Xi ·

∑w−1
c=0 bi(c)Lc for i ∈ [w]. Set

T = (T0, . . . , Tr−1) with r = s − w + 1 and Ti = Li.
Theorem 7-Item 1: Clearly, (T , A) forms a

linearly-extendible linear operator code LELOA
k+nr/w(T )

which is Additive-FRSβ
r [k + nr/w, n] with folding parameter

r at the set of evaluation points A.
Theorem 7-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A,

we have that for every polynomial f ∈ F[X]:

Tj(Gi(f))(a) = Tj

(
Xi ·

w−1∑
c=0

bi(c)Lc

)
(a)

=

(
(X + jβ)i ·

w−1∑
c=0

bi(c)Lc+j

)
(a).

Notice that the above expression only involves Lis where i <
s. Theorem 7-Item 3:

Gi(Xj) = Xi ·
w−1∑
c=0

bi(c)Lc(Xj)

= Xi ·
w−1∑
c=0

bi(c)(X + cβ)j

= Xi ·
w−1∑
c=0

bi(c)
∑
h≤j

(
j

h

)
Xh · (cβ)j−h

= Xi ·

(j

i

)
βiXj−i +

∑
h≤j−w

αhXh


(this is because Bbi = ei which weans that for h > j − w
we have

∑w−1
c=0 bi(c) · (c)j−h = I[j − h = i]; αh are field

constants)

=
(

j

i

)
βi−1Xj + . . . ,

and hence G is degree preserving.
Theorem 7-Item 4: By the above, the matrix Diag(G) is

given by Diag(G)ij =
(
j
i

)
βi for i ∈ [w] and j ∈ [k]. Up to

scaling this is the same code as Diag(G) in Theorem 9: and
hence, if the characteristic of the field is at least k then its
distance is k − w + 1.

Thus Additive-FRSβ
s [k, n] can be efficiently list-decoded up

to distance 1− k−1
rn − 1

w with list size qw−1. By choosing a large
enough w and s we can ensure that 1− k−1

rn − 1
w > 1− k

sn −ϵ.
□

D. Affine Folded Reed-Solomon (Affine-FRS) Codes

We first recall the defintion of Affine-FRS codes. Fix
integers k, n, q with n ≤ q. Let α ∈ F∗

q and β ∈ Fq
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such that the multiplicative order of α is u. Further, define
ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

=

αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, ℓ(u)(X) = ℓ(0)(X). Let
ord(ℓ) denote the smallest positive integer t such that ℓ(t)(z) =
z. The message space of the Affine-FRSα,β

s [k, n] code with
folding parameter s is polynomials of degree at most k−1 over
F[X], i.e., F<k[X] where F = Fq . Let the set of evaluation
points be A = {a0, . . . , an−1} such that for distinct i, j the
sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint. Then, Affine-FRSα,β

s [k, n] codes are polynomial
ideal codes where:

• The bivariate polynomial E(X, Y ) corresponding to the
polynomial ideal code representation is E(X, Y ) =∏s−1

i=0 (X − αiY − βi).
• For the choice of A as above, Affine-FRSα,β

s [k, n] is a
code with rate k

sn and distance 1− k−1
sn as the polynomials

Ei = E(X, ai) are pairwise co-prime.
We will now recall the description of Affine-FRS codes

in terms of linear operators which will be helpful while list-
decoding. Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)

∂X
and S1 : F[X] → F[X] as S1(f(X)) = f(ℓ(X)). Further,
for i ≥ 0 let Di = Di

1 and Si = Si
1. Recall, that the

order of α is u. For any integer r ∈ [s] let r = r1u + r0,
with r0 < u, be the unique representation of r. Then, define
Lr : F[X] → F[X] as Lr(f(X)) = Sr0(Dr1f(X)). Set
L = (L0, . . . , Ls−1). Clearly, L is a family of linear operators.
Further, Lr(Xf) = Sr0(Dr1Xf) = Sr0(r1 · Dr1−1f + X ·
Dr1f) = r1 · Lr−uf + Sr0(X) · Lrf : hence, L is a set of
linearly-extendible linear operators.

Observation 3: If u > 1 then at an evaluation point a ∈ Fq

the following pieces of information are the same:
• f(X) mod

∏s−1
i=0 (X − αia − βi)

• L(f)(a).
Hence, if u > 1, then, Affine-FRSα,β

s [k, n] at the points of
evaluation A is LELOL,A.

Theorem 11: For every ϵ > 0, there exists a large enough
s such that the follow holds. Let Fq be a field, k a parameter
and ℓ(X) = α · X + β such that α ∈ F∗

q and β ∈ Fq .
Furthermore, let the evaluation points A = {a0, . . . , an−1} be
such that for distinct i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint. Then, if either:

• ord(ℓ) ≥ k or
• char(Fq) > k and β ̸= 0

holds, Affine-FRSα,β
s [k, n] over the set of evaluation points A

can be efficiently list-decoded up to distance 1 − k
sn − ϵ.

Proof: We will again appeal to Theorem 7. Let u be the
multiplicative order of α. Let v = ⌊s/u⌋.

1) Case ord (ℓ) ≥ k: This means that u ≥ k. This is similar
to decoding FRS codes. We skip the details.

Henceforth, we assume that char(Fq) ≥ k and β ̸= 0.

2) Case u = 1: This is the same case as for Additive-FRS
codes. Thus, by Theorem 10 we are done.

3) Case u > 1 and v ≥
√

s: (This case is similar to
MULTv[k, n].)

Define G = (G0, . . . , Gw−1) for some integer w < s,
as Gi(f) = (Xi/i!) · Dif . Let r = (v − w)u and set
T = {L0, L1, . . . , Lr−1}.

Theorem 7-Item 1: Clearly, (T , A) forms a
linearly-extendible linear operator code LELOA

k+nr/w(T )
which is Affine-FRSα,β

r [k + nr/w, n] at the set of evaluation
points A.

Theorem 7-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we
have that for every polynomial f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0Dj1(
Xi

i!
· Di(f))

)
(a)

=

(
Sj0

j1∑
b=0

(
j1
b

)(
i

b

)
· (b!/i!) · Xi−bDi+b(f)

)
(a)

=

(
j1∑

b=0

(
j1
b

)(
i

b

)
· (b!/i!) · (Sj0X

i−b) · Lj0+(i+b)u(f)

)
(a).

Notice that the above expression only involves Lis where i <
s.

Theorem 7-Items 3 and 4: are identical to the corresponding
items in Theorem 9.

Thus Affine-FRSβ
s [k, n] can be efficiently list-decoded up to

distance 1− k−1
rn − 1

w with list size qw−1. By choosing a large
enough w and s we can ensure that 1− k−1

rn − 1
w > 1− k

sn −ϵ.
4) Case u >

√
s: (This case is similar to

Additive-FRSβ
u[k, n].) As in Theorem 10, to define

G = (G0, . . . , Gw−1) for some integer w < u, we need
the following definitions. Let B ∈ Fw×w

q be a matrix
where Bij = (β(αj − 1)/(αj))i for i, j ∈ [w], i.e,
the transpose of the Vandermonde matrix at the points{
β(αj − 1)/(αj) | j ∈ [w]

}
: these points are distinct since

the order of u is at least w. Further, let bi ∈ Fw
q be a vector

such that Bbi = ei for i ∈ [w] where eis are the standard
basis vectors: bis exist because B is full rank.

Define G = (G0, . . . , Gw−1) for some integer w < s,
as Gi = Xi ·

∑w−1
c=0 bi(c)Sc. Let r = s − w + 1 and set

T = {L0, . . . , Lr−1}.
Theorem 7-Item 1: Clearly, (T , A) forms a

linearly-extendible linear operator code LELOA
k+nr/w(T )

which is Affine-FRSα,β
r [k + nr/w, n] at the set of evaluation

points A.
Theorem 7-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we

have that for every polynomial f ∈ F[X]:

Tj(Gi(f))(a)

=

(
Sj0Dj1

(
Xi ·

w−1∑
c=0

bi(c)Scf

))
(a)

=

(
Sj0

j1∑
b=0

(
j1
b

)(
i

b

)
·(b!)·Xi−bDb

(
w−1∑
c=0

bi(c)Scf

))
(a)

=

(
Sj0

j1∑
b=0

(
j1
b

)(
i

b

)
·(b!)·Xi−b

(
w−1∑
c=0

(bi(c)αb
c)ScDbf

))
(a)
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=

(
Sj0

j1∑
b=0

(
j1
b

)(
i

b

)
·(b!)·Xi−b

(
w−1∑
c=0

(bi(c)αb
c)Lbu+cf

))
(a).

Notice that the above expression only involves Lis where i <
s.

Theorem 7-Items 3 and 4: follow almost identically to the
corresponding items in Theorem 10.

Thus Affine-FRSβ
s [k, n] can be efficiently list-decoded up to

distance 1− k−1
rn − 1

w with list size qw−1. By choosing a large
enough w and s we can ensure that 1− k−1

rn − 1
w > 1− k

sn −ϵ.
□
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