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Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing
costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand.
Increasing data availability and continuing advancements in predictive analytics provide an opportunity to
mitigate demand uncertainty by utilizing demand forecasts. In this work, we study a two-stage prediction-
driven staffing framework where the prediction models are integrated with the base (made weeks in advance)
and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the
ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty
versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward
to interpret and implement. Lastly, we develop a unified framework that combines parameter estimation,
real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED
demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%-16% ($2

M-$3 M) while guaranteeing timely access to care.
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1. Introduction

Emergency department (ED) crowding is a significant problem in many countries around the world,
leading to adverse effects on patient outcomes, patient satisfaction, and staff morale (Bernstein
et al.|2009)). Nurses provide a substantial portion of patient care and are often a bottleneck resource
in the ED (Green|2010)). Inadequate nurse staffing is found as a major contributor to the significant
increase in the waiting time experienced by patients and the percentage of patients who leave
without being seen (LWBS) (Ramsey et al.2018)). In addition, nursing costs comprise a substantial
fraction of hospital operating budgets. Therefore, developing effective nurse staffing policies to
ensure timely access to care is of great importance.

Optimally balancing the ED nurse staffing levels to ensure good quality of service versus increas-
ing staffing costs can be extremely challenging. One of the major complications comes from the high
level of uncertainty in patient demand and the relatively static nature of nurse staffing decisions.
Poisson processes have been standard assumptions in modeling the arrival processes in service

systems due to their analytical tractability. Their validity has also been statistically verified in



some healthcare settings (Kim and Whitt|2014)). However, several recent empirical studies suggest
the presence of a higher level of uncertainty (dispersion) relative to standard Poisson processes
in real ED arrival data (Maman|2009, |Armony et al. 2015)), and in other service systems such as
call centers (Brown et al. 2005, Steckley et al. 2009, Zhang et al. 2014)). Random events such as
weather conditions or severity of the flu strain in circulation can cause a high level of fluctuation in
ED demand. On the other hand, ED staffing decisions are often made well ahead of time and the
staffing level is difficult (or very expensive) to change in real time (Chan et al.[|2021). In particular,
it is common for EDs to divide a day into multiple nursing shifts, e.g., two 12-hour nursing shifts,
with the day shift lasting from 7am to 7pm, and the night shift from 7pm to 7am the next day. As
a typical practice, a “base” staffing level, which consists of the majority of the staff, is determined
several weeks in advance, when the actual demand is largely unknown. This allows the nurses to
plan their working schedule ahead of time. As the time approaches to several hours before the
shift, if the ED manager senses a surge in patient volume, he/she can add an extra level of “surge”
staffing by calling in overtime or agency nurses at a higher compensation (e.g., overtime salary).
The nurse staffing level is then held more or less at a constant level throughout the shift. The
surge staffing provides some flexibility to cope with the demand surge, but there currently lack any
systematic guidelines on how to optimally utilize this partial flexibility.

Meanwhile, in recent years, increasing data availability and continuing development in statisti-
cal learning tools provide an emerging opportunity to mitigate demand uncertainty by building
advanced demand forecast models. There have been considerable efforts devoted to developing
prediction models for ED patient volume and flow (see, e.g., Marcilio et al.| (2013]), Calegari et al.
(2016)), [Chang et al.| (2018]), Whitt and Zhang (2019), Bertsimas et al.| (2021))). However, despite
the vast amount of literature on demand forecasts, how to effectively incorporate the predictive
information to improve ED nurse staffing decisions is less studied. In particular, while advanced
prediction models that utilize real-time information generate more accurate short-term forecast
of the ED demand in comparison to using traditional historical averages (Schweigler et al.[2009)),
it remains unclear how the increased prediction accuracy can be translated to improved system
performance (e.g., reduction in patient waiting time and LWBS rate) and/or reduced staffing costs.
In this paper, we study prediction-driven surge planning. The key tradeoff in this two-stage staffing
problem is the long-term staffing commitments which have a lower costs but face a higher level
of demand uncertainty (larger prediction error) versus the short-term staffing commitments which

have a higher cost but face a lower level of demand uncertainty (smaller prediction error).



To capture the highly uncertain demand faced by the ED, we assume that patients arrive to
the ED according to a doubly stochastic Poisson process as in Maman (2009)), |Bassamboo et al.
(2010), [Kogaga et al. (2015)). The arrival rate for a particular type of shift is a random variable
that takes the form of

A=+ )X, (1)

where A is the mean arrival rate, « € (0,1) captures the order of arrival-rate uncertainty, and X is a
random variable with zero mean. At the base-stage, our prediction model is only able to capture the
long-run average pattern that defines the type of the shift, e.g., day of the week effect and day versus
night effect. Thus, we assume the base-stage prediction model predicts E[A] = A\ accurately. At the
surge stage, as we gather more real-time information, we can build more sophisticated prediction
models. Motivated by value of real-time information identified in Hu et al.| (2021]), we assume in
our main model that the surge-stage prediction model is able to predict the realized arrival rate
£ =X+ \*x where x is a particular realization of X for the specific shift. Conditional on ¢, the ED
operates as a Markovian multi-server queue with Poisson arrival process, exponentially distributed
service times, and exponentially distributed patience times. Note that even with the surge-stage
predictive information, we still incur a certain level of uncertainty due to the randomness in the
interarrival times between patients, patients’ service requirements, and their patience times (time
before abandoning).

The ED manager makes two staffing decisions for each shift: a base staffing level and a surge
staffing level. The base staffing decision is based on the base prediction, i.e., A, and knowledge of
the arrival rate distribution, i.e., the distribution of A*X. The surge staffing decision is based on
the surge prediction, i.e., £. The surge staff are assumed to be more costly than the base staff.
Our objective is to minimize the sum of the staffing cost and the performance cost which consists
of the costs incurred by patients’ waiting and patients’ LWBS. Our main contributions can be
summarized as:

The benefit of surge staffing. To quantify the benefit of having the more expensive surge
staff, we compare the two-stage stochastic optimization problem to a single-stage benchmark where
only base staffing is allowed. We quantify the cost saving of the optimal two-stage staffing rule
over the optimal single-stage policy. Our result shows that the magnitude of cost-saving depends
on the order of arrival-rate uncertainty captured by « in . In particular, the cost saving is
o(V\) if a <1/2, O(VA) if a=1/2, and ©(\*) if a > 1/2. As we will explain in more details,
the three regimes of cost saving are divided by the interplay between the order of arrival-rate

uncertainty, which is O(A*), and stochastic variability in patient arrival and services, which is



O(V/)). The cost-saving quantification suggests that surge staffing is most beneficial when the
arrival-rate uncertainty dominates the system stochasticity, i.e., « > 1/2. In this regime, the larger
the arrival-rate uncertainty, the more cost savings we gain from the flexibility of surge staffing.

Near-optimal two-stage staffing rule. Focusing on the regime where the arrival-rate uncer-
tainty dominates the system stochasticity, i.e., & > 1/2, we propose a near-optimal two-stage
staffing rule that is easy to interpret and implement. In particular, at the base stage, the base
staffing level is set to meet the mean demand, together with a hedging that is of the same order as
the arrival-rate uncertainty. After the random arrival rate is realized at the surge stage, the surge
staffing level is brought up to meet the realized offered load, together with a hedging against the
stochastic variability catered to the realized arrival rate. The parameters of the staffing rule, which
dictate the amount of hedging, are the optimal solutions to a two-stage newsvendor problem, which
can be viewed as a stochastic-fluid approximation to the optimal staffing problem, and the optimal
solutions to a square-root staffing problem based on a diffusion approximation of the queue length
process. We prove that our proposed policy has an optimality gap of o(ﬁ) compared to the exact
two-stage optimum. We also extend the two-stage staffing rule to allow more general prediction
errors at the surge stage. In particular, we consider the case where we are not able to predict the
realized arrival rate £ exactly. Instead, we may incur different levels of prediction error. We quantify
how prediction error affect the staffing rule and its corresponding performance.

Practical insights and ED implementation. To facilitate real-world implementation, we
propose an integrated framework to which includes 1) parameter estimation, 2) a two-stage pre-
diction model, and 3) a two-stage prediction-driven staffing rule. Using data from the ED in New
York Presbyterian Columbia University Medical Center (NYP CUMC), we estimate its arrival-rate
uncertainty to be a = 0.769. We then build a two-stage prediction model to inform the staffing pol-
icy. At the base stage, a simple linear regression model that incorporates the day of the week and
day v.s. night effect works well. For the surge stage, we implement a recently developed prediction
model in|Hu et al.| (2021)), which utilizes concurrent information such as weather, patient comorbid-
ity profile, ED congestion level, etc. Lastly, we extend the two-stage staffing rule developed based
on the parsimonious queueing model to accommodate realistic patient-flow characteristics in our
collaborating ED. We extend our two-stage staffing rule to allow adjustment for the transient-shift
effect. This includes a base-stage adjustment which accounts for the difference in average queue
length between day and night shifts, and a surge-stage adjustment which takes the concurrent
queue length information into account. With these adjustments, our policy achieves significant

cost savines for the simulated ED_For examnle._combared to the newsvendor solution (Bassamboo



et al. 2010), our policy achieves a reduction of 16% ($3 M) in the annual staffing cost while the

average waiting time is kept below 30 minutes.

Remark 1 In this paper, we focus on the nurse staffing problem under the assumption that nurses
are the bottleneck resource. This is because nurses are the primary staff who execute care plans
during patients’ length of stay in the ED. In addition, burnout and high turnover rates among ED
nurses have been widely reported by healthcare systems (Phillips et al.||2022, |Susila and Laksmi
2022). These problems further worsened during and after the COVID-19 pandemic. That said, our
staffing framework can be applied to plan other resources, such as physicians and technicians, as

long as the two-stage planning with the corresponding information and cost tradeoff is relevant.

1.1. Related Literature

Classic square-root staffing rule. The standard stream of capacity planning problems for service
operations focuses on systems where model parameters are exactly known. In this setting, the
square-root staffing principle dates back to Erlang (1917)) in the study of automatic telephone
exchanges. The principle is more recently explained based on an infinite-server queue heuristic
in Kolesar and Green| (1998). In particular, it is shown that the stochastic fluctuation of the
system is of square root order of the offered load. Thus, the square-root staffing can be viewed as
an uncertainty hedging against system stochasticity. [Halfin and Whitt| (1981)) establish a formal
diffusion limit for M /M /N queues under the square-root staffing as the arrival rate goes to infinity.
Borst et al.| (2004)) further establishes that the square-root staffing rule optimally balances the
staffing cost and the service quality. For this reason, the many-server asymptotic scaling under
the square root staffing is often referred to as the quality-and-efficiency driven (QED) regime. A
few extensions have been considered to incorporate features not captured by the M /M /N model.
Garnett et al.| (2002) generalize the diffusion limit under the square-root staffing to the M /M /N +
M queue where customers can abandon the system if waiting for too long under the exponentially
distributed patience time; more general patience time distributions are considered in Mandelbaum
and Zeltyn| (2009)). Jennings et al.| (1996]) and Liu and Whitt| (2012)) extend the square-root staffing
rule to systems with time-varying arrival rates. Our work extends this stream of literature by
allowing the arrival rate to be random and considering a two-stage staffing problem in two time
scales. Relevantly, after the random arrival rate is realized at the surge stage, our proposed two-
stage QED staffing rule brings the total staffing level up to the square-root staffing prescription if

the base-stage capacity is inadequate. In addition, similar to the literature, our theoretical analysis



takes an asymptotic approach, where we send the mean arrival rate A to infinity and study how
the optimal staffing level scales with .

Managing queues with parameter uncertainty. Motivated by the high level of demand uncer-
tainty in many service systems, more sophisticated models for arrival processes that account for
characteristics not captured by standard Poisson processes have been proposed in the literature.
Whitt (1999)) is one of the first to study a random arrival rate for call centers and its implications
on staffing decisions. |Chen and Henderson (2001)), |Avramidis et al. (2004)), |[Brown et al. (2005)
and [Steckley et al.| (2009)) provide empirical evidence of arrival-rate uncertainty and explore its
modeling implications. Maman| (2009) finds empirical evidence of high arrival-rate uncertainty in
an Israeli ED. Our work is closely related to works that study staffing decisions in the presence
of arrival-rate uncertainty. Whitt| (2006)) investigates a fluid-based staffing prescription catered to
arrival-rate uncertainty and absenteeism of servers. Harrison and Zeevi (2005) and Bassamboo
et al.| (2010]) propose a newsvendor-based solution method whose effectiveness is pronounced when
the order of arrival-rate uncertainty is larger than stochastic variability. Their proposed staffing
rule is set to meet the mean demand plus a hedging against the arrival-rate uncertainty. More
recently, moving from single-stage to two-stage decisions, Kogaga et al. (2015) formulate a joint
staffing and co-sourcing problem, where the staffing decision is made before the random arrival-rate
is realized, and the co-sourcing decision is made in real time after the arrival-rate uncertainty is
resolved. Our two-stage optimization problem has similar decision epochs to those in |Kocaga et al.
(2015)), i.e., before and after the random demand is realized. However, different from Kocaga et al.
(2015)), we consider a two-stage staffing problem and allow the arrival-rate uncertainty to be of a
larger magnitude than stochastic variability. The solution method we use to solve the two-stage
stochastic optimization problem leverages the stochastic fluid approximation introduced in [Harri-
son and Zeevi (2005), but we considered a more refined version of this approximation, which takes
the system stochasticity into account at the surge stage.

Predictive analytics and data-driven methods in capacity sizing. Several works take a data-driven
approach for capacity sizing with demand uncertainty. Zheng et al.| (2018]) and |Sun and Liu (2021)
propose statistical methods to estimate the arrival-rate distribution. See also Ibrahim et al.| (2016])
for a comprehensive review of literature on modeling and forecasting for call center arrivals. |Bas-
samboo and Zeevi (2009)) develop a data-driven approach that yields staffing prescriptions that
are asymptotically optimal, as both the system scale and data size increase to infinity. There is a
large literature on studying demand uncertainty in inventory systems without queueing dynamics

(see for example (Chen et al.|2007, Perakis and Roels| 2008, Levi et al.|2015, Ban and Rudin/[2019,



Boada-Collado et al. 2020)). Motivated by the operations of EDs, our work takes into account
the arrival-rate distribution at the base stage, the demand visibility at the surge stage, and the
stochasticity of queueing dynamics.

Two-stage stochastic optimization problem. Our work is related to the mathematical program-
ming literature on two-stage stochastic optimization problems for staffing and resource planning;
see representative works from Kim and Mehrotra (2015), Bodur and Luedtke (2017), Rath and
Rajaram| (2022). However, our work has important differences from the existing literature and adds
new insights by taking an analytical approach that allows us to 1) develop simple, explicit, and
interpretable staffing policies, 2) provide more managerial insights by quantifying cost savings from
the surge staffing in different demand uncertainty regimes and the effects of prediction errors on
system performance, and 3) capturing detailed queueing dynamics.

ED capacity planning Our work relates to the growing literature on using queueing theory to
address capacity planning problems in the ED. |Green et al.| (2006) model the ED as an M, /M/s
queue and use a Lag SIPP (stationary independent period by period) approach to gain insights
into the staffing prescriptions. [Yankovic and Green (2011) develop a finite source queueing model
with two types of resources —nurses and beds—to study the interplay between bed occupancy
level and demand for nursing. |Véricourt and Jennings (2011) study nurse staffing using a closed
queueing model, where patients alternate between being needy of service and stable without service
need. Similar patient reentrant behavior is studied by Yom-Tov and Mandelbaum| (2014) using
an Erlang-R model in time-varying environments. |Chan et al. (2021) use a multiclass queue to
study the dynamic assignment of nurses to different areas of the ED at the beginning of each shift.
Batt et al. (2019) empirically investigate the impact of discrete work shifts on service rates and
patient handoffs (i.e., passing patients in treatment to the next care provider at the end of a shift).
Compared to the literature, we focus on studying the effect of demand uncertainty on ED staffing,
where we investigate how demand prediction can be utilized to make better staffing decisions.

Dual sourcing problem in supply chain management. Though our work is motivated by the staffing
problem for service systems, a similar core tradeoff between cost and responsiveness arises in dual
sourcing inventory systems, in which one supplier is cheaper but slower, while the other is more
costly but faster. In this setting, a tailored base-surge (TBS) sourcing policy is found to be effective
in both continuous and periodic review models (Allon and Van Mieghem|2010, |Janakiraman et al.
2015). |Xin and Goldberg| (2018)) formally prove that the TBS policy is asymptotically optimal as the
lead time of the cheaper supplier grows without bound. Different from the dual sourcing problem,

our theoretical framework further incorporates queueing dynamics into the optimization problem.



We quantify how the cost savings of our proposed policy increase with the order of arrival-rate
uncertainty.

1.2. Organization

The rest of the paper is organized as follows. In Section [2] we introduce the model and formulate the
two-stage staffing problem. In Section [3| we quantify the cost savings from surge staffing. In Section
we propose near-optimal two-stage staffing rules that are easy to interpret and implement. The
optimality gap between the proposed policy and the exact two-stage optimum is also derived. The
performance of the two-stage staffing rule is further illustrated through numerical experiments in
Section [, where we compare the performance of our proposed staffing rule to several benchmark
policies. In Section[6] we extend the two-stage staffing rule to accommodate more general prediction
errors at the surge stage. Lastly, in Section [, we develop a holistic framework to implement the
prediction-driven staffing policy in the actual ED, which includes parameter estimation, demand
forecast, and capacity sizing that takes the transient shift effect into account. We conclude in

Section [§] All the proofs appear in the appendix.
1.3. Notation

As we take an asymptotic approach to performance analysis, we define some notations following
the convention in the literature (see, e.g., Chapter 3 in |Cormen et al| (2022)) For a sequence of
positive real numbers {a" : n € R, } and a sequence of real numbers {b" : n € R}, we write (i)
b" =o(a™) if |b™/a"| — 0 as n — oo, (ii) b™ = O(a™) if |b"/a™| is bounded from above, and (iii)
b" = ©(a™) if [b™/a™| is bounded from above and from below by a strictly positive real number,
ie., if m <|b"/a™| < M for some 0 <m < M < oo for all n > 0. For a sequence of random variables
{X":n €R,} and a sequence of positive real numbers {a" :n € R, }, we write (i) X" = o(a") if
|X"/a™| — 0 as n — oo with probability 1, and (ii) X" = oy;(a”) if X™ =o0(a™) and there exists
some random variable Y with E[Y] < co such that | X™/a"| <Y for all n > 0.

2. The Model

To gain insights into the potential benefits of two-stage staffing, we start with a stylized model
of the ED using a parsimonious multi-server queueing system where patients arrive according
to a doubly stochastic Poisson process. The arrival rate for a shift A is a random variable with
cumulative distribution function F) and mean E[A] = A. Conditional on A, the arrival process is a
homogeneous Poisson process with that rate. Patients are served on a first-come first-served (FCF'S)
basis, and wait in an infinite capacity buffer when all servers (nurses) are busy. While waiting for

service, a delayed patient abandons the system (LWBS) after an exponentially distributed amount



of time with mean 1/+. Patients have service requirements that are independently and identically
distributed (i.i.d.) exponential random variables with mean 1/u. Hence, conditioned on A, the
ED operates as an M/M/N + M queue (also known as the Erlang-A queue; see, e.g., Zeltyn and
Mandelbaum)| (2005)), where the staffing level N is the decision variable.

The ED manager makes two decisions: an upfront base staffing level and a surge staffing level,
both of which are non-negative integers. At the base stage, which is often a few weeks/months before
the start of the actual shift, the prediction model can only predict the average arrival rate level, A.
We assume the arrival rate distribution is known. Thus, the base staffing level N; := N;(F)) € N
is made before the arrival rate is realized, based on knowledge of the arrival rate distribution, Fj,
only. At the surge stage, as we gather more real-time information, the prediction model can predict
the realized arrival rate ¢ quite accurately. Thus, the surge staffing level Ny(Ny,¢) € N is made
based on the base staffing level, Ni, and the realized arrival rate, £. We do not allow Ny(NNy,?)
to take negative values, because in most EDs, the manager cannot make a last-minute decision to
reduce the staffing level, e.g., by canceling shifts for the nurses who are staffed at the base stage.
We denote the joint staffing decision as 7 := (N1, No(Ni,£)), and use II to denote the set of all
feasible staffing rules. Note that in this parsimonious model, the prediction at the base stage is
captured by the expected arrival rate, A :=E[A], and the prediction errors are captured by the
distribution of A — A. To start, we assume perfect prediction at the surge stage. We will relax this
assumption in Section [6] to explicitly incorporate prediction errors at the surge stage.

There are costs associated with patients’ waiting, patients’ LWBS (abandonments), and staffing.
In particular, a holding cost is incurred at a rate of h per patient per unit time spent waiting.
Each abandoning patient incurs a fixed cost of a. The staffing cost is ¢; per base server per unit
time, and ¢, per surge server per unit time. Let Q(n,f) denote the steady-state queue length of an
M /M /n+ M queue with arrival rate £. Then, we consider the following two-stage cost minimization
problem.

min C, = min {01N1 +E [NminA) {caN2(N1,A) + (h+ay) E[Q(N: + Ng(Nl,A),A)\A]}} } . (2

el Ny 2(N1,

For an M /M /n+ M queue with arrival rate £, yYE[Q(n,{)] is the steady-state abandonment rate.
Thus, ayE[Q(n,f)] captures the abandonment cost while hE [Q(n,)] captures the holding cost
in steady state. Note that there are two expectations in (2)). The inner expectation is taken with
respect to the stochasticity in the steady-state queue length, i.e., randomness in Q(n,A) condi-
tional on A = /£. The outer expectation is taken with respect to the arrival-rate uncertainty, i.e.,

randomness in A.
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2.1. Parameter Regime

It makes intuitive sense that if the waiting and abandonment costs are excessively lower than the
staffing costs, there is no motivation to staff any server. In addition, if the base staffing cost is
higher than the surge staffing cost, i.e., ¢; > ¢y, it is cost-effective to staff all servers at the surge

stage when the arrival-rate uncertainty is resolved. This intuition is formalized in Proposition

Proposition 1 For the optimal solution (N;, Ny (N;,A)) to problem (2):
(1) If min{ci,co} > hu/v+ap, then Ny =0 and Ny (N;,A)=0.
(II) If min{cy, hp/v+ap} > co, then Ny =0.
(III) If co > hu/vy+ap > ¢y, then Ny(Ny,A) =0 for any base staffing level N;.

Based on Proposition [1}, the cost parameters can be divided into four regimes as summarized in

Table [

Table 1 Optimal staffing combination for different cost parameters

Cost, parameters Staffing decisions
min{cy,ca} > hu/y+au No staffing
min {cy, hp/v+ ap} > co | Complete surge staffing
co > hu/v+ap>c Complete base staffing
hu/vy+ap > ca > ¢y Base + surge staffing

In this paper, we are interested in the non-trivial regime that provides motivation to staff both

base and surge servers.

Assumption 1 The cost rates satisfy hu/vy+ ap > co > cy.

2.2. Arrival-Rate Uncertainty

Solving explicitly is challenging due to the two sources of randomness. In addition,
E[Q(N1+ No(N1,¢),¢)] has no closed-form expression. To gain analytical insights, we take an
asymptotic approach by sending the mean arrival rate A to infinity and study how the optimal
staffing rule scales with .

To facilitate the theoretical development, we assume that the random arrival rate takes the form
A= +X\pt"?, (3)

for some constant o € (0,1) and X is a random variable with E[|X|] < oo !. Note that because

E[A] = X, E[X] =0. Let Fx denote the cumulative distribution function (cdf) of X. We assume that

! This form of arrival-rate uncertainty, i.e., is equivalent to the one introduced in ; we factor out '~ to
facilitate technical derivations.
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X has a proper probability density function (pdf). The second term in captures the fluctuation
of the arrival rate around its mean. It is further decomposed into two parts: X and \*u'~2, where
the second part captures the order of fluctuation in relation to A. We refer to the exponent « as
the order of arrival-rate uncertainty. A random arrival rate of the form is proposed in [Maman
(2009). Similar arrival rate formula has been used in Bassamboo et al.| (2010)), Kogaga et al.| (2015)).

In what follows, we use the superscript A to denote quantities that scale with A. To simplify

notations, we sometimes suppress the superscript when it is clear from the context.

3. When is Surge Staffing Beneficial?

As mentioned in Section implementing the two-stage staffing requires knowing the realized
arrival rate with high precision. In practice, this often involves investing in sophisticated prediction
models, which can be costly to develop and maintain. In addition, even though surge staffing is
paid at a higher rate, it may not be a desirable working mode for nurses. Therefore, it is important
to know how much cost saving we can gain by having the flexibility of surge staffing.

Analogous to the two-stage optimization problem , we define the single-stage optimal staffing

problem as

min C; = min {e, Ny +E[(h +a7) Q(N1, )]} (4)

mell

Note that the single-stage problem is equivalent to the two-stage staffing problem by imposing
the surge staffing level to be No(N;,A) =0 for any base staffing level N;.

For the sequence of systems indexed by A, we use Cﬁ* to denote the optimal total cost for the
single-stage optimization problem . Correspondingly, we use CQA’* to denote the optimal total

cost for the two-stage optimization problem .

Theorem 1 (benefit of surge staffing) Given the order of uncertainty o, the difference in opti-
mal costs for the single-stage versus two-stage optimization problem can be summarized as:
(1) If a<1/2, then C}, —C3, = o(VA).
(1) If a=1/2, then C}, —C3, =O(VN).
(III) If a>1/2, then C}, —C3, =O(\).

We next provide some intuition behind Theorem [I| We first note that when v = p, for a given
realization of the arrival rate, i.e., A =/, the steady-state number of patients in the system follows
a Poisson distribution with mean ¢/pu. Tts standard deviation is equal to \/¢/u= O(v/)), which is

known as the system stochasticity and cannot be resolved by the prediction model. On the other
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hand, the arrival-rate uncertainty characterized by is of order A®. This parameter uncertainty
can be resolved by the prediction model at the surge stage. When « < 1/2, the system stochasticity
dominates the parameter uncertainty. The gain by conducting two-stage staffing is restricted to
o(v/A). The cost savings are O(v/)) if the parameter uncertainty and system stochasticity are of
the same order, i.e., &« =1/2. When « > 1/2, the parameter uncertainty dominates the system
stochasticity. This is when we gain the most cost savings from the flexibility offered by surge
staffing. In this regime, the larger the order of arrival-rate uncertainty is, the larger magnitude of
cost savings we gain from surge staffing.

4. Near-Optimal Surge Staffing Policy

As derived in Section |3 when the order of arrival-rate uncertainty is strictly larger than that of
system stochasticity, the cost saving of implementing the two-stage staffing optimally is significant,
i.e., ©(A*). We thus consider this regime as the most meaningful scenario to execute the two-stage
staffing, and assume throughout this section that o > 1/2. We next derive solutions to the two-stage
staffing problem.

Due to the convoluted system dynamics, solving the two-stage stochastic optimization prob-
lem explicitly is hard. Part of the difficulty lies in characterizing the expected steady-state
queue length which depends intricately on the staffing decisions. While the problem can be solved
numerically, e.g., via simulation optimization, limited insights about the optimal policy can be
generated. Hence, we take the approach of solving more tractable approximations of the two-stage
optimization problem . These approximations can be viewed as asymptotic limits of under
appropriate scalings as the system scale A grows to infinity. Thus, policies derived based on them
work really well for relatively large systems and provide insights into how the optimal policy scales

with A. We also discuss small system adaptions in Section |4.3

4.1. Stochastic-Fluid Based Solution

Since the parameter uncertainty is of a larger order than system stochasticity, we start by approxi-
mating the objective function in via suppressing the system stochasticity and focusing solely on
the uncertainty in the arrival rate. This relaxation is known as the stochastic-fluid approximation
(Harrison and Zeevi 2005, Bassamboo et al.2010)). In particular, conditional on the arrival rate A,
we approximate the steady-state queue length of the M /M /n+ M queue via (A —npu)/7, which
is the equilibrium queue length of a deterministic fluid model with the same arrival rate, service
rate, and abandonment rate.

Before introducing the stochastic-fluid approximation for the two-stage optimization problem

(2), we illustrate the idea by reviewing the single-stage newsvendor policy (denoted by u; yv)
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proposed by Bassamboo et al. (2010)). Given the staffing level N;, the steady-state abandonment
rate is approximately (A — uN;) and the steady state queue length is approximately (A — Nyu)/7.
Then, the single-stage optimization problem can be approximated by

n}viln{clNﬁ(hu/wau)E [(A/M—Nl)ﬂ}. (5)

Note that is a typical newsvendor problem, with unit capacity cost c;, unit sales price hyu/vy+apu,

random demand A/p, and capacity decision N;. The optimal solution is given by

Ny=FL' (9
' A/”<hu/v+au>’

where F)/, :=1— Fy,, is the complementary cumulative distribution function (ccdf) of A/u, and

Fy /1 is its inverse. Equivalently, we can write
123

A — (&1 A “
2o ) ) 6
o N \hp/y+ap) \p (©)

where Fy is the ccdf of X. We remark that for all staffing rules discussed in the paper, we do not
explicitly restrict IV; and N, to satisfy the integer constraints. Since rounding becomes immaterial
when we consider the asymptotic performance of the policy as A — 0o, we assume without loss of
generality that each staffing prescription is rounded up to its nearest integer.

Let C? vy denote the expected total cost defined in under the one-stage newsvendor solution.
Recall that C{\,* is the optimal total cost for the single-stage optimization problem . Theorem 1
in Bassamboo et al.| (2010) establishes that

Clav —Cl.=0(\™?). (7)

Note that when a > 1/2, O(A'=%) = o(v/)\). Thus, the single-stage newsvendor solution works
remarkably well in the single-stage optimal staffing problem.

We next extend the single-stage newsvendor solution to the two-stage newsvendor solution where
surge staffing is allowed after we observed the realized arrival rate. The stochastic-fluid approxi-
mation of the two-stage optimization problem takes the form

min {c1N1 +E [ min {CQNQ(NDA) + (h/y+a) (A — u(N, + NQ(Nl,A))V}] } . ®)

N2(Ny,A)

Given N;, Assumption [I|implies that the optimal surge-stage staffing level in is given by

No(Ny, A) = (A/p—Ny)™.
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Hence, the optimal base-stage staffing level is the optimal solution to
H}Vin{clNl +oE [(A/M—Nl)ﬂ } 9)
1

Similar to , @D is a newsvendor problem, with unit capacity cost c;, unit sales price ¢y, random

demand A/pu, and capacity decision N;. The optimal solution is given by
Ni=Fy) (erfes) =M p+ Fy' (e /es) (A )"
Let 8* := F5' (¢1/c2). We propose the following two-stage newsvendor solution denoted by uy yv -

Definition 1 (two-stage newsvendor solution) For a € (1/2,1), the parameters of the two-
stage newsvendor solution us nyy are set as follows:

1. At the base stage, the base-stage staffing level is
Ni:= A+ B (A p)* +o((A/1)?)-
2. At the surge stage, the surge-stage staffing level is
No(Ny, A) = (X = 5°)" (A1) +our (A p)®)-

In the two-stage newsvendor solution, the base-stage capacity is equal to the average offered
load, A/u, together with a hedging term that is in the same order as the arrival-rate uncertainty.
The additional o((A/p)*) term can be set as zero or some number that is of a smaller order
than (A/p)®. As we will show in Theorem [2| this term will not affect the asymptotic performance
of the staffing rule. After the arrival rate is realized at the surge stage, the capacity is brought
up to the realized offered load if X > g*, with some flexibility of order oy ((A/p)*); see Section
for a formal definition of oy(-). Note that the surge staffing is of a smaller order than the
base staffing. Since X is a continuous random variable, by the definition of 8*, the probability
of assigning nonzero surge staffing is equal to ¢;/cy. Moreover, it follows from Assumption [1| that
c1/(hu/y + ap) < ¢1/ce. Thus, in comparison to the single-stage newsvendor solution described in
@, the two-stage newsvendor solution prescribes less capacity at the base stage. This is intuitive,
because with the flexibility to respond to surges in demand by raising the staffing level at the surge
stage, the two-stage newsvendor solution can be less aggressive in assigning base-stage uncertainty
hedging.

Note that Definition 1] defines a family of two-stage solutions, where some flexibility of order

o((A/p)®) in the base stage staffing and flexibility of order oy ((A/p)®) in the surge stage staffing are
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allowed. For ease of exposition, we refer to this family of staffing rules as the two-stage newsvendor
solution, and let C3 v denote the expected total cost defined in (2)) under the two-stage newsvendor

solution. Recall that CQA, . is the optimal total cost for the two-stage optimization problem .

Theorem 2 (optimality gap of ua nv) For o€ (1/2,1), the two-stage newsvendor solution in

Definition (1| has C} yyy — C3, = o(A%).

Since o >1/2, Theorem [1|implies that C? vy, — C3, = ©(A*). This, together with Theorem [2 and
the gap in (7)), suggests that C7 vy, —C3 vy = O(A%).

We provide numerical demonstrations of Theorem [2|in Section

Remark 2 Qur development so far has assumed a single pool of nurses, the ability to recruit surge
nurses as needed, and all nurses show up (i.e. no nurse no-shows). The model can be generalized
to relax these assumptions in a relatively straightforward manner. First, it is possible to distinguish
between base and surge nurses by assuming different service rates. Second, we can incorporate a
capacity cap on surge nurses and create an on-call pool with a small amount of monetary compen-
sation. That is, a compensation ¢y € R, per nurse per shift is paid at the base stage to staff a total
of N2 € N nurses in the on-call pool. Then at the surge stage, the ED manager calls Ny (Ny < NY)
nurses from the on-call pool to serve as surge staff in the upcoming shift. If called, these nurses will
be paid at the surge rate. In this setting, Ny and N3 are determined at the base stage, while Ny is
determined at the surge stage. Third, we can consider nurse no-shows by modeling the number of
nurses who show up to work as a Bernoulli random variable. In all cases mentioned above, similar
lines of analysis can be followed to develop a “generalized” two-stage newsvendor solution. More

detailed discussions are relegated to Appendiz [H|

4.2. Refinement for The Two-Stage Newsvendor Solution

We have established in Theorem [2| that the two-stage newsvendor solution achieves an optimality
gap of o(A*) compared to the exact two-stage optimum. In this section, we propose a refinement
for the two-stage newsvendor solution which further reduces the optimality gap to 0(\5\). The
improvement is achieved by characterizing the oy;(A%) term in the two-stage newsvendor solution
more carefully.

To provide intuition for the refinement, we shall ignore the o(A*) and oy (A*) terms for now, i.e.,
setting them to zero, in the two-stage newsvendor solution. The key observation is that depending

on the realized arrival rate, the two-stage newsvendor solution will result in the system being either
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underloaded (capacity exceeding offered load), or critically loaded (capacity equal to offered load).

In particular, for any realized arrival rate £ = X+ zA*p' =<, if z < 3%, then
Ny + Na(Ny, ) =L/ p= (8" —z) (\/)" = O(A%).

In this case, the steady-state average queue length is "negligibly” small, i.e., o(v/\) (more details
is provide in Appendix see in the proof of Lemma [3) In the case where x > 3*, the total
staffing level is equal to ¢/u, under which the system operates in the QED regime (Mandelbaum
and Zeltyn|2009)). We can then add a square-root hedging against the stochastic fluctuation of the

queue process. In particular, consider

N1+ No(N1,0) =L/p+nv L/ pu+o(\/£/pn), for some neR. (10)

Under the capacity prescription in , the expected steady-state queue length is @(\f)\) This fact
is well-known and will be made rigorous for our system in the proof of Theorem [3]in Appendix [E]
Thus, to “optimize” queue length of this magnitude, we refine the two-stage newsvendor solution
by restricting the oy (A*) term to O(V/\) +ou(VA), so that it serves as a safety capacity against
system stochasticity.

A few more definitions are needed to formally introduce the refined staffing rule. Let ¢ and ® be
the pdf and cdf of the standard normal distribution, respectively. The hazard rate of the standard

normal distribution is given by

H(t) = ¢(t)/®(—t), teR.

Define
o by Vi lH (/) -n/2]
n*:=argmin con+ | — +ap — . (11)
neR 2 14+ lH(" 7)
no H(—n)

~~

(a)
n* is the optimal solution of the square-root staffing problem in (Mandelbaum and Zeltyn|2009).

In particular, the term (a) on the right-hand side of is the diffusion approximation (and a
bona-fide limit in the QED regime) of the expected steady-state queue length of an M /M /n+ M
queue with service rate u, abandonment rate -, staffing cost ¢,, abandonment cost a, and staffing
level prescribed in (10)) (i.e., with square root staffing parameter 7).

We are now ready to introduce the following refinement to the two-stage newsvendor solution.
Since the system operates in the QED regime when X > 3%, we refer to this policy as the two-stage

QED staffing rule and denote it by us grp.
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Definition 2 (two-stage QED staffing rule) For a € (1/2,1), the two-stage QED staffing rule
prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

Ni:= A p+B"(A/ )" + OV A/ ).

2. At the surge stage, the surge-stage staffing level is

No (N1, A) = (A p+0" /A =N +our(VA/ ).

Similar to Definition [1} Definition [2| characterizes a family of two-stage QED staffing rules, where
some flexibility of order O(\/W) is allowed at the base stage staffing and flexibility of order
our(v/A/p) is allowed at the surge stage staffing; see Section for the definition of oy, (-). To
simplify the exposition, we use the two-stage QED staffing rule to refer to any staffing specification
in this family. In the two-stage QED staffing rule, the base-stage staffing level is of a similar form
as in the two-stage newsvendor solution. After the arrival rate is realized at the surge stage, we first
compute the optimal staffing level in the QED regime, and then bring up the staffing level to meet
that target. Let CQQED denote the expected total cost in under the two-stage QED staffing
rule. The two-stage QED staffing rule guarantees a smaller optimality gap than the two-stage

newsvendor solution as quantified in the following theorem.

Theorem 3 (optimality gap of us grp) For a € (1/2,1), the two-stage QED staffing rule in
Deﬁm’tion@ has C3 opp —Ca =0(VA).

Theorem |3| establishes that any two-stage QED staffing rule achieves the same o(ﬁ) optimality
gap. While it is intuitive that the oy I(\/W) flexibility term in N, does not influence the optimality
gap, it is less straightforward to see the effect of the O(y/A/p) flexibility term in N;. We next provide
a brief explanation for this (a more detailed explanation can be found in the proof of Theorem
in Appendix. Let D; denote the O(\/W) term we add in N;. This generates a staffing cost of
c1 D, at the base stage. At the surge stage, for A sufficiently large, When X > *, adding D; to N;
leads to a reduction of D; in N,, which decreases the surge staffing cost by c;D;. When X < §*,
adding D; to N; does not change N,. By the construction of 8*, we have P(X > 8*) = ¢; /c,. Then,
the total staffing cost change is ¢; D) — co DoP (X > 8*) = 0. Furthermore, in both scenarios, the
holding cost (expected steady-state queue length) does not change significantly (i.e., the change is
of order o(y/A/1)). Therefore, having a flexible term of order O(y/A/p) in Ny does not impact the
optimality gap.
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We provide numerical demonstrations of Theorem [3]in Sections[4.3]and 5] Importantly, in Section
we numerically examine which specification of the flexibility terms, i.e., the O(y/\/u) term in

Ny and oyr(y/A/p) term in N, achieves better performance for pre-limit finite stochastic systems.
4.3. Effective Translation of The Two-Stage QED Staffing Rule to Small Systems

Theorem [3| shows that any policy that belongs to the family of the two-stage QED staffing rules
in Definition [2{ achieves an optimality gap of o(v/A). The specification of the O(y/A/u) term in N,
and the oy I(\/W) term in N, though asymptotically indistinguishable in the context of Theorem
may have non-negligible impact on system performance for a finite system, especially when A
is small. We next numerically investigate system performance under different specifications of the
two-stage QED staffing rule.

To this end, we consider staffing prescriptions of the form

Ni=Xp+B8MNp)*+ kA and No(Ni,A)=(A/pu+n"\/A/u—N))", forkeR. (12)

We consider systems with small arrival rates, namely, setting A = 25,50, 75,100. We vary the value
of k in from —3 to 3 in increments of 1. In each experiment, we estimate the steady-state
cost by averaging over 1000 realizations of the random variable X. For each mean arrival rate A,
we compare the costs under different values of k, and report the percentage gap between each
cost under the examined policy and the exact optimal cost (obtained by exhaustive search) in
Tables 2] and 3] For example, in Table 2 when A =25, the exact optimal cost is 39.47. In this
case, the policy specification with k =1 achieves a cost of 39.48 and thus has an optimality gap
of (39.48 —39.47)/39.48 = 0.03%, which is the smallest among different values of k. The system
with & = —3 achieves a cost of 49.75 which corresponds to a percentage gap of 20.66%. In all
experiments, the random variable X is assumed to follow a standard normal distribution. The

other system parameters and the resulting value of (8*,n*) are listed in the caption of the tables.

Table 2 System performance (optimality gap) under different specifications of the two-stage QED staffing rule
with 3* =0,7* = 0.610
(p=1,=0.1,a=0.75,h =1.5,a=3,c1 =1,c2 = 2)

A 4§ -3 -2 -1 0 1 2 3
25 120.66% | 13.73% [ 6.91% | 2.08% | 0.03% | 2.01% | 7.37%
50 [15.04% | 9.61% |4.77% | 1.47% | 0.00% | 1.28% | 4.98%
75 112.56% | 7.69% |3.99% | 1.18% | 0.00% | 0.98% | 4.09%
100 | 10.44% | 6.35% | 3.02% | 0.87% | 0.00% | 1.04% | 3.76%

We first observe from the tables that even though all the staffing prescriptions, i.e., k ranging from

—3 to 3, are asymptotically optimal, there are substantial differences in the pre-limit performances.
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Table 3 System performance (optimality gap) under different specifications of the two-stage QED staffing rule
with 8* = 1.282,n* = —0.140
(u=1,v=0.1,aa=0.75,h=1.5,a =3,c1 = 1,c2 = 10)

A\ & -3 -2 -1 0 1 2 3
25 | 43.49% | 25.83% | 10.35% | 1.28% | 2.64% | 9.64% | 17.46%
50 |31.77% | 17.38% | 6.51% |0.42% | 1.39% | 6.57% | 12.90%
75 |25.86% | 14.42% | 5.18% |[0.20% | 1.10% | 5.60% | 11.35%
100 |20.84% | 10.35% | 3.40% |0.04% | 1.67% | 5.71% | 10.66%

In Table [2, £ =1 leads to the best performance across all system scales tested. In Table |3, £ =0
leads to the best performance. Second, k has a highly nonlinear effect on the cost. Staffing too few
servers tends to result in a larger optimality gap than staffing too many servers at the base stage.
In particular, in both tables, k= —3 leads to the worst performance. In Table [3] when A =25 and
k = —3, the percentage gap can be as large as 43.49%. Third, we note that as the system scale
grows, the performance gap among different policies shrinks. This is consistent with our optimality
gap quantification in Theorem [3| Lastly, we note that when k is properly tuned, u, orp can achieve
a very small optimality gap even for very small systems. For example, when A\ = 25, the gap is
0.03% for k=1 in Table[2 and 1.28% for k=0 in Table

Besides the experiments reported in Tables 2| and [3] we also summarize a few more sets of
simulation results with different surge staffing costs in Appendix Among all the numerical
experiments, we find the following specification of the two-stage QED staffing rule to be effective

and robust for small-scale systems:

Ny =M p+ BN +n"V/Ap, and  No(Niy,A) = (A/p+n"/A/u—Ni)™. (13)

The capacity prescription in lends itself to an intuitive explanation. At the base stage, the
staffing level consists of the offered load, a hedging against arrival-rate uncertainty, and a hedging
against system stochasticity catered to the mean arrival rate A. At the surge stage, the staffing
level is raised to reach the optimal value in the QED regime catered to the realized arrival rate.

5. Numerical Experiments

In this section, we perform numerical experiments to demonstrate the cost savings of our pro-
posed two-stage staffing rules over single-stage benchmark policies for different levels of arrival rate
uncertainty and cost rates. We also examine the optimality gaps between the two-stage staffing
rules and the numerically-solved exact optimal staffing levels. Moreover, we check the robustness
of our proposed staffing rules when the service time distribution is lognormal. For comparison, we

consider the following five staffing rules:
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(I). Our proposed two-stage QED staffing rule us orp prescribes staffing levels
Ni=Mp+ B N +n"VAp, and  No(Ni,A) = (A/p+n"/A/u—Ni)7,

for B* = Fx' (¢1/cs), and n* defined in .

(IT). Our derived two-stage newsvendor solution us yyv assigns staffing levels
Ni=Mp+B (Ap)* and  No(Ny,A)=(X =57 (A p)*.
(III). The single-stage newsvendor solution u; yyv prescribes staffing levels

Nl—)\/,u,—i—F;l< )()\/M)O‘, and Ny(Ny,A)=0.

1
hp/vy +ap

This policy accounts for arrival-rate uncertainty, but does not allow surge staffing.
(IV). The conventional single-stage square-root staffing rule, denoted by uy grp, makes a one-
time staffing decision at the base stage, assuming a staffing cost of ¢; and a deterministic arrival

rate of A. In particular, the staffing levels are given by

Nl:)\/u—i_nik,QED\/ )\/ s and NQ(Nl,A):O,

where 77 opp is defined as

* —— :
M gep ‘= argmin ci7+
neR

e, N VELE (0y/8) -]
(% o) L ATyE )

p o H(—n)

This policy ignores arrival-rate uncertainty. It is important to distinguish 7y opp in (used
in the single-stage square-root staffing rule) from n* in (used in the two-stage QED staffing
rule). While both serve as coefficients in front of the hedging against system stochasticity, 7 oz p is
calculated assuming a staffing cost of ¢; (base-stage cost) and n* is calculated assuming a staffing
cost of ¢, (surge-stage cost).

(V). The optimal two-stage staffing rule, denoted as us opr. We numerically solve for the optimal
staffing levels via simulation optimization. Calculating the exact optimal staffing levels enables
us to examine the optimality gaps characterized asymptotically in Theorems [2| and [3| for finite

stochastic systems.
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5.1. Level of Arrival-Rate Uncertainty

In the first set of experiments, we examine the cost savings of the proposed two-stage QED rule
as we vary the magnitude of arrival-rate uncertainty. In particular, we assume that the random
variable X is normally distributed with mean 0 and standard deviation . We vary the order of
arrival-rate uncertainty, «, and the standard deviation of X, o, respectively, with everything else
held constant. We simulate 1000 realizations of X and calculate the expected steady-state cost
(where the expectation is taken over the stochastic fluctuations) for each realization. The expected
total cost (where the expectation is taken over the random variable X) is then averaged over the
expected steady-state costs for all realizations of X.

Figure (1] illustrates the expected total costs under the five policies, with « increasing from 0.6 to
0.8 in Figure and ¢ increasing from 0.6 to 1 in Figure We observe that u; ggp performs
the worst as it does not take the arrival rate uncertainty into account. As the level of arrival-rate
uncertainty increases, the performance gap between the one-stage policies (u1,gep or u; yv) and
two-stage policies (us yv Or U2 orp) increases as suggested by Theorem (1| Lastly, compared to
U2 0Pt U2,orp achieves almost the exact optimal performance (i.e., the lines for ps opr and us grp
are almost identical). This suggests that the o(v/A) bound for the optimality gap developed in

Theorem (3] is likely to be conservative. Meanwhile, u, yy still has a considerable optimality gap.

Figure 1 Sensitivity analysis with respect to the order of arrival-rate uncertainty
(@): A=100,p=1,y=0.1,h=1.5,a=3,c1=1,c2=1.5,0=1
(b) : A=100,p=1,v=0.1,h=1.5,a=3,c1 =1,c2 = 1.5,a = 0.75)
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5.2. Cost Rates

We next investigate the performance of our proposed two-stage policy with respect to the cost

parameters. We first compare the costs of the three policies under different holding costs, h, in
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Figure Note us orp outperforms uy grp and u; yv by a larger magnitude as the holding cost
becomes larger. However, the cost saving under uy yy relative to u; yyv increases as h increases. This
is likely because as h increases we put more emphasis on the queueing cost, but u; yv and us yv
do not take the detailed queueing dynamics into account. Figure 3| demonstrates the distribution
of the average steady-state queue length for a given value of h over 1000 realizations of X under
uy vy and us gpp. We observe that the average steady-stage queue length under u; yv is either
very high or very low, while us orp leads to more stable performance. This is not surprising. On
one hand, the two-stage QED staffing rule is able to circumvent understaffing when the realized
arrival rate is excessively large by adding staff at the surge stage. In contrast, due to the inability
to adjust staffing levels at the surge stage, the single-stage policies can result in a relatively larger
queue when the realized arrival rate is large. On the other hand, u; yy tends to assign more base
staff to hedge against arrival-rate uncertainty, which can result in overstaffing when the realized
arrival rate is low.

Besides the holding cost, we also vary the surge-stage staffing cost, ¢,. Recall from Assumption
that the surge staffing cost is larger than the base staffing cost ¢;, but smaller than the performance
cost hy/v+ ap. In the numerical experiment depicted in Figure we set ¢; =1, hp/v+ap =18,
and vary c; from 2 to 6. We see that the cost saving of the proposed two-stage policies decreases
as ¢y increases. For example, the performance of us grp becomes nearly indistinguishable from
that of u; yv when ¢, reaches 6. This is because when the surge staffing costs are very large, the
two-stage policy will hardly ever surge, even though it has the option to. Lastly, we again observe

that us grp achieves almost the optimal performance in various scenarios tested.

Figure 2 Sensitivity analysis with respect to the cost rates
((@): A=100,p=1,y=0.1,a=2h,c1 =1, =1.5,0=0.75,0 =1
(b): A=100,p=1,vy=0.1,h=1.5,a=3,c1 =1,aa=0.75,0 = 1)
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Figure 3 Distribution of the average steady-state queue length
(A=100,p=1,y=0.1,h=15,a=3,c1=1,c2=1.5,a=0.75,0 = 1)
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Remark 3 The numerical experiments in Sections and suggest that the cost difference
between the two-stage QED staffing rule and the exact two-stage optimum is very small. This
suggests that it may be possible to refine the optimality gap o(ﬁ) i Theorem @ This requires
substantial methodological developments, such as those in |Gurvich et al. (2014) and |Randhawa

(2016), which we reserve as an interesting future research direction.

5.3. Lognormal Service Time Distribution

To achieve analytical tractability, we assume an exponential service time distribution. However,
it is quite common to have service times with heavier tails in real healthcare systems; see, e.g.,
Armony et al. (2015)) for inpatient wards and Section [7| for our partner ED. As such, a lognormal
service time distribution can often be a better fit than an exponential service time distribution.
In this section, we conduct numerical experiments to examine the performance of the proposed
staffing rules under lognormal service time distributions. We consider lognormal service times with
a fixed mean at 1 and vary the variance with values from 0.25 to 2.25 in increments of 0.25. For each
value of the variance, we numerically solve for the optimal staffing levels. We then compare us opr,
Uz grp, and u; ny Note that the latter two policies are based on the assumption of exponential
service time distribution.

Table 4] summarizes the base staffing levels and average surge staffing levels under each policy
for different variances of the service time distribution. Because the two-stage QED rule and single-
stage newsvendor solution only depend on the service distribution through its mean, they are
identical for all variances. We also report the optimality gaps of us grp (relative to us opr) in the

second-to-last column, as well as the cost savings of us opp compared to u; yv in the last column.
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We observe that us gpp performs similarly to the optimal staffing policy. The optimality gaps are
less than 6%. us grp achieves significant cost savings over u; yyv in all cases. Moreover, there do
not exist any directional trends in the optimal base and surge staffing levels as the variance of the
lognormal service time distribution increases. Therefore, we do not recommend any adjustment to

the two-stage QED rule in situations where service times follow a lognormal distribution.

Table 4 Optimality gaps and cost savings under lognormal service time distributions
(A=100,=0.1,h=1.5,a=3,c1 =1,c2 =1.5,a=0.75,0 = 1)

. Two-stage OPT | Two-stage QED | Single-stage NV Cost savings
Variance Base A\%g surge | Base Aég surge : Basf Opt gap OVer Uj Nf;
0.25 90 20.86 94 19.34 150 0.92% 18.17%
0.5 90 20.78 94 19.34 150 1.57% 17.47%
0.75 96 17.26 94 19.34 150 1.13% 18.52%

1 96 17.26 94 19.34 150 1.06% 18.36%
1.25 90 21.02 94 19.34 150 0.99% 18.36%
1.5 90 20.58 94 19.34 150 2.21% 17.75%
1.75 94 18.44 94 19.34 150 1.85% 17.49%

2 86 19.32 94 19.34 150 5.86% 18.88%
2.25 86 19.48 94 19.34 150 5.29% 19.70%

6. Model Extension: Incorporation of Surge-Stage Prediction Error

In the two-stage optimization problem , we assume that the realization of the random arrival
rate A is known exactly at the surge stage. That is, the surge-stage prediction model provides
perfect arrival rate information. However, in practice, the surge-stage predictive models may incur
some prediction errors. In this section, we investigate a model extension where we allow prediction
errors in the surge stage.

To incorporate prediction error, we further decompose the random arrival rate into two terms:
predictable and unpredictable arrival rate uncertainty. In particular, we consider a random arrival
rate of the form

A=A+ Y N 4 2N, (15)

where a € (1/2,1), v € (0,a], and Y and Z are continuous random variables independent of each
other. We assume that E[Y]=E[Z] =0, E[[Y|] < oo, and E[|Z]] < oco. In (15]), Y and Z can be
understood as the predictable and unpredictable arrival-rate uncertainty, respectively. If there is a
prediction model to forecast demand at the surge stage, then Y A\*u!=2 is the predicted arrival rate
and Z\"u'~" is the error (residual) of the prediction model. a captures the scale of the arrival-

rate uncertainty and v captures the scale of the prediction error. It is reasonable to assume that
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the distributions of Y and Z are known at the base stage. The two-stage staffing problem with

prediction error is then formulated as
min{clNl +E|: min {CQNQ(N17Y>+(h+a’y)]E[Q(Nl+N2(N1,Y),A)‘Y]}:|} (16)
Ny No(N1,Y)

To differentiate notation from that of problem , we denote the optimal objective value of
as C;:;\ when there is prediction error at the surge stage.

Similar to problem , we compare to the single-stage optimization problem for A in form
of , and use ij;\ to denote its optimal objective value. To facilitate the connection between

the arrival rates in and , we can let X be such that
X)\aul—azy)\aﬂl—a+z)\y”1—u. (17)

In this context, problem can be seen as an “oracle” problem that knows the exact realized
arrival rate at the surge stage. We use C;’:f to denote the optimal objective value of the oracle
problem (2)) for A in form of . In particular, the oracle problem does not incur any unpredictable
arrival-rate uncertainty (prediction error). Intuitively, the impact of the prediction error should
depend on how substantial it is. We formalize this for “small” and “moderate/large” prediction
errors in the next subsections. The error regime depends on the relationship between the scale of

the arrival-rate uncertainty and that of the prediction error.

6.1. Small Prediction Error: 0 <v <1/2

When v € (0,1/2), the prediction error is sufficiently small to be “ignored.” Doing so does not
impact performance. For problem , we propose the two-stage error policy and denote it by

U2 ERR-

Definition 3 (two-stage error policy for v < 1/2) For a€(1/2,1) and v € (0,1/2), the two-
stage error policy prescribes staffing levels as follows:

1. At the base stage, the base-stage staffing level is

Ny:=XMp+Fy' (e /o) (M p)* + O/ M ).

2. At the surge stage, the surge-stage staffing level is

No(Ny,Y) o= (A YA ) (4 Y X =) = Ni) T+ our (VA ),

for n* defined in .
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When v € (0,1/2), us grr is similar to us ggp, the latter of which is defined for the case without
prediction error. In particular, us prr completely ignores the existence of prediction error Z and
makes staffing decisions based on Y only. Let CS;\E rr denote the expected total cost under us grr

when the mean arrival rate is A. Analogous results to Theorems [I] and [3| hold for us prp.

Proposition 2 For a€(1/2,1) and v € (0,1/2), we have
(I) Cost saving: Ci’;\ —C;:;\ =0O(\).
(II) Optimality gap: C;’gRR — 5 =0o(VN).
(III) Cost of prediction error: C;zj —C;’:f =o(V\).

Item (III) in Proposition [2| quantifies the gap between the two-stage optimal costs with and
without prediction error. We observe that when the prediction error is small, i.e., v < 1/2, there is

not much value, from the cost-saving perspective, to further improve the prediction accuracy.

6.2. Moderate to Large Prediction Error: 1/2<v <«

When v € [1/2, a], the prediction error is of a larger order than the system stochasticity and thus
can no longer be ignored for staffing. To derive a near-optimal solution to problem , we consider

the following stochastic-fluid optimization problem

nllviln{clNﬁE[ min {02N2(N1,Y)+(h,u/fy+au)E [(A/M—Nl—NQ(Nl,Y))+\Y]}]}. (18)

Ny(Np,Y)
Let (N1, No(Ny,Y)) denote an optimal solution to , whose existence is rigorously established
in the proof of Proposition [3l When v € [1/2,a], we define the two-stage error policy, us grr, to
prescribe staffing levels (N, No(N;,Y)).

When 1/2 < v < o (moderate prediction error), the prediction error is of a smaller order than
the predictable arrival-rate uncertainty. In this case, we still expect that resolving some of the
arrival-rate uncertainty at the surge stage can bring a cost saving as large as O(A*) compared to the
optimal single-stage staffing rule. When v = « (large prediction error), the prediction error is of the
same order as the predictable arrival-rate uncertainty. The following assumption requires that the
predictable arrival-rate uncertainty is sufficiently large compared to the unpredictable arrival-rate
uncertainty when v = a. If Assumption [2| holds, resolving the predictable arrival rate uncertainty
could still lead to ©(\*) cost savings when compared to the optimal single-stage staffing rule. In
contrast, if Assumption [2] does not hold, the predictable uncertainty is so small compared to the

unpredictable uncertainty that resolving Y only leads to limited cost savings.

Assumption 2 There exists p € (0,1] such that

= C2 —_ C1 . ..
Yo (2 Vo mt (9 ) S0 with probability p.
e (hu/fwau) e (hu/v+au> W POSATER b
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Note that Assumption [2[ can be violated when Y has a bounded support, ¢y is large, and/or
Z has a large standard deviation. For a concrete example, consider Y ~ Uniform[—1,1], Z ~
Normal(0,102), hu/y+ap=1, ¢; =0.1, and ¢, = 0.9. In this case, Y + F, ' (co/(hp/y +ap)) <0
and Fy !, (c1/(hp/v +ap)) >0 with probability 1.

Proposition 3 For a€(1/2,1) and v € [1/2,a], we have
(1) Cost saving: If v < «, then Cle;\ — Cze;\ =0(\Y). If v=a and Assumption@ holds, then
Cf:j —C;:: =0(\). Ifv=a and Assumption@ does not hold, then ij;\ —C;::} =o(\).
(II) Optimality gap: Cs'3 s — Cso = O(VA).
(111) Cost of prediction error: C;:;\ —CS:: =0(\).

Comparing item (III) in Proposition [3|to item (III) in Proposition [2| we note that when having a
large prediction error, there is potentially more cost savings we can gain by improving the prediction
accuracy. In particular, when v > 1/2, the cost saving brought by a more accurate prediction model

can be as large as ©(\”).

6.3. Numerical Experiments for Models with Prediction Error

We conduct numerical experiments in the presence of prediction errors, and focus on the case where
the magnitude of prediction error is the most salient, namely, v = a.

We compare the following five staffing rules:

(I) The two-stage error policy us prr introduced in Section It has near-optimal performance
as established in Proposition

(II) The two-stage QED rule us ggp, which is a straightforward extension of the two-stage
QED rule defined in Definition 2| by ignoring the prediction error: For X defined in (namely,
X :=Y +72), it assigns

Ny =M p+Fxt(er/eo) M) +0" /M i
No(N1,Y) = ((A4+Y X6 ") /n+n" v/ (A+ Y epl =)/ — Ni)*.

The staffing prescription takes into account the distribution of X at the base stage, but uses the
realization of Y as a proxy for the realization of X at the surge stage. To simplify notation, we
still refer to this policy as us orp in the following experiments.

(IIT) The single-stage newsvendor solution u; yy as defined in Section [5, assuming we know the
distribution of X. Note that for a fixed distribution of X, the single-stage staffing rule and its
performance will not be affected by the surge-stage prediction errors.

(IV) The single-stage square-root staffing rule u; grp as defined in Section
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(V) To demonstrate the cost of prediction error, we also consider an oracle policy termed second-

stage full arrival rate information (SFARI), and denote it by us srarr. It prescribes staffing levels

Ni=XMp+Ft(er/es) M) +n° /M and - No(Ni, A) = (A/p+n"/A/pp—Ni)*,

for n* defined in . Note that us spapr is identical to us orp when there is full arrival rate
information at the surge stage. It provides a performance lower bound.

We assume that Y and Z are normally distributed with standard deviation oy and oz, respec-
tively. We then fix the standard deviation of X to be equal to 1, i.e., 03 +0% =1, and vary oz from
0.1 to 0.7 in increments of 0.2. For each policy and each value of o, we simulate 1000 independent
and identically distributed realizations of the random arrival rate, and use the average to approx-
imate the expected total cost. Figure [4 compares the costs under the five policies with different
values of 0. Note that, as expected, the single-stage benchmark policies (u; v and u; ggep) and
the oracle policy (us2,srars) are unaffected by prediction accuracy. In contrast, the performance
of our proposed two-stage policies (us prr and us grp) degrades as the prediction error increases.
When o is larger than or equal to 0.5, us grp yields higher expected total cost than u; yv. On
the other hand, us gprr, which properly accounts for prediction errors, outperforms the benchmark
single-stage policies for all g;. As oz increases from 0.1 to 0.7, the expected total cost under
Uz prr increases from 131.356 to 156.897. This further demonstrates the cost savings we can gain
by improving the prediction accuracy. In practice, this can often be achieved by employing more

sophisticated machine learning models or including more relevant real-time features.

Figure 4 Sensitivity analysis with respect to prediction error

(A=100,p=1,y=0.1,h=1.5,a=3,c1 =1,c2 =1.5,aa = v = 0.75)
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7. Application to the Emergency Department

In this section, we develop a unified framework to guide the implementation of the proposed two-
stage staffing policy in ED nurse staffing. Our framework consists of three key elements:

1) Estimating the arrival rate distribution, especially the order of arrival-rate uncertainty. This
helps us determine whether the ED operates in an environment where surge staffing could be
beneficial. In our partner hospital, « is estimated to be 0.769. According to Theorem [I| we can
gain substantial cost savings by utilizing the surge staffing in this case.

2) Building an integrated two-stage prediction model that is synchronized with the staffing
decision epochs. At the base stage we can only capture the day-of-the-week and day-versus-night
effects, while at the surge stage, we can utilize more real-time information such as the severity
profile of patients currently in the ED, the weather condition, etc.

3) Evaluating the prediction-driven staffing rule in a set of more complex simulation experiments
that incorporates more realistic ED operational features. For our partner hospital, we incur a non-
negligible prediction error at the surge stage. Thus, we employ us prr. We also modify us grr to

adjust for the transient-shift effects.
7.1. Background and Data

Our partner hospital, NYP CUMC, is an urban academic medical center in New York City. We
focus on the Milstein ED at NYP CUMC, which is the main adult ED of the hospital and treats
more than 90,000 patients annually. Nurses are typically scheduled for 12-hour shifts that begin at
7am (day shift) or 7pm (night shift) each day. The nursing schedules are set 4-8 weeks in advance
and the staffing level is difficult to change in real time. If the ED manager anticipates a high
patient volume close to the start of a shift, he/she can call in extra nurses. Currently, there lacks
a data-driven approach to determine the appropriate surge staffing levels.

We provide the following remarks on the timing of the base and surge staffing epochs. For
the theoretical model, the exact timing of the base and surge epochs can be flexible, as long as
there are significant differences between the arrival-rate prediction accuracy and staffing costs at
these two stages. Our theoretical results suggest that the two-stage staffing framework is able to
achieve significant cost savings if 1) the order of arrival-rate uncertainty dominates the order of
system stochasticity, and 2) the surge-stage prediction model is able to resolve much of the arrival-
rate uncertainty. For the real-world application, the timing of the base and surge epochs depends
on the feasible practice of the hospital, which determines what information is available at these
stages (especially the surge stage) for prediction and staffing. Throughout Section |7, we assume

an idealistic setting where the surge-stage planning can happen right before the focal shift, so we
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“maximize” the amount of real-time information available. That said, having a reasonable amount
of lead time (e.g., several hours before the shift start time) for surge staffing should not affect
the results significantly. In the subsequent sections, we will discuss further how the lead time may
affect surge-stage prediction and transient-shift adjustment.

We collect 12 months of data from February 1, 2018 to January 31, 2019. The data contain
patient-level records that include 1) patient-flow time stamps (i.e., time stamps for arrival, first
evaluation, lab and imaging orders, admission decision, and departure), 2) patient’s demographics
and severity (i.e., age, gender, arriving source, emergency severity index, chief complaint, comor-
bidities, and deposition decision), and 3) patient’s lab and imaging requests (i.e., different tests
and imaging that are ordered for the patient). We also collect data from two other sources: weather
information (i.e., temperature, precipitation, snow, wind, etc.) and Google trend data (i.e., search
volume for keywords such as “flu,” “heart attack,” “abuse,” etc.). These data allow us to a) estimate
arrival-rate uncertainty, b) build a two-stage prediction model where the surge-stage prediction
model can utilize rich real-time information, and c) calibrate a simulation model that incorporates
more real-world ED features to evaluate different staffing policies.

We first group the shifts into 14 different types based on the day of the week and day versus
night. Table |5 provides some summary statistics for different shifts. We observe that the day shifts
see more arrivals than the night shifts, and weekday day shifts see more arrivals than the weekend
day shifts. We also note that the coefficient of variation can be as high as 14% for some shifts
(e.g., Sunday night shift and Thursday night shift). This suggests that even after we control for

day-of-the-week and day-versus-night effects, there can still be significant uncertainty in demand.

Table 5 Mean and standard deviation (std) of the shift-level arrival counts
Day shift
Sun Mon Tue Wed Thur Fri Sat
Mean | 141.019 | 207.385 | 188.769 | 186.942 | 185.208 | 175.173 | 147.058
Std | 15.788 | 21.503 | 20.701 | 23.657 | 21.004 | 16.124 | 12.095

Night shift
Sun Mon Tue Wed Thur Fri Sat
Mean | 89.462 | 97.058 | 97.769 | 93.711 | 95.189 | 96.692 | 94.115
Std | 12.698 | 12.064 | 10.547 | 12.508 | 13.602 | 12.199 | 11.514

The length of stay (LOS) for each patient is defined as the time interval between the first evalu-
ation time and departure time. The average LOS in our ED is 8.156 hours due to a long boarding
time for patients who need to be admitted into the hospital; see Figure [5| for the empirical LOS

distribution. The average waiting time (calculated as the time between arrival and first evaluation)
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is close to an hour, i.e., 0.975 hours, and the proportion of patients who left without being seen is
4.35%. Properly managing congestion is a key challenge faced by the ED. In what follows, we look

into how our data-driven surge planning can help reduce congestion and staffing costs.

Figure 5 Patient LOS distribution (The solid line illustrates the fitted lognormal distribution whose logarithm

has a mean equal to 1.597 and a standard deviation equal to 1.050.)
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7.2. Estimating Arrival-Rate Uncertainty

In this section, we introduce statistical procedures to estimate the arrival-rate uncertainty. Because
there are significant day-of-the-week and day-versus-night effects, the shifts are classified into 14
different types as demonstrated in Table [5| Let A; denote the mean arrival rate for type i € 7 :=
{1,...,14} shift. Since we have one year of data, each shift type i has n, = 52 observations. For each

type of shift, we assume that the random arrival rate takes the form
A=+ A0 X, Qe

for p equal to the inverse of the average LOS. In particular, the uncertainty scaling parameter «
and the distribution of X is the same across different types of shifts. We also make the parametric
assumption that X ~ N(0,0?) for some o € R, ; see Appendix for the normal probability plot
to validate this assumption. Then A; ~ N(\;, \2¢p21-%g2) i€ T.

Let Lgk) denote the observed arrival count for the kth shift of type i, 1 <k <n,;. We also define
L;:= ke L™ and ¥2:= o " (LY — L;)%, ie., the corresponding sample mean and sample
variance. Based on the method of moments, we have the following system of equations for the

estimators

Li=X\, Y2=)\20,20-0)52  jcT, (19)
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It follows from that
log¥; = alog L; +log(u'~%6), ie€T. (20)

Then, we can fit & and & by solving the following least squares problem

14
ae(glli)r’l%RZ (log%; — v —alog Ei)z . (21)
In particular, let v* and a* denote the optimal solution to the least squares problem . Then,
&=a* and p'~% = exp(v*).

In Table [6] the first row below the header (with |Z| = 14) summarizes the point estimates for o
and p'~%c; see Appendix for the full estimation results. We also report their corresponding
95% confidence intervals. Based on our estimation, for the Milstein ED, a = 0.769 and p!=*X ~
N(0,0.348?%).

To check the robustness of our estimation, we also run a similar analysis by dividing the shifts into
56 different types. In particular, in addition to the day-of-the-week and day-versus-night effects,
we also incorporate the season-of-the-year effect. The second row below the header (with |Z| =
56) summarizes estimation results (see also Appendix , which are very close to our original
estimation. Lastly, we also consider a non-parametric estimation proposed in |[Maman/ (2009), which
works for o > 1/2 only (see Appendix for more details). It gives the same results as our original

estimation. Since it is a priori unclear for a real-world system whether o > 1/2, our parametric

estimation method, which allows « € (0, 1), is preferred.

Table 6 Estimated « and standard deviation of X
Number of shift types & | 95% Cl for & | ut=26 | 95% CI for pul—“o
Day-of-week and day/might: [Z] =14 | 0.769 | (0.543, 0.094) | 0.344 | (0.114, 1.034)
Day-of-week, day/night and seasons: |Z| =56 | 0.746 | (0.558, 0.933) | 0.362 | (0.135, 0.902)

7.3. Two-Stage Prediction Model

To facilitate base and surge staffing decisions, we need to develop a two-stage prediction model
that is synchronized with these decision epochs.

At the base stage, which is several weeks before the start of the shift, there is very limited
information we can utilize for demand forecasting. The key features based on our analysis are the
day-of-the-week effect and the day-versus-night effect. The stratified historical averages based on
these features are able to capture 88.26% of the variability in shift-level arrival counts.

At the surge stage, which we assume is right before the start of the shift, we have access to more

real-time information. We employ a recently developed linear regression model in [Hu et al.| (2023)
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to forecast the realized arrival rate. The model utilizes the following five categories of features:
(i) Time-of-the-shift information, including season of the year, day of the week, day versus night,
and whether the shift takes place on, before, or after a national holiday; (ii) Previous-shift arrival
counts, including the shift-level arrival count 1 day before the shift, the shift-level arrival count 7
days before the shift (a week ago), and a moving average of shift-level arrival counts over the past
30 days; (iii) Patient severity, which is the average of the weighted sum of a total of 17 Charlson
comorbidity indices in ICD-10-CM coding for each patient over the past 3 days; (iv) Google trends,
including the Google search volume for the keywords “depression” and “flu” in New York State for
the week before the shift; (v) Weather forecast, including the minimum temperature, precipitation,
snow, wind, and whether the maximum temperature exceeds 86°F on the day of the shift. The
estimated coefficients for the covariates in the model are provided in Table in Appendix
This linear regression model is able to capture 90.84% of the variability in shift-level arrival counts.
(Since we are fitting simple linear regression models, we use the entire one-year of data as the
training set.)

The root mean-square error (RMSE) of the prediction model is 15.860 at the base stage, and
14.009 at the surge stage. The real-time information is able to reduce the RMSE by 11.67%. That
said, what we are more interested in is the value of this gained accuracy in making staffing decisions.
We shall investigate this in the next subsection.

We use the random arrival-rate model with prediction error, i.e., , and estimate v and the
distribution of Z next. We assume Z follows a normal distribution with zero mean; see Appendix
[G4] for the normal probability plot to validate this assumption. Then, we can estimate v and the
standard deviation of Z following a similar procedure as that developed in Section for o and
the standard deviation of X (the detailed estimation procedure is provided in Appendix . This
gives us v =0.508 and Z ~ N(0,1.067).

We conclude this subsection with two remarks. First, in situations where the surge-stage decision
epoch has a lead time (e.g., several hours before the start time of the focal shift), the surge-stage
prediction model needs to be modified by only using the available information at the decision
epoch. This is likely to reduce the prediction accuracy. Second, the base-stage prediction model
can be improved by including more features (e.g., holiday information) or using more advanced
prediction techniques. We view our results here as a simple proof of concept and refer to |Hu et al.

(2023) for more informatics-oriented development on ED demand prediction.
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7.4. ED-Adapted Two-Stage Staffing Rule

To examine the performance of the proposed two-stage staffing rule, we build a queueing model to
simulate the patient flow process in Milstein ED over 52 weeks from February 1, 2018 to January

31, 2019.

7.4.1. Model Calibration The hospital system is modeled as an M;/G/N; + M queue, a
multi-server queue with time-varying arrival rate at the hourly level, log-normal service time dis-
tribution, and time-varying staffing at the shift level, where the servers are the nurses. For a shift
of type ¢ in the kth week, we assume that the realized arrival rate for that shift is equal to the
observed arrival count in data, Lz(-k), 1<i<14,1 <k <52. The hourly arrival rate for each of the 12
hours in a shift is obtained by scaling Lgk) according to the empirical hourly proportion of arrivals
as illustrated in Figure @ In what follows, we shall refer to the Lgk)’s as the realized arrival rates.
As shown in Figure[p] the LOS can be well fitted by a lognormal distribution whose logarithm has a
mean equal to 1.597 and a standard deviation equal to 1.050. While waiting in the queue, patients
can leave the system without being seen after an exponentially distributed amount of patience time
with a mean equal to 27.5 hours (fitted using the maximum likelihood estimation; see Appendix
for details). Patients are served in a FCFS manner and once a patient begins service, he/she will
not abandon the system. Note that in practice while patients within a severity class (e.g., within
the same ESI) are often served FCFS, this is not necessarily the case across different classes. As
we are interested in assessing the impact of the new staffing approach on system-level performance
(e.g. average waiting time across all patients), rather than on specific individual patients, FCFS is a
reasonable simplification. Furthermore, we consider a nurse-to-patient ratio of 1-to-3, which is the
number of patients that an ED nurse can treat simultaneously. We scale down the staffing levels
suggested by the staffing policies by the nurse-to-patient ratio to get the actual number of nurses
needed for the shift. We also assume the boarding patients require the same level of nursing care
as other ED patients (i.e., the LOS includes the boarding time). Note that in some EDs, boarding
patients may be taken care of by inpatient nurses rather than ED nurses. Thus, our assumption
gives a conservative estimation of ED nursing requirements.

At the end of each shift, patients who have not finished service are queued up in a FCFS manner
(according to their arrival times) for the nurses who are staffed for the upcoming shift to continue
treatment, and do not abandon the system while waiting to resume service. When calculating the
performance metrics, the waiting time includes the time he/she waits to be first evaluated by a

nurse upon arrival, as well as the period during which his/her treatment is in suspension due to the
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change of shifts. We remark that while there are different ways to handle patient hand-off at shift
transitions (such as having nurses work overtime or allowing multi-tasking), our assumption on
having the patients wait to resume service has practically insignificant impact on the system-level
performance.

In terms of the costs, we assume that the salary is $45 per hour for nurses who are staffed at
the base stage, and $67.5 ($45 x 1.5) per hour for nurses who are staffed at the surge stage (Weiss

et al.[2011). We vary the holding and abandonment costs in our numerical experiments.

Figure 6 Proportion of patient arrivals by hour within day/night shift
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7.4.2. Adjustment to the Staffing Rules The queueing dynamics during each shift in the
ED are different from the stylized model considered in Section |2l In particular, based on our model
calibration in Section i) the arrival rate is time-varying, ii) the service-time distribution is
lognormal (not exponential), and iii) each shift is only 12 hours, which may not be long enough for
the system to reach stationarity. We single out these deviations and run simulation experiments
to check the performance of our two-stage error policy (Appendix . It turns out that our two-
stage error policy achieves robust performance to non-exponential service time distributions and
time-varying arrival rates. However, the fact that each shift only lasts for 12 hours and the arrival
rate for the day shift can be twice as large as that for the night shift degrades the performance of
our proposed policy. Specifically, since the night shift has a much lower arrival rate than the day
shift, the day shift usually starts with a lower patient volume than an otherwise stationary system.
Similarly, the night shift usually starts with a higher patient volume than an otherwise stationary
system. Our proposed policy based on the stylized model is not able to capture these transient
shift effects well. We next propose an adjustment to our two-stage error policy that takes these

transient shift effects into account. At the base stage, we increase the base staffing level for night
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shifts and decrease the base staffing level for day shifts based on the steady-state mean arrival
rates. Then at the surge stage, we further adjust the surge staffing level based on the current state
of the system, i.e., the number of patients in the system towards the end of the current shift.
Formally, the two-stage error policy is adjusted as follows:

Base Stage: For 1 <7 <14, let IV ; denote the base staffing level for shift of type ¢ under us prr,
which is calculated using the base-stage prediction \;. For a shift of type i, calculate the expected
steady-state queue length for an M /M /n+ M queue with arrival rate \; and number of servers
equal to N, ;, and denote it by Q;. Let A; denote the difference in the expected queue length
between two consecutive shifts, i.e., A; :== Q;_1 — Q;, where Qy = Q4. The adjusted base-stage
staffing level is given by foj =Ny, +& A, where & € R is some base adjustment parameter to
be determined. Intuitively, the base-stage adjustment accounts for the difference in the expected
steady-state queue length for two adjacent shift types. For example, if the expected steady-state
queue length of shift (i — 1) is higher than that of shift i, e.g., when transitioning from a day shift
to a night shift, then the base staffing level for the ith shift is adjusted up to account for the high
number of patient handoffs from the previous shift.

Surge Stage: For 1 <i <14, 1 <k <52, let NQ(? denote the surge staffing level for shift of type
t in the kth week under u; grr, which is calculated using the surge-stage prediction @Ek) For each
shift, calculate the expected steady-state queue length for an M/M/n+ M queue with arrival rate
sz.’“ and Nfidj + NQ(? servers, and denote it by ng) Let ng) be the number of patients in the
ED at the end of the previous shift, and let ng) = ng) — ng) The adjusted surge-stage staffing
level is given by NQ(?’Adj = NQ(? + {ng(k), where & € R is some surge adjustment parameter to
be determined. Intuitively, the surge-stage adjustment accounts for the concurrent difference in
the actual and expected steady-state queue length for the focal shift. For example, if the observed
queue length at the beginning of the focal shift is much higher than the expected value, then the
surge-stage staffing level is adjusted up to account for the high initial value.

When determining the base and surge adjustment parameters, we see from extensive numerical
experiments that setting &; € [4,8] and & € [1,2] gives consistently good performance. Thus, we
set &1 =5 and & =1 in the subsequent numerical experiments and suggest using these values in
practice.

In what follows, we compare the ED-adapted two-stage error policy to the single-stage newsven-
dor solution using simulation. To make the comparison fair, a similar base adjustment is applied
to the single-stage newsvendor solution, i.e., Nﬁ1 Z-dj = N;; +5A,;. For ease of reference, we keep the

same names and acronyms for these ED-adapted policies.
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We remark that the transient adjustment parameters, &; and &, can be optimized for different
systems, for example, by enumerating of all possible combinations. In Appendix we show
through numerical experiments that setting & =5 and &, =1 in general achieves good and robust
performance. We also remark that in situations where the surge-stage decision epoch has a lead
time, the surge-stage staffing adjustment can be modified by using the observed queue length at

the surge-stage decision epoch.

7.4.3. Performance Evaluation In practice, it can be challenging to calibrate the holding
and abandonment costs. To circumvent this difficulty, we fix the abandonment cost to be 1.5 times
the holding cost, and calculate the staffing levels for a wide range of holding costs under each
policy. In particular, for each holding cost, we calculate the staffing levels under us prr and u; yv,
and simulate the ED over 52 weeks to estimate various system performance measures, such as the
average waiting time, average queue length, percentage of patients who left without been seen, and
percentage of patients whose waiting time exceeds 60 minutes. The same experiment is repeated 5
times using different random seeds to construct the 95% confidence intervals for the performance
measures. This allows us to construct a tradeoff curve between the staffing costs and the system
performances under different staffing rules; see Figure [ We observe that the tradeoff curve of
Uz prr 1s strictly below those of u; yyv. This suggests that for a fixed system performance target,
we are able to achieve it with a much lower staffing cost under the two-stage staffing policy than
the single-stage staffing policy.

Given some specific performance targets, we calculate the staffing cost needed to achieve the
desired service quality under each policy. Table [7] lists the savings in the annual staffing cost of
Uz prr In comparison to u; yy in order to guarantee that (i) the average queue length is below 5,
or (ii) the average waiting time is below 30 minutes, or (iii) the percentage of patients who left
without been seen is less than 2%, or (iv) less than 20% of patients wait for more than 60 minutes.
We observe that we are able to achieve 9.799% to 16.492% ($1.644 M to $3.059 M) in annual cost
savings for different performance requirements. In a setting where many hospitals are operating
on thin margins, such savings can have a significant impact on the bottom line. Lastly, recall from
Section [7.3] that the surge-stage linear regression model is able to improve the prediction accuracy
in terms of RMSE at the base stage by 11.16%. Our numerical results suggest that even with
this modest gain in prediction accuracy, this information, together with the real-time queue length
information, can lead to significant cost savings while ensuring timely access to care.

In addition to examining the tradeoff curves between various performance targets and the staffing

costs under us grr and u; yv, we also compare the expected total costs under these two policies for
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some fixed cost parameters. Specifically, we vary the holding cost so that its ratio to the base-stage

staffing cost ranges from 0.7 to 1.7 in increments of 0.2. The other parameters and experiment

setups are the same as those in Figure [7] Figure [§ below demonstrates the expected total costs

over 52 weeks under us prr and u; yv for a variety of holding costs. As expected, we observe that

Uy prr outperforms u, ny in all scenarios.

We conclude this section by acknowledging that despite our efforts to comprehensively incor-

porate a number of ED patient-flow characteristics, the simulation experiments are not able to

capture many important nuances in reality. Practitioners need to take this limitation into account

when interpreting our reported cost savings.

Figure 7 Tradeoff between staffing cost and quality of service
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Figure 8 Expected total costs per shift for fixed cost parameters
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8. Conclusion

In this paper, we study the prediction-driven surge staffing problem motivated by ED nurse staffing.
A key tradeoff in this problem is between base-stage staffing, which is cheaper but faces a higher
level of uncertainty versus surge-stage staffing, which is more expensive but faces a lower level
of uncertainty. Our analysis quantifies when surge staffing is beneficial and provides prescriptive
staffing rules that are highly interpretable, easy to implement, and achieve near-optimal perfor-
mance. Our analysis demonstrates that the benefits of surge staffing are substantial when the
arrival-rate uncertainty dominates the system stochasticity. To capture this benefit, at the base
stage, our proposed policy solves a two-stage newsvendor problem to serve the expected offered
load plus an uncertainty hedging term. At the surge stage, we increase the staffing level to meet the
realized demand plus a square-root hedging against the system stochasticity. We then extend the
analysis to study the effect of prediction errors at the surge stage. Lastly, to facilitate implementa-
tion in the actual ED setting, we develop a unified framework that includes parameter estimation,
building a two-scale prediction model that is synchronized with the staffing decision epochs, and
modifying the prediction-driven staffing rule to account for the transient-shift effects. Using data
from the Milstein ED in NYP CUMC, we demonstrate via high-fidelity simulation that our pro-
posed staffing rule can achieve significant cost savings.

We conclude by discussing several limitations of our work and identifying a few interesting future
research directions.

First, we assume a linear waiting/holding cost for analytical tractability. This assumption is
reasonable when the waiting time is relatively short, i.e., where a linear interpolation is accurate,
which is the case in the QD (quality-driven) and QED regimes. These are also the regimes where

the system operates under our proposed two-stage QED rule. When non-linear holding costs are
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concerned, we can heuristically modify the two-stage newsvendor solution by applying the holding
cost function to the approximating queue length in ; see Appendix for details on the heuristic
and some numerical experiments. That said, it would be interesting to extend the model and
analysis to non-linear, especially convexly increasing, waiting costs.

Second, we do not explicitly model multiple patient classes. Heuristically, we can incorporate
multiple patient classes by first predicting the demand and making the corresponding staffing
decisions for each class individually. Then, we can pool the staffing decisions for each class together.
The heuristic development and numerical experiments are provided in Appendix[[.5} A more refined
extension to a multi-class queue is an interesting future research direction. To do so, we need to
jointly optimize the patient scheduling decision, e.g., which patient class to prioritize, and the
staffing decision.

Third, in our work, we focus on the staffing problem for EDs and do not consider the use of
floating nurses. This is because many hospitals only have a single ED and ED nurses require specific
training and qualification. Floating nurse pools are commonly employed for inpatient wards, where
similar nursing skill sets are required. There, floating nurses are scheduled in advance (i.e., at the
base stage) but can be assigned to a specific unit in near real-time (i.e., at the surge stage). The
use of the floating nurse pools to handle demand uncertainty for various inpatient wards is an
interesting future research direction.

Fourth, while our theoretical model is unable to capture all features of the real ED (e.g., time-
varying arrivals, lognormal service times, etc.), we find that it is able to capture core tradeoffs to
provide insights into the management of ED staffing. That said, we also find that transient-shift
effects can have a measurable impact on system performance. As such, it would be interesting
as future research to explore a transient (rather than steady-state) analysis of our system. Since
closed-form expressions for transient queuing dynamics are limited, new approximation techniques
may need to be developed.

Fifth, our model considers two discrete staffing epochs with different levels of demand informa-
tion. Our view of the two-stage decision is informed by the current nurse staffing practice in hospi-
tals. An interesting extension is to examine more granular decision epochs or even a continuous-time
model, where both demand information and staffing cost increase as the time approaches the start
of the shift. This requires a more granular model of arrival-rate uncertainty, such as those developed
in Zhang et al. (2014), Daw and Pender| (2018). However, increasing the granularity of decision

epochs may also come with certain implementation challenges from the practical perspective.
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Appendix A: Roadmap for The Main Proofs

In this section, we introduce the notations used throughout the appendices, present a useful lemma, and give
a roadmap for the organization of the main proofs.

Let « € (0,1). Consider an admissible staffing policy 7 € IT with base staffing level N; and surge staffing
level No(Ny,A). For any realized arrival rate ¢, the total cost under 7 is denoted by

Cr(€) :=c1N1 + c2Na (N1, 0) + (h+ ay) E[Q(N1 + N2 (N1, £),0)] . (22)
We also write

Cﬂ.(A) ::clNl+CQN2(N1,A)+(h+a’y)E[Q(N1+N2(N1,A),A)|A}, and C,r :E[C(A)]

We use the following notations, in addition to the notations introduced in the main paper:

1. For an M/M/m+ M queue with m servers and arrival rate A, we let P(AB, m,\) denote the steady-
state abandonment probability, W (m, A) denote the steady-state waiting time, and V' (m, A) denote the
steady-state virtual waiting time. V' (m, \) is the time that a patient with infinite patience would wait
and W (m, A) is the minimum of V' (m, A) and the patient’s patience time. Let 145, be the indicator
of whether or not a customer arriving to a system in steady-state will abandon, i.e., P(AB,m,\) =
E [1(aB,m.» |- In what follows, we use P(AB,m,A) to denote the steady-state abandonment probability
conditional on the random arrival rate, i.e., P(AB,m,A) :=E []I(ABM,A) |A] In particular, P (AB,m, A)
is a random variable. Similar convention for notation has been used in the literature; see, e.g., Kocaga)

et al| (2015).

2. For an M/M/m/m queue with m servers and arrival rate A\, we let P(BL,m,\) denote the steady-
state blocking probability, L(m,\) denote the steady-state loss rate, and 1 gz m,\) be the indicator
of whether or not a customer will be blocked in steady state. Note that L(m,\) = AP (BL,m, \),
and P(BL,m,\)=E []I(BL’m,,\)]. In what follows, we let P(BL, m,A) denote the steady-state blocking
probability conditional on the random arrival rate, i.e., P(BL,m,A) := E [L(51,m,a)|A]. Similar to
P(AB,m,\), P(BL,m,A) is a random variable.

3. For functions f:R— R and ¢g:R — R, we use the relation f ~ k to denote that limy_, ., f(A)/k(A) =1.

The following lemma will be used in the subsequent development.

Lemma 1 For the multi-server queue with abandonment,

E[Q(Ny + Na(N1, A), A)|A = €] <max {/7,1} (¢/p = Ny = No(N1, )" + /4w /uv/i+1/log2).  (23)

PrOOF: We conduct the proof in three cases: p=-, p <=, and p> .
Case 1: p =~. In this case, Lemma 3 in |Bassamboo et al.| (2010) directly implies that

E[Q(Ny + Na(Ny, A), A)JA =] < (¢/p— Ny — No(Ny, 0)) +\/dr [/l +1/ log 2,

from which follows.
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Case 2: p < «. In this case, we consider a sequence of auxiliary systems with abandonment rate u (as
opposed to ), and every other parameter is held the same as in the original system. Comparing the underlying
Markov chains of these two sequences of systems, we see that the steady-state queue length in the auxiliary
system is stochastically larger than that in the original system. In particular, let E [Q(Nl + No(Ny, A), A)|A}

denote the conditional expectation of the steady-state queue in the auxiliary system. It holds that
E[Q(N; + No(Ny,A),A)JA=£] <E [Q(N1 +N2(N1,A),A)|A:z] .

We can apply the same arguments as in Case 1 to the auxiliary system, and infer .

Case 3: p > «. In this case, we consider a sequence of auxiliary systems with abandonment rate u (as
opposed to ), and every other parameter is held the same as in the original system. Following similar argu-
ments as in the proof of Theorem 3 in Bassamboo et al.| (2010]), we get that the steady-state abandonment rate
in the auxiliary system is larger than that in the original system. In particular, let P (A~B, Nj+ Ny(Ny,A), A)

denote the steady-state abandonment rate in the auxiliary system. It holds that
P(AB, N + Ny(Ni,6),0) <P (AB, Ny + Na(Ny,0),¢) .

Since the steady-state abandonment rate must be equal to the steady-state arrival rate of abandoning
patients, we have

LUE [Q(N, +N2(N1,A),A)|A:4 — (P (A]B,N1 +N2(N1,€),£) ,

and
YE [Q(N1 + No(Ny,A),A)|A =] ={P(AB,N; + No(Ny,£),0).
Therefore,
E[Q(N1+ No(N1,A),AN)|A=£]=({/vy)P(AB, N1 + Na(N1,¢),¢)
< (¢/)P (AB, Ny + N>(Ny,0),0)
= (/)E [Q(N: + Na(N1, A), M)A =]
We can apply the same arguments as in Case 1 to the auxiliary system, and follows. Q.E.D.

Appendices [BHE] contain the proofs of the main results. In Appendix [B] we prove Proposition [I] which
specifies the nontrivial cost parameter regime for the staffing problem. In Appendix[C] we introduce a general
family of two-stage staffing policies for all o € (0,1). We refer to this policy as the two-stage uncertainty
hedging rule, and derive its asymptotic performance in Appendices (for @ >1/2) and (for « <1/2).
In Appendix we prove that the two-stage uncertainty hedging rule with properly selected parameters
achieves an optimality gap of o(A™&*{1/2:2}) compared to the exact two-stage optimum. As the two-stage
newsvendor solution is a special case of the two-stage two-stage uncertainty hedging rule when o > 1/2, the
optimality gap of the two-stage newsvendor solution (Theorem [2|) follows (see Appendix . In Appendix
D] we prove Theorem [1] which characterizes the cost saving of the optimal two-stage staffing rule compared
to the optimal single-stage policy. This is done by combining the cost quantification under different near-
optimal staffing rules and the corresponding optimality gap results. For example, when o > 1/2, we first

compare the cost under the two-stage newsvendor rule and the single-stage newsvendor rule. We then use
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the optimality gap of the single-stage newsvendor solution (compared to the single-stage optimal) and the
optimality gap of the two-stage newsvendor solution (compared to the two-stage optimal) to quantify the
cost saving. In Appendix [E] we prove Theorem [3| where we show that the two-stage square-root staffing rule
refines the two-stage newsvendor solution and further reduces the optimality gap. Lastly in Appendix [F] we
analyze the two-stage staffing problem with surge-stage prediction errors. The results for small prediction
errors (Proposition [2)) are proved in Appendix and the results for moderate to large prediction errors
(Proposition [3)) are proved in Appendix

Appendix B: Proof of Proposition

PRrOOF: Consider an admissible staffing policy 7 € II with base staffing level N; and surge staffing level
N3(Ny,A). For any realized arrival rate ¢, we let By (N1, No(N1,£),¢) denote the steady-state number of busy
servers among those that are staffed at the base stage, and let By(Ny, No(Ny,£),¢) denote the steady-state

number of busy servers among those that are staffed at the surge stage. It holds that
B (N1, N3(Ny,0),0) <Ny and Ba(Ny, No(Ny,£),0) < No(Ny,b). (24)

Note that for By (Ny, No(Ny,£),¢) and Ba(Ny, No(Ny,£),¢) to be well-defined, we need to specify the assign-
ment policy of patients to the base and surge servers. Since the model does not distinguish base and surge
servers (i.e., they provide the same quality of service), we assume that patients are randomly assigned to the
available servers with equal probabﬂity. That said, holds regardless of the assignment policy.

Proof of (I). Following (22)), the total cost satisfies

C.(0) =c1 Ny 4 caNo(Ny, £) + (h +ay)E[Q(Ny + No(Ny,0),0)]

> ClE[Bl(Nl,NQ(Nl,e),E)] +CQE[B2(N1,N2(N1,€),£)] + (}:t +CL/.L> %E[Q(Nl +N2(N1,€),£)]

Zmin{cl,027 +GM} ]E Bl Nl,N2 N17£)7£)]+E[B2<N1aN2(N1;£)a€)]+ZE[Q(N1+N2(N1;€)7€)]>

h
(00);
¥ I
()
Y

(25)
where the second to last equality in follows from the steady-state balance equation:
0= pE[By (N1, No(N1,£),£)] 4+ pE [By (N1, No(Ny, £),£)] +9E[Q(N1 + Nao(Ny, £),£)]
¢ (26)

= E[B(V1, N2 (80,0, 0] + E [Ba(1, Na(M1. 0 0]+ ZEQN + Na(Ms.0). ).

Moreover, the cost lower bound in can be achieved by staffing zero base and zero surge servers. To
see this, let g denote the “zero-staff” policy under which all customers abandon. The long-run average cost

for the realized arrival rate ¢ under mq is
Cro () =10+ 20+ (R +avy) E[Q(0,0)] = (h+ avy) E[Q(O0,4)].

By flow balance, the steady-state rate at which abandoning customers arrive must be equal to the abandon-

ment rate, namely,

t=~E[Q(0,0)],
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which gives that C.,(¢) = (h+ay)£/vy. Hence, my achieves the cost lower bound, and is optimal to the
optimization problem .

Proof of (II). Based on 7, we construct another admissible policy #’ where 7’ := (0, Na(N1,A) + Ny).
Namely, if 7w assigns N; base servers and No(Np,A) surge servers, then 7' assigns zero base servers and
N3(N7,A) + N surge servers. By assumption, either hy/y + ap > ¢1 > ¢o or ¢ > hp/y + ap > co. It follows
from that C./(A) <C,(A). Thus, it is optimal to set N7 =0.

Proof of (III). Based on 7, we construct another admissible policy 7’ where 7’ := (N7,0). Namely, 7’
assigns the same number of base servers as m but zero surge servers for any realized arrival rate. Following
, the total cost satisfies

Cr(€) =c1Ni +caNao(Ny, £) + (h +ay) E[Q(N1 + Na (N1, £), 0)]
> Ny + ¢oE [Ba(Ny, No(Ny, 0), )] + (hv“ 4 au) TEIQN: +Na(1,0),0)
>Ny + (Z/u +au) (E [Ba2(N1, No(Ny, £),0)] + %]E [Q(N: +N2(N1,€)a£)])
> o (M an) (1B, 0.00+ 22 QN 1)

h
R 1
_c..(0),
where the last inequality follows by observing from that

E [By (N1, Nao(Ny, £),0)] + E [Ba(Ny, No(Ny, £), 0)] + %E [Q(Ny + Na(Ny, 0),0)]

—E[B(N1,0,6)] + E [By(Ny,0,0)] + %E [Q(IN:, 0)]

_¢
/1/7
and that
E By (N1, No(Ny, £),0)] < E[By(N,,0,0)] .
Thus, it is optimal to set Nj(N7,A)=0. Q.E.D.

Appendix C: Two-Stage Uncertainty Hedging Rule

For most of the theoretical development starting from this section, we consider the asymptotic behavior of
the system as the mean arrival rate A\ grows without bound. Thus, throughout Appendices [CHE]l we add
superscript A to all the quantities that scale with A. For example, we add the superscript A in N}* and
N3 (N, A*) to denote the dependence of the staffing levels on the mean arrival rate. We use U to denote the
set of all sequences of admissible staffing polices. The set U contains policies in form of u = {7* : 7* € [I*},
where u is a sequence of policies that specifies a two-stage staffing decision for each system along the sequence.
Whenever needed, we add the subscript u to the costs (e.g., C2}) to mark the dependence of the cost on the
staffing policy explicitly.
To facilitate the asymptotic analysis, we re-center and scale the total cost by defining

é*(A):ZW, and (fj::E[CAﬁ(A)}. (27)
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To simplify notation, we denote the sum of the surge-stage staffing and queueing-related cost by
RN, Ny (NT 03), %) = e N3 (N7, %) + (h + ay)E [Q(NT + N (N7, %), )] . (28)
Replacing the realized arrival rate ¢* with A* in (28], we define
RMNT, NG (N7 AY), AY) i= o N3 (N AY) + (h+ ay) E [Q(NT + N (N7, A), A A

where the expectation operator on the right-hand side is with respect to the queue process. Note that
RN}, N3 (N, 02),£%) is a constant while R* (N7, N2 (N, A*), A*) is a random variable.

The proofs of the main theorems require analyzing near-optimal staffing polices. In this section, we propose
the two-stage uncertainty hedging rules and denote it by us yr. We characterize the system performance
under us yy as the mean arrival rate A increases to infinity. We also show that the two-stage newsvendor
solution is a special case of the two-stage uncertainty hedging rule. The proof of Theorem [2] follows.

Consider the following staffing policy, which we denote as us(51,82(81,X)). At the base stage, the base
staffing level is set as

N = M+ By (A )™ 02 oAyt

for B; € R. Note that the base staffing level is set to meet the mean demand, together with a hedging that
is of the same order as the arrival-rate uncertainty or system stochasticity, whichever is larger. At the surge

stage, after the random arrival rate realizes, the surge staffing level is set to
NV A) = Ba(Br, X) () ™2y o0, () ™o1/2))

where the coefficient 55(81,X) € R, depends on both the base staffing level and the realized arrival rate.
Note that the surge staffing level serves as another hedging against the larger part of arrival-rate uncertainty
and system stochasticity. Importantly, the parameter (81, 82(81, X)) does not scale with .
We also denote
DY i= N} = M= B (V) ™2 = o( (0 (/)

and

DN, M) = N (N2, A%) = 5381, X) (M )™ /%) = o5 (A pmex(est/23),

Note that D7 is a constant. On the other hand, D3(N;',A*) may depend on the realization of A* and is
thus a random variable. Recall from Section [1.3| that by D3 (N}, A*) = oy (A/p)™ax{1/2}) " we mean that
DN}, AN/ (A /)™ 12 50 as A — 0o with probability 1, and there exists some random variable Y
with E[Y] < oo such that

|D (N}, AN/ (N )2 <y for all A > 0. (29)

We remark that is not restrictive and allows for a wide range of capacity prescriptions. Examples for
D3(N}, AY) include (A/p)™ and (A/p)™X for 7 € (0, max{«,1/2}), etc.

The two-stage uncertainty hedging rule is defined by properly optimizing the staffing parameter
(B1,P2(B81,X)) in ua(B1, B2(P1,X)). In particular, we first derive a proper limit for the scaled total cost under
ua(B1,B2(81,X)). Then, (57, 85(8;,X)) is defined as the optimal solution to the limiting cost function.
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C.1. Two-Stage Uncertainty Hedging Rule for a > 1/2

For any realized arrival rate £* = A+ 2zA%u! =%, under uy (81, 82(B1,x)) with parameters 8; and (31, z), the
total staffing level can be written as
N+ Ny (N ) =M+ (By + B2(Br, @) (A )™ + o((A 1))
_AF At n (A1) (Br+ Ba(Br,7) — ) (A +Apt
1 A+ A/ p)* ) 1
=0/ (Br+ Bo(Br, ) — ) (/)" + o((6*/p1)*).

Let B:= 1+ B2 (B1,2) — . We first prove an auxiliary lemma on the asymptotic behavior of the steady-state

)a Fo((Mp))  (30)

probability of waiting and steady-state probability of abandonment, which facilitates our subsequent analysis
on the asymptotic behavior of R*. The lemma is adapted from Theorem 4.1 and Theorem 4.2 in Maman

(2009).

Lemma 2 Assume that o > 1/2. For any sequence of realized arrival rate £* = X\ + zA*p*=*, under
uz(B1, B2(B1, ) with parameters By and Ba(B1,x), the multi-server queue with abandonment satisfies:
(i) If B1+ B2(B1, ) > x, then the delay probability converges to zero exponentially fast as A — oo. Specifi-
cally, for X\ large enough,
P (W(N} + N3 (N, 02),04) > 0)
<L 1 o { (5*//1—(N?+N§(N1*7€*))+1)2}
= X — .
Bvar (N} + N3 (N3, ))e-172 P 2((Nf + N2 (N, 02)) = 1)
The probability to abandon of delayed patients decreases at rate 1/(N} + N3 (N}, €2))*, i.e.,

1 Y
P (AB, N} 4+ N3 (N7, 0), |V (N 4 N3 (N7, 02),00) > 0) ~ N TNV uf
1 1>

(i) If By + B2(B1,x) < x, then the delay probability converges to 1 exponentially fast as A — 0o. Specifically,
for X large enough,

32
P (W (N} + No (N, £2),04) =0) < ﬁﬂ22a(£)\)2al}'

1
—————exp
L W
The probability to abandon of delayed patients decreases at rate 1/(N7> + No' (N, )=, i.e.,

1]
(N + N2 (NP 02)) e

P (AB, N + N3 (N, 0), |V (N} 4+ N3 (N7, 02),04) > 0) ~
Proor: Following , for total staffing level of the form

g)\/:u+ (/81 +62(B1ax) _x) (E)\/:u)a +f(€)a

where f(£*) =o(v/£*), the statement of Lemma [2| follows directly from Theorem 4.1 and Theorem 4.2 from
Maman| (2009). The work left is to generalize the result to staffing level of the form in , where f(£*) =
o((V)°).

To this end, we show that the proofs of Theorem 4.1 and Theorem 4.2 in Maman| (2009) can be generalized
to the case where f(£*) = o((£*)®). Indeed, exactly the same lines of derivation go through when f(£*) =
o((£*)) (as opposed to f(£*) = o(v/£*)). Just as in [Maman| (2009), the results follow from Lemmas 4.2 and
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4.3 which need to be adapted to this more generalized setting. We next illustrate the generalization of Lemma
4.2 to the general case where f(£*)=o0((£*)*). The other proofs are generalized similarly.

In the proof of Lemma 4.2 in , four places utilize the fact that f(£*) = o(v/£*). We discuss
them one by one. For the rest of this proof, we assume that 5 > 0, as in the proof of Lemma 4.2. All numbering
of the equations refers to those in Section 4 of (2009).

First, let G(u) := e~ denote the ccdf of the patience time distribution. Following (4.44) and using the

definition of § in (4.40), take -
1-G(6/2)

0.
5 >

7=

Since G(u) < 1 for all u >0, and G(u) — 1 < —27 for all u > /2, we get that for A large enough,
A(Gu) = 1) = ) p! = = f(P)p < =B p',  for all u>0,
and
A (Gu) —1) = BN pt = — fM )< =30, for all u>6/2.

Therefore, (4.45) and (4.46) hold for the case where f(£*)=o((£*)%).
Second, in (4.51), define the function

r(0) = —ﬁ(fk)“%:l‘*i ; J )z
Note that for f(¢*)=o((¢*)*), we still have r(¢*) ~ (¢*)*. Therefore, (4.51) still holds by applying Lemma
2.1 in with m=0,ky =a,ly =1,ky =1,1, =2.
Third, utilizing the same fact that 7(£*) ~ (¢*)*, (4.55) goes through by applying Lemma 2.1 in Maman
withm=1,ki=a,li =1,ky=1,l5 =2.

Lastly, for

ni= N} 4 NQ(ND, ) =t 3 (/) +o(( /1)),

it holds that R
(O fp—nt1)?

21yt

so the last line in the proof of Lemma 4.2 goes through. Q.E.D.

Lemma 3 Assume that o > 1/2. For any sequence of realized arrival rates £* = X + xA\*p'~*, under

us(B1, B2(B1,x)) with parameters 81 and B2(B1,x), we have

1
(A )

where the function Z: R xRy xR — R, is defined as

RMND, NJ (NN ), ) = #(B1, B2(Br,x), ) as X — oo,

c2f2(Pr, ) if Br+ B2(fr,2) >

esBa(Bro) + (hit)y+ i) (— B — Ba(Broa) if B+ BalBrm) <z O

F(Br, B2(Br, ), ) :{
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ProoF: It follows from (2.8)—(2.11) in (2009) that when the patience time is exponentially

distributed, we have
P (AB,Nf + N;(Nf,é*),ék) =P (AB,NIA + NS (N} ), V(N + NS (N O, ) > 0)
P (VV(NIA + Ny (N ), 00) > O) .

By Lemma [2| and the flow balance equation that
OP(AB, N} + N3 (N, 0),0) =E [Q(N} + N2 (N, 0*), 0],

the following cases hold:
(i) If By + B2(B1,x) > x, then for X large enough,
P(AB, N} + N (N}, ), 0%)

7 1 o d /= (NT + N (NP, £4)) +1)°
B 2r (N; + N3 (NG, )17z P 2((N + N (N7, £2)) = 1) '

Therefore,

1
lim ——=E
A—o00 /A/M

(ii) If B1 + B2(B1,x) <, then for A large enough,

[Q(N? 4 N3 (N7, 02),00)] =0. (32)

[
(N + N3 (N7, £2)) =

P (AB, N} + N} (N}, 0),0)) ~

Therefore,

. 1 X ATACATA gAY pA —fo _ -
lim B QN NIV 0, 0] = = 81— 5a(81. ) (33)

Lastly, when 81 + 82(51,x) =z, we get from Lemma [1| that

E[Q(N{ + N3 (N7, £2),0%)] < max {1/, 1} ((Wu = N} = NN, )T A e + 1/10g2)
= o((\/)*) +max {1/, 1} /47 / v/ + max {p/7,1} / log 2.

Then,
1
lim ——E[Q(N; + N3 (N, ), M) =0. 34
lim B [QUN 4 NN ), (34)
The statement of the lemma then follows from , , and . Q.E.D.

Based on Lemma [3] let 8; and £33 (51, X) be the optimal solution to

min {cl,ﬁl +E [ min f(ﬁl,ﬁg(ﬂl,X),X)} } ,  for Z defined in .

B1ER B2(B1,X)eERy

It is straightforward to derive that
fr =argmin c1f+ ¢, E (X =B)F]=Fx'(er/ea), and B5(B1, X)=(X~B)*. (35)

Then, the two-stage uncertainty hedging rule is defined as us (81, 82(51, X)) with parameters 8 and 83 (85, X)
in . Note that us 7y is exactly the two-stage newsvendor solution in Definition

The next lemma establishes the asymptotic performance of us ;7.
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Lemma 4 Assume that o > 1/2. Under the two-stage uncertainty hedging rule defined in (equivalently,

the two-stage newsvendor solution), we have
Cr = 1By +E[F(B;,B5(87,X), X)]  as A— o0,
for Z defined in .
ProoF: It follows from Lemma [3 that
CAAY) = e B} +7 (87, 55(87, X), X)) wp.l s A= oo,
Hence, to prove the claim, it is sufficient to show that

Jim € (4%)| = [ Jim €| )

To this end, we utilize the dominated convergence theorem.

Note that
CMAY) =c18; + e85 (87, X) +

1
~ (D} + DN, A)
k) )

1 A A A A A A
+W(h+m)E [QINY + N (N, A, AMAM.

For the first two terms on the right-hand side of (37), it follows from the definition of 33(8;,X) that

lerBil + [e2 581, X)| < e2 (167 + [X1)

where recall that E [| X|] < co.
For the third term on the right-hand side of (37)), note that D} is a constant that is o((A/p)*). This,
together with , implies that there exists some random variable Y with E[Y] < oo such that

1 . o ]
e (IDI+ D3 (N, AY)]) < Y.

For the last term on the right-hand side of , we utilize Lemma [1| to get that
E [Q(N7 + N3 (N7, AY), AY)[AY]

< mac {ja/7, 1} (A= N2 = NJ (NP, A) T+ /A /uV/AS +1/ Tog 2)
< max {/7,1} (8 /= N2) "+ /Am /A + 1/ log 2) (38)
:max{u/%l}(( (X —87) (M) — )++\/4ﬂ/u\/A/u+X/\“u1*a+1/10g2)
< max (/7 1} ((1X] + 181) (/10)" + D3|+ /Amfy/ N /B [ /[IXD 0= 41/ 10g 2)
n ([38), D} = o((A\/p)*) is a constant. In addition, for A large enough, we have

| X].

By Jensen’s inequality, E [\/|X|} < VE[|X]] < co. Therefore, there exists some random variable Y with
E[Y] < o0, such that

1 A ATA AFATA A AN A ANT AN
o (e E [Q (N NI (VL AN, AN |AY] < Y

Therefore, |CA'*(A*)| in is uniformly bounded by an integrable random variable, and is justified.
Q.E.D.
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C.2. Two-Stage Uncertainty Hedging Rule for a <1/2

Recall that ¢ and ® are the pdf and cdf of the standard normal random distribution, respectively. The hazard
rate of the standard normal distribution is H(t) = ¢(t)/®(—t), for t € R.

Lemma 5 Assume that o < 1/2. For any sequence of realized arrival rate £* = X\ + zA“p'~*, under

us(B1, Ba(B1,)) with pammeters B1 and B2(B1,x), we have
\/V (N, N3 (N ), ) — 7 (Br, B2(Br, 1), ) as A— oo,

where the function 2:R xRy x R— R is defined as

7 (B1, B2(B1,x),x) = caB2(B1, )+

(}W—Fau) ﬁ[H((51+52(51, ) =2l o= 1/2})\/7> (B1+ B2(B1,7) — l’ﬂ{a:uz})\/gl (39)

Y 1+ ((514‘52(51@)*03]1{&:1/2})\/g)
(*(514—52(&1 z)—zlfo— 1/2}))

PRroOF: For any realized arrival rate £* = X+ A\*ul=z, the total staffing level satisfies

VNP NXND ) (1= p*) = By + Ba(B1, @) — 2l jaz1joy  as A — oo,
By Theorem 4.1 in [Zeltyn and Mandelbaum| (2005), we have
P (AB, N} + NQ(N?,EA),P)

s \ﬁH((/31+52<51,w>_ﬂ{a_1/2}) J5)
o)

J
H(— (814 B2(B1,7) — 2L {a=1/2})) \/N*—&—NA (N, ) \/;

{H((ﬂ1+ﬁz(51, ) =2l o 1/2})\/>) (Bt Ba(Pr, 2) = 2l a1y ﬂ ( N1+N2>
\/7[ (B1+ B2(Br,2) — 2l (0= 1/2})f> (Br+ B2(Br,2) — 2L gamry2) \/T <

14 ((51+52(ﬁ1»I)*I]I{azlm})\/g)
(*(61+62(Bl»f)*ill{a=1/2}))

From the steady-state flow balance equation

-1

)

VE[QINT + N (N, 04),00)] = (A+ X' ~2) P (AB, Ny + N (N7, £4),6)

we get that
1

Ve
N %[ ((51+52—$1{a 1/2})\/>> (B1+ B2 — xﬂ{a:l/2})\/g:|

E[Q(NT + N3 (N, ), )]

, as A— o9,
v 1+ /2 ((B1+ﬁ2 ol 1/2})\/>)
i H(=(Ar+p2=sliaz1/2)))
and the statement follows. Q.E.D.
Based on Lemma [5| let 8; and £33 (51, X) be the optimal solution to
i E i & X), X for 2 defined in (39). 40

Then, the two-stage uncertainty hedging rule, us y 5, is defined as us(B1, 82(581, X)) with parameters 57 and
B (B, X), ie
=M+ BL N2 +o((Nw)'?), and Ny (N{,A*) =858, X) (N 1)? + our(A/)'?).
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Remark 4 The existence of B and B3(B8;,X) follows from the same lines of analysis as those for the

conventional single-stage square-root staffing rule considered in the literature (see, e.g.,|Garnett et al| (2002),
[Zeltyn and Mandelbaum| (2005]), | Mandelbaum and Zeltyn| (2009)). For completeness, we outline the key steps
and omit the lengthy algebraic derivation. Given B and X =x, it can be seen from that #(B1, B, x) is

continuous in Pa. In addition, it can be checked that 7(B1, B2, x) — 00 as By — co. Thus, an optimal solution

B5(B1,x) exists for the inner minimization problem in . The existence of 57 can be argued similarly.
Let g(51) :=c181 +E[F (81, 85(81,X), X)]. It can be checked that g(51) — oo as f1 — 0o. In addition, under
the condition that u >~y or (h+ ay)u > c1y (this latter condition is implied by Assumption , we have
9(B1) — 00 as By — —oo. The existence of an optimal solution 57 then follows from the continuity of g(51)

mn ﬁl-

Before we establish the asymptotic performance of uy 757, we first prove an auxiliary lemma.

Lemma 6 Assume that o« <1/2. Under the two-stage uncertainty hedging rule defined in , there exists
a random variable X such that B5(51,X) < X and E[f(] < 0.

Proor: For any realized arrival rate £* = A\ +zA*u! =%, we start by rewriting as
7 (ﬁlaﬂQ(ﬁl,x)ax)
= (B1 4 B2(Br, 1) — 2l az1/2y) — 2 (B1 — 2l az12y) +

<hu ) ﬁ [H ((51 + B2(B1,x) — 2l 0z /ay) \/g> = (B1+ B2(Br,2) — 2l (0=1/2y) \/ﬂ .

— +
~ ap 14 1H((51+62(B1ym)*11{a=1/2})\/g)
K H(*(B1+B2(51"T)*z]l{azl/2)))

Let §:= + B2(B1,x) — 2l a=1/2}, and denote

: F L (5y%) -5y
9(B) := (?4—&#) [14_ :/f:(‘;\/?)\/»'
-8B

woH(-B)

It follows from Section 2.1 in the Online Appendix of Mandelbaum and Zeltyn| (2009)) that the function g

monotonically decreases from infinity to 0.
Define

fri=  argmin e+ g(h). (41)

B8>51 —zla=1/2}

Note that by construction, we have
Bs(Br,x) = B* — b1 + Tl ra=1/2;-

Corresponding to (41)), let

Bt :=argmin B+ g(B),
BeR
where unlike 8*, 81 is a global minimizer of the objective function over the real line. The existence of Bt

follows from the same lines of arguments as in Remark
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We discuss the following cases:

Case 1: If B; — 21 (q—1 2y < 7, then §* = 37, and

B;(ﬂlax)ZBT —B1+xla=1/2}- (42)

Case 2: If 31 — z1,—1/2; > (37, then let € >0, and let M € R be such that (i) M > ¢/c,, and (ii) for all
x> M, we have 0 < g(z) < e. There are two subcases:
Case 2(i): If f; — 21 {,=1/2; < M, then exactly one of the following two scenarios holds:
Case 2(i.a): 3* < M, so that

B5(Bi, ) <M — B1+ala—1/2}- (43)

Case 2(i.b): * > M. In this case, (1)) can be rewritten as

£* = arg min 025 + g(B)

B>M
Note that for all y > 2M, it follows from the definition of M that
c2M +g(M) < cay+g(y)- (44)

Therefore, B* <2M, and
B5(B1,2) <2M — B+ 2l a=1/2)- (45)

Case 2(ii): If 81 — 2l {a=1/2; > M, then by definition of M, holds for all y > 2(8; — 2l {a=1/2})-
Hence, B* S 2(B1 —.’,E]l{azl/g})7 and

B5(Br,2) <2(b1 = 2lga=1/2)) = P1 + 2L (a=1/2) = b1 = ¥ a=1/2}- (46)

In summary, by , , , and , we get that
B3 (Br,x) < |B7[+2M + [By] + |z]. (47)
Let X :=|Bt|+2M + |B;| + | X|. The statement follows from and E[|X]] < oo. Q.E.D.

The following lemma establishes the asymptotic performance of us 1.

Lemma 7 Assume that « <1/2. Under the two-stage uncertainty hedging rule defined in , we have
C* = 157 +E[7 (571, 85(67, X), X)] as A — oo,
for Z defined in .
ProoF: It follows from Lemma [{ that
CMAM) = ey +7 (81,8381, X), X) wpl asA—oo.
Hence, to prove the claim, it is sufficient to show

lim E [é*(AA)} ~E [hm c“(AA)] (48)

A—00 A—00
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To this end, we utilize the dominated convergence theorem.

We start by writing
1

A
(h+ay)E [Q(N? 4+ N3 (N7, A*), AY)|AY]

C”\(A)\) :015; + CQB; (ﬁ;X) +

(Df + D3 (N7, A%))

1
A
=c1B7 + 28567, X) +

A

/

1

(D} + Dy (N, AY))

%
~
=

+

(h/y+a)P (AB, N} 4+ N3 (N7, AY),AY),

%>
=

where the last equality follows from
VE [Q(N} + N3 (N, AY), AN AN = AP (AB, N7 + N3 (N, A, AY).

Recall that P(BL,m, ) is the steady-state blocking probability for an M/M/m/m queue with number of

servers equal to m and arrival rate equal to \. It follows from a simple coupling argument that
P (AB, N} + N2 (N}, A),AY) <P (BL, N} + N} (N}, AY), A). (50)
Since the Erlang blocking probability is increasing in the offered load and N3 (N}, A*) > 0, we further have
P (BL, N} + N3 (N}, AY),AY) <P (BL, N} A+ | X |Aput==) . (51)
In addition, recall that L(m,\) is the steady-state loss rate in an M/M/m/m queue with number of

servers equal to m and arrival rate equal to A. In particular, L(m, A) satisfies L(m,A) = AP (BL,m, \), and

by Theorem 1 in |Smith and Whitt| (1981)),
LN A+ [ XA ) < LN = 1,0) + L(L, | X]A"1 ). (52)

Combining —, we have
AP (AB, N + N3 (N, AM),AY) S AP (BL, N A+ [ XAt —®)
< AP (BL,N{ —1,A) + | X|X\*u'~°P (BL,1,| X |X*pu' ™) (53)
<P (BL,N;{ —1,A) + [ X[A“p' .

Dividing both sides of by \/A/p, we get that
A>\ )\ )\aul—a

— P (AB,N} + N} (N}, AY),AY) < P(BL,N} —1,\) + |X]| , (54)
VA1 oo VA 1 ' VA1
where the first term on the right-hand side of is a constant. By equation (17) in [Whitt| (1984),
lim ——— P (BL,N}» —1,)\) = o(Bi) 55
fim o P ) =) %5)
Furthermore,
a -« o —
lim | x (A QX ifa=1/2 (56)
A—roo VAN 0 if e<1/2.
By (54)-(56)), we have for X large enough,
A o(B7)
————P(AB,N} + N3} (N}, AN, AY) < p—— 4 pl X
Nevrk LA <15,

This, together with Lemma [6 the assumption that E[|X|] < oo, and the requirement on D7 and
D)(N}, A*), implies that [C*(AY)] in is uniformly bounded by an integrable random variable, and the
interchange of limit and expectation in is justified. Q.E.D.
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C.3. Optimality Gap of vz uym

In Appendices and we propose the two-stage uncertainty hedging rule, which prescribes staffing
levels

N = M+ B7 (/)™ 02 g o(A /)t t/2
NB(N,A%) = B3 (87, ) V) ™2 o0y (0 ) ™).

When o > 1/2, 57 and 85(8;,X) are defined in , so that the capacity prescription is identical to that
under the two-stage newsvendor solution. When o <1/2, 87 and 35(8;, X) are defined in (40)). Let C3 5, be
the expected total cost defined under the two-stage uncertainty hedging rules. Recall that C3 , is the optimal
total cost for the two-stage optimization problem . The next lemma quantifies the optimality gap of the

proposed policy to the exact two-stage optimum.

Lemma 8 For o€ (0,1), we have 3, —C3, = o(A™{1/2ek),

PRrROOF: The key of the proof is to show that for any sequence of policies u € U,
liminf C} > lim C} . (57)
A—o00 ’

A— 00
Note that the limit on the right-hand side of is well defined because of Lemma [4] and Lemma [7]
First, it is without loss of generality to consider a sequence of policies u € U under which

A
lim inf N =M

— e > — 58
A—s 00 ()\/Iu)max{l/Q,a} ( )

To see this, for any sequence realized arrival rate ¢*, recall from the proof of Proposition [1| that
By (N, N2 (NP, ), £2) and Bo(N, N2 (N}, £2),£*) denote the steady-state number of busy servers among

the base and surge staff, respectively. It follows that
E [RY N7, N3 (N7, 04),64)] = coN (N7, ) + (h + ay) E [Q(NT + N3 (N7, %), )]

> 2B [Ba(V), NN )]+ (g +a) VE[Q(ND + NJ(N?, £4), )]

> min{f} ! +a} (KE [Ba(N2, N (N2, €),09)] +4E [QUND + N (N, £, 6)])
h

= min{cj, S —|—a} (0 — pE [BL (N7, N3 (N7, 02),00)])

2min{c2,h+a} (W—uNf‘)
o

EA
= Co <N1)\)
12

Replacing ¢* with A*, taking expectation, and recalling that E[X] =0 give
E [RMN?, N (N2, AY), AY)] > 5 <: —Nf) |
Then, the scaled cost C) satisfies
A/\_C N?—A/M E[RA(NI\’NQ/\(NI\’AA>7AA)]
— ¢l (N p)max{1/2.a} (A p)max{1/2,a}
Ne—XMup o Ap=Np
(A p)max{1/2.a} 2 (A p)max{1/2.a}
Ap— N
= (2 =) 7 ymeta/zar

u

>
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If does not hold, then it follows from and Assumption |1f that liminfy_, CA;) = 0o. For the purpose
of characterizing (near-)optimal staffing rules, we assume without loss of generality that liminf,_, . CAﬁ < 00.

Now, consider a subsequence of systems indexed by \; on which the liminf in is obtained, namely,

lim Cii‘ = liAm inf(if.

A; —00
Along this subsequence,

o (N =X /p)  E[RM(NY, Nyt (N, AM), AM)]

Ai

u max{1/2,« max{1l/2,«
(As/ )it/ (Aot

Since the second term is non-negative, it must be the case that
Ai
lim sup atth ZAH) (Nl _ /\i/u)
max{l/2,a

H
ence, NN = /p NN\ /u
—o0 < liminf T max{i/2.a} <limsup 7N/ max{1/2,a}
X —>00 (Az/u) ’ X —00 (Al/,u) ’

Then, Bolzano-Weierstrass theorem indicates that any subsequence has a further convergent sub-subsequence

< 0.

indexed by A;; along which
A
Nl T - /\ij /:u
max{1/2,a}
()‘ij /M)

— B ER as A, — o0, (60)

It follows from that

e (M =X, /) B[R (N7, NG (N7, AN ), A M)

oV
. My .
)\}:Elooc = )\}JITOO (AA‘/IU/)max{l/Q,a} T lAllI;ﬂ—{I;of ()\i./u)maX{l/Q’a}
E[RY (N, N, (N, A%), %)
= clﬁl + lim inf max{1/2,a} (61)
Aij oo ()‘ij /N)
i Aj . Aj .
RMi (N, Ny 7 (N7 AN ), AN
> c181 +E |liminf (N 7. Snaxl{l/’Q o) ) ) )
Aij—><>o ()\7,7 //J‘) ?
where the last inequality follows from Fatou’s lemma.
Next, we are going to establish that for any realized arrival rate i ,
PV VS v
R)\ij NG NN é)‘ij g)\ij
timing XN N L) EB) 5 g, s (Br), ). (62)
)‘ij oo ()\l] /[1,) max NeY

In (62)), when o > 1/2, 2 is defined in and B3 (81, X) is defined in . In the other case where a <1/2,
2 is defined in and f5(P1,X) is defined in . To see that holds, define
oy Aij i Aij Aij P max{1/2,a}
Ny 7 (N JAJ)::Nz (N, 7€>\J)/(Aij/u) .
Observe that the sequence {N; K (NlA ) :Ai; >0} satisfies exactly one of the following three cases:
(i) Ny (N9, %) = B, € Ry as A, — o0,

i

(ii) N;J (Nfij 05) = 00 as Ai; = 00.

VD VIR
iii) N, (Ny 9, 0) does not converge.
2 1
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For case (i), follows from Lemma [3] Lemma [5] and the definition of 85(51,z).

For case (ii), we have

i i . i ; i i ) )
RN NN (N ) vy eNa (N7 09) + (- an) B [QINTY + Ny Ny, 0%4), 04

()\ij /u)max{l/Q,a} ()\lj /M)max{l/Q,a}
NNy (e E[QUN N (N ), )
=Co ()\“/,u)max{l/la} (A.A/’u)max{l/la}

—00 as \;; — 00,
and holds.

For case (iii), we can further consider a further subsequence indexed by Ay, along which N; Y (NlA Y 0 )
converges. Such subsequence exists because a sequence has no convergent subsequence if and only if it
approaches infinity. The same arguments for case (i) can be applied to establish .

Now, it follows from and that

A A A
i RYi (N, 9 N, 7 (N, A5 ), AN
lim C:] >c161 + E |liminf (N 7, Ny Ena,xl{l/’Q = ), )
M Ry (N, /1)

> 1 +E[F (Br, B3 (B1, X), X))

Furthermore, since f; is constructed such that

Clﬂl _|'IE[72 (Bl,ﬂ;(ﬂl;X)aX)] Z clﬂ; +E[7ﬁ (ﬁf,ﬂ;(ﬂf,X),X)} ’
it follows that

Y . e ot o Y
lim Cu’ >c 3] +E[T(ﬁla/62(ﬁlvx)’X)]: hg C2,UHa

Aj . —00 A oo
J J

where the last equality follows from Lemma and Lemma Since the subsequence indexed by A, is arbitrary,
we have established .
Next, we apply to the sequence of exact optimal two-stage staffing rules, i.e., us ., and get that

. . =5\ . =5\
liminf C3 , > lim C3 4.
A— o0 A— 00

By the optimality of us ., we also have

. “>\ . “>\
limsup C3 , < lim C5 ;.
A—o00

A—00

Thus,
lim C}, = lim C} ,p. (63)
A—o0 ’ A— o0 ’

The statement follows from . Q.E.D.

The following corollary is a direct consequence from the proof of Lemma

Corollary 1 For a € (0,1), let 85 and B5(B;,X) be defined in when o> 1/2, and defined in when
a <1/2. Consider a sequence of staffing policies uw = {m* : A > 0} = {N}, N3 (N}, A*) : A > 0}. If there does
not exist a subsequence indexed by \; along which {N;*, N3* (N}, A*): \; >0} is prescribed as
N = B i)™ ()12
NG (NTAM) = B3 (87, X) (/i)™ op (/) ™11,
then C) —C3 1y > ©(Nmaxten1/2h),
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Corollary [1] indicates that it is without loss of optimality to consider the family of two-stage uncertainty
hedging rule. To improve upon the o(A™#*{®:1/2}) optimality gap established in Lemmal8] we need to consider
refinement which puts further restrictions on the o((\; /)™ "/?) term in N and the og ((A; /)™ (12
term in N3 (N}, A*). In the special case when o > 1/2, it is without loss of optimality to consider the family
of two-stage newsvendor solutions. The two-stage QED rule is a refinement of the two-stage newsvendor

solution that reduces the optimality gap from o(\*) to o(v/}).

C.4. Proof of Theorem [2]

PRrROOF: Note that the two-stage uncertainty hedging rule when « > 1/2 is equivalent to the two-stage
newsvendor solution. The statement follows from Lemma Q.E.D.
Appendix D: Proof of Theorem

The proof of Theorem [1| builds on the performance quantification of us (81, 82(51,X)) and ug g introduced

in Appendix For the sequence of systems indexed by ), recall that C}, is the optimal total cost for

the single-stage optimization problem 7 and CQA‘* is the optimal total cost for the two-stage optimization

problem . We establish Theorem (1] for different values of «.
D.1. Benefit of Surge Staffing When o < 1/2
Lemma 9 If a <1/2, then C}, —C3, =o(V).

Proor: We start by determining the parameters 57 and £5(87,X) defined in for the two-stage

uncertainty hedging rule when a < 1/2. In particular, for any realization = of the random variable X, the

function 2 in becomes
VEH (34820812 [2) = (81 + B )) | 2]

- S H((B1+52(81.0)/F)
w H(—(B1+B2(B1,2)))

7 (01, B2(B1,x),x) = cafB2(B1,x) + (h7,u +aﬂ>

Note that 7 (81, B2(B1,z),z) does not depend on the realization x. Hence, given g, we have that §5(51,x) =
argming,eg, 7(81,B2(B1, ), ) does not depend on x either. Then 3} and 33(57,z) jointly solve

c181+7 (B, B2(Br,x),x).

min
B1ER, B2 (B1,2)ER Y
By the assumption that ¢; < co. Thus, it is optimal to set
5 e (M JELE (81y5) -8 2]
:=argmin c — +a ,
VERERE N M) T AT

ol
no H(=pB1)

and (3 (87, ) :=0 for all realizations z of the random variable X.
In this case, the two-stage uncertainty hedging rule is equivalent to the conventional single-stage square-

root staffing rule (with staffing cost ¢, holding cost h, and abandonment cost a). Then,
Coyy—Ci, >0 forall A>0. (64)
In addition, we establish in Lemma [§] that
Covm —Ca =0(VA). (65)

The statement follows from and . Q.E.D.
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D.2. Benefit of Surge Staffing When o =1/2
Lemma 10 If a=1/2, then C}, —C3, = O(V\).

Proor: Consider 5(3;,X):=0 for all 3;, and 3] :=argming, ez ¢, 8, +E [f (ﬁl,ﬁg(ﬁl,X),Xﬂ. Note that
B and BI(B1, X) provide a feasible pair of parameters for uy (81, B2(f1,X)). Let C3, denote the expected
total cost under uy (3], 83(81, X)). It follows from similar derivation as in the proof of Lemma that

lim 3, = 1] +E [7 (81, 8551, X), X)].
Since (81, B3(B1,z)) is not necessarily optimal for the optimization problem in , we have
afi+E 7 (81,8581, X), X)] = e By + E[7 (85, 85 (85, X), X)].

It then follows from Lemma [T that
Cé\,f - Cé\,UH = O(ﬁ) (66)

Moreover, since 33(81,X) =0, this policy is equivalent to a single-stage staffing rule. By Proposition 3 in
Bassamboo et al.[ (2010), we get that

Cy—Cr,=0(VA). (67)
Lastly, by Lemma [§] we have

C;,UH - CQA,* = 0(\&)~ (68)
The statement follows from 7. Q.E.D.

Figure [9] below illustrates the performance gap between the employed policies in the proof of Lemma

Figure 9  Cost saving for a =1/2

oW 1)

D.3. Benefit of Surge Staffing When o > 1/2
Lemma 11 If a>1/2, then C}, —C3, = O(A*).

PrROOF: Under the two-stage newsvendor solution, the base-stage staffing level is A\/u + 85 (A/p)® +
o((A/p)*), where j3; is given by

87 =argmin ¢; 51 + cE [(X - ﬁl)Jr] :

B1ER

Moreover, Lemma [ establishes that

CA;,NV — 1] + o [(X — 5{)4_] as A — oo.
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In comparison, under the single-stage newsvendor solution, the base-stage staffing level is A/pu+ Bnv (A /1)?,

where By is given by
— - hu +
Byv =argmin ¢S+ ( — +ap |E (X —5)7|.
BER Y
Similar lines of arguments as in the proof of Lemma [f] show that
2 h,U/ +
Ci ny = c1Bnv + T—i-a,u E [(X - Bnv) as A — 00.

Therefore, if

h
argmin ¢; 5+ (H + au) E {(X - B)Jr} >argmin ¢ 8+ E [(X — )], (69)
BER Y BER
then
lim CAIA Ny > lim Cé NV
A— 00 ’ A— 00 ’
so that

Ci\,NV - C;,NV = @(/\O‘)- (70)

Note that a sufficient condition for to hold is that X is a continuous random variable, i.e., with a proper

density function.

Moreover, by Theorem 1 in Bassamboo et al. (2010), we get that

Cl v —Ch. =O(N) = o(V). (71)

By Lemma [§] we also have
C;,Nv - CzA,* =0(A%). (72)
The statement follows from 7. Q.E.D.

Figure [I0] below illustrates the performance gap between the employed policies in the proof of Lemma [T1]

Figure 10  Cost saving for > 1/2

C/'L @(}‘0‘) C/l

LNV 2,NV

o( 1) o(A%)

A
.

Cl,
a(A") ’

Theorem [ follows from Lemmas [QHIT]
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Appendix E: Proof of Theorem

Before we prove Theorem [3] we first prove an important auxiliary result on the asymptotic equivalence of
the family of two-stage newsvendor solutions, and then establish the asymptotic performance of the family
of two-stage QED rules. We assume throughout this section that o> 1/2.

Recall that the two-stage newsvendor policy takes the form
NP =N p+Bi(A/w)* + Dy, N3 (N, AY) = B5(87, X) (A )™ + Dy (N7, AY), (73)

for D} =o0((A\/p)*), and D3(N,A*) = our ((A/p)*). Let u be a policy of the form (73). Based on u, we can

construct another policy u, where
NY =M p+Bi(Mm)*+ D3, and N (NY,AY) = B3 (8], X) (M) + D3 (N, AY),

for
DY (N2, A%) if X <

DY=0, and DN AY):=
! , an 2( 19 ) {D{‘+D§‘(N1>\,A)‘) ifXZﬂf'

Let C} and C2 denote the expected total cost under v and 4, respectively.

Lemma 12 IfC) <C2, then C} —C) =o(\V/)).

ProOF: Let S} and S2 denote the expected staffing cost under v and @, respectively. By construction, u

and @ have the same expected staffing cost, namely,
Su=ci(Mm)+erfi (A p)* + 1 DY +E [e25 (87, X) + 2 D3 (N7, AY)]
= s (V) eaBi (V)" + €2 - DY+ E [e263(57, X) 42 DY(VD, )]
=c1(\/p) + 187 (A1) + 2 DyP (X 2 B7) +E [e285 (87, X) + ca Dy (N7, AY)]
=S5
where the second to last equality follows from 3; = Fx' (¢1/c3) and the assumption that X is a continuous
random variable.

We next consider queue length. If D} < 0, then by construction of 4, @ prescribes a higher staffing level

than u when X < 8, and prescribes the same staffing level as v when X > 7. Thus,
E QN+ NZ(N, A),A%)] > E[Q(N + N (W}, %), %]

and C) > C2.
Therefore, it is without loss of generality to assume that D} > 0 for all A > 0. We again divide the discussion

into two cases: X > 7 and X < 7. If the realized random variable satisfies x > 87, then
Dy + Dy(N7', %) = Dy + Dy (N7, %),
where £* = X\ +zA*ut~. This implies that

E[Q(N} + N3 (N, AN, AN x5y ] =E [Q(Z\?f+N§(N§,AA),A*)H{X25;} - (74)
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In the other case where X < f3;, it follows from in the proof of Lemma |3| that

. 1 A A A A A
AII_{&WE [Q(N1 + Nj (NlaA )7A )ﬂ{x<ﬁ1*}

1 1 A L NACNTA A A X
—Ah_{f)lo WE [Q(Nl + N (N17A ), A )]1{X<61*}

The above equality and subsequent inequalities involving random variables hold in a path-by-path sense.

AN
(75)

A*] —0.

Furthermore, recall from Lemma [I] that
E [QUN) + N (V3 A%), AY)|A%] < max (12,1} (4%~ N2)* 4+ /B /A + 1/ 1og2)
< max {u/7, 1} (v/An//A +1/10g2)

where the second inequality follows because D7 > 0. Thus, there exists a random variable Y with E[Y] < co
such that
1

WE [QNT + N3 (N, AY), AL x <)

Moreover, the same derivation applies to @. Thus, we can apply the dominated convergence theorem to

and get that

A’\] <Y, forall A>0.

: 1 1 Lok
Jim e [Q(NY + N (N AN, AN (o] = YR [Q(Nf + N3 (N7, AY), Ak)ll{ms;}} =0.
(76)

Now, we write C> as
Co =81+ (h+an)E[QNT + Ny (N}, AY), AY)]

:Si +(h+ay)E [Q(Nf\ + NQA(Nf\aAA)»AX)]l{X<B{}] +(h+ay)E [Q(Nf +N2>\(N1A»A>\)7AA)]1{X2/3;}} .
(77)

In addition, we write C2 as

Ch =8} + (h+a7)E [Q(N} + N3(N, A%),A%)]

=8+ (h+ay)E {Q(Nf +N§(N3»AX),AA)1{X<¢3;}] +(h+ay)E [Q(Nf +N2A(Nf7AA),AA)]1{X26;}} :
(78)

Then,

Ch = C2 = (h+a7) E[QIND + N (NP, AY), AT gx oy ] = (k= a9) B [QUVS + N3 (N2, %), AN x <y

=o(VN),

where the first equality follows from , and , and the second equality follows from . Q.E.D.

Recall from Section [£.2] that us opp takes the form

NP =M p+Bi (AN ) +O0(A/p),  and Ny (NP AY) = (AN p+n* /AN = NPT +our (VA ).

For a sequence of policies u € U, let

- 1 A A\ A\
M~ (Pl BE) —E[(X =89 = .
= T (C“ e (u) B [(X - 1) ]<u) ) ()
In addition, define the mapping 1 : R — R as
0 if x < p}
Y(x) = (b VEHEVE) - VE]L S g (80)
can” + ( S +CL,U) . lHE::_\/*;z) if x> fBy.
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Lemma 13 We have
Algrolo é;,QED =E W’(Xﬂ .

ProoF: Consider an arbitrary two-stage QED policy u of the form
=Mp+Bi (N W)+ Dy, and Ny (NP, AY) = (A p+n" /A p— NPT+ J(N?, A%,

for DY €R, D} =O0(y/MN/ ), and J(ND, AY) = opr (/A ).

For base staffing level, it holds that

c1 (N? = A/p=Br(A\/p)* = Dy) =0.

For surge staffing level, we have

)\ «
A A AN _an\+ [ 2 A . =n(X
)\*)00\/; (NQ(NUA) (X =50) (N) +D111{X>B1}> X, (81)
where
B 0 if X <p7
X):=
n(X) {cgn* if X > B,

We next show that

lim E

A— o0

=E[a(X)]. (82)

A o
s <N;<N3,AA> (X -8 (M> +Din{x>ﬁ;})

1
ey
To see (82)), note that when X < g7,
NS (NP, A = (X = BTV 1)* + Dl sy | = (AN 0" /A Jp = N 4+ T(ND, A
= [ (X =B+ VA= DY)+ TV, A
< | [V/ANp+ DY+ [T (N, M)
When X > 37,
[No (N, A — (X = B1) (N w)®
= (A p4m7 /DN = N+ T (NP AN = (X = B (/)™ + D3|
= [ (X =B+ VB = DY)+ TN AN = (X = ) (M) + D3|

I V=D TN AN DY i (X = B (M) =~y /A + D
[J(ND, AY) = (X =B (M) + Dy| i (X BN ) < ="/ A/ p+ Dy
<" IVAN 2Dy T (N, AM)]
Thus, in both cases, there exists some random variable Y with E[Y] < oo such that

A «
(NA (NP, AY) = (X =81 (M) ) + DYl xspry

<Y, forall A>0.

W
The first equality in can then be justified by and the dominated convergence theorem.
For queue length, it follows from in the proof of Lemma (for the case where X < f37), and the same
analysis as in the proof of Lemma [f] (for the case where X > ;) that

. 1 A AATA AAY AMAA] =
}L%W(thaV)E[Q(Nl + Ny (N7, A%, A A ]*‘J(X)7 (83)
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where
0 if X < B
qX):=< (1 VEH@VE) - VE] .
wo H(—n%*)
We next show that
1
lim ——— (h+a7) E [Q(N{ + Ny (N7, AY), AY)] =E[3(X)]. (84)

= ()
To see , it follows from Lemma [1| that
E[QUN2 + N (VD A0), AN |AY] < ma {4, 1} (/= N2 = N (V2,A0) "+ /A /a/A 41/ log 2)

max {p/v,1} \Df|+\/47r/u\/A*+1/log2) it X <ps
max {u/v,1} \J(Nf,AA)|—|-\/47T/,u\/AA+1/log2) if X > p;.

Thus, there exists some random variable Y with E[Y] < co such that

1
(\w)'?
The first equality in is justified by and the dominated convergence theorem.
Then, for C} defined in and 1) defined in ,
- 1

Co= YA <C1Nf + B [N (N, AM] + (A +ay) E[Q(N; + N3 (N, A*), AM)]
"

_clg B (2) — B [(X=51)7] (2))

1 A A\ ¢ A\
_ ( (N? -2g () —Di) GE [N;uvf,A*) (X —pyt (u) +Df]1{X>,8;}]

(h+ay)E[Q(Ny + N2 (N, AY),AM] <Y, for all A>0.

(M) 1"
() B [QUN + N3V A%, ) )
=E[(X)],
from which the statement follows. Q.E.D.

We now present the proof of Theorem [3]
PROOF: [Proof of Theorem 3] It follows from in the proof of Lemma [8| that for all u € U,

liminf ) > lim Cony =a1Bi +eE[(X - 1)1,

A—00
where 3; = F' (¢c1/c2). Thus, for a sequence of policies u € U, we consider C defined in (79). We next show
that for all u € U,

h{ggfc_j > lim C3 orps (85)
where the limit on the right-hand side of is rigorously established in Lemma Similar to the proof of
Lemma for the purpose of characterizing (near-)optimal staffing rules, we assume without loss of generality
that limsup, ,_ C) < co.

First, by Corollary [1} it is without loss of optimality to consider a sequence of policies u of the form

Ny =M p+Bi(Aw*+ Dy, Ny =(X =B (M) + D3Ny, A%,
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for D} = o ((M/p)*) and D3 (N}, A*) = oy ((A/un)®), i.e., the two-stage newsvendor solutions.
In addition, Lemma[12]implies that it is without loss of generality to consider a sequence of policies where

D} =0 for all A> 0. Thus, we can write

Co= (A/l)l/QE |:02N2>\(N1/\7A>‘)+(h+a’y)E [Q(Nf‘+N2/\(N1>\’A/\>7A)\)|A)\] (X — B (2)0‘}

= e

By Fatou’s lemma,

E [ca DYV, AY) + (h+ ) E [QUVD + N3 (N3, %), A%)[A7]].

liminf(f;\ >E {hmlnf CQDQ(Nf,AA)—f—(h—i—(w)E[Q(N{\+N2)‘(N1’\7A)‘),A’\)A’\})} . (86)

el

We are going to establish that for any realized arrival rate £* = X+ *ut=2,

liminf s )1/2 (caDY(NP, ) + (h+ay) E [Q(N} + N (N, 02),00)]) > v (=), (87)

where 9 is defined in . To this end, define
1
A A A
DV )= 1y

Observe that the sequence {D3 (N7, £*): A >0} satisfies exactly one of the following four cases:
(i) Dy(N), ) — 00 as A — oo.

T D2 (N, ).

(i) D3(N}, ) — —oco as A — oo.
(iii) Dy(N}, ) —=neER as A — oco.
(iv) Dy (N3}, ¢*) does not converge.
For case (i), since E[Q( N7 + N3 (N, 02),62)] >0,

lmint s (D} 0)+ (et a) B [QUV + N3 (V) ). 1)) 2 limint e, DN 1) =

For case (ii), this case is only possible when = > ;. This is because otherwise, 35 = 0, so that D3 >0 for
all A > 0. Now since x > 3], we have
(h+a7)E [Q(N? + N3 (N7, ), 64)]
h
= (2-+a) 1B QU7 + N300, )
h
= (’Y +a> (EA - ,U'E [BQ(NI&NQA(N%ag)\)vE/\)] - /U‘E [Bl(Nf\,NQA(Nf‘,fA),Ek)])
h
> (24a) (- um3 (2.0 - )

hu
- (7 +a,u> (=D3(NY, %)),
where recall from the proof of Proposition [1| that By (N7, No (N}, €*),£*) is the steady-state number of busy
servers among those that are staffed at the base stage, and By (N7, N3\ (N}, £2),£*) is the steady-state number

of busy servers among those that are staffed at the surge stage. Therefore,

hﬂg}f ()\/ )1/2 (62D§<N1)\7€)\)+(h+a7>]E[Q(Nl/\—i_N;(NlAagA)?E/\)])

2liminf o= )1/2 ((:QD;(Nf,EAH— (};“Jrau) (—DQ(NMA)))

A—00

. hu
:11/\H_1>10I01f O )1/2 ( ’Y—a,u> Dy (N}, %)

=0Q.



69

For case (iii), it follows from in the proof of Lemma [3| (for the case where z < ), and the same

analysis as in the proof of Lemma |§| (for the case where z > ;) that

lim sz (D (V) + (b a1) B [V + N3 (V7. ).0)])

1
=cyn+ lim W (h+a)E [Q(Ny + N3 (N, ), 0%)]

Ao (M

Cam if x < By

c2n+( +au) \/ZE 1H(’\}\)/T if x> p;.

H(—n)

Moreover, in the scenario where z < 37, we have 85 (8;,z) = 0, so it must be that D3 > 0 and 1 > 0. Therefore,
follows from the definition of n* in .

For case (iv), we can further consider a subsequence indexed by \; along which D)*(N;,¢*) converges.
Such subsequence exists because a sequence has no convergent subsequence if and only if it approaches
infinity. The same arguments for case (iii) can be applied to establish (87).

So far we have established . This, together with and Lemma gives that

h/\n_1>{>rolfcA >E hggjlf o )1/2 (chg‘(Nl’\A*)_‘_(h{—afy)E[Q(Nf—l—NQ’\(Nl)"A/\)’AAHAA])
> E[y(X)]
= Jim C; grp,

which establishes (85]).
In this last step, note that by (85), we have
2
m > lim .
hA_)loI.}f Cs. h C2 QED

Moreover, by the optimality of us ., it holds that

limsup C3, < Jlim C2 Yy

A—00
Therefore,
. _A _ . _A
lim €3, = lim G,
which implies that C3 5pp — Ca, = 0(VA). Q.E.D.

Appendix F: Model with Surge-Stage Prediction Error

Recall that we use Fy (alternatively, fy) and F, (alternatively, f,) to denote the cdf (alternatively, proba-
bility density function) of Y and Z, respectively.

F.1. Small Prediction Error: Proof of Proposition

PROOF: Statement (I) follows exactly the same lines of analysis as the proof of Theorem [1| for a > 1/2.
Statement (II) follows exactly the same lines of analysis as the proof of Theorem 3| Lastly, following the
same lines of analysis as the proof of Theorem 3 l we can show that C5 "ERR C;’j = 0(v/)). This, together
with statement (IT), implies statement (III). To elaborate on the generalization, we explain why the proof of

Proposition [2| follows directly from the analysis of the case with perfect surge-stage prediction. In particular,
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when v < 1/2, the two-stage error policy takes the same form as the two-stage QED rule, with random
variable X (alternatively, its realization x) replaced by random variable Y (alternatively, its realization y).

For £ = A4 yA*u = 4 2\" ', it still holds that if y < Fy *(c1/c2), then

N7+ N3 (N7 y) =0+ Fy (e /e2) (€ 1)" + O/ /).

In the other case where y > Fy *(c1/cs), we have

N+ N (N y) =0t (0 /)" +o(v/ /),
for n* defined in . The rest of the analysis is generalized similarly. Q.E.D.

F.2. Moderate to Large Prediction Error: Proof of Proposition

PrOOF: We first show that there exists an optimal solution to . In particular, consider the inner-problem

in :
min  {eNG(NYY) + (ha/y + ap)E | (A /= N2 = N3V Y)Y ]} (88)

N (ND,Y)
Note that is a newsvendor problem with unit capacity cost cp, unit sales price hu/vy + ap, random
demand A*/pu— N}|Y (where the randomness lies in random variable Z), and capacity decision N2'(N7',Y).

The optimal solution is given by

_ _ c AN\ A\ +
woe = (5 (i) (G) v (B) )

Given N3 (N},Y), the outer-problem is given by minyx 2(N7'), where
B(ND) i= el NP B e N (NG Y )+ (hfy + ap) (A = N2 = N3 (N, V) ]
Differentiating h(N;\) with respect to N} gives
0 A\ A - Co A\
O ) =er—ep((2) v N*——F1<> () ))
oy M) = e ((u) ( Yo 7 \bfy+ap) \p
)2 () = (i () (B))
(i) ( (L)) v 2o (—2 ) (2) ),
(v : 1 Yo 7 \he/ytap) \p
<)‘> Y+<>\) Z>Nf—/\>.
1 7 u

By observation, a]f’,? h(N?}) is continuous in N}, and there exist N;»* and N, such that 31‘3? h(N}) <0

_9_
A
aN?

that =25h(N}) = 0. In addition, h(N}') is convex in N}, because

A
aN;

and R(N*) > 0. Thus, the intermediate value theorem implies that there exists critical point N7* such

62
O(NY')?

S (O W S S i)

Hence, N} is a global minimum of h(Ny), and (N7', N2 (N,Y)) is optimal to (18).

Proof of (I). We discuss the following two cases: v < a and v = .

h(N7)

Case 1: v < a. When v < «, similar lines of analysis as the proof of Theorem (1| for a < 1/2 go through.

Due to the similarity in the steps, we shall present the key structure of the proof and omit the details.
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Consider the two-stage staffing rule denoted by u, where the staffing levels are given by
N =Mt By (e fe) V) and NJ(NY) 1= (Y = By erfea)) ™ (Vi)™

Following the definition of €} in ([27), we define

Ger . Cit —a\/p
wo T ()\/M)max{a,l/Z}'

Similar lines of arguments as in the proof of Lemma [f] establish that
CAfL’A — i Fyt(ei/ez) + e [(Y — F;l(cl/(:g))ﬂ as A — oo.
In comparison, consider the single-stage staffing rule denoted by u, where the base-stage staffing level is

A — C1
N =2 ot (— S Y /).
LT LTy (hﬂ/vﬂw)( /)

Similar lines of arguments as in the proof of Lemma [f] show that

4 _ hu _ c1 *
NN ot (L o E|(yv-—Ft(—2 A
Groaky (hu/v+au Ty e Yo\ /vy +ap AT

where C?S’\ is defined the same way as éj’* but for policy u instead.

By Assumption [1| and the continuity of Y, it can be verified that lim,_, o CAZA > limy oo CAE’A. Thus,
Cot —C* =0(\).
Moreover, similar derivation as in the proof of Lemma [§] gives that
Cit—=Cit=0(X") and Ci*—C3l=o0(\).

The statement follows.

Case 2: v = . Consider the two-stage staffing rule denoted by u, where the staffing levels are given by

N =M p+Bi(Ap)*, and N3 (NY,Y):=B5(B1,Y) (A 1)*,

where 87 and 85(87,Y) jointly solve
T R TR (ST )| N

We first show that an optimal solution to (89)) exists. Consider the inner-problem in :

min_ aBa(B1,Y) + (hu/y+ o) E (Y + 2 = By = BB, Y)Y . (90)

B2(B1,Y)eRL
Note that is a newsvendor problem with unit capacity cost cp, unit sales price hu/vy + ap, random
demand Y + Z — 31]Y (where the randomness lies in random variable Z), and capacity decision S2(8:1,Y).
The optimal solution is given by
B5(B1,Y) = (FZ_I (62>+Y—51>+~ (91)
hi/y +ap
Given (3(81,Y), the outer-problem is given by ming, cg h(81), where

BB = { e + B [caB3 (81, Y) + (hia/y+aw) (Y + 2 = 81 = 381,V )| }.
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Differentiating h(8;) with respect to 31 gives

ih(ﬂl) = — P (Y >t (02) +Bl)

g '+ () )
— = 4ap|P(Y<F'| ———— | +5,Y+Z> )
<v N) < - <hu/v+au . h
By observation, a%lh(ﬂl) is continuous in B, and there exist 8 and BY such that f;lh(ﬁf) < 0 and

8%1}1(6{{ ) > 0. Thus, the intermediate value theorem implies that there exists critical point 8f such that

55 1(B7) = 0. In addition, h(f:) is convex in f, because

02 h Fy (g an )+
5780 = (j +au> [ Fr @) f2(—y+ B)dy > 0.

Hence, /37 is a global minimum of h(/3;).

Following similar lines of arguments as in the proof of Lemma [f] and Lemma [8] we get that
lim Co* =185 +E [e2B3(81,Y) + (hia/y+aps) (Y + Z = B; = B3(81,Y )]

and
€t = €52 = oA, (93)
Next, consider the single-stage policy denoted by @, where the base-stage staffing level is given by N} :=

M+ BN p)?, for

5. . hu - e C1
ERES ar%;gm af+ (7 +au) E [(Y—i—Z B) } =Fy, (hu/'y+au) . (94)

Similar derivation as in the proof of Lemma [4] gives that

5 . N+
lim Co* =18+ (hp/v+ap) E [(YJrZ—ﬂ) } :

Theorem 1 in [Bassamboo et al.| (2010) establishes that

Cor—Cyl=0(N'""). (95)
If Assumption [2 holds, then
+
=_ Co . .1
B(B%,Y) = (F 1 <> Y - 5*) >0 with probability p > 0. 96
6= (2 (o ; (96)

To see , suppose for the sake of contradiction that 83 (5;7,Y) =0 with probability 1. It follows by solving
a%lh(ﬁf) =0in that 87 = 3, for § defined in (94). However, plugging in the value of 8 in gives that

+
* * A% (A _ n—1 672 _ 1 071
52(5175/)—52(51’5/)_(@ (hu/v+au>+y Friz (hu/wrau)) '

This, together with Assumption [2] implies that £5(87,Y") > 0 with probability p > 0, a contradiction. Thus,
holds. It follows from that limy_, o CA;A > limy oo CAZ’A, so that

Ct —C =0(\). (97)
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In the other case where Assumption 2 does not hold, similar derivation shows that 3; = 3 and B3 (5;,Y) =

BS(B,Y) =0 is optimal to , and
Cot —Co = o(A\%). (98)

The statement follows from 7 , , and .

Proof of (II). We discuss the following three cases: p=-, p >+, and pu <.
Case 1: pu = . It follows from Lemma 3 in [Bassamboo et al,| (2010) that for any staffing prescriptions
N} and N3 (N7 Y), we have
A *
(M N N;(N;,m)

<E[Q(N} + N3 (N7, Y), A )IYZ (99)

< A—)‘—NA N)‘]\fA v - Af)\—]\fA N)‘(N)‘ Y) : + L
“\u Y \/ tex 4AA 2V log2’

Taking expectation of conditional on Y gives

A* +
B | (5 -3 - M0y
7

V| <E[Q(Ny 4+ N3 (N}, Y),AN|Y]

(100)
<E

A>\
(2o onn)

+E[\f¢f

AN} +E |eaNJ(NY,Y) + (h+ay)E [ (A= N} = N3 (N Y)Y

o

It follows from (100)) that

< ND +E [N (N, Y) + (h+ay)E [Q(NT + N3 (N7, Y),AY)|Y]]
<N} +E |eaN2(N),Y) + (h+a7)E | (A — N} — N (N, V)T |y +E[w/4ﬂ'/,u\/AA}+1/log2

<N HE [N (N, Y) + (h+ay)E | (A — N} = Np(NM Y)Y | |+ Van/pV/A

A /N g B[V + /A i/ N E ([ 2] + 1/ 10g2,

(101)
where the last inequality follows from the reverse Jensen’s inequality, and the fact that Y and Z are inde-

pendent.
Let (N;**,N3"*(N;",Y)) denotes the optimal solution to problem (I6]). We have

Co/prr = 1N? +E [ca N3 (N}, Y) + (h+a7)E [Q(N} + Ny (N, Y), AY)|Y]]
(a) _ _ _ _
< NP HE [N (V) Y) + (b an)E [ (A = (V2 + N (N3, Y))) T IY] /2] + 0V

()
< aNYHE [N (VDY) + (R a)E (A = (N N3 (N2, )) Y ] /4] + O(VA)

(e)
< NN HE [N (N, Y) + (h+ay)E [QN™ + Ny " (N, Y), AN Y]] + O(VA)

=C52 +0(V),
where (a) follows from (101]), (b) follows from the optimality of (N1, No(N1,Y)) to problem (18], and (c)
follows from (101]) again.
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Case 2: p > ~. To simply notation, define
CMNND, N3 (N, Y)) :=c1 N} + E [caN3 (N, Y) + (h 4 ay) E[Q(N] + N3 (N, Y), AM)[Y]]
=N} +E[caN) (N, Y) + (h/y+a)P(AB,N} + N3 (N}, Y),Y)], 10
where P(AB, N} + N2 (N, Y),Y) denotes the steady-state abandonment probability conditional on Y| i.e.,
P(AB,N} + N} (N}),Y),Y):=E []1<AB,N?+N2A(N1A,Y),AA) |Y} . Tn addition, define

CN NP, NN, Y ) i= e N B [ea N (N2, Y ) + (R an)E [ (A = (N2 + N3 (N2, Y))) T[] /] (108)

Note that (N7, N3 (N, Y)) = argminy ya(na v) CeN(N}, N3 (N, Y)).

Consider an auxiliary sequence of systems with the same parameters as the original sequence of systems
except that its abandonment rate is equal to p; that is, systems in this sequence have a higher abandonment
rate compared to the original sequence. We refer to this sequence as Sequence II and add the superscript II
to all quantities associated with it, e.g., u’f = u, ¥’ = u. Quantities associated with the original sequence of
system are denoted without superscripts. For systems in Sequence II, we choose the cost parameters to be
the following: ¢! = ¢1,ck! = cy,a'' = a, and h*! = hu/~. The analogues of and for Sequence II
are

CEMINY N (N, Y) ==y N} +E [e3" Ny (N7, Y) + (B /" +a'") P (ABY N} + Ny (N}, Y),Y)]
=ciNP +E [oNJ (N, Y) + (h/v+a)P(AB, Ny + N3 (N}, Y),Y)]
= O NN Y))
and
CoMI (N, NB (N, Y)) i= el N+ [l N (N, Y) + (B a Iy B [(AY = ! (N2 + N3 (N, 1)) T v ] /4]
=N} HE [NZ (N, Y) + (h+ an)E [(A = (N + N (N, Y)Y ] /4]
= AN, NV, Y)).

(104)
From the proof of Theorem 3 in [Bassamboo et al.| (2010]), we have
P (AB,Ni' + N (N?,Y),Y) <P (AB", N} + N3 (N}, Y),Y),
which implies that
CoMNT, Ny (N7, Y)) <C=MI(NT, Ny (N7, Y)). (105)
Applying (101)) to Sequence 11, we get that
eI (N, N3 (N7 Y)
=ci' Ny +E [ Ny (N7, Y) + (A" +a" Ty E [QT (N7 + N3 (N7, Y), AN)|Y]] (106)
106

<IN} E | NG (N2, Y) + (W +a" Ty E | (A = N} = N3 (N}, V)"

Y” +0(V\)
=GN (N, NN, Y)) + O(V)
Next, consider another auxiliary sequence of systems with the same parameters as the original sequence of

systems except that its service rate is equal to ; that is, systems in this sequence have a lower service rate

compared to the original sequence. We refer to this sequence as Sequence III and add the superscript III to
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all quantities associated with Sequence III, e.g., u!f! =~,~'! = ~. For systems in Sequence III, we choose

the cost parameters to be the following: ¢!’ = ¢1v/p, i’ = coy/p,a’™ = a, and h''T = h. The analogues of

(102)) and (103) for Sequence III are
COMI(NT, Ny (N, Y)) i=et TN + E [e5" N (N, Y) + (R /41T 40T P (AB™, N + N3 (N}, Y),Y) |
=c17/uNy +E [cay/uNy (N}, Y) + (h/y +a) P (AB"", N} + N3 (N}, Y),Y)],
and
¢ N, N (V. Y)
+

=N B [ NG (N, V) + (BT 4 a My TE (A = ! (N2 4+ N (N2, 1)) T[] /4] o

=Y/ uNY B e/ (N2, Y) + (h+ a)E | (A = (N} + N3 (N, Y)Y /]

=CMv/uN7,v/uN3 (N, Y)).

From the proof of Theorem 3 in [Bassamboo et al.| (2010]), we have

P(AB,N} + N3 (N}, Y),Y) >P(AB" 11/y (N} + N3 (N}, Y)),Y),

which implies that
CoMNNT, Ny (N7, Y)) > M (/N7 i/ yN3 (N7, Y). (108)

Applying (101)) to Sequence 111, we get that
CMI N, N (N, Y)
=[N HE [ NR (N}, V) (11 40 B [ (N} + N3 (N2, Y), A Y]]
+

(109)
SN [ NN Y) + (0 B | (4T = 82 - N3 ) |

=CI (N NG (N Y)),
which implies that
COMNY™ Ny " (N",Y)) = min  CMN, N3 (N},Y))

N N (NDY)

()
> min CoMM (/YN u/yNy (N, Y))

S ONDNR(NDLY) (110)
Q) _
> min  CM(NP, N3(NTLY)
N)NJ(NQY)
:C_e’k(]vlkaNZ)\(leaY))’
where (d) follows from (108)), and (e) follows from (107)) and (109).

Lastly, we can write
CEMNY, N (N7, Y)) = CoNNT™, Ny (N7, Y)
=CNNY, N3 (N7, ) = MNP, NG (N, Y)) +CoM (N, N3 (N7 Y)) = CoNIND™, Ny ™™ (N7, Y))
LCNIR NN, Y)) = CAN NN, 1) + € (N3, N (N, ) = €A (N7, N (N7 )
Lo (R, WAV Y)) —C (R, WAV V) 4 8 (N R ¥) - 04 (N, 2 (2, )
Lo,
where (f) follows from (105), (g) follows from (104)), and (k) follows from and (110).
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Case 3: pu < ~. The analysis for Case 3 is similar to that for Case 2. In particular, we again consider
Sequence II and Sequence III as constructed in Case 2.

For Sequence II, it follows by construction that
P(AB,N; + N3 (N},Y),Y) >P(AB", (N} + N2 (N}, Y)),Y),
which implies that
CEMNT, N3 (N7, Y)) = C=M(NT, N (N7, Y)).
Applying (101]) to Sequence II, we get that
CoMI(NT, Ny (N7, Y))
=ci' NP +E [e5 N3 (N}, Y) + (BT + a7 ™E [QT (N7 + N3 (N, Y), AN)[Y]]

>IN +E [ngg(m, )4 (W +a'y")E [(A/u” NNV

v]]
—c N} +E [@N;(Nf, Y) 4 (h/y +a)E [(AA — (N = NN ) |Y”

=C(Ny, N3 (N7, Y)),
which implies that
COMNYT Ny (NYY)) = min  CM (N, NJ (N, Y))

A A A
N} N (NDY)

> min  CMI(NT, NG (NT,Y))

TONMNHNDY) (111)

> min  CNN}, N)}NMY))

TONMNJ(NDY)
:ée’A(Nl/\7N2A(N1/\7Y))'
For Sequence 111, it follows by construction that

P(AB,N} + N} (N}, Y),Y) <P (AB", u/y (N} + N} (N}, Y)),Y),

which implies that
CoMNNT, Ny (N7, Y)) <CoM(u/y N7 i/ yN3 (N7, Y). (112)

Applying (101)) to Sequence III, we get that
CMIT (N N (V)

=/ N} HE [ NJ (VDY) + (011 a5 R [ (N + N3N}, Y ), A Y]] .
113
SN E [ N(NDY) o (4 iy B | (A N - N (V. ¥))

Y”+O(\f/\)
=GN, NN, Y)) + O(V)

Lastly, we can write

CND, NG (N, Y)) = CM N, Ny ™ (N, Y))

=CMN7, N3 (N, Y)) = CoMNY, NG (N, Y)) + CEMNT, N3 (N, Y)) = €A (N7, Ny (N7, )
(4) _ o _ o _ o
SCE,)\’III(M/VNl)\a:U/PYNZ)\(Nl)\vy))_Cey)\(Nl)\vNZ)\(Nl)\vY))+Ce’)\(N1>\7N2)\(N1)\7Y))_CE’A(Nl*aNQ*(N1*7Y))
) e . - e - - -

ZCM (/YN 1/ yNG (ND,Y)) = CM (/YN /N3 (N, Y)) 4+ CoMN(ND, N3 (N7, Y)
—COMNY N (NP, YY)

Lo,
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where (i) follows from (112)), (j) follows from (107), and (k) follows from and ([113)).

Proof of (IIT). For the oracle problem, we consider the following stochastic-fluid optimization problem

%}n{cle +E [ min {CQNQA(Nf,AA) + (hpp/y+ap)E [(Ak/ﬂfo - N2>‘(N1>\7A>\))+ |AA] }] } (114)

N (N]AN)

whose optimal solution is given by

N} =Fob (er/es) Ap)®, and  NY(NX AN = (AN — N2)*

AN
We denote the staffing rule that prescribes (N, N2 (N, A*)) as 4. The same lines of analysis used to show
statement (II) can be applied to establish that

Cor =92 =0(VN). (115)

Recall from the proof of Proposition [3| that us xrr prescribes staffing levels (N7, N2'(N},Y)) where

RN _ ¢ AT A N\
NQ(vaY): FZ hM/’Y-i-a,u ; +;+Y ; _Nl )

e () v (-3 () )
—({+““)P€(u> e () (0) ) (1o
() r+() z=m-3).

Next, we compare the two inner-optimization problems in and (114). It holds that
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Denote part of the integrand in (117)) as
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N _ Co A A A -
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By construction of the two optimization problems, it holds that g*(y,z) >0 for all y,z € R. Moreover, it
follows from (116]) that at least one of the following two cases holds:

and N solves

A _ +
( —N?—NQ(N&Y)) y
1

El min {CQN;(Nf7Y)+<T+aM)E

N (NDY)
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F
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In addition, if (%)Q y < (Nf - ﬁ — It (hu/fy2+w) (%)V) and (%)ay—i— (%)V 2> N} — %, then
9y, 2) = (hp/y + ap— ) (M p+y (M) +2 (A i)’ = NN =0(\).

Therefore, we have
|| swaniaii-ew) (118)

It follows from (117)), (118)), and the construction of stochastic-fluid problems and (|114) that
Comrr —Co = O(N). (119)

The statement follows from (115)), (119), and statement (II). Q.E.D.

Appendix G: Details on Model Calibration for the ED

In this section, we discuss several model calibration details for the ED application. Section provides
detailed linear regression results for estimating o and o. Section investigates an alternative non-
parametric estimation method for a and o, which leads to the same estimation results. Section[G.2]elaborates
on the statistical procedures to estimate v and Z, which is an analog to those used to estimate a and X. In
Section we provide normal probability plots for X and Z. Lastly, in Section we elaborate on how

to estimate patients’ mean patience time.

G.1. Linear Regression Results for Estimating o and o

Table [§] provides the detailed estimation results for a and o using linear regression. The R? is 0.821 for the
model using 14 observations (obtained by dividing the shifts based on the day of the week and day vs. night),
and 0.541 for the model using 56 observations (obtained by dividing the shifts based on the day of the week,
day vs. night, and quarter of the year).

G.2. Non-Parametric Estimation of o and o

In this section, we provide more details of the non-parametric estimation proposed in Maman| (2009) to
approximate the relationship between a and ¢ in the random arrival rate . In particular, this method

does not impose any distributional assumption on X. However, it requires that o > 1/2.
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Table 8 Linear regression results for estimating o and o

Dependent variable:

Regression 1: |Z] =14 Regression 2: |Z| =56
log(L,) 0.768"* (0.565, 0.971) 0.746** (0.563, 0.929)
Constant ~1.067* (—2.056, —0.077) —1.017** (—1.909, —0.124)
Observations 14 56
R? 0.821 0.541
Adjusted R? 0.806 0.533
Residual Std. Error 0.126 (df = 12) 0.230 (df = 54)
F Statistic 55.051%* (df = 1; 12) 63.680" (df = 1; 54)
Note: .p<0.1; *p<0.05; *p<0.01

Let L; be a generic random variable denoting the arrival count during a type-i shift, i € Z. Since
L;|A; ~Poisson(A;), we have
E[L] =E[E[Li|A]] = A
Var(L;) = Var(E[L;|A;]) + E[Var(L;|A;)] = A2%0% + \;, i€T.

Thus,
Std(L;)
A

1

=+ A2 et

In addition, since o> 1/2,
lim (logStd(L;) — alog\;) =logo, i€Z.

A—00

Hence, it holds for large A; that
log Std(L;) ~ alog A\; +logo, i€T.

Using sample mean L; to approximate )\; and sample standard deviation ¥; to approximate Std(L;), we get
that
log¥; ~alogL; +logs, i€,

which is equivalent to (20)) in our parametric estimation setting.

G.3. Estimation of v and Z

We assume that Z follows a normal distribution with a mean equal to 0 and a standard deviation equal to
0z. Let Ll(-k) and Rfk) denote the observed arrival count and residual for the kth shift of type i, 1 <k <n,.
Recall from the random arrival-rate model that the residuals for type-i shifts in the surge-stage prediction

model are distributed according to \Yu'~*Z. For shifts of type i, i € Z, we define

ng ng

. -1 1 -
Li==> L", Ri:=—> R", x?:==>(R"-R)
T n; n
k=1 k=1

=1
where L, is the mean of the observed arrival counts, R; is the mean of the residuals, and x? is the variance of

the residuals. Based on the method of moments, we have the following system of equations for the estimators

Li—h X=3920963, el (120)

K3
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It follows from ((120)) that
log x; = log L; + log(ﬂl_ﬁ&z)7 ieT.

Then, we can fit © and &, by solving the following least squares problem
14

= \2
i 1 ;—~y—vlogL;) . 121
@0 e 2 (0B =y ~vlog L) (121)

In particular, let v* and v* denote the optimal solution to the least squares problem (121)). Then, 7 =v* and
1-5 4

u'=?6, = exp(v*). Following this method, we get that ¢ =0.508 and Z ~ N(0,1.067). Table@below provides

the results for estimating v and oz using linear regression.

Table 9 Linear regression results for estimating v and oz

Dependent variable:

log (L) 0.508"** (0.326, 0.691)
Constant 0.142 (—0.747, 1.031)
Observations 14

R? 0.713

Adjusted R? 0.689

Residual Std. Error 0.111 (df = 12)

F Statistic 29.758* (df = 1; 12)
Note: .p<0.1; *p<0.05; **p<0.01

G.4. Assumption of Normal Distributions for X and Z

To validate the assumption that X and Z follow normal distributions, we examine their normal probability
plots in Figure [11] below. We see that in each plot, the points fall reasonably close to a line, suggesting that

our assumption on the normal distribution is reasonable.

G.5. Estimation of Mean Patience Time

We use maximum likelihood estimation to derive the mean patience time. In particular, let M; and M,
denote the set of patients who left without being seen and the set of patients who received treatment in the
data, respectively. For patient m € My, let w™ be the time between arrival and departure for patient m.
For patient m € My, let w™ be the time between arrival and evaluation for patient m. Recall that patients’
patience time is assumed to follow an exponential distribution with rate . Then the likelihood of observing
patient m € My is 1 —e~7*" | and the likelihood of observing patient m € My is e=7*" . The overall likelihood
L(v) is given by

o= 1 =) I ).

mi1EMy moEMo

Taking the log of the overall likelihood gives
In(L(v)) = Z In(l—e ™) - Z Fw™2.
m1EM; moEMo
We let 4 := argmax.,~o In(L(7y)), and get 4 = 27.5 hours from the data. Hence, in the more complex simulation

experiments for the ED, we assume that the mean patience time is 27.5 hours.
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Figure 11 Normal probability plots for X and Z
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Appendix H: Model Generalization: Capacity Cap, On-Call Pool, and Nurse
No-Show Behavior

In this section, we discuss several generalizations of modeling assumptions. Since it is relatively easy to
incorporate different service rates for base and surge nurses (e.g., having p; and po instead of a single ),
we shall omit its discussion to simplify the exposition. We next elaborate on how to incorporate a capacity
cap for surge nurses and random nurse show-up behavior to work.

In particular, we can consider the following generalized model formulation: At the base stage, the ED
manager has information on the distribution of the random arrival rate A, and determines 1) Ny, the number
of base nurses with cost rate ¢;, and 2) NS, the number of on-call nurses with cost rate c¢3. These on-call
nurses are staffed in advance (i.e., at the base stage) with a small monetary incentive (i.e., ¢§) and are
committed to work as surge staff if they turn out to be needed. At the surge stage, the ED manager
has information on the realization of the random arrival rate A, and determines N5, the number of surge
nurses to call in from the on-call pool with cost rate cq, subject to Ny < N§. We require Ny < N§ because
the surge staff are exclusively called in from the on-call pool. Moreover, if a nurse stays on call and actually
gets called in, then his/her pay rate for this shift is ¢§ + ¢. On the other hand, if a nurse stays on call but
is not called in to work as a surge staff, then his/her pay rate for this shift is only ¢3. At the beginning of
the shift, no-shows are realized among the scheduled base and surge nurses. We assume that the number
of base nurses who actually show up to work is Nl, which follows a Binomial distribution with parameters
N; and show-up probability p;. Similarly, the number of surge nurses who actually show up to work is No,
which follows a Binomial distribution with parameters N, and show-up probability ps. The staffing problem
for the generalized model is

mi

n
N1,N§

{01N1 F NS +Ea {ernggn {CQNQ +Eq 5 5 [(h +ay)Q (Nl, No, A) M H } . (122)
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Table 10  Optimal staffing decisions in different cost regimes for the generalized model

Cost parameters Staffing decisions
min{e1/pr, (3 + ¢2) [pa) = i/  Fan | No staffing
min {cy/p1, hp/y+ap} > (c5 + c2) /p2 | Complete surge staffing
(c5+c2) [p2 > hp/v+apu>ci/p1 Complete base staffing
hp/v+ap > (c§+c2) /p2 > c1/p1 Base + surge staffing

For problem , Tablesummarizes optimal solutions for different parameter regimes, and is an analogue
to Table [T and Proposition

In addition, we can follow similar lines of analysis as those for the two-stage newsvendor solution in the
original paper to derive a “generalized” two-stage newsvendor solution.

The high-level structural results as in Theorems 1| and |2l maintain. That is, introducing capped surge-stage
staffing levels and nurses’ no-show behavior does not change the order of cost savings and optimality gap of
the two-stage staffing framework. Intuitively, the staffing level for any realized arrival rate is on the order of
O()\). Incorporating nurses’ no-show behavior then introduces randomness on the order of O(v/\) in staffing
levels. This is because a Binomial random variable with parameters n (number of trials) and p (success
probability) has standard deviation equal to \/m . In comparison to the randomness in staffing levels,
the level of uncertainty in the random arrival-rate model is on the order of ©(A*), for @ > 1/2. Since the
uncertainty in random arrival rates dominates the randomness in staffing levels, the generalized two-stage

staffing newsvendor solution is still able to achieve a cost saving of ©(A\*) and an optimality gap of o(A%).

Appendix I: Supplementary Numerical Experiments

In this section we conduct additional numerical experiments to support the results in the main paper.
Section investigates effective translation of the two-stage QED staffing rule to finite stochastic systems.
Sections are devoted to the ED application. Section provides detailed results for the surge-stage
linear regression model. Section [[.3] presents sensitivity analysis of the proposed staffing rule with respect
to ED-specific patient-flow characteristics, specifically, on the joint impact of lognormal LOS distribution
and hourly-varying arrival rates. Section [[.4] compares the performance of our proposed heuristic adjustment
and the numerically obtained optimal adjustment to account for the transient-shift effects. Lastly, in Section
we develop heuristic policies and conduct numerical experiments regarding non-linear holding costs and

multiple patient classes.

I.1. Translation of The Two-Stage QED Staffing Rule

In this appendix we conduct more numerical experiments to examine system performance under the two-stage
QED staffing rule with different specifications of k£ in . In what follows, we repeat the experiments in
Tables [2| (with ¢ =2) and [3| (with ¢z = 10) for other values of surge staffing costs, i.e., c; = 6,14. We remark
that for the system parameters under consideration, Assumption [I] requires that ¢, < 18. The results of these

experiments corroborate the efficacy of the particular form of the two-stage QED staffing rule proposed in

for small systems.



Table 11

System performance (optimality gap) under different specifications of the two-stage QED staffing
rule with 8* = 0.967,n* = 0.120

(u=1,v=0.1,aa=0.75,h=1.5,a =3,c1 = 1,c2 = 6)

3

-2

-1

0

1

2

3

25

37.98%

23.30%

9.50%

1.69%

0.58%

5.89%

13.62%

50

29.15%

16.95%

6.79%

1.27%

0.10%

3.42%

9.17%

75

23.57%

13.71%

5.11%

0.85%

0.05%

2.87%

8.01%

100

19.27%

10.04%

3.40%

0.45%

0.23%

3.07%

7.54%

Table 12

System performance (optimality gap) under different specifications of the two-stage QED staffing
rule with 8™ = 1.465,n™ = —0.380

(u=1,vy=0.1,aa=0.75,h =1.5,a =3,c1 = 1,c2 = 14)

k
A
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1
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1

2
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44.04%

24.68%

7.62%

1.15%

5.04%

12.83%

20.36%

50

33.31%

17.89%

5.51%

0.60%

3.94%

10.05%

16.23%

75

27.22%

13.57%

3.25%

0.10%

2.66%

8.07%

13.21%

100

21.75%

10.43%

2.23%

0.07%

2.60%

7.16%

12.21%

I.2.

Surge-Stage Linear Regression Model

Table [L3] below provides the estimated coefficients in the surge-stage linear regression model.

Table 13: Surge-stage linear regression results

Dependent variable:
Observed

Monday day
Tuesday day
Wednesday day
Thursday day
Friday day
Saturday day
Sunday day
Monday night
Tuesday night
Wednesday night
Thursday night
Friday night
Saturday night
Winter

Summer

Fall

Holiday

Holiday — 1 day
Holiday + 1 day
Min temperature
Precipitation
Snow

119.972 (115.275, 124.668)
97.307" (91.680, 102.934)
96.277 (91.056, 101.497)
93.560" (88.420, 98.700)
83.007 (77.792, 88.222)
57.421* (51.948, 62.894)
53.682** (48.349, 59.014)
9.599** (4.116, 15.082)
6.170. (0.915, 11.426)

2.755 (—2.481, 7.990)

3.963 (—1.235, 9.161)

5.650. (0.213, 11.088)

5.496. (0.161, 10.832)

3.021 (—0.699, 6.741)
—1.574 (—4.919, 1.772)
—2.355 (—5.519, 0.808)
—22.392** (—28.168, —16.616)
—10.137** (—15.761, —4.513)
16.840* (11.174, 22.507)
0.532** (0.344, 0.719)
—0.160** (—0.249, —0.071)
—0.169** (—0.224, —0.114)
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Wind

Max temperature > 86°F

1-day lag

7-day lag

30-day moving average

Google trend “depression”

Google trend “flu”

Average weighted comorbidity score
per patient over the last 3 days

Constant

0.078* (0.018, 0.139)
—5.761* (—9.292, —2.231)
0.013 (—0.030, 0.055)
0.038 (—0.001, 0.078)
0.012 (—0.041, 0.065)
—0.098 (—0.231, 0.034)
0.270* (0.087, 0.452)

14.848. (0.345, 29.352)
57.365** (22.998, 91.733)

Observations

R2

Adjusted R?
Residual Std. Error

730
0.908
0.904
14.316 (df = 699)

F Statistic 231.112** (df = 30; 699)

Note: .p<0.1; *p<0.05; **p<0.01

1.3. Robustness of The Proposed Staffing Rule with Respect to ED-Specific Patient-Flow
Dynamics

In this section we conduct numerical experiments to check the robustness of the proposed staffing rules with
respect to ED-specific patient-flow characteristics. In particular, we consider the parameters associated with
Thursday day shifts, and run simulations incorporating different levels of ED-specific features that are not
considered in the theoretical model. To prevent prediction error from confounding the results, we assume
prefect demand information at the surge stage. In particular, we compare the oracle policy us sparr With the
single-stage newsvendor solution uq yv. Figure provides a reference to the theoretical setting, where
we assume exponential service times, constant arrival rate during the shift (which is equal to the average
shift-level arrival rate shown in Table [5)), and initialize Thursday day shift at its expected steady-state queue
length conditional on the realized arrival rate. The cost curves are generated by increasing the holding cost
so that its ratio to the base-stage staffing cost is from 0.7 to 1.7 in increments of 0.2. The 95% confidence
intervals are derived by simulating 520 realizations of Thursday day shifts for each holding cost and each
policy. With everything else held constant to that in Figure Figure assumes lognormal (as
opposed to exponential) service times and hourly-varying (as opposed to constant) arrival rates. We observe
that the cost curves in both figures are very similar. This implies that lognormal service times and hourly-
varying arrival rates do not significantly deviate system performance from that in the theoretical setting.

(Note that more sensitivity analysis of the proposed staffing rule with respect to lognormal service times is

provided in Section [5.3])

I.4. ED-Catered Staffing Adjustments

In this section we compare the proposed ED-catered staffing adjustment to the optimized one among the
same family of adjustment schemes. Recall from Section that to account for the end-of-shift effects, we
propose an adjustment scheme for the two-stage error policy and heuristically set &, =5 and £, = 1. In what
follows, we optimize the adjustment parameters numerically via enumeration. In particular, we simulate the

ED over 52 weeks for a wide range of holding costs whose ratio to the base-stage staffing cost range from 0.7
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Figure 12 Impact of LOS distribution and non-stationary arrival rate
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to 1.7 increment of 0.2. We allow the abandonment cost to grow proportionally to the holding cost by fixing
their ratio to be 1.5. For each policy and each holding cost, we enumerate &; (as well as & for the two-stage
error policy) from 0 to 10 in increment of 1. Figure [13| demonstrates the expected total cost per shift under
uz prr using (i) the heuristic adjustment, (ii) the optimized adjustment, and (iii) no adjustment. We note
that compared to no adjustment, the heuristic effectively reduces the expected total costs. In addition, the
cost curves generated using the heuristic and optimized adjustments are close to each other. These results
demonstrate significant value from applying transient-shift adjustment to us grr. Given the proximity of
the cost curves yielded by the heuristic and optimized adjustments, applying the simple heuristic is effective

and circumvents additional computational need.

Figure 13 Expected total costs per shift under the proposed and optimized adjustment parameters
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I.5. Heuristics for Non-Linear Holding Costs and Multiple Patient Classes

In this section, we elaborate on the heuristic policies to incorporate non-linear holding costs and multiple
patient classes. We demonstrate the efficacy of the heuristic policies by comparing the performance of single-
stage and two-stage policies.

Non-linear holding costs: In situations where non-linear holding costs are directly concerned, heuristic

development of a “generalized two-stage newsvendor solution” is relatively straightforward. Specifically, let
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f:Ry = R, denote the holding cost (on the queue). The stochastic-fluid approximation of the two-stage
staffing problem takes the form

min (123)
N2(N1,A)

min {01N1 +E { {CQNQ(Nl,A) +f ((A —u(N +N2(N1,A)))+) }] } .

We refer to the optimal solution to (123)) as the “generalized two-stage newsvendor solution”. We also propose

a “generalized single-stage newsvendor solution”, whose base-stage staffing level is the optimal solution to
i fes < 2[s ()]}
1

We then numerically compare the performance of the single-stage and two-stage newsvendor heuristic policies
in a set of simulation experiments. We assume quadratic holding cost, i.e., f(z) = 2?2, and the rest of the
experiments are set up similarly to those in Section [5} Table [14] demonstrates the expected steady-state costs
under the two policies. We observe that surge staffing can lead to considerable cost savings, i.e., between

40% and 48%.

Table 14 Performance of the heuristic policies for quadratic holding costs
(A =20,40,60,80,100,u=1,y=1,c1 =1,c2 =1.5,a=0.75,0 = 1)
Mean arrival rate | Two-stage heuristic | Single-stage heuristic | Percentage savings by surge staffing
20 27.93 39.13 40.08%
40 54.14 80.38 48.47%
60 79.94 113.47 41.95%
80 105.10 152.34 44.95%
100 129.20 185.75 43.77%

Multiple patient classes: Heuristically, we can incorporate multiple acuity classes by predicting the
demand and making staffing decisions for each class individually, and then combining the required nurses
for each acuity class. Such a heuristic is applicable to both the single-stage and two-stage staffing policies.
We numerically compare the performance of the single-stage and two-stage newsvendor heuristics for a two-
class model. We assume Class-1 patients are relatively more urgent, with longer average LOS and higher
holding/abandonment costs than those of Class-2 patients. In the simulation experiments, Class-1 patients
have priority over Class-2 patients, while patients within the same class are served first come first served.
Tablelists 1) the expected steady-state costs, 2) the expected queue length for each class, and 3) the LWBS
proportion for each class under the two policies. We observe that the two-stage newsvendor heuristic not only
achieves significant cost savings, but also considerably reduces the expected queue length and LWBS rates

(especially for the less urgent Class 2), compared to the single-stage heuristic (i.e., without surge staffing).
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Table 15 Performance of the heuristic policies for the two-class model
(Class 1: A = 20,40, 60,80,100, x = 0.5,y =1,h=4,a =8,¢1 = 1,c2 = 1.5,a = 0.75,0 = 1;
Class 2: A=100,u=1,vy=1,h=1,a=2,c1 =1,c2=1.5,a=0.75,0 = 1)

Class-1 Two-stage heuristic Single-stage heuristic Percentage savings by surge staffing
mean || Class 1 Class 2 Cost Class 1 Class 2 Cost Class 1 Class 2
arrival Queue [ % LWBS | Queue | % LWBS Queue | % LWBS | Queue | % LWBS Queue | % LWBS | Queue | % LWBS

20 174.16] 0.04 0.16% 1.60 1.29% |185.68]| 0.06 0.21% 5.32 3.70% |[6.20%)31.98%| 23.47% |69.93%| 65.07%

40 [1222.67| 0.08 0.18% 1.67 1.39% |237.62| 0.11 0.19% 5.44 3.79% 1[6.29%]28.91%| 8.30% |69.24%| 63.38%

60 [1270.88] 0.14 0.20% 2.34 1.93% |297.62| 0.21 0.26% 8.68 6.04% |(8.98%)33.30%| 21.79% |73.06%| 68.09%

80 [1316.75] 0.18 0.17% 2.29 1.85% |348.60| 0.28 0.25% 9.10 6.29% 1[9.13%)34.98%| 30.64% |74.86%| 70.53%

100 ][365.35[ 0.26 0.21% 3.08 2.49% |401.16] 0.39 0.27% 10.49 | 7.29% |18.93%(34.25%| 22.09% [70.63%]| 65.78%
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