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ABSTRACT

The f-invariant is a notion of entropy for probability-measure-preserving
actions of free groups. We show it is invariant under bounded orbit-

equivalence.

1. Introduction

The goal of this note is to prove that the f-invariant, which is a generalization
of Kolmogorov—-Sinai entropy to actions of free groups, is invariant under L*-
orbit-equivalence. We begin by quickly going over the history of entropy theory
and orbit-equivalence to set notation and motivate the main result.
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1.1. NoTATION. Throughout, we will denote standard probability spaces
by (X, ), (Y,v), etc. and their Borel sigma-algebras by Bx, By etc. If G is a
countable group, then a pmp action of G is a tuple (X, u, T, G) where (X, p)
is a standard probability space and for every g € G, 7Y : X — X is a measure-
preserving transformation satisfying 79" = T90T" (pmp is short for probability-
measure-preserving). In the special case that G = Z, a pmp action is also called
a pmp transformation.

Let (Y,v,U, H) be another pmp action where H is a countable group, (Y,v)
a standard probability space and U = (U"),ecg a pmp action of H on Y.
Let @ : (X, ) — (Y, v) be a measure-space isomorphism.

e ® is an orbit-equivalence (OE) if for a.e. z € X,
O(T%) = U o(x)

where, for example, 7% = {T9x : g € G} is the T%-orbit of x.
e & is a measure-conjugacy if G = H and ®(T92) = U9P(z) for
a.e. ¢ € X and every g € G.

Measure-conjugacy implies orbit-equivalence and the converse is false in general.

1.2. CLASSICAL ENTROPY THEORY. Classical entropy theory was introduced by
Kolmogorov in order to classify Bernoulli shifts up to measure conjugacy [Kol58,
Kol59]. Given a countable group G and a Borel probability
space (K, k), the Bernoulli shift over G with base (K, x) is the product prob-
ability space (K9, k%) with the G-action GAK® given by

(9-2)f =x(9g7'f), g¢.f€G,xeKC.

For example, if z is a random element of K with law £ then (z,)4cq is a
G-indexed i.i.d. process in which each variable =, has law .
The Shannon entropy of the base space is defined by

H(K, k) ==Y r(k)log (k)
keK

if % is concentrated on a countable set. Otherwise, H(K, k) := +00.

Now suppose (X, i) is a standard probability space. An observable on X is
a measurable map ¢ : X — A where A is a finite or countable set. If ¢ : X — B
is another observable, then the join of ¢ and 1 is the observable

OVY: X > AxB, ¢Vi(r) = (d(x), ¥(z)).
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The Shannon entropy of the observable ¢ with respect to the measure p is
H(9) = H(A, dupt) = =) u(¢™ (a)) log u( (a).
a€ch

If T: X — X is measure-preserving then the entropy rate of (X, u, T, ¢) is
1
hu(T,¢):= lim H,(¢VooTV---VepoT" ).
n—oo n

The entropy rate of T' is defined to be the supremum of entropy rates h, (T, ¢)
over all finite Shannon entropy observables ¢:

hu(T) = sup{h, (T, ¢) : H,(¢) < co}.

This is a measure-conjugacy invariant. Moreover, Kolmogorov proved that the
entropy rate of a Bernoulli shift over Z is the same as the Shannon entropy of its
base space [Kol58, Kol59]. This proves one direction of Ornstein’s Isomorphism
Theorem [Orn70]: Bernoulli shifts over Z are measurably conjugate if and only
if they have the same base space entropy. All of these results were extended to
actions of countably infinite amenable groups [OW80, OW87]. For example, if G
is a countable amenable group then two Bernoulli shifts over G are measurably
conjugate if and only if they have the same base space entropy.

1.3. ORBIT EQUIVALENCE (THE AMENABLE CASE). In [Dye59, Dye63], Dye
proved that all ergodic aperiodic pmp transformations are orbit-equivalent
(where aperiodic means that a.e. orbit is infinite). In [OWS80] it was announced
that all essentially free ergodic pmp actions of countably infinite amenable
groups are OE. A complete proof appears in [CFW81]. In particular, entropy

is not an OE-invariant.

1.4. QUANTITATIVE ORBIT EQUIVALENCE. Suppose that & : X — Y is an
orbit-equivalence as above. Also suppose both actions are essentially free. Then
there are cocycles a: G x X — H, 8 : H XY — G defined by

U9 @(z) = o(T9), TPV ~1(y) = o~ ({UMy).
These cocycles satisfy the identities
(1) algh,z) = alg, T"z)a(h, @), B(gh,y) = B(g, U"y)B(h,y),
2)  alBlg,9).27 (W) =9, Bla(g, ), ®(x)) = g.

Suppose G and H are both finitely generated groups. After choosing finite
generating sets, we may let |- |¢ : G = R, |- |z : H — R denote word-length
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functions. The map @ is said to be an LP-orbit equivalence (LP-OE) if for
every g € G and h € H the functions

T = |Oé(g,£C)|H, yH|ﬂ(h7y)|G

are in LP(X, ) and LP(Y, v) respectively. L'-OE is also called integrable OE
and L°°-OE is also called bounded OE. These notions do not depend on the
choice of finite generating sets. In [Ausl6], Austin proved that entropy is an
L'-orbit equivalence invariant for actions of finitely generated amenable groups.

The map @ is said to be a Shannon orbit equivalence if for every g € G
and h € H, the observables a(g, ) : X — H and fB(h,-) : Y — G have finite
Shannon entropies. In [KL21] Kerr and Li proved that if each of G and H
contains a w-normal amenable subgroup that is neither locally finite nor vir-
tually cyclic, then entropy for their actions is invariant under Shannon orbit
equivalence, where entropy means maximum sofic entropy. The groups are not
required to be amenable or finitely generated but they are required to be sofic.
The statement is false for locally finite groups by a counterexample due to
Vershik [Ver94]. In fact, Vershik’s counterexample is with a bounded orbit-
equivalence (but using non-finitely generated groups).

1.5. ENTROPY FOR NON-AMENABLE GROUPS. For a long time, there was no
entropy theory for actions of non-amenable groups. Ornstein and Weiss exhib-
ited an example of a factor map between Bernoulli shifts over a non-abelian free
group in which the base space entropy of the source is smaller than the base
space entropy of the target [OWS87]. By contrast, entropy for amenable groups
cannot increase under a factor map. In spite of this it is possible to define
entropy for actions of non-amenable groups. Today there are several versions
of entropy: sofic, Rokhlin, naive, etc. (see [Bow20] for a survey). We will focus
on the f-invariant which is a flavor of entropy specifically tailored to actions of
free groups.

1.6. THE f-INVARIANT. Let G = (S) denote the rank r free group with gener-
ating set S = {s1,...,8,}. Let (X, , T, G) be a pmp action of G and ¢ : X — A
be an observable. For any subset H C G, let 77 : X — AH be the join

oTH =\ poT"".

heH
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Let B(e, p) C G denote the ball of radius p centered at the identity in G with
respect to the word metric (where e € G denotes the identity). Write

¢T1P _ ¢TyB(61P)_

Define

F.(T,¢)=(1-2r)H —i—ZH T{esz}
Fu(T,¢) = inf F (T, ¢"°) = lim F,(T,¢™").
P p—ro0

An observable ¢ is T-generating if the smallest T¢-invariant Borel sigma-
algebra in which ¢ is measurable is the full Borel sigma-algebra B x, up to sets of
measure zero. If there exists an observable ¢ which has finite Shannon entropy
H,(¢) < oo and is T-generating, then the action (X,pu,T,G) is said to be
finitely generated. This terminology is justified by Seward’s generalization of
Krieger’s Theorem [Sew19] which implies that if (X, u, T, G) is finitely generated
then there exists a T-generating observable ¢ : X — A such that A is finite.

The main theorem of [Bow10d] is that if (X, u,T, Q) is finitely generated,
then there is a number f,(T) € [—o0,00) called the f-invariant such that
every T-generating finite Shannon entropy observable ¢ satisfies

f#(Ta Qb) = f,u(T)-

If the action is not finitely generated then the f-invariant is not defined.

In [Bow10d], it is shown that the f-invariant of a Bernoulli shift action equals
the Shannon entropy of its base space. So the f-invariant distinguishes Bernoulli
shifts. However, in [Bow11] it is shown that all Bernoulli shifts of a free group
are OE. In particular, the f-invariant is not an OE-invariant.

The main theorem of this paper is:

THEOREM 1.1: The f-invariant is invariant under bounded-orbit-equivalence.
To be precise, suppose G is a free group and (X, u, T, G), (Y,v,U, Q) are finitely
generated essentially free pmp actions of G. If these actions are bounded orbit-
equivalent then f,(T) = f,(U).

Remark 1: Belinskaya proved that if two ergodic aperiodic pmp transforma-
tions T, U are LLOE, then they are either measurably conjugate or flip-conjugate
(which means T is measurably conjugate to U~!) [Bel68]. So if G = Z then
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Theorem 1.1 is trivial. This motivates the question: if G,T,U are as in The-
orem 1.1, then must 7" be measurably conjugate to U o a for some automor-
phism « : G — G? A recent work-in-progress due to Matthieu Joseph shows
the answer is ‘no’ by an explicit counterexample.

1.7. RELATED LITERATURE. About the problem of classifying Bernoulli shifts
up to measure-conjugacy: Seward proved that if two probability spaces have the
same Shannon entropy then the corresponding Bernoulli shifts are measurably
conjugate, for any countably infinite group [Sew22]. The converse holds for sofic
groups [Bow10b, KL11].

About the problem of classifying Bernoulli shifts up to OE: if a group G is
Bernoulli cocycle-superrigid, then it is immediate that if two Bernoulli shifts
over G are OE then they are measurably-conjugate. This notion is implicit in
ground-breaking work of Popa where it is proven that GG is Bernoulli cocycle-
superrigid if it contains an infinite normal subgroup N such that either (i) the
pair (G, N) has relative property (T), or (ii) N is generated by (element-wise)
commuting subgroups H and K, with H nonamenable and K infinite ([Pop07,
Theorem 0.1] and [Pop08, Theorem 4.1]). Recent work shows that a type of
entropy called weak Pinsker entropy is OE-invariant for all essentially free pmp
actions of Bernoulli cocycle-superrigid groups [BTD18]. On the other hand,
there are two classes of groups for which it is known that all Bernoulli shifts
are OE. These are countably infinite amenable groups [OW80, CFW81] and
free products of amenable groups [Bowll]. It remain a very interesting open
problem whether fundamental groups of closed surfaces of genus > 2 have this
property.

Kammeyer and Rudolph found a unified approach to Dye’s and Ornstein’s
Theorem which also gives explicit restrictions on orbit-equivalence which imply
entropy-invariance [KR02], for actions of amenable groups.

Kerr and Li find conditions under which topological sofic entropy is preserved
under continuous orbit equivalence in [KL23].

Rudolph and Weiss proved that if 7" and S are orbit-equivalent pmp ergodic
essentially free actions of amenable groups, then their entropies relative to their
orbit-change sigma-algebras are equal [RW00]. This insight was developed into
a technique for generalizing entropy-theory results for Z-actions to actions of
arbitrary amenable groups [Dan01, DP02].
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1.8. OUTLINE OF THE PROOF AND PAPER. The techniques we use are com-
pletely different from the works of Austin [Ausl6] and Kerr-Li [KL21], [KL23].

By [Bowl0a], we know that the f-invariant is the exponential growth rate of
the average number of approximate periodic points (or microstates) which are
approximately equidistributed with respect to the given measure. This result
is strengthened in §2 for the special case in which the invariant measure p is
supported on a subshift of finite type (SFT). In this case, we find that, to
compute the f-invariant, it suffices to count actual periodic points in the SFT.
This is very special to the free group. For example, the analogous statement is
false for actions of Z?2, because of the existence of SFTs without periodic points.

In §3 we set notation for the rest of the paper. In particular, we assume
that (X, p) = (Y,v) and that T,U are essentially free actions of G on (X, u)
with the same orbits. There are cocycles a:GxX =G, 8:GxX — G defined by

Uelo)y = Tz, TPO:) g — U9y,

The idea now is to show that, after replacing the system (X, u, T, G) with a
measurably conjugate system, we may assume X is an SF'T. Moreover, we can
design the SFT so that «(g,-) and S(g,-) are continuous functions of X. Then
any periodic point for the system (X, u,T,G) can be re-arranged to obtain a
periodic point for (X, u, U, G) (and vice versa). Because the f-invariant is the
exponential growth rate of approximately-equidistributed periodic points, this
proves the main Theorem 1.1. This is shown in §4 and §5. The last section §A
is devoted to open problems.

ACKNOWLEDGEMENTS. L. B. would like to thank David Kerr for helpful con-

versations.

2. Symbolic dynamics

Let A be a countable or finite alphabet, A be the set of functions z : G — A
and G act on AY by

(g)(f) =z(g™"f) Vf.g€G,xen®.
Symbolic dynamics is the study of G-invariant measures and subspaces of AC.
Whenever we are working with symbolic dynamical systems we always use
the left shift action described above and as seen above we do not use a symbol
such as T for the action. We also write f,(¢) instead of f, (T, ¢) for example
and we denote the system by (A%, i, G).
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In the first subsection below, we recall a formula for the f-invariant of an
invariant measure p on A® in terms of counting periodic points. In the second
subsection, we assume the support of p is contained in a subshift of finite
type Z C A® and prove a formula for the f-invariant in terms of counting
periodic points which lie in Z. This second formula is crucial to our proof of
Theorem 1.1. It seems to be a very special fact about free groups. For example,
the analogous statement fails for the group Z? for any d > 2 because of the
existence of subshifts of finite type which contain no periodic points.

2.1. THE f-INVARIANT VIA PERIODIC POINTS. In this section let A be a finite
set. First we approximate the action of GG on itself by an action of G on a finite
set. So let ¢ : G — sym(n) be a homomorphism into the symmetric group
n[n] ={1,...,n}.
Next we consider observables  : [n] — A whose local statistics approximate p.
To make this precise, define the pullback name of z at vertex v € [n] by

2y €89, al(g) = z(o(g) " v).
We observe that the map v — xJ is equivariant in the sense that

To(gyw = 9Ty
for any g € G. In particular, 7 is a periodic point of A® (that is, it has a finite
G-orbit).
The empirical distribution of z is defined by

P? = 1 8yo € Prob(A®
7= 3 s <P
where d,- is the Dirac probability measure concentrated on z{ and Prob(A%)
is the space of all Borel probability measures on A“.
Informally, we consider = to be a good approximation to p if PJ is close
to u. To make this notion precise, recall that the weak* topology on Prob(A%)
is the weakest topology with the following property: for every continuous func-

tion f : A — R, the map
uH/fdu

is a continuous function on Prob(A%) with respect to the weak* topology. Thus
a sequence (p;); weak* converges to a measure fi if and only if: for every
continuous f : A - R, [ f du; — [ f djeo as i — co. By the Banach—Alaoglu
Theorem, Prob(A%) is compact.
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Now let O C Prob(A%) be a weak* open neighborhood of y and define
Q0,0) :={z e : P € O}

Then (o, 0) is the set of all observables on [n] whose empirical distributions
are in O.

For each n € N, let w,, = Unif(Hom(G, sym(n))) be the uniform probability
measure on the set of homomorphisms from G to sym(n). The main result of
[Bow10a] is the formula

1
(3) fu(A%) = inf limsup ~ log Egr, |Q(0, 0)).
031 pnosoco N
The goal of the next section is to make a small but crucial change to the formula
above in the special case in which the support of p is contained in a subshift of
finite type Z C AC.

2.2. SUBSHIFTS OF FINITE TYPE.

Definition 1 (Subshifts of finite type): As above, let G be a countable group, A
a finite set and GAAS the left shift action:

(gz)(f) = x(g~'f) for g, f €@, xcA®.

A subshift Z C A% is a closed G-invariant subspace. It has finite type if there
exists a finite collection W of maps w : D,, — A such that

(1) D, C G is finite for all w € W;
(2) Z is the set of all z € A satisfying: for all g € G and w € W, the
restriction of gx to D, is not equal to w.

So W is a set of forbidden patterns and Z is the subshift of finite type (SFT)
determined by 'W.

If G = (s1,...,8) and for each w € W there exists an 7 € {1,...,7} such
that the domain D,, = {e, s;}, then we say Z is a nearest neighbor subshift
of finite type. In other words, a nearest-neighbor subshift forbids only certain
edge patterns.

Definition 2: Let Z C AY be a subshift of finite type. With notation as in the
previous section, let Q7 (o, ) be the set of all x € Q(o, O) such that P7(Z) = 1.
This occurs precisely when zf € Z for all v € [n].



818 L. BOWEN AND Y. F. LIN Isr. J. Math.

THEOREM 2.1: Suppose A is finite and Z C A% is a subshift of finite type.
Let ;1 € Prob(A®) be a G-invariant Borel probability measure concentrated
on Z (meaning p(Z) =1). Let

1
ff(AG) = inf limsup logEymu, |Qz(0, 0)].

031 n—soo M

Then
fu(A9) = FZ(8%).

Because Qz(0,0) C Q(0,0), it is immediate that ff(AG) < fu(a%). So it
suffices to prove the opposite inequality.

Remark 2: Suppose G is a countable group and Z C A® is a subshift of fi-
nite type which has no periodic points (i.e., no points with finite G-orbit)
but does admit an invariant probability measure. In this case, no analog of
Theorem 2.1 can hold. The first proof that Z? admits such an SFT is due
to Berger [Ber66]. For context, a subshift of finite type that has no periodic
points is called weakly aperiodic. An SFT on which the group acts freely is
called strongly aperiodic. There is an interesting line of research whose goal
is to determine which groups admit weakly or strongly aperiodic SFTs (e.g.,
[AK13, CGS17, Coh17, Coh20]).

The proof of Theorem 2.1 will take up the rest of this section. We assume
from now on that G = (s1,...,s,) is a free group of rank r and S = {s1,..., s, }.

2.2.1. Proof sketch. In the special case in which p is a Markov chain which as-
signs rational numbers to cylinder sets, the proof follows quickly from [Bow10c,
Bow10a]. We obtain the full theorem by approximating an arbitrary invari-
ant measure by Markov chains. These approximating Markov chains are typ-
ically not nearest-neighbor and so we will have to work with general observ-
ables ¢ : A — C with respect to which a measure might be Markov.

We begin by introducing restricted versions of the f-invariant and the func-
tion F. Then we discuss Markov chains and establish a number of lemmas
before finishing the proof.

2.2.2. Restricted versions of f and F. We will make the following assumptions
for the rest of this section. As above, we let u be a G-invariant Borel probability
measure on A®. Also let C be a finite set and let ¢ : A® — C be continuous. We
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do not require that ¢ is generating. This induces a map ® : A — C¢ by

®(z)(9) = plg~"@);
® is the unique G-equivariant map from A% to C% such that ®(z)(e) = ¢(x).
Let Y C C% be a nearest-neighbor SFT containing the support of ®, .

By (3),
fu(¢) = inf limsup 1ogEg~un|Q(o 0)].

03®p n—oo

We define f) (¢) by replacing Q(c, 0) with Qy (0, 0):

fY(¢) = inf limsup logEg~un|Qy(U 0)].

03®p n—oo
For example, if ¢ is generating, then to prove Theorem 2.1, it suffices to
show fu(¢) = f} (¢) with Y = ®(Z), along with the claim below.

The claim below verifies that the restricted formula for the f-invariant is still

invariant for example under recoding maps.

CLAIM 1: Suppose A, G, ¢, C, ® are as above. Suppose Z C A® is a sub-
shift, p(Z) =1, ®(Z) =Y, and ® is a homeomorphism when restricted to Z.
Let 1) : A — A be the canonical observable (i.e., 1(x) = x.). Then

fL) = fi (¢)-

Proof. Fix 0 : G — sym(n) a homomorphism, and = : [n] — A an observable.
For every v € [n] recall the pullback name 27 € A®. Define y : [n] — C by

y(v) = (a7
We claim that yJ = ®(z9).
First notice that since ¢ is a homomorphism, for any g € G,
grd = zg(g)v.
This is because for h € G, (929)n = (29)4-1n = x(c(h~'g)v) while also
(@ (g0 )n = z(0(h")(0(g)v)) = z(a(h™'g)v). Now
(Yo)n = y(o (A~ )v) = D27 j-1),)e
= h®(@7(,-1y,)n = P(hag -1y, )n
== @(xg)h

Let n : A" — C™ be the map described above (such that n(z) = y); n is injective
on Qz(0,0) for each n and o because ® is injective on Z.
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Now since ¢ is assumed continuous, so is ® (by the Curtis-Lyndon-Hedlund
theorem). This implies ®,: Prob(A%)—Prob(C%) is also continuous. Let v=®, .
Then for any weak™ neighborhood U of v there exists a weak™® neighborhood O
of v such that ®,(0) C U.

We will show that for any homomorphism o : G — sym(n),

#Q2(0,0) < #Qy (0, W).

Let z € Qz(0,0). This means that P € O and PJ(Z) = 1. We claim that
Pl € Wand P2 (Y) = 1. By definition,

) = (1/n) Z dp(a7) = Pu Py,
vE[n]

so by continuity of ®,, PT;’(w) € U. Furthermore each ®(z7) € Y by assumption,
so PP (Y) =1

Now the above claim together with the injectivity of 1 shows that
#Q2(0,0) < #Qy (0, U), which in turn shows that f7(¢)) < f (¢). The proof

can be repeated for ®~! to show the opposite inequality.

We need to connect the above definitions with the definition of the f-invariant
from §1.6. For this, let o : G — sym(n) be a homomorphism and suppose ¢ € C"
is an observable on [n]. For H C G finite, let ¥ = Vucpy o o(h™1)
where 11 V 12(v) = (¥1(v),1%2(v)). So 9% (v) can be thought of as giving
an H-configuration around v. Unlike the definitions (in Sections 1.2 and 1.6)
for the infinite space this definition depends on a choice of sofic approxima-
tion o € Hom(G, sym(n)). Notice that both ¢ and 97 take values in C*. So
we can define d (¢, ) to be the ¢!-distance between ¢H (1) and 7" Unif,,:

dif (@, 9) = Y [n{w € a%: ¢"(2) = a}) — Unifu({i € [n] : 7 F (i) = a})].

Here, Unif,, is the uniform probability measure on [n]. Note that Hy C Ha
implies

A (g, 0) < d2 (¢, ).
Let

d(p,00) =Y di*H (o, ).
=1
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By Theorem 1.4 in [BowlOa],

F,(¢) = inf lim sup 1ogEJNun|{1/) eC:di(p, ) <€}

€0 noo

Define

1
F, (¢) = inf limsup logEsnu, [{1 € C": d3(9,9) < €, P{(Y) = 1}].
n

" >0 poo

Also note that f¥ can equivalently be expressed as

£(6) = inf_ inf limsup L 0B B, [ € €7 £ 0 (9,0) < e, PR(Y) = 1}

where the infimum is over finite K C G.

2.2.3. Markov chains. We now introduce Markov processes in the same way as
defined in [Bow10c].

Let (X, u, T, G) be a pmp action. Let ¢ : X — C be an observable. For H C G
finite recall that ¢ = Vien @ © T"'. We also identify ¢ with the partition
and o-algebra it induces on X. Note that an element of the partition ¢¥ is of
the form NperT" A, where each A; € ¢.

Let the left Cayley graph I';, with respect to (G, S) have vertex set G and an
edge between g and sg for each g € G and s € S. For g1, g2 € G let Past(g;; g2)
be the set of all f € G such that every path from f to g1 passes through gs.

If Fis a o-algebra and A C X, then we write u(A|F) : X — R for the
conditional expectation of the characteristic function 14 conditioned on F. This
is well-defined mod .

Definition 3: Let ¢ be a measurable partition of X. Then (X,u,T,¢) is a
Markov process if for every g € G, s € SUS™!, A€ ¢,

p(TED ™ A|gPast(s0:9)) — 1 (T ™ Alg9) = (T Algp).

The second equality above holds for all G-invariant measures p.
We say that a Markov process (X, u, T, ¢) has rational probabilities if for
every a,beC, s €S,

w@ ™ (a) Nsp™ (b)) € Q.

For the remainder of the section we will specialize to Markov processes of sym-
bolic dynamical systems, specifically X = A%,
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LEMMA 2.2 ([Bow10c, Theorem 6.1]): Let (A%, 11, ¢) be a Markov process. Then
Fu(¢) = fu(¢)

LeEMMA 2.3: Let (A%, u,¢) be a Markov process with rational probabilities.
Choose ¢,C,Y as in §2.2.2. Then F,,(¢) = F) (¢) = [, (¢).

We shall assume the above lemma and prove it later. Let B,, = B(e,n) be
the ball of radius n around the identity. We also need the following lemma.

LEMMA 2.4: (1) Let (A%, i, ¢) be a Markov process such that ® is a home-
omorphism and ®,.u(Y) = 1. Then there exists a sequence p,, — p in
weak* such that each (A%, i, ¢) is Markov with rational probabilities
and ., (V) = 1.

(2) Let (A%, 1) be a symbolic dynamical system, Z C A% a subshift of finite
type with u(Z) = 1 and let ¢ : A® — A be the canonical observable (i.e.,
¢(x) = x.). Then there exists a sequence {u,}>2 ; of invariant Borel
probability measures on A® such that p, — p in weak™ as n — oo,
(AC, pp, 9B is Markov, p,(Z) = 1, and F,, (¢P") = F,(¢B") for
all n.

We will assume (1) of the above lemma and prove it later. Item (2) of the
lemma above is proven in Section 9 of [Bow10c].
We will also make use of the claim below.

CLAIM 2: The map u+— f;{ (¢) is upper-semicontinuous in the following sense.
If {pun }22, is a sequence of invariant Borel probability measures weak*-conver-
ging to i and P, iy, is supported on'Y for all n, then fﬁ/(d)) >limsup,, . fr (¢).

Proof. Let v = @, and v, = P, pu,. Fix a weak™ neighborhood O of v. For
all large enough n, v, € O. For each such n, for all small enough weak*
neighborhoods O, of v,, O, C O so that Qy (0, 0,) C Ny (0,0). It follows that
1
limsup ~ logEymu,, |Qyv (0, 0)| > lim sup fﬁ; (A9, ¢).
m—oo MM n—00 )

Take the infimum over O to obtain f;/ (¢) > limsup,,_, fYn (9).

Proof of Theorem 2.1. Let ¢ : A® — A be the canonical observable ¢(z) = ..
By item (2) of Lemma 2.4, there exists a sequence {p,}52 of invariant Borel
probability measures on A% such that p,, — p in weak* as n — oo, (A%, yu,,, )
is Markov, p1,,(Z) = 1, and F,, (¢P") = F,(¢P) for all n.
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By item (1) of Lemma 2.4 applied to each p,, there exist u/ such
that !, — p (weak*) as n — oo, (A%, ul,, pP) is Markov with rational proba-
bilities, u, (Z) = 1, and Fy () > F.(¢P") — o(n).

We claim

F5 () = fur (87) = F (77) = Fuy (¢77) = Fu(¢7") — o(n)
where Y = ®,(Z) and ®,, : A — (AP(¢™)E is the equivariant map deter-
mined by ¢Z (so @,,(z)(g) = ¢P» (g7 x)). The first equality holds by Claim 1
and the second and third equalities follow from Lemma 2.3 (note that Y is a
nearest-neighbor subshift of finite type when n is large enough). By applying

limsup,, ,., to all parts of the equality and using the upper semi-continuity
from Claim 2, we obtain f7(¢) > f.(¢) as desired.

Proof of Lemma 2.3. First we show that F},(¢) =F) (¢). Because F},(¢) > F(¢)
is immediate from the definitions, it suffices to show F},(¢) < F (¢). Let

Gul9) = limsup | Tog B(I{ € C" 5 (6,) = 0})).

Now FY(¢) > G.(¢) because for any homomorphism o : G — sym(n), all
¥ € C" such that dj(¢,v) = 0 automatically satisfy P7(Y) =1 whenever Y is
a nearest-neighbor SFT. By Lemma 2.2 in [Bow10a], G,,(¢) > F,.(¢), so

Fu(9) = ) (9).
Next we show that F) (¢) = f} (¢). Given a finite subset K C G, let
. 1 "
a6, ) = msup | log B0 € &% a8 (9,) = 0.

Let By, = B(e,m) be the ball of radius m around the identity. We will use the
claim below:

CrAM 3: For every m, g,(¢, Bim) > G (¢P™).

Proof. Fix o. By taking limits, it suffices to show for all n large enough
{v € ™ dd™(g,9) = 0} > [{n € (c”m)" : dy (6", n) = 0}].
It suffices to find an injective map from
{ne (©)" dy(¢",n) = 0}

to

{p ecdgm(6,9) = 0}.
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Let n € (CPm)™ be such that dZ(¢Pm 1) = 0. Define ¢ € C" by
b(v) = n(v)(e).

Note that dZ= (¢,1) = 0. We claim that the map 1 + 1 is injective.
Observe that d% (¢P=,n) = 0 implies that for any s€ .S, g€ B(e,m) N B(s,m),

n(v)(g) = n(o(s™)(s™g).

In particular, let f € B(e,m) and write f = s182---s;. Then

n(©)(f) = n(v)(s1---s1) = no(sy o) (s2-+-s1)

=n(o(s; " sy v)(e) = (o (f ).
This shows 7 can be recovered from . So 1+ 1 is injective.
Let
£ (0.K) = inflimsup | log E({u € "+ a2 (6,0) < e, PL(Y) = 1},
By an argument similar to why FZ(@ > Gu(¢), we obtain
Fi (6, K) 2 gu(6, K)
for any finite K C G containing S U S~ U {e}. Thus we have for every m € N,
13 (6, Bim) 2 9u(@, Bm) > Gu(67") > Fyu(@")
= fu(0"m) = fu(9)
= Fu(¢) = F, (9)
noting that (A%, u, &™) is also Markov by Lemma 6.3 in [Bow10c]. The result

follows by applying inf,, to all parts of the above (and fﬁ/(gb) < Fﬁ/(gb) by
definition).

Proof of Lemma 2.4(1). We need an analogue of Lemma 2.3 from [Bowl10al.
To motivate it, suppose that v is an invariant probability measure on A“. For
a,be Aand 1 <i<r, define

W, (a) = v({z € A9 : 2(e) = a}),
W, (a,b;i) = v({z € A% : z(e) = a and z(s;) = b}).
Then W, is a weight. Formally, a weight is a function

WAL (AxAx[r]) —[0,1]
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satisfying the conditions below:

(1) (Balanced) For every i, and every a € A,

W(a) = Z W(a,b;i) = ZW(b, a;i).
bea bea

(2) (Normalized) ), W(a) = 1.
Given two weights W1, W5 define

d(Wy, Wa) = > Wala,bsi) — Wa(a, bsd).
(a,b;i)EAXAX[r]

A weight W is a Y-weight if for every (a, b;i) € A x A x [r], if there does not
exist z € X with ®(z) € Y, z(e) = a and z(s;) = b then W(a,b;i) = 0. If the
measure v is supported on ®~1(Y) then W, is a Y-weight.

A Y-weight as defined above induces an invariant transition system as defined
in Section 7 in [BowlOc|, and there it is shown that an invariant transition
system induces a Markov process. In particular, for every Y-weight W, there
is a unique Markov measure v such that W, = W.

The equations defining Y-weights are linear equations with rational coefli-
cients. Therefore, the subset of rational-valued Y-weights is dense (with re-
spect to the distance function defined above) in the space of all Y-weights. It
is straightforward to check that convergence of a sequence of weights implies
convergence in weak® of the associated Markov measures and that a rational-
valued Y-weight corresponds to a Markov measure with rational probabilities.
So this implies the lemma.

3. Standard hypotheses and notation

Definition 4: The standard hypotheses for this paper are the following: (X, u)
is a standard probability space, G = (S) is a free group with free generating
set S = {s1,...5:}, T = (T9g4eq, U = (U9)4ecc are essentially free pmp
actions of G on (X, i) with the same orbits. Define cocycles o : G x X — G,
B:GxX — G by

Ueo®) g = Tz, TP = U9y,
Note that the above definition gives
(4) a(B(g,x),x) = g = Blalg, z), z).
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We assume there exist a finite set B and a measurable map v : X — B such
that v is both T-generating and U-generating. We do not make any quantitive
orbit-equivalence assumptions until the end of the paper.

4. The space of orbit-change maps
For z € X, define the orbit-change maps ¢, : G — G and By :G— G by
7':6)717 BI(g):/B(gilv'r)il'

Then &g, B, € sym,(G) where sym,(G) is the set of bijections ¢ : G — G such
that ¢(e) = e. These maps satisfy the multiplication rules

aroe(gh) = alg,@)ae(h),  Buaz(gh) = Blg,x)Bu(h).

Also note that the above definitions and (4) give

(5) 6‘;1 = Br

Note that sym,(G) is a group under composition. Moreover, it is a Polish

Gz (g) = 04(971

group with respect to the pointwise convergence topology. In fact, if {g;}$2, is
an enumeration of G then

ZQ 1¢ (9:)=2(g:) + 1¢ L(gi)=v~ 1(91))

is a complete separable metric inducing the pointwise convergence topology.
We would like to say that the maps z — &, and z — Bm are equivariant. So
we define actions ©, U of G on sym,(G) by

(0")(g) = (b1 p(h " g),
(©"6)(g) = ho(¢~ (A Y)g) = (0 "D 4)(g).

These two actions of G have the same orbits.
Because of the multiplication rules, the map z +— &, is (T, ©)-equivariant in
the sense that

(6) Gryy = 090y
It is also (U, U)-equivariant:

(7) Gpoy = UYa,.
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For example, (7) follows from (6) and the observation (which follows from (5))
that

(8) a; (b7 = B(h, ).
Similarly, the map x — By is (T, U)- and (U, ©)-equivariant:

BTQx = Ungv BUQI = egﬁx-
These properties follow from the cocycle identities (1), (2).
4.1. A PARTIALLY SYMBOLIC MODEL. Recall that v : X — B is generating
for the U and T actions. Recall symbolic dynamics from Section 2: B is the
space of all functions y : G — B with the topology of pointwise convergence

on finite sets, for x € BY we will use either function notation or subscripts
(so y(g) = y,) whichever is most convenient, and G acts on B® by the left shift

action (gy)(f) = y(g~*f).
Define T' : X — B¢ by

L(z)g =4(T7 ).
This map is equivariant in the sense that I'(T"z) = hI'(x) forall h € G, z € X.

Because v is T-generating, this map is also 1-1 (modulo null sets).
Define I' : X — sym,(G) x B¢ by

[(@) = (60, T(x)).
Also define actions ©, U of G on sym,(G) x BS by
(9) 6%(¢,y) = (&9, gy), T%(d,y) = (096,67 (g7 ") 'y).
By (8), (6), and (7), I is doubly-equivariant in the sense that
[(T9z) = 09T (z), L(U%) =0T (x).

Because 7 is both T" and U generating, T is injective (modulo null sets). So to
prove Theorem 1.1, it suffices to prove ff*u(®> = ff*u(fi).

5. A subshift of finite type for bounded orbit-equivalences

The goal of this section is to show that there is a subshift of finite type which
encodes bounded orbit-change maps. To begin, let A = GY° " where
S = {s1,...,s,} is the generating set. If z € A, g € G and s € SUS™!
then we write z4(s) = z(g)(s) € G to simplify notation.
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Define € : sym_(G) — A® by
E(@)n(s) = 0" (s) = p(h) 6 (hs).

This map is an embedding in the sense that it is equivariant, continuous and
injective. The equivariance means that

(10) €(0"¢) = hé(9)
for h € G, ¢ € sym, (G). In fact & is determined by this equivariance condition
and the formula £(¢)(s) = ¢(s).

If 2 = &(¢) and s1,...,5, € SUS™! then
(11) P51 8n) = Te(51)s, (52)Ts155(83) Ty w51 (Sn)-
This is obtained via induction on n. This verifies that € is injective. We have
the following more general fact:

LEMMA 5.1: If ¢ € sym,(G), z = &(¢), g € G and s1,...,5, € SUS™! then
B(gs1 -+ 8n) = ¢(9)24(51)Tgs, (52) * * Tgsy s,y (Sn)-
Moreover, for any t € G and t1,...,t, € SUS™!, the equation
¢~ gt) =" (g)t1tm
is true if and only if

t=ay-1(g)(t1) -+ To=1(g)trtrur (b))
Moreover, such a sequence is unique if we require m = |ty -« -t |G-

Proof. The first statement follows from (11) by writing g € G as a word in SUS ™%
To prove the second statement, suppose ¢~ 1(gt) = ¢~ 1(g)t1 - -t,m. Apply ¢
to both sides, then apply the first statement to obtain

gt = ‘b(ﬁbil(g)tl e 'tm)
= 9T4-1(g) (t1)Tp=1(g)ts (£2) -+ Tp=1(g)ty -ty (Em)-
After cancelling g from both sides, we obtain
t=Ty-1(9)(t1)Tg-1(g)t, (F2) *** Tg=1(g)ty -ty (tm)

as required. The converse is obtained by following the same steps in reverse.
Moreover, t1,...,t, € SUS™! are uniquely determined by two conditions:

m= It tm

and
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For p € N, let A, = B(e,p)susf1 which we view as a subset of A. Be-
cause 4, is finite, Aff is compact. Also, let sym,(G) C sym,(G) be the subset
of ¢ € sym,(G) such that

(07 ) (s)le = lo(9) ' o(gs)la < p
and
(@7 ¢~ H(s)la =l (9) " ¢ (gs)la < p
for all s € SUS™! and g € G. In other words, if 7 = &(¢) and y = (¢~ 1) then
lzg(s)le < p and |yg(s)la < p.
In particular, if ¢ € sym,(G), then &(¢) € Aff.
The main theorem of this section is:

THEOREM 5.2: For p € N, &(sym,(G)) C AS is a subshift of finite type.

Proof. Let F = B(e,p* +1) C G be the radius p* + 1 ball. Let V C A" be the
set of all maps z : F' — A, such that:

(Axiom 1) z.(s)zs(s™!)=eforallse SUS™L
(Axiom 2) For every h € G with |h|¢ < p there exists a unique sequence
S1,...,8, € SUS™! with [s1- - snlc =n < p? 4+ 1 such that

h = 2c(81)2s,(52) 25155, (83) "+ * 2518, (Sn)-

Moreover, n < p|hlq.

Let W = Af \ V be the complement of V. Let Z be the subshift of finite
type determined by W. This means Z is the set of all z € A® such that for
every g € G, g restricted to F' is in V. We will show Z = E(sym,,(G)).

Let x € Z. We claim that

(12) 2g(5)0s (s71) =
forall s € SUS™! and g € G. By Axiom 1 applied to z = g~ 'z,
(97 0)e(s) (g7 a)s(s71) = e
Equation (12) follows from this and the fact that
(97 2)e(s) = 2(s), (97 a)s(s7") = 2gs(s™")

by definition of the G-action on A%.
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Cram 1: Z D E(sym,(G)).

Proof of Claim 1. Let ¢ € sym,,(G) and suppose = = £(¢) € Af. We will show
that z € Z. If s € SUS™! then

we(s)zs(s71) = pe) ' o(s)e(s) (s ) =e.
This verifies Axiom 1.

Now let h € G with |h|c < p. Let h = hy -+~ hy, for h; € SUS™! and |h|g = k.
Then

671 (h) =(¢~"(e) "6 ()
< (@7 ()Tl (aha)) - (67 (hy - hiea) TH T (haha - b))
Since each term in parenthesis has word length bounded by p, this shows that
67 (B)le < |hlap < p*.
By Lemma 5.1 applied to g =e, t = h,
¢~ (h) =51 5p
where s1,...,58, € SUS™! is uniquely determined by [s1+-sn|g =n and
h=xc(81) " Tsy.s,_,(Sn)-
This verifies Axiom 2. Therefore, x € Z. Since ¢ is arbitrary, this proves that
Z D E(sym,(G)).
LEMMA 5.3: Z C E(sym,(G)).

Proof. Fix x € Z. We will define some map ¢ : G — G and show

(1) ¢ € sym,(G).

(2) &(¢) ==
Define ¢ : G — G as follows. First let ¢(e) = e. Assuming ¢(g) has been
defined for some g € G, define ¢(gs) (for s € SUS~! with |gs| = |g| + 1) by

(13) P(gs) = d(g)xy(s).

This uniquely defines ¢. It will be convenient to know that (13) holds even
without the assumption |gs| = |g| + 1. So suppose |gs| = |g| — 1. By (13)
applied to gs and s~1 (note that |gss~!| = |g| = |gs| + 1),

(14) $(g) = dlgss™") = ¢gs)zgs(s7).
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1

By Axiom 1 applied to z = (gs) 'z and s7!,

e=z(s N zg-1(8) = 45(s7H)zy(5).
Thus z4s(s™) = x,(s)~*. Substitute this into (14) to obtain
d(gs) = d(g)z4(s)

as claimed. Thus assuming ¢ € symp(G) we can calculate that for any h € G,
seSusSt
E(O)n(s) = d(h) ™" ¢(hs) = xn(s),
SO
&(p) = .

So it remains to show that ¢ € sym,,(G).

Also, by induction, (11) holds for the ¢ that we have constructed.

Our next goal is to prove that ¢ is surjective and injective, hence in sym,(G),
and then we will show ¢ € sym,(G) and therefore €(sym,(G)) = Z, which

finishes the proof.
Note that ¢(s) = z.(s) € B(e, p) for s € SUS™L. So

|p(s)|a < p forallsc SUS.
Moreover, ¢(g) " 1¢(gs) = x,4(s). So
lp(9) " p(gs)|g < p for all g.
CLAIM 2: ¢ is surjective.

Proof of Claim 2. By induction, it suffices to prove the following statement: for
every g € G and t € SU S, if g is in the image of ¢ then gt is also in the
image of ¢. So suppose ¢(h) = g for some h. We apply Axiom 2 to h~'x to
obtain the existence of s1,...,5, € SUS™! with n < p such that

t= (h"2)e(51) (W) (32) (0 )0 (58) -+ (0712 syy (50)-
Using the action of G of A®, this implies
t = 2n(51)Ths; (52)Thsy s, (83) ** Thsy s,y (Sn)-
By (11),
P(hsy---sn) = G(R)wn(51)Ths, (52)Thsy 5, (88)  + Thsy w5, ($0) = gL

This proves that ¢ is surjective.
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We will now show ¢ is injective by demonstrating that it has an inverse 1.
Define ¢ : G — G by

(1) ¥(e) =e,
(2) if 1(g) has been defined, t € SU S™! and |gt|¢ = |g|¢ + 1, then define
(15) P(gt) = P(g)s1---sn
where s1,...,5, € SUS™! is the unique sequence satisfying
n=|s1 - sal < p
and

t=((9) " 2)e(s1) + (D(9) T 0)sms, (50) = Ty(g) (51) *+* Tup(gysyess (Sn)-

The existence and uniqueness of this sequence is guaranteed by Axiom 2
of the definition of Z.

CrAaM 3: Equation (15) holds for allt € SUS™1 (even if |gt|c # |gla +1).

Proof of Claim 3. To see this, suppose [gt| = |g| — 1 and let h = gt. Then
lg| = |gt| + 1 or equivalently |ht~!| = |h| + 1 so by definition

U(g) = Y(ht™) = p(h)tr - tn,

where t1,...,t, € SUS™! is the unique sequence satisfying
(16) 0 = 2y () Tyt ()
and [t; -+ ty|lg =n < p. Thus

(17) wigt) = p(h) = (g)ty 't

By (16), (12) and (17)
b= Ty (nytytny (bn) e gy (1) 7
= Tyt () Ty (87
= Tap(g) (t;l) Tyttt ! (tl_l).
This proves the claim with (s1,...,s,) = (t; % ..., 7).

Let g € G and ¢t € G with |t|g < p. By Claim 3 and induction on |t|g, we
obtain

(18) Y(gt) = ¥(g)s1---sn
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where s1,...,8, € SUS™! is the unique sequence satisfying n = |sq - -+ s, | < p?
and

= (w(g)_lw)e(ﬁ) T (1/1(9)_155)51»»»%,1 (Sn) = Lep(g) (51) T Tap(g)s1eSn—t1 (Sn)

CLAIM 4: ¢ is injective.

Proof of Claim 4. It suffices to prove ¥(¢(g)) = g for all g € G. This is true
for g = e. By induction, it suffices to assume that ¥(¢(g)) = ¢ and prove that
P(p(gs)) = gs for s € SUSL.

Let

t=14(s) = d(9) " ¢(g)
where the second equality holds by (11) or (13). Since z € Af, this implies
[tle < p. By (18), we have

Y(p(gs)) = ¥(p(9)t) = P(P(9))s1 - 5n = gs1-+5n

where s1,...,58, € SUS™! is the unique sequence satisfying

t=1ag(s1) " Tgs,s,_y (Sn)
and
|51+ 80| =n < p2.
But we also have t = z4(s) so by uniqueness, s = s1---s, and n =1. So
P(P(gs)) = b(d(9)t) = gs1--sn = gs,

as required.
Recall from the definition of v that for any s € SUS™!, g € G,
U(gs) = ¥(g)s1- - sn

where s1,...,5, € SUS™!is the unique sequence satisfying n = |s1---s,| < p
and
s = ((g) " 2)e(51) - (V(9) T @) 51501 (5n) = Typ(g) (51) -+ (g sy (Sm)-

In particular, since ¢ = ¢! this shows that [¢~!(s)|g < p for all s € SUS~L.
Similarly, [¢~'(g)"'¢™ ' (gs)|e < p for any g € G. Thus ¢ € sym ,(G).
Because €(¢) == and € Z is arbitrary, we must have Z C &(sym,,(G)).

Since we have already shown the opposite inclusion, the two sets are equal.
This proves the theorem.
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5.1. REARRANGING PERIODIC ORBITS. Define F : sym,_(G) — A% by
F(8)(h)(s) = U g(s) = h™ o0~ (h)s).

Then & is an embedding and satisfies the equivariance condition

(19) F(U"¢) = hF(¢)

for h € G, ¢ € sym,(G).

The next lemma enables us to re-arrange the orbit of a periodic point in Ag.
If the original periodic point is approximately equidistributed with respect to an
invariant measure ¢ on Af, then the new periodic point will be approximately
equidistributed with respect to (F o €71),(. This will help us map periodic
points which witness the entropy of (X, u,T,G) to periodic points witnessing
the entropy of (X, i, U, G).

LEMMA 5.4: Let 0 : G — sym(n) be a homomorphism and x € A™. Recall the
pullback name x{ from §2. Suppose z{, € Z = E(sym,,(G)) for all v € [n] (and
some p > 0). For v € [n], let ¢, = E71(x7) € sym,(G). Then there exists a
unique homomorphism 7 : G — sym(n) satisfying

(g =0(s, (g~") v

for all g € G and v € [n]. Moreover,

for all v € [n].

Proof. To prove that 7 is a homomorphism, it suffices to prove that for any
t,g€ G, Tt )71(g7)v = 7(ttg~1)v. This is implied by

(20) b (1) o, (9) T =gy M (gt)

where

Choose t1,...,tm € SUS™! so that
bt (t) =ty -t
Apply ¢y, to both sides, then use (11), to obtain

t=du(ts - tm) = (23)e(t) (@5 )0 (B2) -+ (27 )11t (Em)-
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For any 1 <7 < m we follow the definitions of zJ,, w and zJ to obtain
(@)t (1) = (ot -t Dw) () = w(o(t 7y 1770y (9) 7w (k)
= xg)qb;l(g)tlmti,l(ti)'

Combined with the previous formula, this gives

t = (@) 5 () (E)(@0) 451 gyt (B2) - () g1 ()01, (Em)-

Now we apply Lemma 5.1 with ¢, in place of ¢ and x in place of x to obtain

bo (gt) = by ()ts -+t = b3 (9) by (2).

Take inverses to obtain (20). This shows that 7 is a homomorphism.
To prove the last statement, we check

F(du)g(s) = 97 du(9 " (9)5)
by definition of . Since £(¢,) = x9, the definition of € gives

(@) g1 () (8) = 9" du(d, 1 (9)s)-
S0 F(¢u)g(s) = (27)4:1(4)(5). By definition of 27, 7 and z7, we have

v

(@7) g1 (g) (8) = 2(0 (5 (9) T )(5) = (79~ )v)(5) = (a])g (s)-
Since g and s are arbitrary, F(¢,) = x7. Because ¢, = €7 1(x7), this implies

the last claim.

Next we extend & and F as follows. Define &,F : sym,(G) x B¢ — AG x BC
by
E(y) = (E(0)y), F(dy) = (F(d),yo o).
We claim these maps have the following equivariance properties:
(21) 0O =hE, TFolM=h7.

The first equality above is straightforward and left to the reader (use (10), (9)).
Verifying the second equality above is also straightforward but a little long. We
will use the notation y o h for the function which takes g € G to y(hg). For any
(¢,y) € AS x BY, the definition of  and F gives

F o B¢, y) = F(O", ¢~ (A=) y) = F(U"¢,yo ¢ L (h™D))
= (FU"p,yo ¢ (k) o (U"p) ).
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On the other hand,
hF(¢,y) = h(Fp,yo ¢ ') = (WFp,yo ¢~ o h™h).
By (19), the first coordinates are equal. So it now suffices to show that
yoo (h o (0g) " =yostoh
Equivalently, for all g € G,
y(@ (T )" Hg) = y(o~ (hMg)).
Removing the y’s, it suffices to show that
¢~ (W H(©") " Hg) = ¢~ (W ).
Multiply both sides by ¢~1(h~1)~!, to obtain the equivalent
(B"9) " Hg) =0~ (W)t ().
Now apply U"¢ to both sides to obtain
9= U"e)(¢~ (A1) o (A "g)).

This is a straightforward consequence of the definition of "¢ and so finishes
our verification of (21).

LEMMA 5.5: Keep notation as in Lemma 5.4. Also let y € B™. Then
g(g—1($g’y3)) = (fﬂlayl)

Proof. Recall the notation ¢, = &' (29) € sym,(G). By definition of &,

€M (a7, yl) = (¢u,97)-

By definition of F and Lemma 5.4,

FE T, u0) = (@],7 0 6, ).
So it suffices to show that y7 = yJ o ¢, 1. For any g € G,
i (9) =y(r(g~ "),y oy (9) =ylo(d, (9)" ).

The definition of 7 gives 7(g71)v = o(¢, *(g)~!)v. This finishes the proof.

v
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5.2. PROOF OF THEOREM 1.1.

Proof of Theorem 1.1. Without loss of generality, we assume the standard hy-
potheses from §3. Because the actions T" and U are boundedly orbit-equivalent,
there is a p € N such that for y-a.e. z € X and every s € SU S~ a(s, z)
and B(s,z) both have word-length < p.

Let v = Doy € Prob(sym,(G) x BY). Recall from §4.1 that it suffices to
show that fl,(é) = fl,(ii) Recall the maps &, F from §5.1. These maps are
injective (mod null sets) because & and JF are injective (mod null sets).
They are also equivariant in the sense of (21). So it suffices to show
that fz ,(AS x BY) = f5 (AS x BY).

Let Z = &(sym,(G)) C AS and let Z = Z x BY. Recall from §2 that Q(a, 0)
is the set of all # € A} x B" such that Py € O where P; is the empirical
measure of = (with respect to o). Also (0, 0) is the set of x € Q(c,0) such
that P7(Z) = 1.

Given an open subset O C Prob(Aff x BY), we define the following subsets of
Hom(G,sym(n)) x Aj x B":

Q(n,0) :={(o,2,9) : (z,y) € U(0,0)},
Q5(n,0) :={(o,z,y) : (z,y) € U3(c,0)},
Qz(n) == Qz(n, Prob(Af x BY)).
By Theorem 5.2, Z is a subshift of finite type. Therefore, Z is also a subshift
of finite type. By Theorem 2.1 and the formula n!” = # Hom(G, sym(n)),

1
fz V(Af xBY) = inf limsup logEgn., |Q(0,0)]
. n

03&,v n—oo

(22)
= inf limsup 1 log (#Qz(n, O))
95,0 nooo N n!r
Define
Ty : Qz(n) — Hom(G,sym(n)) x Ay x B"
by

Tn(oz,y) = (1,7,y)
where 7 is as defined in Lemma 5.4. To prove the theorem, we will show
that Y,, maps periodic points witnessing the f-invariant for €,v to periodic
points witnessing the f-invariant for F,v. The first step is the following conti-
nuity property.
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CLam 1: LetU C Prob(Aff xBY) be an open neighborhood of F,v. Then there
exists an open neighborhood O of &,v such that T,(Q2;(n,0)) C Qn,U).

Proof of Claim 1. The map €~! : Z — sym_(G) is continuous by Lemma 5.1.
The continuity of F,F and ' : Z — sym,(G) x BE follows directly from their
definitions. Therefore Fo &1 : Z — Ag x BY is continuous and the induced
map
(F o &™), : Prob(Z) — Prob(AS x BY)

is continuous. Since U C Prob(A? x BY) is an open neighborhood of .’;"*V,
this implies that its pre-image in Prob(Z) is an open neighborhood of &,v.
In particular, there exists an open neighborhood O’ C Prob(Z ) of &.v such
that (Fo &1),(0') C W

Because Z is closed in Aff x B, the weak* topology on Prob(Z) is the re-
striction of the weak™ topology on Prob(Ag x BY). So there is an open neigh-
borhood O C Prob(Ag x BG) of &,v such that O N Prob(Z) C O’

Let (0,2,y) € Q;(n,0). Since Yy (0,z,y) = (7,2,y), it suffices to show
that (7, z,y) € Q(n,U). Because

(0,2,y) €Q4(n,0), PG, (Z)=1 and PG €O0.
So P, ) € O’. Thus (Fo é_l)*P&y) € U. However,
~ ~ - 1 - .
(Fol PG,y = > (Fo& ™ )ubagy

n >
v€E[n]

1 T
oD Sagun = Play)

v€E[n]

Above we have used Lemma 5.5 to conclude that
(F 0 £1) (a9, 49) = (27, 30).
So P7, y € W which implies (1,2,y) € Qn,U).
CLamM 2: T, is injective.
Proof of Claim 2. Suppose Y,,(o,z,y) = (7,z,y). Recall that
¢ = €7 (a7) € sym,(G).

By Lemma 5.4,
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Set h = ¢, 1(g71)~t. Then g = ¢, (h~1)~ L. Thus
a(h)yv = 1(¢y (A1) ).
Now suppose that A € SUS™!. By Lemma 5.1 with g = e,

$u(h71) = (a)e(h™1) = x(v)(h71).
Thus
a(h)v = (@) (A1)
for all h € SUS™! and v € [n]. This shows that o is determined by 7 and z.
Thus T, is injective.

If O,U are as in Claim 1, then Claim 2 implies
#Q5(n,0) = #Y,(Qz(n,0)) < #Q(n,U).
So (22) implies
(#Qz(n, O))

n!r

1
fz V(Af x BY) = inf limsup = log
* O3&,v n—oo N

#Q(n, U))

nlr

1
< inf limsup log(
n

uaé"*u n—oo

= fz., (& x BY).

As mentioned above, since & and ¥ are embeddings, this shows that
£,(0) = fz, (a5 xBY) < f5_, (A5 x BY) = £,(D).

By symmetry, the same argument with 7" and U switched shows the opposite
inequality. This proves the theorem.

Appendix A. Open problems

(1) Is there an analog of the Rudolph-Weiss Theorem concerning invari-
ance of relative entropy under OE [RWO00] for sofic entropy or the f-
invariant? The sofic-entropy formulation of the relative f-invariant in
[Shr23] might be useful for this problem. If the Rudolph—Weiss Theorem
generalizes to free groups, then it should be possible to extend the f-
invariant to actions of treeable groups via Hjorth’s Lemma [Hjo06].

(2) Can the results of this paper be extended to free products of amenable
groups or surface groups? The difficulty is that there is no analog of
Theorem 2.1 in these cases.
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(3)

(4)

[AK13]

[Aus16]

[Bel68)

[Ber66]
[Bow10a]
[Bow10b]

[Bow10c]

[Bow10d]
[Bowl1]
[Bow?20]
[BTD18]

[CFWS1]

[CGS17]

[Cohl7]
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Suppose G is a finitely generated infinite group. If two Bernoulli shifts
over G are bounded orbit-equivalent, then do they necessarily have the
same base entropy?

Is there some 1 < p < oo such that the f-invariant is invariant under
LP-OE?
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