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ABSTRACT

We explore the chaotic dynamics of a large one-dimensional lattice of coupled maps with diffusive coupling of varying strength using the
covariant Lyapunov vectors (CLVs). Using a lattice of diffusively coupled quadratic maps, we quantify the growth of spatial structures in
the chaotic dynamics as the strength of diffusion is increased. When the diffusion strength is increased from zero, we find that the leading
Lyapunov exponent decreases rapidly from a positive value to zero to yield a small window of periodic dynamics which is then followed
by chaotic dynamics. For values of the diffusion strength beyond the window of periodic dynamics, the leading Lyapunov exponent does
not vary significantly with the strength of diffusion with the exception of a small variation for the largest diffusion strengths we explore.
The Lyapunov spectrum and fractal dimension are described analytically as a function of the diffusion strength using the eigenvalues of
the coupling operator. The spatial features of the CLVs are quantified and compared with the eigenvectors of the coupling operator. The
chaotic dynamics are composed entirely of physical modes for all of the conditions we explore. The leading CLV is highly localized and
localization decreases with increasing strength of the spatial coupling. The violation of the dominance of Oseledets splitting indicates that the
entanglement of pairs of CLVs becomes more significant between neighboring CLVs as the strength of diffusion is increased.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210661

Many important problems can be described as spatially extended
systems with complex variations in both space and time. Exam-
ples include the dynamics of the weather and oceans and the tur-
bulent fluid flow that occurs in a pipe. When spatially extended
systems are driven strongly a common feature that emerges is
spatiotemporal chaos where the temporal and spatial variations
are aperiodic. In many cases of interest, the disorder in the sys-
tem is generated locally which is then distributed spatially by
coupling mechanisms such as diffusion. We explore fundamen-
tal questions of spatiotemporal chaos using a nonlinear map as
a source of local disorder. We consider a large number of identi-
cal nonlinear maps that are placed on a one-dimensional lattice
where each map interacts with its nearest-neighbors diffusively
with a coupling strength that can be varied. We study the emer-
gence of spatial order with increased coupling and quantify the
spatiotemporal dynamics by computing the growth or decay of
small perturbations to the dynamics. These perturbations are
described using the covariant Lyapunov vectors which quantify
the exponential growth or decay of the perturbations as well as
their orientation in the tangent space. We find that the strength of
diffusion has a significant effect upon the dynamics and upon the

covariant Lyapunov vectors. We use the covariant Lyapunov vec-
tors to provide new physical insights into the influence of spatial
couplings on complex dynamics in space and time.

I. INTRODUCTION

Many large spatially extended systems with spatial coupling
among the degrees of freedom, that are driven far-from-equilibrium,
exhibit rich dynamics that are often spatiotemporally chaotic.1

Examples include the dynamics of the atmosphere and oceans,2

fluid turbulence,3,4 the dynamics of growing colonies of micro-
organisms,5 the complex spread of epidemics in highly mobile
populations,6 the intricate dynamics of a reacting species in a flow
field,7,8 and the complex patterns that emerge when a shallow layer
of granular material is shaken.9,10

In the theoretical description of many systems, it is fruitful to
consider the chaotic dynamics to be generated locally which is then
connected to different regions through mechanisms of spatial cou-
pling. In many transport problems, important forms of spatial cou-
pling are due to diffusive and convective phenomena. For example,
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the diffusion of momentum in fluid dynamics and of mass in an
advection–reaction–diffusion system. In complex networks, it has
been shown that long-range spatial connections can have a signif-
icant impact on the dynamics.11 Electric and magnetic phenomena
often yield complex and subtle spatial couplings in magnetohydro-
dynamical systems such as solar convection.12 In the laboratory, the
electroconvection of nematic liquid crystals yields striking chaotic
dynamics and patterns due to the interplay of the electrical coupling
with the fluid dynamics.13

Exciting progress has been made in building our physi-
cal understanding of high-dimensional chaotic dynamics using a
dynamical systems approach (cf. Ref. 14–16). In this description,
the dynamics is represented as a trajectory through a high (and
possibly infinite) dimensional state space. This has led to power-
ful ideas such as exact coherent structures17 which have provided
insights into the skeleton or geometry of turbulence in state-
space14,16,18 and to the covariant Lyapunov vectors19 (CLVs) which
provide a rigorous description of the growth or decay of pertur-
bations in the tangent space.19–21 The CLVs have been used to
determine the degree of hyperbolicity of chaotic dynamics,22,23 to
demonstrate a decomposition of the tangent space into physical and
transient modes,22,24 and to quantitatively describe the spatiotempo-
ral dynamics of small perturbations to the nonlinear dynamics of
fluid convection.25,26

However, from a dynamical systems perspective, partial dif-
ferential equations are difficult to use for broad and fundamental
studies because they formally represent an infinite dimensional state
space.27 When partial differential equations are represented numer-
ically using a computational approach, the dimension is no longer
infinite but remains very large. For example, in a fundamental study
tailored to minimally capture experimental conditions for a convect-
ing fluid system26 this dimension can be O(105). However, for more
realistic applications, such as a model of the weather or the com-
bustion of mixed gases in an engine, the dimension would be much
larger making such an approach prohibitive.

We conduct a fundamental study using the CLVs to investigate
the spatiotemporal chaos of a lattice of coupled maps where we can
tailor the local nonlinearity and the specific forms of the spatial cou-
plings that are included. Coupled map lattices (CMLs) have a rich
literature28–30 and have been used to gain new physical insights into
a wide range of fundamental questions. This includes the dynamics
of clouds,31 models of fluid convection,32 studies of nonequilibrium
statistical mechanics,33–35 the role of a conservation law on chaotic
dynamics,36–38 and the presence of hydrodynamic39 or collective40

Lyapunov modes to name a few.
Our intention is not to quantitatively describe a specific phys-

ical system, or application, but to carefully explore the role of a
local nonlinearity in the presence of diffusive coupling for a high-
dimensional system exhibiting spatiotemporal chaos over a broad
range of conditions. The computational accessibility of a one-
dimensional lattice of maps is a key element of our study that
allows us to conduct such a broad and fundamental investigation.
Using a one-dimensional lattice of coupled maps, we have explored
high-dimensional chaotic dynamics for a range of parameters and
for very long times while also computing the entire spectrum of
covariant Lyapunov vectors. The insights from our study can be
used to guide future work on more complex systems such as the

coupled nonlinear partial differential equations at the core of many
important transport phenomena.

The outline of the remainder of the paper is the following. In
Sec. II, we describe our approach for using CMLs to study spa-
tiotemporal chaos with diffusive coupling motivated by equations
typically used to model transport phenomena. We then describe
how the CLVs are computed for the specific case of interest. In
Sec. III, we investigate the chaotic dynamics of a lattice for a wide
range of diffusive coupling strengths. Finally, in Sec. IV, we describe
our conclusions.

II. APPROACH

Our approach is to use a mapping of the form u(n+1) = f
(

u(n)
)

as a local source of chaotic dynamics, where f
(

u(n)
)

is a nonlin-

ear mapping function and u(n) is a real variable specifying the state
at discrete time n. Nonlinear maps have a rich literature41 and
they are particularly attractive for their computational accessibil-
ity. Specifically, we use a centered logistic map, or quadratic map,
given by

u(n+1) = r

[

1

4
−

(

u(n)
)2

]

, (1)

where the real constant r is the control parameter. The quadratic
map exhibits the period-doubling route to chaos41 and, in our study,
we use r = 2.8 which yields a positive Lyapunov exponent for a
single isolated map.

We use a one-dimensional spatially periodic lattice containing
N maps as shown schematically in Fig. 1(a). In our study, we are
interested in high-dimensional chaotic dynamics and use N = 256.
Using our conventions, i = 1, 2, . . . , N, where i is the index repre-

senting the map location on the lattice. u(n)
i is the state of the map

located at lattice i at discrete time n. The spatial periodicity of the

lattice yields u(n)
i = u(n)

i+N for all i and n.

A. Diffusive coupling

The diffusive coupling of the maps, located on the lattice,
is added using a partial differential equation representation as a
guide.42 We start from the one-dimensional transport equation

∂u

∂t
= D

∂2u

∂x2
, (2)

FIG. 1. A schematic of the one-dimensional periodic lattice where i is the index of
the lattice. Two nearest neighbors are indicated by i + 1 and i − 1, for the lattice
shown there are N = 12 sites for clarity of presentation, in our simulations we
use a large lattice with N = 256.
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where D is a diffusion coefficient, x is space, and t is time. Discretiz-
ing u(x, t) in Eq. (2) using a forward Euler time difference and a
center difference for the diffusion term yields

u(n+1)
i − u(n)

i

1t
= D

(

u(n)
i+1 − 2u(n)

i + u(n)
i−1

1x2

)

, (3)

where i represents the spatial discretization and n the temporal
discretization. Looking ahead to a lattice representation, we set
1x = 1t = 1, and rearrange to give

u(n+1)
i = u(n)

i + D
(

u(n)
i+1 − 2u(n)

i + u(n)
i−1

)

. (4)

We next include the generation of local disorder by imposing that
each term on the right hand side of Eq. (4) is first acted upon by the
nonlinear mapping function to yield

u(n+1)
i = f

(

u(n)
i

)

+ D
(

f
(

u(n)
i+1

)

− 2f
(

u(n)
i

)

+ f
(

u(n)
i−1

))

. (5)

Equation (5) indicates that the values of u(n)
i on the right hand side

of Eq. (4) are replaced with their individual values at the next time
step (n + 1) after being acted upon by the mapping function which
is independent of the dynamics of the neighbors. The diffusive cou-
pling is then applied to these updated values. It is typical to use the
convention ε = 2D and to express this as

u(n+1)
i = (1 − ε)f

(

u(n)
i

)

+
ε

2

(

f
(

u(n)
i+1

)

+ f
(

u(n)
i−1

))

, (6)

where ε is the coupling constant representing the strength of the
diffusion. Equation (6) describes a lattice of nonlinear maps that are
diffusively coupled using nearest neighbor coupling.

B. Covariant Lyapunov vectors

In the following, we briefly describe the CLVs19,21 and the
approach43 used for their computation. We provide only the essen-
tial details to describe our computations while focusing on the
influence of the diffusive spatial coupling. CLVs emerge from a
rigorous dynamical systems description,20,44 more details regarding
their application to coupled map lattices using our conventions can
be found in Ref. 38.

It will be useful to represent the lattice dynamics given by
Eq. (6) in a vector form where

Eu(n+1) = Eg(Eu(n)). (7)

In this notation, Eu(n) is an N-dimensional vector where each com-
ponent is the value of the map at that lattice site at time step n.
The components of Eg(Eu(n)) are the right hand side of the dynami-
cal equation evaluated at that lattice site. Eg(Eu(n)) contains the spatial
coupling contributions and depends upon the values of the nearest
neighbor lattice sites. For diffusive spatial coupling, Eg(Eu(n)) is a linear

function of Ef(Eu(n)).

The dynamics of the kth small perturbation, δEuk, to the lattice
values, Eu, are described by the tangent space equations

δEu(n+1)
k = J(n)δEu(n)

k , (8)

where k = 1, 2, . . . , Nλ is the index for the perturbation and Nλ is the
total number of perturbations being considered. The number of per-
turbations determines the number of CLVs that can be calculated.
For CMLs, the maximum number of CLVs that can be calculated
is equal to the dimension of the system N. We will refer to k as the
Lyapunov index and in our study we have used Nλ = N. J(n) is the
N × N Jacobian matrix defined by

J(n) =

(

∂Eg(Eu)

∂Eu

)(n)

. (9)

The kth linear equation describing the perturbation dynamics can
be expressed explicitly as

δu(n+1)
k,i = (1 − ε) f ′

(

u(n)
i

)

δu(n)

k,i +
ε

2
f ′

(

u(n)
i+1

)

δu(n)

k,i+1

+
ε

2
f ′

(

u(n)
i−1

)

δu(n)

k,i−1, (10)

where δuk,i is the value of the kth perturbation at lattice site i and
f ′(u) is the derivative of f(u) given by the right hand side of Eq. (1).
Therefore, the CLV calculation requires the iteration of Eq. (6) with
Nλ instances of Eq. (10).

The essential ideas for computing the CLVs are the following.
First, a lattice with small random initial conditions is iterated for-
ward in time using Eq. (7). The dynamics are iterated for a long time,
n ∼ O(106), to allow for all initial transients to decay. At this time,
the lattice dynamics are continued while also iterating Nλ instances
of Eq. (10).

The perturbation vectors δEu(n)

k can be arranged as the columns
of an Nλ × Nλ matrix. Periodically in time, a QR decomposition45

of this matrix is computed to yield the Nλ × Nλ matrices Q and
R. The columns of Q are the orthonormal Gram–Schmidt vectors
Eq (n)

k and the upper triangular matrix R contains the expansion and
contraction coefficients on the diagonal and the remaining off diag-
onal elements contain information that will be useful in determining
the directions of the CLVs. The natural logarithm of the diago-
nal elements of R yield values of the instantaneous Gram–Schmidt
Lyapunov exponents.

This forward time evolution is continued for a sufficiently long
time while computing and storing the periodically computed Q and
R matrices. At this point, the equations are evolved backwards in

time while the CLVs, Ev(n)

k , are constructed from a linear combination

of the previously computed Gram–Schmidt vectors, Eq (n)

k , contained
in the columns of the stored Q matrices which requires use of the
stored R matrices. The matrix of coefficients used to construct the
CLVs from Eq (n)

k is computed during this backward time evolution
using the combination matrix C which is defined as

C(n−1)
j,i =

[

R(n)
j,i

]−1

C(n)
j,i , (11)

Chaos 34, 103113 (2024); doi: 10.1063/5.0210661 34, 103113-3

Published under an exclusive license by AIP Publishing

 09 O
ctober 2024 10:45:12

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

where R−1 is the inverse of R. We note that it is straightforward
to solve Eq. (11) for the combination matrix using a back substi-
tution approach which does not require the explicit computation of
the inverse of R.

The CLVs are then computed from the combination matrix as

Ev(n)

k =

k
∑

j=1

C(n)

j,k Eq (n)
j , (12)

where each of the Nλ CLVs is a normalized vector with N compo-
nents. We emphasize that the CLVs are not orthogonal with respect
to each other and their direction in the tangent space is physi-
cally relevant. The leading CLV, Ev1, and the leading Gram–Schmidt
vector, Eq1, are identical. However, the remaining vectors for
k = 2, 3, . . . , Nλ are different and it is the CLVs which should be
used to probe the dynamics in the tangent space. It is important to
also note that the finite time Gram–Schmidt Lyapunov exponents
and the finite time covariant Lyapunov exponents (CLEs) are not the
same (for k ≥ 2), although they do agree in the infinite time limit. As
a result, the CLEs should be used when computing diagnostics such
as the violation of the domination of Oseledets splitting (DOS).22

Our general numerical approach is the following. We use the
quadratic map given by Eq. (1) on a periodic lattice with N = 256
lattice sites with the control parameter set to r = 2.8 which yields
chaotic dynamics for a single isolated map. The Lyapunov exponent
for a single isolated map λ0 is given by

λ0 = lim
n→∞

(

1

n

n−1
∑

i=0

ln
∣

∣f ′
(

u(i)
)∣

∣

)

, (13)

and, for r = 2.8, this yields λ0 = 0.6034.
Each simulation starts from small random initial conditions

which is then iterated for n & 106 time steps to allow for initial
transients to decay. At this point, we continue iterating the CML
while also iterating Nλ = 256 perturbation equations. We then iter-
ate the entire Nλ + 1 system of equations forward in time for another
n & 104 time steps while computing a QR decomposition every time
step and storing the Q and R matrices.

We next iterate Eq. (11) backwards in time for n & 4 × 103 to
compute the combination matrix. Once the combination matrix has
converged, the CLVs are assembled from the stored Gram-Schmidt
vectors using Eq. (12). We typically compute the CLVs and CLEs
for at least 103 time steps which we then use in our analysis. The
CLEs are computed by iterating forward in time each of the CLVs
by a single time step and computing their growth or decay, this is
repeated for all of the time steps for which the Nλ CLVs have been
calculated. We have conducted many tests using different periods of
time for the different steps and have found that our results are not
sensitive to these changes.

III. RESULTS

A. Spatiotemporal dynamics of the lattice

We are interested in exploring high-dimensional chaotic
dynamics for large spatially extended systems which requires a large
value of N. In order to select a sufficiently large value of N, while tak-
ing care to not use a value of N that is unnecessarily large, we choose

FIG. 2. The variation of the fractal dimension Dλ with the lattice size N for
ε = 0.7. The solid line is a linear curve fit through the results, Dλ = 0.7777
+ 0.5301N, where Dλ ∝ N indicates that the dynamics are extensively chaotic
for N & 64 with a dimension density of δλ ≈ 1/2.

its value such that the dynamics are well within the extensively
chaotic regime. Extensive chaos occurs when the fractal dimen-
sion (or Kaplan–Yorke dimension)46,47 is proportional to the system
size.48 In our case of a one-dimensional lattice of coupled maps,
extensive chaos occurs when Dλ ∝ N. As a representative example,
in Fig. 2, we show the variation of Dλ with N for the case where
ε = 0.7 and r = 2.8. The dashed line is a linear curve fit through the
data points, where Dλ = 0.7777 + 0.5301N which clearly indicates
extensive chaos for N & 64.

These results also indicate that the dimension density
δλ = Dλ/N of the dynamics is δλ ≈ 1/2 suggesting that the addition
of approximately two lattice sites results is required to add a single
chaotic degree of freedom to the dynamics while holding all other
parameters constant. For N < 64, the variation of the dynamics with
N is a complicated mixture of periodic and chaotic dynamics and
we have not explored this range further. With these results in mind,
we have chosen N = 256 for all of our simulations in order for the
chaotic dynamics to be in the extensive regime.

We first investigate the dynamics of a diffusively coupled lattice
as a function of the diffusion strength ε over the range of 0 ≤ ε ≤ 1.
For ε = 0, this is simply a lattice of N uncoupled maps which yields
a Lyapunov exponent spectrum of λk = λ0 for all k. As ε increases
beyond zero, spatial structure emerges as the dynamics at the dif-
ferent lattice sites become coupled to yield rich spatiotemporal
dynamics.

Figure 3 shows space–time plots of the dynamics for a small
value of the diffusion strength, (a) ε = 0.05, and in (b) for a larger
value ε = 0.7. The abscissa is the lattice index i, the ordinate is the
time step n, and the color contours are of the state of the maps at
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FIG. 3. Space–time plots of u
(n)

i . 200 time steps are shown after 106 iterations beginning from random initial conditions. (a) ε = 0.05, (b) ε = 0.7.

each lattice site u(n)
i . Each lattice began from the same random initial

conditions and was iterated for 106 time steps, the dynamics shown
are the 200 time steps after this initial warm up.

Figures 3(a) and 3(b) indicate complex spatiotemporal dynam-
ics with larger spatial structures for the case of stronger diffusion.
As a measure of the spatial structure, we have computed the two-
point spatial correlation length ξ0 for these dynamics. We estimate
ξ0 as the first zero crossing of the spatial correlation function.
The value of the zero crossing is determined using a linear inter-
polation at the location of the first change of sign in the spatial
correlation. ξ0 is then estimated as this value rounded to the near-
est integer in order to provide a result in the more meaningful
lattice spacing units. Using this approach yields ξ0 ≈ 2 lattice spac-
ings for ε = 0.05 and ξ0 ≈ 5 lattice spacings for ε = 0.7 which

quantifies the growth of spatial structures with increasing diffusion
strength.

The dynamics for ε = 0.7 are shown in additional detail in
Fig. 4 to highlight the spatial structure in (a) and the temporal varia-
tion in (b). Figure 4(a) shows the values of maps of the entire lattice
at a single instant of time. In this representation, the spatial struc-
ture of the dynamics aligns with the estimate of a correlation length
of approximately 5 lattice spacings. Figure 4(b) illustrates the varia-
tion in time of the state of a single map at a single lattice site, the site
chosen is i = 64, and the dynamics are shown for 200 time steps. In
Figs. 4(a) and 4(b), the solid lines are only included as a guide for
viewing the dynamics. Figure 4 also indicates that the average of the
dynamics over the lattice is in general positive, this is reflected in
Fig. 3 by the overall red-orange color of the space–time plots.

FIG. 4. The spatial structure and time variation of the lattice dynamics (ε = 0.7). (a) The state of the entire lattice at one instant of time where n = 2 × 106. (b) The time
variation of lattice site i = 64 for 200 time steps. The sequence of time steps in (b) begins from the state shown in (a).
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FIG. 5. The variation of the leading Lyapunov exponent λ1 with diffusion
strength ε. The gray shaded region indicates a window of periodic dynamics.

B. Lyapunov spectra

The leading Lyapunov exponent λ1 is an important measure of
the lattice dynamics and a positive value is the defining characteris-
tic of chaos. The variation of λ1 with ε is shown in Fig. 5. For small
values of diffusion, ε . 0.13, λ1 decays rapidly toward zero with
increasing ε to yield a window of periodic dynamics indicated by the
gray shaded region. The window of periodicity is 0.14 . ε . 0.18.
For ε & 0.19, the dynamics are again chaotic for the entire range we
have calculated. There is a large plateau for 0.19 . ε . 0.8 where the
leading Lyapunov exponent remains nearly constant at λ1 ≈ 0.35.
For large diffusion strengths, ε & 0.8, there is a small dip in the value
of λ1 with the minimum occurring at ε = 0.9.

Overall, Fig. 5 indicates that a small amount of diffusion has a
significant effect on the chaotic dynamics resulting in a decreasing
value of the leading Lyapunov exponent. However, for larger values
of ε, after the window of periodic dynamics, increased diffusion has
a negligible effect on λ1. These four regions of: chaos at small values
of diffusion; a window of periodicity; a region of chaos with a nearly
constant λ1; and a small region which contains a local minimum of
λ1 align with the four regions found by Shabunin49 for a lattice of dif-
fusively coupled logistic maps that were analyzed using the mutual
coherence length.

We are interested in the chaotic dynamics that occur for the
larger values of ε which is anticipated to be more representative of
dissipative spatially extended systems. We have not probed further
the transitions between periodic and chaotic dynamics that occur for
the smaller values of ε. Rather, we focus on the larger diffusion cases
where spatial coupling is more significant.

The entire spectrum of the Lyapunov exponents is shown in
Fig. 6 over the range of diffusion strengths 0.2 ≤ ε ≤ 1.0. The diffu-
sion strength has a significant effect upon λk with a large Lyapunov
index k. In Fig. 6(a) the spectra are shown for ε ≤ 0.5. The horizon-
tal dashed line is the Lyapunov spectrum for the case where ε = 0,
corresponding to a lattice without spatial coupling, yielding λk = λ0

for all k.
For small values of k, λk are not strongly affected by the increas-

ing ε which is in agreement with the small variations of λ1 with ε

shown in Fig. 5. For larger values of k, an increasing ε results in a
significant reduction in λk. The effect is most pronounced for the
negative Lyapunov exponents, λk < 0, which become more negative
with increasing ε.

This general trend is in agreement with the expectation that dif-
fusive coupling tends to damp out small scale dynamics. However,
for larger values of ε, the large positive λk (k . 10) and the large
negative λk (k & 246) remain relatively unaffected while the por-
tion of the Lyapunov spectrum that lies between these two extremes

FIG. 6. The variation of the Lyapunov exponent spectrum λk as a function of diffusion strength ε. (a) λk decreases with increasing ε for ε . 0.5. The horizontal dashed
line shows λk = λ0 for the case of uncoupled maps (ε = 0). (b) For ε & 0.5, the region of large negative λk increases with increasing values of ε. Spectra are shown in
increments of 1ε = 0.1, unlabeled curves are in order between the bounding values.
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increases significantly. This results in a lifting of the Lyapunov
spectrum over this region.

Insight into these variations of λk can be obtained by examining
the eigenvalues of the diffusive coupling operator as discussed by
Takeuchi et al.22 For the case of nearest neighbor diffusive coupling,
the spatial coupling is linear. As a result, Eg(Eu(n)) of Eq. (7) is a linear

function of Ef(Eu(n)) and the lattice dynamics can be expressed as

Eu(n+1) = Ac
Ef
(

Eu(n)
)

, (14)

where Ac is an N × N coupling matrix with constant coefficients
representing the diffusive coupling that is independent of the par-
ticular nonlinear mapping function that is used. In our notation,
Ef(Eu(n)) is the vector representation of the nonlinear mapping func-
tion f applied at each lattice site and discrete time n. The coupling
matrix has N real eigenvalues 3k for k = 1, 2, . . . , N which have been
arranged such that |3k| is in descending order. For simplicity of the
discussion, we will assume that N is an even number although this is
not required. An estimate of the influence of the diffusive coupling
on the Lyapunov exponents can be obtained22 as λk = λ0 + ln |3k|
for k = 1, 2, . . . , Nλ. Using this description, excellent agreement was
found when comparing with numerical results for λk of diffusively
coupled tent maps for a case of large diffusion strength.22

In this description, the shape of the Lyapunov spectrum is
determined entirely by the variation of the eigenvalues 3k where the
leading Lyapunov exponent is λ1 = λ0 since the leading eigenvalue
is 31 = 1. However, as shown in Fig. 5, for the range of parameters
we are exploring, the value of λ1 is reduced by the presence of diffu-
sive coupling. In order to account for the effect that this reduction
of λ1 has on the Lyapunov spectrum, we will estimate λk as

λk = λ1 + ln |3k|, (15)

where λ1 must be calculated numerically for the diffusively coupled
lattice.

For nearest neighbor diffusive coupling with periodic boundary
conditions, analytical expressions for the eigenvalues 3k and eigen-

vectors Eξk of the circulant coupling matrix Ac can be found using
Fourier methods.22 The eigenvalues can be expressed as

3k′ = 1 − ε

[

1 − cos

(

2π(k′ − 1)

N

)]

, (16)

for k′ = 1, 2, . . . , N. The index k′ in Eq. (16) indicates that the eigen-
values, when represented this way, are not sorted by decreasing
magnitude as reflected by the cosine dependence with respect to k′.
It is clear from the symmetry of Eq. (16) that the eigenvalues, when
sorted, will occur in pairs except for the single values at the maxi-
mum (k′ = 1) and minimum (k′ = N/2 + 1). It will be useful to first
discuss the variation of the unsorted eigenvalues with respect to ε.

The minimum value of the unsorted eigenvalues given by
Eq. (16) at k′ = N/2 + 1 decreases linearly with increasing ε for
ε ≥ 0. The minimum eigenvalue becomes zero at ε = 1/2. For
ε > 1/2, the minimum becomes negative and there will be two zero
crossings, with the location of the two zero crossings moving away
in both directions from k′ = N/2 + 1 with increasing ε. This results
in an increasing number of negative eigenvalues located at indices
between the two zero crossings. Since k is an integer there will not
necessarily be an eigenvalue with a precisely vanishing value for a

finite system for ε > 1/2. The variation with diffusion strength of
the eigenvalue index for the first eigenvalue whose magnitude is
closest to zero, k′

0(ε), is given by

k′
0(ε) =

{

1 +
N

2π
cos−1

(

1 −
1

ε

)}

, (17)

for ε ≥ 1/2. The {·} notation is meant to indicate that it is nec-
essary to round to the nearest integer to get the final result. The
second minimum is at an index value located symmetrically about
N/2 whose value is N + 2 − k′

0(ε) (these two eigenvalues will form a
pair when sorted by magnitude). These trends are shown in Fig. 7(a)
for several values of ε.

However, it is the absolute value of the eigenvalues that is
required in Eq. (15) to estimate Lyapunov spectrum. When con-
sidering the spectrum of |3k′ |, the location of the eigenvalues with
values closest to zero bound the region where 3k′ is negative for
ε > 1/2 which results in the emergence of two cusp structures. This
is shown in Fig. 7(b).

The cusps occur at the indices where the magnitude of
the eigenvalues is minimal and this location moves away from
k′ = N/2 + 1 with increasing values of ε for ε ≥ 1/2. In the region
between the cusps, centered at k′ = N/2 + 1, the magnitude of
the eigenvalues increases with increasing ε with a maximum value
occurring at k′ = N/2 + 1. Two of these maxima are evident in
Fig. 7(b) where the smaller maximum (green) is for ε = 0.6 and the
larger maxima (blue) is for ε = 0.8. It is this increase in eigenvalue
magnitude, between the cusps, that is ultimately responsible for the
interesting behavior of the Lyapunov spectrum previously described
for large negative Lyapunov exponents shown in Fig. 6.

Now consider sorting the eigenvalues in order of descend-
ing magnitude to yield the spectrum |3k| for k = 1, 2, . . . , N. For
0 ≤ ε < 1/2, the tail of the Lyapunov spectrum decreases linearly.
At ε = 1/2, the presence of a vanishing eigenvalue results in the
divergence of the largest negative Lyapunov exponent, λN → −∞,
as indicated by Eq. (15). This trend is evident in Fig. 6(a).

The growing region of increasing 3k′ , between the cusps of the
unsorted eigenvalues, results in increasing values of the large nega-
tive Lyapunov exponents. This causes a kink in the sorted eigenvalue
spectrum and therefore a kink in the predicted Lyapunov spectrum.

The kink in the predicted Lyapunov spectrum occurs at an
index value of k∗(ε) where

k∗(ε) =

{

1 +
N

π
cos−1

(

1 +
2(ε − 1)

ε

)}

, (18)

for ε > 1/2 where, in this instance, {·} indicates rounding down to
the nearest integer. k∗ is the index of the Lyapunov exponent where
the kink occurs, this is a single Lyapunov exponent which does not
occur in a pair. As a result of the kink, the magnitude of the Lya-
punov exponents behind the kink, for k > k∗, increase in magnitude
for larger values of ε while still going to large negative values for
k = N. This increase in the tail of the Lyapunov exponent spectrum
is evident in our numerical results in Fig. 6(b).

These ideas can be made more clear by a direct comparison
of the theoretical estimation with the computed Lyapunov spectra
from our simulations for several values of ε. The comparison of the
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FIG. 7. The unsorted eigenvalues 3k′ of the diffusive coupling matrix Ac for ε = 0.2 (red), ε = 0.6 (green), and ε = 0.8 (blue). (a) The eigenvalues given by Eq. (16).
The minimum value crosses zero and becomes negative for increasing values of ε where ε = 0.2 (upper), ε = 0.6 (middle), ε = 0.8 (lower). (b) The variation of the absolute
value of the eigenvalues. For3k′ < 0, which occurs for ε < 1/2, two cusps emerge with a maximum occurring between the cusps. The magnitude of the maximum increases
with increasing ε.

Lyapunov spectra for these conditions is shown in Fig. 8. The the-
oretical predictions determined by Eq. (15) are shown as the blue
squares and the Lyapunov spectra are computed numerically from
the lattice dynamics are shown by the red circles.

For small diffusion strength where ε < 1/2, as shown in
Fig. 8(a) for ε = 0.2, the theory over predicts the values of λk. In
fact, the theory predicts that all of the Lyapunov exponents will
be positive by underestimating the role of dissipation in the small
dissipation limit.

However, the theory does capture the rapid decrease of the Lya-
punov exponents toward large negative values at large Lyapunov
index k with increasing values of ε as shown in Figs. 8(b) and 8(c).
The kink in the Lyapunov spectrum caused by the zero crossing
the eigenvalues is now evident in the analytical results shown in

Figs. 8(b) and 8(c) by the blue squares. For Fig. 8(b), the kink occurs
at an index value of k∗ = 156, as given by Eq. (18). In Fig. 8(c) the
agreement between theory and the numerics is very good where
k∗ = 86. However, as ε increases from ε = 0.8 toward ε = 1 the
deviation again grows with the theoretical prediction capturing the
general shape and trend of the spectra while also over predicting its
magnitude. The usefulness of the estimate provided by Eq. (15) is
not only in its quantitative comparison but in its ability to capture
the overall trend and shape of the spectra.

The fractal dimension of the dynamics Dλ can be calculated
from the Lyapunov spectra using the Kaplan–Yorke formula,

Dλ = j +

∑j

k=1 λk

|λj+1|
, (19)

FIG. 8. Comparison of the Lyapunov spectra with the theoretical prediction of Eq. (15) for a range of diffusion strengths: (a) ε = 0.2, (b) ε = 0.6, (c) ε = 0.8 where theory
(blue squares) and numerical simulation (red circles).
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FIG. 9. Variation of the fractal dimension Dλ with the strength of diffusion ε.
Circles are from numerical simulations. The dashed line is the theoretical pre-
diction using the Lyapunov spectrum of Eq. (15) in Eq. (19). Dλ does not exist for
low values of ε where the sum of the entire Lyapunov spectrum is positive.

where j is the largest index such that the summation term is
positive.46 In essence, Dλ is the number of Lyapunov exponents that
must be summed together to equal zero which corresponds to the
ball of initial conditions in the tangent space that would neither grow
nor shrink under the dynamics. As a result of the dependence on the
Lyapunov exponents, the shape of the spectrum affects the value of
Dλ and the spatial coupling will affect the fractal dimension.

The variation of Dλ with ε is shown in Fig. 9. The numerical
results are shown by the red circles and the theoretical prediction is
given by the dashed line. For small values of ε the sum of the entire
spectrum of λk is positive and, in this case, the fractal dimension
does not exist. Overall, the increasing diffusion strength results in
a decreasing value of Dλ with a minimum value in our numerical
simulations of Dλ = 137.2 at ε = 0.7 which then increases to a final
value of Dλ = 217.8 at ε = 1. The theoretical prediction, shown by
the dashed line, captures the general trend while over predicting the
magnitude.

Finally, we discuss the spatial structure of the eigenvectors
Eξk of the coupling matrix Ac where k is the eigenvector index,
k = 1, 2, . . . , N, and each eigenvector has N components. We are

assuming that Eξk have been ordered with the index k that corre-
sponds to the sorted eigenvalue spectrum with decreasing 3k with

increasing k. In this ordering, the leading eigenvector Eξ1 is the con-
stant vector with a value of unity for each component j where
j = 1, 2, . . . N. For k ≥ 2, the eigenvectors are the Fourier modes

Eξk = cos
(

π jk

N

)

and Eξk+1 = sin
(

π jk

N

)

for k = 2, 4, 6, . . . , N.

C. Covariant Lyapunov vectors

Space–time plots of the magnitude of several CLVs,
∣

∣Ev(n)

k

∣

∣, are
shown in Fig. 10 for a diffusion strength of ε = 0.8. Each panel
shows results for a different CLV as given by its Lyapunov index
k. The horizontal axis is the component i of the kth CLV and the
vertical axis is discrete time n. The contours are of the magnitude of

the CLV with white representing small values and black representing
large values as indicated by the color bar.

Figure 10(a) shows the spatiotemporal dynamics of the lead-
ing CLV where k = 1. Localized structures of larger magnitude are
evident. Similar findings are shown in Fig. 10(b) for k = 10 which
is also associated with a positive Lyapunov exponent. However, in
this case the localized structure is more spatially spread out. These
trends continue for k = 100 which is shown in Fig. 10(c) which
corresponds with a negative Lyapunov exponent. The final CLV,
k = 256, is shown in Fig. 10(d) where the Lyapunov exponent has a
large negative value and the localized structure is no longer present.

In order to quantify the spatial structure of the CLVs, we have

computed the inverse participation ratio Y(k)
2 which is defined as

Y(k)
2 =

〈

N
∑

i=1

∣

∣

∣
v(n)

k,i

∣

∣

∣

4

〉

, (20)

where the angle brackets indicate an average over time.22,50 The sum-

mation is over the components i of the kth CLV. A large value of Y(k)
2

indicates significant localization and a small value indicates delocal-

ization. The CLVs, Ev(n)

k , are normalized vectors with unit magnitude.

The maximum possible value of Y(k)
2 is unity corresponding to a

CLV with a single component with a value of one and the remaining

components all zero. The smallest possible value of Y(k)
2 is N−1 cor-

responding to a vector where every component has a value of N−1/2.

It is important to highlight that Y(k)
2 does not capture the presence

of spatial structures, but rather, the presence of significant local-
ized values as quantified by large vector components of a normalized
vector.

The variation of Y(k)
2 is shown in Fig. 11 as a function of the

diffusion strength. Figure 11(a) shows the variation of the local-
ization for the leading CLV. The data symbols represent the time
averaged values and the error bars are the standard deviation about
the mean. The overall trend is a decrease in the localization of Ev1 for
0.2 . ε . 0.8 which is then followed by a slight increase.

Figure 11(b) shows the variation of the localization for the
entire spectrum of CLVs over a range of diffusion strengths. Over
the entire range of diffusion strengths we have explored, the gen-
eral trend is that the localization decreases gradually with k until
large k at which point the localization increases rapidly to reach
its maximum value for the k = Nλ. These trends are illustrated in
Fig. 10 for the case of ε = 0.8. The highly delocalized state is shown
in Fig. 10(d). For the results shown in Fig. 11 all of the modes are
physical modes. The local maxima or bump feature in the localiza-
tion results for the ε = 0.6 case shown as green triangles in Fig. 11(b)
can also be traced back the variation of the eigenvalues of the linear
diffusion operator and the generation of the cusp feature shown in
Fig. 8(b).

Further insight into the spatial structure of the CLVs is pro-
vided by the spatial power spectrum. The spatial power spectrum
is shown in Fig. 12(a) for ε = 0.8 where j is the Lyapunov index
and k is the integer wavenumber. The color contours are of the
long-time average of the magnitude of the discrete Fourier trans-
form 〈|v̂j|

2〉. The hat notation indicates a discrete Fourier transform
and the angle brackets indicate the time average. The color con-
tours use a log10 scale and the time average is over a total time of
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FIG. 10. Spacetime plots of the magnitude of the CLVs, |Ev(n)

k |, for ε = 0.8 where k is the Lyapunov index, i is the component index for a particular CLV, and n is the time
step. (a) k = 1 (λ1 = 0.360), (b) k = 10 (λ10 = 0.332), (c) k = 100 (λ100 = −0.137), (d) k = 256 (λ256 = −4.886).

FIG. 11. The variation of the inverse participation ratio of the CLVs, Y
(k)

2 , with the strength of diffusion ε. (a) The variation of the inverse participation ratio of the leading CLV

(k = 1). Data symbols are time averaged values and error bars are the standard deviation about the mean. (b) Variation of Y
(k)

2 for the spectrum of CLVs for several values
of ε.
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FIG. 12. Spatial variation of the CLVs and eigenvectors for ε = 0.8. (a) Spatial power spectrum of the CLVs, Evj , where j is the Lyapunov index and k is the integer wavenumber.
Color contours indicate the time average of the magnitude of the discrete Fourier transform of the individual CLVs, 〈|v̂j |

2〉, using a log10 scale where angle brackets indicate
the time average. (b) Detailed view of four spatial power spectra (labeled, color symbols) that are normalized to have a maximum value of unity, 〈|v̂j |

2〉∗. Vertical dashed
lines indicate the wavenumber of the eigenvector corresponding to the CLV with data symbols of same color. For the jth CLV shown, the wavenumber of the corresponding
eigenvector is j/2 when the eigenvectors are sorted by decreasing eigenvalue. The black vertical line (dashed) indicates the index of the unsorted eigenvalue whosemagnitude
is closest to zero corresponding to the horizontal blue stripe in (a) occurring at k0 = 75 [see the blue curve of Fig. 7(a)].

5 × 104 time units. For the leading CLVs, j . 50, there is a signifi-
cant magnitude at smaller wavenumbers, k . 50, which decreases to
negligible values for k & 60. The horizontal blue stripe that occurs at
k0 = 75 corresponds with the index of the first unsorted eigenvalue
whose magnitude is closest to zero. This can be seen as the first zero
crossing of the blue curve in Fig. 7(a) whose value of k0 is given by
Eq. (17).

The ability to predict the spectrum of Lyapunov exponents λj

using only the eigenvalues 3j of the diffusive coupling operator,
given by Eq. (15) and shown in Fig. 8, suggests a connection between

the CLVs, Evj, and the eigenvectors Eξj. One indicator of this connec-
tion is the correspondence of the horizontal blue stripe of the spatial
power spectrum of the CLVs shown in Fig. 12(a) with the index of
the first zero eigenvalue of the diffusive coupling operator given by

Eq. (17). Since the eigenvectors Eξj are Fourier modes, their spec-
tral magnitude is localized at the single wavenumber of the Fourier
mode. For the case of ε = 0.8 shown in Fig. 12, this indicates that

eigenvector Eξk0 , with corresponding eigenvalue 3k0 ≈ 0, would nei-
ther grow nor shrink by the action of the diffusive coupling operator.
Figure 12(a) illustrates that, in fact, all of the CLVs do not grow or
shrink at this value of k0. This suggests that since the eigenvector at
this wavenumber is unchanging the CLVs are not changing as well
at this wavenumber.

We explore this further in Fig. 12(b) which shows a close-up
view of the normalized spatial power spectra of four different CLVs
as indicated by the labels. The spatial power spectra are normalized
such that their maximum value is unity in order to focus upon their
relative variations with the wavenumber k. For example, the green
symbols show the variation of 〈|v̂100|

2〉∗ with k which corresponds
to a vertical slice through Fig. 12(a) at j = 100 and normalizing the
maximum value to unity. For this case, the magnitude of the spatial

power spectrum increases then reaches a minimum value at k0 indi-
cated by the vertical black dashed line [corresponding to the blue
stripe in (a)] and then increases for larger wavenumbers. It is clear
that the CLVs are not composed of only a few Fourier modes and
that they all have a minimum value at k0.

However, there is a strong contribution to the CLVs from
the corresponding eigenvector. For example, the blue symbols of
Fig. 12(b) show the variation of the spatial power spectrum for the
40th CLV. The eigenvector pair with indices (j, j + 1) for even j are

given by Eξj and Eξj+1. When the eigenvectors are sorted by decreas-
ing value of the eigenvalues, each eigenvector of this pair has a
wavenumber of j/2. Therefore, the corresponding eigenvector for
the 40th CLV would have an integer wavenumber of 20. This is indi-
cated by the vertical blue dashed line. It is evident that the spatial
power spectrum of the CLV has a significant magnitude at this value
of the wavenumber, suggesting the importance of this eigenvector.
Similar results are shown by the green and orange vertical dashed
lines for the 100th and 200th CLVs, respectively.

It has been shown for a number of important systems, includ-
ing CMLs, ODEs, and PDEs, that it is possible to decompose
the tangent space into physical and transient modes using the
CLVs.22,24,51 The physical modes are entangled, as indicated fre-
quent near tangencies with one another in the tangent space, and
are responsible for the dynamics of the system. In fact, the num-
ber of physical modes have been suggested as an estimate of the

dimension of the inertial manifold.22,24,52 The transient modes are
hyperbolically isolated from all other modes, including other tran-
sient modes, and represent rapidly decaying, or extra, degrees of
freedom. The decomposition of the tangent space can be quite com-
plex, see, for example, Ref. 51, and its study remains an active area
of research.
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One insightful way to explore this decomposition of the tangent
space is by computing the violation of the domination of Oseledets
splitting (DOS).22,53–56 The infinite-time Lyapunov exponents are
guaranteed to be in descending order λ1 ≥ λ2 ≥ · · · However, over
finite intervals of time, violations of this strict ordering may occur.
It has been shown that such violations in the strict ordering, over
finite times, occur when the CLVs are nearly tangent.54,55 During
these near tangencies, a small perturbation to the dynamics in the
direction of the nearly tangent CLVs would affect both CLVs, this
interaction is often described as the entanglement of the CLVs. In
contrast, a perturbation to the dynamics in the direction of one
of the hyperbolically isolated modes would affect only that rapidly
decaying hyperbolically isolated transient mode.

The violation of the DOS can be calculated by following the
approach of Takeuchi et al.22 The kth finite time Lyapunov expo-

nent λ̃τ
k is defined as the value of the Lyapunov exponent determined

over the interval of time from t to t + τ where τ is a constant. The
difference between the finite time Lyapunov exponents with indices
k1 and k2 can then be expressed as

1λτ
k1 ,k2

= λ̃k1(t) − λ̃k2(t). (21)

For each time interval τ , the presence or absence of a DOS viola-
tion is computed using 1λτ

k1 ,k2
. The violation of the DOS, ντ

k1 ,k2
, is

then computed as the fraction of the time where 1λτ
k1 ,k2

< 0 which

indicates that a violation has occurred. This can be written as

ντ
k1 ,k2

=
〈

1 − H
[

1λτ
k1 ,k2

(t)
]〉

, (22)

where H is the unit step function and the angle brackets indicate
an average over time. For example, when a violation has occurred
1λτ

k1 ,k2
< 0 for that interval of time which yields a value of zero from

the evaluation of the step function to give a value of unity for the

violation of the DOS. The final value of ντ
k1 ,k2

is simply the time aver-

age of these values computed for every time interval and for every
possible pair of Lyapunov exponents.

For a physical mode, the violation of DOS should approach
zero asymptotically with increasing values of τ . However, for a tran-
sient mode there is a finite value of τ where the violations vanish.
Since the variation of ντ

k1 ,k2
with respect to τ is not known ana-

lytically, it can be difficult to determine the presence of transient
modes.

As a representative example, in Fig. 13(a) we show the variation
of the violation of DOS with respect to τ for ε = 0.7, where we have
computed the CLVs for 105 time units. The violations are computed
over a large range of τ where 2 ≤ τ ≤ 200 and results are shown
using a semi-logarithmic scale for the six pairs of CLVs indicated
by the labels. The black dashed lines represent exponential curve fits
through the data. It is clear that the violations are significant over
the entire range shown for first and second CLVs shown by the red
symbols. For the vector pairs for increasing k, the decay in the vio-
lations is much faster with increasing τ yet they are all described
well by exponential decay. From this variation alone, the results sug-
gest that ντ

k1 ,k2
can be described by exponential decay suggesting that

these CLVs are physical modes.
More insight can be gained by quantifying the statistics of the

angle θ between pairs of CLVs. Figure 13(a) shows the variation of
the probability density function of the angle ρv(θ) with θ for several
pairs of CLVs. The statistics of the angle between the first and sec-
ond CLV are shown by the red curve where there is a peak near an
angle of π/2 and also near an angle of zero (or π). The finite and
significant probability of an angle θ near zero (or π) indicates the
frequent occurrence of near tangencies between these vectors pro-
viding further support that these CLVs are physical modes. For the
pair (10, 11), shown in blue, there is again a significant probability
of near tangencies. The pairs (100,101), (250,251), and (255,256) are

FIG. 13. The absence of transient modes for ε = 0.7. (a) The variation of the violation of DOS, ντ , with τ for several different representative pairs of CLVs indicated in
parentheses. The dashed lines are exponential curve fits through the data. (b) The probability density function ρv(θ) of the angle θ between CLV pairs. Pairs (1, 2) and
(10, 11) are labeled and are given by the red and blue curves, respectively. Also shown are the unlabeled pairs (100, 101), (250, 251), (255, 256) in green, orange, and
black, respectively. For panels (a) and (b), the CLVs were calculated for 105 time units.
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FIG. 14. Variation of the violation of the domination of Oseledets splitting, ντ
k1 ,k2

, with the strength of diffusion ε, see Eq. (22). k1 and k2 are Lyapunov indices, the color

contours are the log10 of the violation. Each panel uses the same color scale. (a) ε = 0.2, (b) ε = 0.4, (c) ε = 0.8. The amount of violation, or the amount of entanglement
between the CLVs, reduces significantly with increasing ε over the range shown.

shown by the green, orange, and black curves respectively. All three
pairs have a significant probability of near tangencies. As a result, all
of the vectors shown are physical modes.

The variation of the violation of the DOS for all possible pairs
of CLVs with the strength of diffusion is shown in Fig. 14 where we
have used τ = 5. In light of the exponential decay of ντ

k1 ,k2
with τ

for all CLV pairs shown in Fig. 13(a), it is evident that the general
structure of this image will not vary significantly with the choice of
τ . The axes are the Lyapunov indices k1 and k2 of the two CLVs and
the gray scale represents the magnitude of ντ

k1 ,k2
using a logarith-

mic scale where black indicates pure violations and white indicates
the absence of violations. All panels use the color bar scale that is
included in (a).

The three panels of Fig. 14 show the DOS violations for:
(a) small diffusion strength, ε = 0.2; (b) intermediate diffusion
strength, ε = 0.4; and (c) for large diffusion strength ε = 0.8. The
main diagonal in each panel represents the special case where
k1 = k2 which yields pure violation and therefore there is a black
diagonal line running from the bottom left to the upper right. Addi-
tionally, the violation of the DOS plots are symmetric about the main
diagonal since each computed value is a pairwise comparison.

Figure 14(a) indicates that for small values of the diffusion
strength there are significant violations. When only a small amount
of diffusion is present the fluctuations in the values of the finite time
Lyapunov exponents are large which yields significant deviations in
their strict ordering. In the limit of no diffusion the lattice is sim-
ply N uncoupled maps which would yield nearly pure violations for
every pair of Lyapunov exponents.

As the diffusion increases the amount of violations of the DOS
decreases significantly as shown in Fig. 14(b). In this case there
are now a significant number of CLV pairs that do not show any
violation as indicated by the regions of white space. This trend
is continued for the large diffusion strength case that is shown
in Fig. 14(c). As the diffusion strength increases the violations of
the DOS are concentrated such that each CLV exhibits violations
with respect to a smaller number of its nearest neighbors. The
number of neighboring CLVs in which these violations occur can

be determined as the vertical distance from the diagonal over which
there are some violation indicated in gray.

For all of the results shown in Fig. 14, every CLV exhibits a
violation with at least another CLV. In this case, the tangent space
has not decomposed into physical and transient modes. As a result,
every degree of freedom is contributing to the overall dynamics.

A close inspection of Fig. 14(c) indicates that the amount
of violations a CLV exhibits decreases with increasing Lyapunov
index k. The leading CLVs, indicated by small k1, have violations
with a larger number of neighbors that the CLVs with large Lya-
punov index. The general shape of the distribution of the viola-
tions is very similar to what has been found for Rayleigh-Bénard
convection25 where spatial couplings due to diffusion and convec-
tion are significant.

FIG. 15. The variation of the entanglement β of the CLVs with diffusion
strength ε.
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As a measure of how the CLVs are entangled with their neigh-
bors we have computed the degree of entanglement38 β . The degree
of entanglement is the fraction of the distinct pairs of CLVs, given by
k1 and k2 where k1 6= k2, which have a magnitude of the violation of
ντ

k1 ,k2
≥ 0.001. This corresponds to CLVs pairs which exhibit a vio-

lation of the DOS for 0.1% of the time or more for the total duration
of time we have explored.

The variation of β with ε is shown in Fig. 15. The amount of
entanglement decreases significantly until a moderate amount of
diffusive coupling is present ε & 0.5. For larger value of diffusion
β slowly increases. This trend does not vary significantly with the
choice of the threshold value of 0.1%

IV. CONCLUSION

We have investigated the role of diffusive coupling on the spa-
tiotemporal chaos of a large one-dimensional lattice of quadratic
maps. Our intention was to perform a fundamental study of the
chaotic dynamics of a large system with locally generated chaos in
the presence of a diffusive spatial coupling. The parameter space
describing the dynamics of our chosen system of CMLs is vast and
it is not our intention to provide an exhaustive description of the
rich chaotic dynamics over this parameter space. Rather, we have
carefully identified a range of parameters where the lattice dynam-
ics is high dimensional, extensively chaotic, diffusively coupled, and
computationally accessible. For these parameters we have conducted
a broad study on the role of diffusion in spatiotemporal chaos where
we have computed the full spectrum of CLVs.

The presence of diffusive coupling has a significant effect upon
the chaotic dynamics which we quantified in detail using the covari-
ant Lyapunov vectors. The shape of the Lyapunov spectrum, and
therefore the magnitude of the fractal dimension, is strongly affected
by diffusive coupling. The variation of the Lyapunov spectrum and
fractal dimension with the strength of the diffusive coupling can be
described analytically using only the eigenvalues of the diffusive cou-
pling operator and knowledge of the Lyapunov exponent of a single
isolated map. It is important to highlight that the analytical descrip-
tion of the shape of the Lyapunov spectrum is independent of the
particular map and only requires knowledge of the coupling opera-
tor. We also quantified the connection between the spatial features
of the CLVs and the eigenvectors of the coupling operator.

Our investigation suggests that the diffusive coupling, for our
lattices of quadratic maps, tends to organize the CLVs into a smaller
bundle of entangled neighboring Lyapunov vectors where a neigh-
boring Lyapunov vector is one whose Lyapunov index k is close
by. For the system we explored, this entangled bundle of CLVs
occurs for all of the CLVs (k = 1, 2, . . . , N) and we did not find
a decomposition of the tangent space into physical and transient
modes.

In fact, in the course of our investigation we performed an
exploratory parameter sweep in terms of r and ε and found the
absence of the tangent space decomposition for all of the parame-
ter values we tested. This suggests that the lack of a decomposition is
quite robust for this system and we speculate that this may be a result
of the particular quadratic nonlinearity that we explored. However,
it remains possible that the tangent space decomposition is present

in some portion of the parameter space we did not probe. Of partic-
ular interest would be to explore the chaotic dynamics of the lattice
for parameters where the fractal dimension is significantly smaller
than the value of Dλ ≈ 128 we have found in our study. Overall we
do not have a firm understanding of the absence of the tangent space
decomposition for the system we have explored and the general
question of what is required by a dynamical system for the tangent
space splitting to occur is an interesting direction to pursue further.
This should be contrasted with the tangent space decomposition that
has been found for diffusively coupled tent maps.22,38

A similar bundle of entangled CLVs has been found for chaotic
Rayleigh-Bénard convection in a periodic box domain.25 However,
in this case only 140 CLVs were computed due to computational
expense and, as a result, it is not clear if perhaps a decomposition
of the tangent space occurs at a higher Lyapunov index. The simi-
larity between our CML results discussed here and the results from
Rayleigh-Bénard convection may also be a reflection of the signifi-
cant diffusive transport mechanisms of momentum and heat in fluid
convection and its effect upon the CLVs. Elucidating this possible
connection further would be an interesting avenue of future study.

The approach we have used is quite general. It would be pos-
sible to explore different forms of nonlinearity, different types of
spatial coupling, and higher dimensional lattices of maps to gain
new insights into how these features affect the complex dynam-
ics and to learn how these are reflected in the CLV description of
the dynamics. The computational accessibility of lattices of maps
remains a significant advantage allowing in depth and fundamental
studies over a range of conditions using currently available com-
puting and data storage resources which could otherwise quickly
become prohibitive.
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