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ABSTRACT

The f -invariant is a notion of entropy for probability-measure-preserving

actions of free groups. We show it is invariant under bounded orbit-

equivalence.

1. Introduction

The goal of this note is to prove that the f -invariant, which is a generalization

of Kolmogorov–Sinai entropy to actions of free groups, is invariant under L1-

orbit-equivalence. We begin by quickly going over the history of entropy theory

and orbit-equivalence to set notation and motivate the main result.
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1.1. Notation. Throughout, we will denote standard probability spaces

by (X,μ), (Y, ν), etc. and their Borel sigma-algebras by BX ,BY etc. If G is a

countable group, then a pmp action of G is a tuple (X,μ, T,G) where (X,μ)

is a standard probability space and for every g ∈ G, T g : X → X is a measure-

preserving transformation satisfying T gh = T g◦T h (pmp is short for probability-

measure-preserving). In the special case that G = Z, a pmp action is also called

a pmp transformation.

Let (Y, ν, U,H) be another pmp action where H is a countable group, (Y, ν)

a standard probability space and U = (Uh)h∈H a pmp action of H on Y .

Let Φ : (X,μ) → (Y, ν) be a measure-space isomorphism.

• Φ is an orbit-equivalence (OE) if for a.e. x ∈ X ,

Φ(TGx) = UHΦ(x)

where, for example, TGx = {T gx : g ∈ G} is the TG-orbit of x.

• Φ is a measure-conjugacy if G = H and Φ(T gx) = UgΦ(x) for

a.e. x ∈ X and every g ∈ G.

Measure-conjugacy implies orbit-equivalence and the converse is false in general.

1.2. Classical entropy theory. Classical entropy theory was introduced by

Kolmogorov in order to classify Bernoulli shifts up to measure conjugacy [Kol58,

Kol59]. Given a countable group G and a Borel probability

space (K,κ), the Bernoulli shift over G with base (K,κ) is the product prob-

ability space (KG, κG) with the G-action G�KG given by

(g · x)f = x(g−1f), g, f ∈ G, x ∈ KG.

For example, if x is a random element of KG with law κG then (xg)g∈G is a

G-indexed i.i.d. process in which each variable xg has law κ.

The Shannon entropy of the base space is defined by

H(K,κ) = −
∑
k∈K

κ(k) log κ(k)

if κ is concentrated on a countable set. Otherwise, H(K,κ) := +∞.

Now suppose (X,μ) is a standard probability space. An observable on X is

a measurable map φ : X → A where A is a finite or countable set. If ψ : X → B

is another observable, then the join of φ and ψ is the observable

φ ∨ ψ : X → A× B, φ ∨ ψ(x) = (φ(x), ψ(x)).
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The Shannon entropy of the observable φ with respect to the measure μ is

Hμ(φ) = H(A, φ∗μ) = −
∑
a∈A

μ(φ−1(a)) log μ(φ−1(a)).

If T : X → X is measure-preserving then the entropy rate of (X,μ, T, φ) is

hμ(T, φ) := lim
n→∞

1

n
Hμ(φ ∨ φ ◦ T ∨ · · · ∨ φ ◦ T n−1).

The entropy rate of T is defined to be the supremum of entropy rates hμ(T, φ)

over all finite Shannon entropy observables φ:

hμ(T ) = sup{hμ(T, φ) : Hμ(φ) <∞}.
This is a measure-conjugacy invariant. Moreover, Kolmogorov proved that the

entropy rate of a Bernoulli shift over Z is the same as the Shannon entropy of its

base space [Kol58, Kol59]. This proves one direction of Ornstein’s Isomorphism

Theorem [Orn70]: Bernoulli shifts over Z are measurably conjugate if and only

if they have the same base space entropy. All of these results were extended to

actions of countably infinite amenable groups [OW80, OW87]. For example, if G

is a countable amenable group then two Bernoulli shifts over G are measurably

conjugate if and only if they have the same base space entropy.

1.3. Orbit equivalence (the amenable case). In [Dye59, Dye63], Dye

proved that all ergodic aperiodic pmp transformations are orbit-equivalent

(where aperiodic means that a.e. orbit is infinite). In [OW80] it was announced

that all essentially free ergodic pmp actions of countably infinite amenable

groups are OE. A complete proof appears in [CFW81]. In particular, entropy

is not an OE-invariant.

1.4. Quantitative orbit equivalence. Suppose that Φ : X → Y is an

orbit-equivalence as above. Also suppose both actions are essentially free. Then

there are cocycles α : G×X → H , β : H × Y → G defined by

Uα(g,x)Φ(x) = Φ(T gx), T β(h,y)Φ−1(y) = Φ−1(Uhy).

These cocycles satisfy the identities

α(gh, x) = α(g, T hx)α(h, x), β(gh, y) = β(g, Uhy)β(h, y),(1)

α(β(g, y),Φ−1(y)) = g, β(α(g, x),Φ(x)) = g.(2)

Suppose G and H are both finitely generated groups. After choosing finite

generating sets, we may let | · |G : G → R, | · |H : H → R denote word-length
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functions. The map Φ is said to be an Lp-orbit equivalence (Lp-OE) if for

every g ∈ G and h ∈ H the functions

x �→ |α(g, x)|H , y �→ |β(h, y)|G

are in Lp(X,μ) and Lp(Y, ν) respectively. L1-OE is also called integrable OE

and L∞-OE is also called bounded OE. These notions do not depend on the

choice of finite generating sets. In [Aus16], Austin proved that entropy is an

L1-orbit equivalence invariant for actions of finitely generated amenable groups.

The map Φ is said to be a Shannon orbit equivalence if for every g ∈ G

and h ∈ H , the observables α(g, ·) : X → H and β(h, ·) : Y → G have finite

Shannon entropies. In [KL21] Kerr and Li proved that if each of G and H

contains a w-normal amenable subgroup that is neither locally finite nor vir-

tually cyclic, then entropy for their actions is invariant under Shannon orbit

equivalence, where entropy means maximum sofic entropy. The groups are not

required to be amenable or finitely generated but they are required to be sofic.

The statement is false for locally finite groups by a counterexample due to

Vershik [Ver94]. In fact, Vershik’s counterexample is with a bounded orbit-

equivalence (but using non-finitely generated groups).

1.5. Entropy for non-amenable groups. For a long time, there was no

entropy theory for actions of non-amenable groups. Ornstein and Weiss exhib-

ited an example of a factor map between Bernoulli shifts over a non-abelian free

group in which the base space entropy of the source is smaller than the base

space entropy of the target [OW87]. By contrast, entropy for amenable groups

cannot increase under a factor map. In spite of this it is possible to define

entropy for actions of non-amenable groups. Today there are several versions

of entropy: sofic, Rokhlin, naive, etc. (see [Bow20] for a survey). We will focus

on the f -invariant which is a flavor of entropy specifically tailored to actions of

free groups.

1.6. The f-invariant. Let G = 〈S〉 denote the rank r free group with gener-

ating set S = {s1, . . . , sr}. Let (X,μ, T,G) be a pmp action of G and φ : X → A

be an observable. For any subset H ⊂ G, let φT,H : X → AH be the join

φT,H =
∨
h∈H

φ ◦ T h−1

.
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Let B(e, ρ) ⊂ G denote the ball of radius ρ centered at the identity in G with

respect to the word metric (where e ∈ G denotes the identity). Write

φT,ρ = φT,B(e,ρ).

Define

Fμ(T, φ) = (1− 2r)Hμ(φ) +

r∑
i=1

Hμ(φ
T,{e,si}),

fμ(T, φ) = inf
ρ
Fμ(T, φ

T,ρ) = lim
ρ→∞Fμ(T, φ

T,ρ).

An observable φ is T -generating if the smallest TG-invariant Borel sigma-

algebra in which φ is measurable is the full Borel sigma-algebraBX , up to sets of

measure zero. If there exists an observable φ which has finite Shannon entropy

Hμ(φ) < ∞ and is T -generating, then the action (X,μ, T,G) is said to be

finitely generated. This terminology is justified by Seward’s generalization of

Krieger’s Theorem [Sew19] which implies that if (X,μ, T,G) is finitely generated

then there exists a T -generating observable φ : X → A such that A is finite.

The main theorem of [Bow10d] is that if (X,μ, T,G) is finitely generated,

then there is a number fμ(T ) ∈ [−∞,∞) called the f-invariant such that

every T -generating finite Shannon entropy observable φ satisfies

fμ(T, φ) = fμ(T ).

If the action is not finitely generated then the f -invariant is not defined.

In [Bow10d], it is shown that the f -invariant of a Bernoulli shift action equals

the Shannon entropy of its base space. So the f -invariant distinguishes Bernoulli

shifts. However, in [Bow11] it is shown that all Bernoulli shifts of a free group

are OE. In particular, the f -invariant is not an OE-invariant.

The main theorem of this paper is:

Theorem 1.1: The f -invariant is invariant under bounded-orbit-equivalence.

To be precise, suppose G is a free group and (X,μ, T,G), (Y, ν, U,G) are finitely

generated essentially free pmp actions of G. If these actions are bounded orbit-

equivalent then fμ(T ) = fν(U).

Remark 1: Belinskaya proved that if two ergodic aperiodic pmp transforma-

tions T, U are L1-OE, then they are either measurably conjugate or flip-conjugate

(which means T is measurably conjugate to U−1) [Bel68]. So if G = Z then
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Theorem 1.1 is trivial. This motivates the question: if G, T, U are as in The-

orem 1.1, then must T be measurably conjugate to U ◦ α for some automor-

phism α : G → G? A recent work-in-progress due to Matthieu Joseph shows

the answer is ‘no’ by an explicit counterexample.

1.7. Related literature. About the problem of classifying Bernoulli shifts

up to measure-conjugacy: Seward proved that if two probability spaces have the

same Shannon entropy then the corresponding Bernoulli shifts are measurably

conjugate, for any countably infinite group [Sew22]. The converse holds for sofic

groups [Bow10b, KL11].

About the problem of classifying Bernoulli shifts up to OE: if a group G is

Bernoulli cocycle-superrigid, then it is immediate that if two Bernoulli shifts

over G are OE then they are measurably-conjugate. This notion is implicit in

ground-breaking work of Popa where it is proven that G is Bernoulli cocycle-

superrigid if it contains an infinite normal subgroup N such that either (i) the

pair (G,N) has relative property (T), or (ii) N is generated by (element-wise)

commuting subgroups H and K, with H nonamenable and K infinite ([Pop07,

Theorem 0.1] and [Pop08, Theorem 4.1]). Recent work shows that a type of

entropy called weak Pinsker entropy is OE-invariant for all essentially free pmp

actions of Bernoulli cocycle-superrigid groups [BTD18]. On the other hand,

there are two classes of groups for which it is known that all Bernoulli shifts

are OE. These are countably infinite amenable groups [OW80, CFW81] and

free products of amenable groups [Bow11]. It remain a very interesting open

problem whether fundamental groups of closed surfaces of genus ≥ 2 have this

property.

Kammeyer and Rudolph found a unified approach to Dye’s and Ornstein’s

Theorem which also gives explicit restrictions on orbit-equivalence which imply

entropy-invariance [KR02], for actions of amenable groups.

Kerr and Li find conditions under which topological sofic entropy is preserved

under continuous orbit equivalence in [KL23].

Rudolph and Weiss proved that if T and S are orbit-equivalent pmp ergodic

essentially free actions of amenable groups, then their entropies relative to their

orbit-change sigma-algebras are equal [RW00]. This insight was developed into

a technique for generalizing entropy-theory results for Z-actions to actions of

arbitrary amenable groups [Dan01, DP02].
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1.8. Outline of the proof and paper. The techniques we use are com-

pletely different from the works of Austin [Aus16] and Kerr–Li [KL21], [KL23].

By [Bow10a], we know that the f -invariant is the exponential growth rate of

the average number of approximate periodic points (or microstates) which are

approximately equidistributed with respect to the given measure. This result

is strengthened in §2 for the special case in which the invariant measure μ is

supported on a subshift of finite type (SFT). In this case, we find that, to

compute the f -invariant, it suffices to count actual periodic points in the SFT.

This is very special to the free group. For example, the analogous statement is

false for actions of Z2, because of the existence of SFTs without periodic points.

In §3 we set notation for the rest of the paper. In particular, we assume

that (X,μ) = (Y, ν) and that T, U are essentially free actions of G on (X,μ)

with the same orbits. There are cocycles α :G×X→G, β :G×X→G defined by

Uα(g,x)x = T gx, T β(g,x)x = Ugx.

The idea now is to show that, after replacing the system (X,μ, T,G) with a

measurably conjugate system, we may assume X is an SFT. Moreover, we can

design the SFT so that α(g, ·) and β(g, ·) are continuous functions of X . Then

any periodic point for the system (X,μ, T,G) can be re-arranged to obtain a

periodic point for (X,μ, U,G) (and vice versa). Because the f -invariant is the

exponential growth rate of approximately-equidistributed periodic points, this

proves the main Theorem 1.1. This is shown in §4 and §5. The last section §A
is devoted to open problems.

Acknowledgements. L. B. would like to thank David Kerr for helpful con-

versations.

2. Symbolic dynamics

Let A be a countable or finite alphabet, AG be the set of functions x : G → A

and G act on AG by

(gx)(f) = x(g−1f) ∀f, g ∈ G, x ∈ AG.

Symbolic dynamics is the study of G-invariant measures and subspaces of AG.

Whenever we are working with symbolic dynamical systems we always use

the left shift action described above and as seen above we do not use a symbol

such as T for the action. We also write fμ(φ) instead of fμ(T, φ) for example

and we denote the system by (AG, μ,G).
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In the first subsection below, we recall a formula for the f -invariant of an

invariant measure μ on AG in terms of counting periodic points. In the second

subsection, we assume the support of μ is contained in a subshift of finite

type Z ⊂ AG and prove a formula for the f -invariant in terms of counting

periodic points which lie in Z. This second formula is crucial to our proof of

Theorem 1.1. It seems to be a very special fact about free groups. For example,

the analogous statement fails for the group Zd for any d ≥ 2 because of the

existence of subshifts of finite type which contain no periodic points.

2.1. The f-invariant via periodic points. In this section let A be a finite

set. First we approximate the action of G on itself by an action of G on a finite

set. So let σ : G → sym(n) be a homomorphism into the symmetric group

on [n] = {1, . . . , n}.
Next we consider observables x : [n] → A whose local statistics approximate μ.

To make this precise, define the pullback name of x at vertex v ∈ [n] by

xσv ∈ AG, xσv (g) = x(σ(g)−1v).

We observe that the map v �→ xσv is equivariant in the sense that

xσσ(g)v = gxσv

for any g ∈ G. In particular, xσv is a periodic point of AG (that is, it has a finite

G-orbit).

The empirical distribution of x is defined by

P σx =
1

n

∑
v∈[n]

δxσ
v
∈ Prob(AG)

where δxσ
v
is the Dirac probability measure concentrated on xσv and Prob(AG)

is the space of all Borel probability measures on AG.

Informally, we consider x to be a good approximation to μ if P σx is close

to μ. To make this notion precise, recall that the weak* topology on Prob(AG)

is the weakest topology with the following property: for every continuous func-

tion f : AG → R, the map

μ �→
∫
f dμ

is a continuous function on Prob(AG) with respect to the weak* topology. Thus

a sequence (μi)i weak* converges to a measure μ∞ if and only if: for every

continuous f : AG → R,
∫
f dμi →

∫
f dμ∞ as i→ ∞. By the Banach–Alaoglu

Theorem, Prob(AG) is compact.
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Now let O ⊂ Prob(AG) be a weak* open neighborhood of μ and define

Ω(σ,O) := {x ∈ An : P σx ∈ O}.

Then Ω(σ,O) is the set of all observables on [n] whose empirical distributions

are in O.

For each n ∈ N, let un = Unif(Hom(G, sym(n))) be the uniform probability

measure on the set of homomorphisms from G to sym(n). The main result of

[Bow10a] is the formula

(3) fμ(A
G) = inf

O�μ
lim sup
n→∞

1

n
logEσ∼un |Ω(σ,O)|.

The goal of the next section is to make a small but crucial change to the formula

above in the special case in which the support of μ is contained in a subshift of

finite type Z ⊂ AG.

2.2. Subshifts of finite type.

Definition 1 (Subshifts of finite type): As above, let G be a countable group, A

a finite set and G�AG the left shift action:

(gx)(f) = x(g−1f) for g, f ∈ G, x ∈ AG.

A subshift Z ⊂ AG is a closed G-invariant subspace. It has finite type if there

exists a finite collection W of maps w : Dw → A such that

(1) Dw ⊂ G is finite for all w ∈ W;

(2) Z is the set of all x ∈ AG satisfying: for all g ∈ G and w ∈ W, the

restriction of gx to Dw is not equal to w.

So W is a set of forbidden patterns and Z is the subshift of finite type (SFT)

determined by W.

If G = 〈s1, . . . , sr〉 and for each w ∈ W there exists an i ∈ {1, . . . , r} such

that the domain Dw = {e, si}, then we say Z is a nearest neighbor subshift

of finite type. In other words, a nearest-neighbor subshift forbids only certain

edge patterns.

Definition 2: Let Z ⊂ AG be a subshift of finite type. With notation as in the

previous section, let ΩZ(σ,O) be the set of all x ∈ Ω(σ,O) such that P σx (Z) = 1.

This occurs precisely when xσv ∈ Z for all v ∈ [n].



818 L. BOWEN AND Y. F. LIN Isr. J. Math.

Theorem 2.1: Suppose A is finite and Z ⊂ AG is a subshift of finite type.

Let μ ∈ Prob(AG) be a G-invariant Borel probability measure concentrated

on Z (meaning μ(Z) = 1). Let

fZμ (A
G) = inf

O�μ
lim sup
n→∞

1

n
logEσ∼un |ΩZ(σ,O)|.

Then

fμ(A
G) = fZμ (A

G).

Because ΩZ(σ,O) ⊂ Ω(σ,O), it is immediate that fZμ (A
G) ≤ fμ(A

G). So it

suffices to prove the opposite inequality.

Remark 2: Suppose G is a countable group and Z ⊂ AG is a subshift of fi-

nite type which has no periodic points (i.e., no points with finite G-orbit)

but does admit an invariant probability measure. In this case, no analog of

Theorem 2.1 can hold. The first proof that Z2 admits such an SFT is due

to Berger [Ber66]. For context, a subshift of finite type that has no periodic

points is called weakly aperiodic. An SFT on which the group acts freely is

called strongly aperiodic. There is an interesting line of research whose goal

is to determine which groups admit weakly or strongly aperiodic SFTs (e.g.,

[AK13, CGS17, Coh17, Coh20]).

The proof of Theorem 2.1 will take up the rest of this section. We assume

from now on that G = 〈s1, . . . , sr〉 is a free group of rank r and S = {s1, . . . , sr}.

2.2.1. Proof sketch. In the special case in which μ is a Markov chain which as-

signs rational numbers to cylinder sets, the proof follows quickly from [Bow10c,

Bow10a]. We obtain the full theorem by approximating an arbitrary invari-

ant measure by Markov chains. These approximating Markov chains are typ-

ically not nearest-neighbor and so we will have to work with general observ-

ables φ : AG → C with respect to which a measure might be Markov.

We begin by introducing restricted versions of the f -invariant and the func-

tion F . Then we discuss Markov chains and establish a number of lemmas

before finishing the proof.

2.2.2. Restricted versions of f and F . We will make the following assumptions

for the rest of this section. As above, we let μ be a G-invariant Borel probability

measure on AG. Also let C be a finite set and let φ : AG → C be continuous. We
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do not require that φ is generating. This induces a map Φ : AG → CG by

Φ(x)(g) = φ(g−1x);

Φ is the unique G-equivariant map from AG to CG such that Φ(x)(e) = φ(x).

Let Y ⊂ CG be a nearest-neighbor SFT containing the support of Φ∗μ.
By (3),

fμ(φ) = inf
O�Φ∗μ

lim sup
n→∞

1

n
logEσ∼un |Ω(σ,O)|.

We define fYμ (φ) by replacing Ω(σ,O) with ΩY (σ,O):

fYμ (φ) = inf
O�Φ∗μ

lim sup
n→∞

1

n
logEσ∼un |ΩY (σ,O)|.

For example, if φ is generating, then to prove Theorem 2.1, it suffices to

show fμ(φ) = fYμ (φ) with Y = Φ(Z), along with the claim below.

The claim below verifies that the restricted formula for the f -invariant is still

invariant for example under recoding maps.

Claim 1: Suppose A, G, φ, C, Φ are as above. Suppose Z ⊂ AG is a sub-

shift, μ(Z) = 1, Φ(Z) = Y , and Φ is a homeomorphism when restricted to Z.

Let ψ : AG → A be the canonical observable (i.e., ψ(x) = xe). Then

fZμ (ψ) = fYμ (φ).

Proof. Fix σ : G → sym(n) a homomorphism, and x : [n] → A an observable.

For every v ∈ [n] recall the pullback name xσv ∈ AG. Define y : [n] → C by

y(v) = Φ(xσv )e.

We claim that yσv = Φ(xσv ).

First notice that since σ is a homomorphism, for any g ∈ G,

gxσv = xσσ(g)v.

This is because for h ∈ G, (gxσv )h = (xσv )g−1h = x(σ(h−1g)v) while also

(xσσ(g)v)h = x(σ(h−1)(σ(g)v)) = x(σ(h−1g)v). Now

(yσv )h = y(σ(h−1)v) = Φ(xσσ(h−1)v)e

= hΦ(xσσ(h−1)v)h = Φ(hxσσ(h−1)v)h

= Φ(xσv )h.

Let η : An → Cn be the map described above (such that η(x) = y); η is injective

on ΩZ(σ,O) for each n and σ because Φ is injective on Z.
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Now since φ is assumed continuous, so is Φ (by the Curtis–Lyndon–Hedlund

theorem). This implies Φ∗:Prob(AG)→Prob(CG) is also continuous. Let ν=Φ∗μ.
Then for any weak* neighborhood U of ν there exists a weak* neighborhood O

of ν such that Φ∗(O) ⊂ U.

We will show that for any homomorphism σ : G→ sym(n),

#ΩZ(σ,O) ≤ #ΩY (σ,U).

Let x ∈ ΩZ(σ,O). This means that P σx ∈ O and P σx (Z) = 1. We claim that

P ση(x) ∈ U and P ση(x)(Y ) = 1. By definition,

P ση(x) = (1/n)
∑
v∈[n]

δΦ(xσ
v )

= Φ∗P σx ,

so by continuity of Φ∗, P ση(x) ∈ U. Furthermore each Φ(xσv ) ∈ Y by assumption,

so P ση(x)(Y ) = 1.

Now the above claim together with the injectivity of η shows that

#ΩZ(σ,O) ≤ #ΩY (σ,U), which in turn shows that fZμ (ψ) ≤ fYμ (φ). The proof

can be repeated for Φ−1 to show the opposite inequality.

We need to connect the above definitions with the definition of the f -invariant

from §1.6. For this, let σ : G→ sym(n) be a homomorphism and suppose ψ ∈ Cn

is an observable on [n]. For H ⊂ G finite, let ψσ,H = ∨h∈Hψ ◦ σ(h−1)

where ψ1 ∨ ψ2(v) = (ψ1(v), ψ2(v)). So ψσ,H(v) can be thought of as giving

an H-configuration around v. Unlike the definitions (in Sections 1.2 and 1.6)

for the infinite space this definition depends on a choice of sofic approxima-

tion σ ∈ Hom(G, sym(n)). Notice that both φH and ψσ,H take values in CH . So

we can define dHσ (φ, ψ) to be the �1-distance between φH∗ (μ) and ψσ,H∗ Unifn:

dHσ (φ, ψ) =
∑
a∈CH

|μ({x ∈ AG : φH(x) = a})−Unifn({i ∈ [n] : ψσ,H(i) = a})|.

Here, Unifn is the uniform probability measure on [n]. Note that H1 ⊂ H2

implies

dH1
σ (φ, ψ) ≤ dH2

σ (φ, ψ).

Let

d∗σ(φ, ψ) =
r∑
i=1

d{e,si}σ (φ, ψ).
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By Theorem 1.4 in [Bow10a],

Fμ(φ) = inf
ε>0

lim sup
n→∞

1

n
logEσ∼un |{ψ ∈ Cn : d∗σ(φ, ψ) ≤ ε}|.

Define

F Yμ (φ) := inf
ε>0

lim sup
n→∞

1

n
logEσ∼un |{ψ ∈ Cn : d∗σ(φ, ψ) ≤ ε, P σψ (Y ) = 1}|.

Also note that fY can equivalently be expressed as

fYμ (φ) = inf
K⊂G

inf
ε>0

lim sup
n

1

n
logEσ∼un |{ψ ∈ Cn : dKσ (φ, ψ) ≤ ε, P σψ (Y ) = 1}|

where the infimum is over finite K ⊂ G.

2.2.3. Markov chains. We now introduce Markov processes in the same way as

defined in [Bow10c].

Let (X,μ, T,G) be a pmp action. Let φ : X → C be an observable. ForH ⊂ G

finite recall that φH =
∨
h∈H φ ◦ T h−1

. We also identify φ with the partition

and σ-algebra it induces on X . Note that an element of the partition φH is of

the form ∩h∈HT hAh, where each Ah ∈ φ.

Let the left Cayley graph ΓL with respect to (G,S) have vertex set G and an

edge between g and sg for each g ∈ G and s ∈ S. For g1, g2 ∈ G let Past(g1; g2)

be the set of all f ∈ G such that every path from f to g1 passes through g2.

If F is a σ-algebra and A ⊂ X , then we write μ(A|F) : X → R for the

conditional expectation of the characteristic function 1A conditioned on F. This

is well-defined mod μ.

Definition 3: Let φ be a measurable partition of X . Then (X,μ, T, φ) is a

Markov process if for every g ∈ G, s ∈ S ∪ S−1, A ∈ φ,

μ(T (sg)−1

A|φPast(sg;g)) = μ(T (sg)−1

A|φg) = μ(T s
−1

A|φ).
The second equality above holds for all G-invariant measures μ.

We say that a Markov process (X,μ, T, φ) has rational probabilities if for

every a, b ∈ C, s ∈ S,

μ(φ−1(a) ∩ sφ−1(b)) ∈ Q.

For the remainder of the section we will specialize to Markov processes of sym-

bolic dynamical systems, specifically X = AG.
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Lemma 2.2 ([Bow10c, Theorem 6.1]): Let (AG, μ, φ) be a Markov process. Then

Fμ(φ) = fμ(φ).

Lemma 2.3: Let (AG, μ, φ) be a Markov process with rational probabilities.

Choose φ, C, Y as in §2.2.2. Then Fμ(φ) = F Yμ (φ) = fYμ (φ).

We shall assume the above lemma and prove it later. Let Bn = B(e, n) be

the ball of radius n around the identity. We also need the following lemma.

Lemma 2.4: (1) Let (AG, μ, φ) be a Markov process such that Φ is a home-

omorphism and Φ∗μ(Y ) = 1. Then there exists a sequence μn → μ in

weak* such that each (AG, μn, φ) is Markov with rational probabilities

and Φ∗μn(Y ) = 1.

(2) Let (AG, μ) be a symbolic dynamical system, Z ⊂ AG a subshift of finite

type with μ(Z) = 1 and let φ : AG → A be the canonical observable (i.e.,

φ(x) = xe). Then there exists a sequence {μn}∞n=1 of invariant Borel

probability measures on AG such that μn → μ in weak* as n → ∞,

(AG, μn, φ
Bn) is Markov, μn(Z) = 1, and Fμn(φ

Bn) = Fμ(φ
Bn) for

all n.

We will assume (1) of the above lemma and prove it later. Item (2) of the

lemma above is proven in Section 9 of [Bow10c].

We will also make use of the claim below.

Claim 2: The map μ �→ fYμ (φ) is upper-semicontinuous in the following sense.

If {μn}∞n=1 is a sequence of invariant Borel probability measures weak*-conver-

ging to μ andΦ∗μn is supported on Y for all n, then fYμ (φ)≥ lim supn→∞ fYμn
(φ).

Proof. Let ν = Φ∗μ and νn = Φ∗μn. Fix a weak* neighborhood O of ν. For

all large enough n, νn ∈ O. For each such n, for all small enough weak*

neighborhoods On of νn, On ⊂ O so that ΩY (σ,On) ⊂ ΩY (σ,O). It follows that

lim sup
m→∞

1

m
logEσ∼um |ΩY (σ,O)| ≥ lim sup

n→∞
fYμn

(AG, φ).

Take the infimum over O to obtain fYμ (φ) ≥ lim supn→∞ fYμn
(φ).

Proof of Theorem 2.1. Let φ : AG → A be the canonical observable φ(x) = xe.

By item (2) of Lemma 2.4, there exists a sequence {μn}∞n=1 of invariant Borel

probability measures on AG such that μn → μ in weak* as n→ ∞, (AG, μn, φ
Bn)

is Markov, μn(Z) = 1, and Fμn(φ
Bn) = Fμ(φ

Bn) for all n.
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By item (1) of Lemma 2.4 applied to each μn, there exist μ′
n such

that μ′
n → μ (weak*) as n → ∞, (AG, μ′

n, φ
Bn) is Markov with rational proba-

bilities, μ′
n(Z) = 1, and Fμ′

n
(φBn) ≥ Fμ(φ

Bn)− o(n).

We claim

fZμ′
n
(φ) = fYμ′

n
(φBn) = FYμ′

n
(φBn) = Fμ′

n
(φBn) ≥ Fμ(φ

Bn)− o(n)

where Y = Φn(Z) and Φn : AG → (AB(e,n))G is the equivariant map deter-

mined by φBn (so Φn(x)(g) = φBn(g−1x)). The first equality holds by Claim 1

and the second and third equalities follow from Lemma 2.3 (note that Y is a

nearest-neighbor subshift of finite type when n is large enough). By applying

lim supn→∞ to all parts of the equality and using the upper semi-continuity

from Claim 2, we obtain fZμ (φ) ≥ fμ(φ) as desired.

Proof of Lemma 2.3. First we show that Fμ(φ)=F
Y
μ (φ). Because Fμ(φ)≥FYμ (φ)

is immediate from the definitions, it suffices to show Fμ(φ) ≤ F Yμ (φ). Let

Gμ(φ) = lim sup
n→∞

1

n
logE(|{ψ ∈ Cn : d∗σ(φ, ψ) = 0}|).

Now F Yμ (φ) ≥ Gμ(φ) because for any homomorphism σ : G → sym(n), all

ψ ∈ Cn such that d∗σ(φ, ψ) = 0 automatically satisfy P σψ (Y ) = 1 whenever Y is

a nearest-neighbor SFT. By Lemma 2.2 in [Bow10a], Gμ(φ) ≥ Fμ(φ), so

Fμ(φ) = F Yμ (φ).

Next we show that F Yμ (φ) = fYμ (φ). Given a finite subset K ⊂ G, let

gμ(φ,K) = lim sup
n→∞

1

n
logE(|{ψ ∈ Cn : dKσ (φ, ψ) = 0}|).

Let Bm = B(e,m) be the ball of radius m around the identity. We will use the

claim below:

Claim 3: For every m, gμ(φ,Bm) ≥ Gμ(φ
Bm).

Proof. Fix σ. By taking limits, it suffices to show for all n large enough

|{ψ ∈ Cn : dBm
σ (φ, ψ) = 0}| ≥ |{η ∈ (CBm)n : d∗σ(φ

Bm , η) = 0}|.
It suffices to find an injective map from

{η ∈ (CBm)n : d∗σ(φ
Bm , η) = 0}

to

{ψ ∈ Cn : dBm
σ (φ, ψ) = 0}.
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Let η ∈ (CBm)n be such that d∗σ(φ
Bm , η) = 0. Define ψ ∈ Cn by

ψ(v) = η(v)(e).

Note that dBm
σ (φ, ψ) = 0. We claim that the map η �→ ψ is injective.

Observe that d∗σ(φBm , η) = 0 implies that for any s∈S, g∈B(e,m) ∩B(s,m),

η(v)(g) = η(σ(s−1)v)(s−1g).

In particular, let f ∈ B(e,m) and write f = s1s2 · · · sl. Then
η(v)(f) = η(v)(s1 · · · sl) = η(σ(s−1

1 )v)(s2 · · · sl)
...

= η(σ(s−1
l · · · s−1

1 )v)(e) = ψ(σ(f−1)v).

This shows η can be recovered from ψ. So η �→ ψ is injective.

Let

fYμ (φ,K) = inf
ε>0

lim sup
n→∞

1

n
logE(|{ψ ∈ Cn : dKσ (φ, ψ) ≤ ε, P σψ (Y ) = 1}|).

By an argument similar to why FYμ (φ) ≥ Gμ(φ), we obtain

fYμ (φ,K) ≥ gμ(φ,K)

for any finite K ⊂ G containing S ∪ S−1 ∪ {e}. Thus we have for every m ∈ N,

fYμ (φ,Bm) ≥ gμ(φ,Bm) ≥ Gμ(φ
Bm) ≥ Fμ(φ

Bm)

= fμ(φ
Bm) = fμ(φ)

= Fμ(φ) = F Yμ (φ)

noting that (AG, μ, φBm) is also Markov by Lemma 6.3 in [Bow10c]. The result

follows by applying infm to all parts of the above (and fYμ (φ) ≤ FYμ (φ) by

definition).

Proof of Lemma 2.4(1). We need an analogue of Lemma 2.3 from [Bow10a].

To motivate it, suppose that ν is an invariant probability measure on AG. For

a, b ∈ A and 1 ≤ i ≤ r, define

Wν(a) = ν({z ∈ AG : z(e) = a}),
Wν(a, b; i) = ν({z ∈ AG : z(e) = a and z(si) = b}).

Then Wν is a weight. Formally, a weight is a function

W : A � (A× A× [r]) → [0, 1]
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satisfying the conditions below:

(1) (Balanced) For every i, and every a ∈ A,

W (a) =
∑
b∈A

W (a, b; i) =
∑
b∈A

W (b, a; i).

(2) (Normalized)
∑

aW (a) = 1.

Given two weights W1,W2 define

d(W1,W2) =
∑

(a,b;i)∈A×A×[r]

|W1(a, b; i)−W2(a, b; i)|.

A weight W is a Y -weight if for every (a, b; i) ∈ A× A× [r], if there does not

exist x ∈ X with Φ(x) ∈ Y , x(e) = a and x(si) = b then W (a, b; i) = 0. If the

measure ν is supported on Φ−1(Y ) then Wν is a Y -weight.

A Y -weight as defined above induces an invariant transition system as defined

in Section 7 in [Bow10c], and there it is shown that an invariant transition

system induces a Markov process. In particular, for every Y -weight W , there

is a unique Markov measure ν such that Wν =W .

The equations defining Y -weights are linear equations with rational coeffi-

cients. Therefore, the subset of rational-valued Y -weights is dense (with re-

spect to the distance function defined above) in the space of all Y -weights. It

is straightforward to check that convergence of a sequence of weights implies

convergence in weak* of the associated Markov measures and that a rational-

valued Y -weight corresponds to a Markov measure with rational probabilities.

So this implies the lemma.

3. Standard hypotheses and notation

Definition 4: The standard hypotheses for this paper are the following: (X,μ)

is a standard probability space, G = 〈S〉 is a free group with free generating

set S = {s1, . . . sr}, T = (T g)g∈G, U = (Ug)g∈G are essentially free pmp

actions of G on (X,μ) with the same orbits. Define cocycles α : G ×X → G,

β : G×X → G by

Uα(g,x)x = T gx, T β(g,x)x = Ugx.

Note that the above definition gives

(4) α(β(g, x), x) = g = β(α(g, x), x).
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We assume there exist a finite set B and a measurable map γ : X → B such

that γ is both T -generating and U -generating. We do not make any quantitive

orbit-equivalence assumptions until the end of the paper.

4. The space of orbit-change maps

For x ∈ X , define the orbit-change maps α̂x : G→ G and β̂x : G→ G by

α̂x(g) = α(g−1, x)−1, β̂x(g) = β(g−1, x)−1.

Then α̂x, β̂x ∈ syme(G) where syme(G) is the set of bijections φ : G→ G such

that φ(e) = e. These maps satisfy the multiplication rules

α̂T gx(gh) = α(g, x)α̂x(h), β̂Ugx(gh) = β(g, x)β̂x(h).

Also note that the above definitions and (4) give

(5) α̂−1
x = β̂x.

Note that syme(G) is a group under composition. Moreover, it is a Polish

group with respect to the pointwise convergence topology. In fact, if {gi}∞i=1 is

an enumeration of G then

d(φ, ψ) =
∞∑
i=1

2−i(1φ(gi)=ψ(gi) + 1φ−1(gi)=ψ−1(gi))

is a complete separable metric inducing the pointwise convergence topology.

We would like to say that the maps x �→ α̂x and x �→ β̂x are equivariant. So

we define actions Θ,� of G on syme(G) by

(Θhφ)(g) = φ(h−1)−1φ(h−1g),

(�hφ)(g) = hφ(φ−1(h−1)g) = (Θφ
−1(h−1)−1

φ)(g).

These two actions of G have the same orbits.

Because of the multiplication rules, the map x �→ α̂x is (T,Θ)-equivariant in

the sense that

(6) α̂T gx = Θgα̂x.

It is also (U,�)-equivariant:

(7) α̂Ugx = �gα̂x.
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For example, (7) follows from (6) and the observation (which follows from (5))

that

(8) α̂−1
x (h−1)−1 = β(h, x).

Similarly, the map x �→ β̂x is (T,�)- and (U,Θ)-equivariant:

β̂T gx = �gβ̂x, β̂Ugx = Θgβ̂x.

These properties follow from the cocycle identities (1), (2).

4.1. A partially symbolic model. Recall that γ : X → B is generating

for the U and T actions. Recall symbolic dynamics from Section 2: BG is the

space of all functions y : G → B with the topology of pointwise convergence

on finite sets, for x ∈ BG we will use either function notation or subscripts

(so y(g) = yg) whichever is most convenient, and G acts on BG by the left shift

action (gy)(f) = y(g−1f).

Define Γ : X → BG by

Γ(x)g = γ(T g
−1

x).

This map is equivariant in the sense that Γ(T hx) = hΓ(x) for all h ∈ G, x ∈ X .

Because γ is T -generating, this map is also 1-1 (modulo null sets).

Define Γ̃ : X → syme(G) × BG by

Γ̃(x) = (α̂x,Γ(x)).

Also define actions Θ̃, �̃ of G on syme(G) × BG by

(9) Θ̃g(φ, y) = (Θgφ, gy), �̃g(φ, y) = (�gφ, φ−1(g−1)−1y).

By (8), (6), and (7), Γ̃ is doubly-equivariant in the sense that

Γ̃(T gx) = Θ̃gΓ̃(x), Γ̃(Ugx) = �̃gΓ̃(x).

Because γ is both T and U generating, Γ̃ is injective (modulo null sets). So to

prove Theorem 1.1, it suffices to prove f
˜Γ∗μ(Θ̃) = f

˜Γ∗μ(�̃).

5. A subshift of finite type for bounded orbit-equivalences

The goal of this section is to show that there is a subshift of finite type which

encodes bounded orbit-change maps. To begin, let A = GS∪S
−1

where

S = {s1, . . . , sr} is the generating set. If x ∈ AG, g ∈ G and s ∈ S ∪ S−1

then we write xg(s) = x(g)(s) ∈ G to simplify notation.
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Define E : syme(G) → AG by

E(φ)h(s) = Θh
−1

φ(s) = φ(h)−1φ(hs).

This map is an embedding in the sense that it is equivariant, continuous and

injective. The equivariance means that

(10) E(Θhφ) = hE(φ)

for h ∈ G, φ ∈ syme(G). In fact E is determined by this equivariance condition

and the formula E(φ)e(s) = φ(s).

If x = E(φ) and s1, . . . , sn ∈ S ∪ S−1 then

(11) φ(s1 · · · sn) = xe(s1)xs1(s2)xs1s2(s3) · · ·xs1···sn−1(sn).

This is obtained via induction on n. This verifies that E is injective. We have

the following more general fact:

Lemma 5.1: If φ ∈ syme(G), x = E(φ), g ∈ G and s1, . . . , sn ∈ S ∪ S−1 then

φ(gs1 · · · sn) = φ(g)xg(s1)xgs1 (s2) · · ·xgs1···sn−1(sn).

Moreover, for any t ∈ G and t1, . . . , tm ∈ S ∪ S−1, the equation

φ−1(gt) = φ−1(g)t1 · · · tm
is true if and only if

t = xφ−1(g)(t1) · · ·xφ−1(g)t1···tm−1
(tm).

Moreover, such a sequence is unique if we require m = |t1 · · · tm|G.
Proof.The first statement follows from (11) by writing g∈G as a word in S∪S−1.

To prove the second statement, suppose φ−1(gt) = φ−1(g)t1 · · · tm. Apply φ

to both sides, then apply the first statement to obtain

gt = φ(φ−1(g)t1 · · · tm)

= gxφ−1(g)(t1)xφ−1(g)t1(t2) · · ·xφ−1(g)t1···tm−1
(tm).

After cancelling g from both sides, we obtain

t = xφ−1(g)(t1)xφ−1(g)t1(t2) · · ·xφ−1(g)t1···tm−1
(tm)

as required. The converse is obtained by following the same steps in reverse.

Moreover, t1, . . . , tm ∈ S ∪ S−1 are uniquely determined by two conditions:

m = |t1 · · · tm|
and

t1 · · · tm = φ−1(g)−1φ−1(gt).
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For ρ ∈ N, let Aρ = B(e, ρ)S∪S
−1

which we view as a subset of A. Be-

cause Aρ is finite, AGρ is compact. Also, let symρ(G) ⊂ syme(G) be the subset

of φ ∈ syme(G) such that

|(Θg−1

φ)(s)|G = |φ(g)−1φ(gs)|G ≤ ρ

and

|(Θg−1

φ−1)(s)|G = |φ−1(g)−1φ−1(gs)|G ≤ ρ

for all s ∈ S ∪S−1 and g ∈ G. In other words, if x = E(φ) and y = E(φ−1) then

|xg(s)|G ≤ ρ and |yg(s)|G ≤ ρ.

In particular, if φ ∈ symρ(G), then E(φ) ∈ AGρ .

The main theorem of this section is:

Theorem 5.2: For ρ ∈ N, E(symρ(G)) ⊂ AGρ is a subshift of finite type.

Proof. Let F = B(e, ρ2 + 1) ⊂ G be the radius ρ2 + 1 ball. Let V ⊂ AFρ be the

set of all maps z : F → Aρ such that:

(Axiom 1) ze(s)zs(s
−1) = e for all s ∈ S ∪ S−1.

(Axiom 2) For every h ∈ G with |h|G ≤ ρ there exists a unique sequence

s1, . . . , sn ∈ S ∪ S−1 with |s1 · · · sn|G = n ≤ ρ2 + 1 such that

h = ze(s1)zs1(s2)zs1s2(s3) · · · zs1···sn−1(sn).

Moreover, n ≤ ρ|h|G.
Let W = AFρ \ V be the complement of V. Let Z be the subshift of finite

type determined by W. This means Z is the set of all x ∈ AG such that for

every g ∈ G, gx restricted to F is in V. We will show Z = E(symρ(G)).

Let x ∈ Z. We claim that

(12) xg(s)xgs(s
−1) = e

for all s ∈ S ∪ S−1 and g ∈ G. By Axiom 1 applied to z = g−1x,

(g−1x)e(s)(g
−1x)s(s

−1) = e.

Equation (12) follows from this and the fact that

(g−1x)e(s) = xg(s), (g−1x)s(s
−1) = xgs(s

−1)

by definition of the G-action on AG.
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Claim 1: Z ⊃ E(symρ(G)).

Proof of Claim 1. Let φ ∈ symρ(G) and suppose x = E(φ) ∈ AGρ . We will show

that x ∈ Z. If s ∈ S ∪ S−1 then

xe(s)xs(s
−1) = φ(e)−1φ(s)φ(s)−1φ(s−1s) = e.

This verifies Axiom 1.

Now let h ∈ G with |h|G ≤ ρ. Let h = h1 · · ·hk for hi ∈ S∪S−1 and |h|G = k.

Then

φ−1(h) =(φ−1(e)−1φ−1(h1))

× (φ−1(h1)
−1φ−1(h1h2)) · · · (φ−1(h1 · · ·hk−1)

−1φ−1(h1h2 · · ·hk)).
Since each term in parenthesis has word length bounded by ρ, this shows that

|φ−1(h)|G ≤ |h|Gρ ≤ ρ2.

By Lemma 5.1 applied to g = e, t = h,

φ−1(h) = s1 · · · sn
where s1, . . . , sn ∈ S ∪ S−1 is uniquely determined by |s1 · · · sn|G = n and

h = xe(s1) · · ·xs1···sn−1(sn).

This verifies Axiom 2. Therefore, x ∈ Z. Since φ is arbitrary, this proves that

Z ⊃ E(symρ(G)).

Lemma 5.3: Z ⊂ E(symρ(G)).

Proof. Fix x ∈ Z. We will define some map φ : G→ G and show

(1) φ ∈ symρ(G).

(2) E(φ) = x.

Define φ : G → G as follows. First let φ(e) = e. Assuming φ(g) has been

defined for some g ∈ G, define φ(gs) (for s ∈ S ∪ S−1 with |gs| = |g|+ 1) by

(13) φ(gs) = φ(g)xg(s).

This uniquely defines φ. It will be convenient to know that (13) holds even

without the assumption |gs| = |g| + 1. So suppose |gs| = |g| − 1. By (13)

applied to gs and s−1 (note that |gss−1| = |g| = |gs|+ 1),

(14) φ(g) = φ(gss−1) = φ(gs)xgs(s
−1).
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By Axiom 1 applied to z = (gs)−1x and s−1,

e = ze(s
−1)zs−1(s) = xgs(s

−1)xg(s).

Thus xgs(s
−1) = xg(s)

−1. Substitute this into (14) to obtain

φ(gs) = φ(g)xg(s)

as claimed. Thus assuming φ ∈ symρ(G) we can calculate that for any h ∈ G,

s ∈ S ∪ S−1,

E(φ)h(s) = φ(h)−1φ(hs) = xh(s),

so

E(φ) = x.

So it remains to show that φ ∈ symρ(G).

Also, by induction, (11) holds for the φ that we have constructed.

Our next goal is to prove that φ is surjective and injective, hence in syme(G),

and then we will show φ ∈ symρ(G) and therefore E(symρ(G)) = Z, which

finishes the proof.

Note that φ(s) = xe(s) ∈ B(e, ρ) for s ∈ S ∪ S−1. So

|φ(s)|G ≤ ρ for all s ∈ S ∪ S−1.

Moreover, φ(g)−1φ(gs) = xg(s). So

|φ(g)−1φ(gs)|G ≤ ρ for all g.

Claim 2: φ is surjective.

Proof of Claim 2. By induction, it suffices to prove the following statement: for

every g ∈ G and t ∈ S ∪ S−1, if g is in the image of φ then gt is also in the

image of φ. So suppose φ(h) = g for some h. We apply Axiom 2 to h−1x to

obtain the existence of s1, . . . , sn ∈ S ∪ S−1 with n ≤ ρ such that

t = (h−1x)e(s1)(h
−1x)s1 (s2)(h

−1x)s1s2(s3) · · · (h−1x)s1···sn−1(sn).

Using the action of G of AG, this implies

t = xh(s1)xhs1(s2)xhs1s2(s3) · · ·xhs1···sn−1(sn).

By (11),

φ(hs1 · · · sn) = φ(h)xh(s1)xhs1 (s2)xhs1s2(s3) · · ·xhs1···sn−1(sn) = gt.

This proves that φ is surjective.
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We will now show φ is injective by demonstrating that it has an inverse ψ.

Define ψ : G→ G by

(1) ψ(e) = e,

(2) if ψ(g) has been defined, t ∈ S ∪ S−1 and |gt|G = |g|G + 1, then define

(15) ψ(gt) = ψ(g)s1 · · · sn
where s1, . . . , sn ∈ S ∪ S−1 is the unique sequence satisfying

n = |s1 · · · sn| ≤ ρ

and

t = (ψ(g)−1x)e(s1) · · · (ψ(g)−1x)s1···sn−1(sn) = xψ(g)(s1) · · ·xψ(g)s1···sn−1
(sn).

The existence and uniqueness of this sequence is guaranteed by Axiom 2

of the definition of Z.

Claim 3: Equation (15) holds for all t ∈ S ∪ S−1 (even if |gt|G �= |g|G + 1).

Proof of Claim 3. To see this, suppose |gt| = |g| − 1 and let h = gt. Then

|g| = |gt|+ 1 or equivalently |ht−1| = |h|+ 1 so by definition

ψ(g) = ψ(ht−1) = ψ(h)t1 · · · tn,
where t1, . . . , tn ∈ S ∪ S−1 is the unique sequence satisfying

(16) t−1 = xψ(h)(t1) · · ·xψ(h)t1···tn−1
(tn)

and |t1 · · · tn|G = n ≤ ρ. Thus

(17) ψ(gt) = ψ(h) = ψ(g)t−1
n · · · t−1

1 .

By (16), (12) and (17)

t = xψ(h)t1···tn−1
(tn)

−1 · · ·xψ(h)(t1)−1

= xψ(h)t1···tn(t
−1
n ) · · ·xψ(h)t1(t−1

1 )

= xψ(g)(t
−1
n ) · · ·xψ(g)t−1

n ···t−1
2
(t−1

1 ).

This proves the claim with (s1, . . . , sn) = (t−1
n , . . . , t−1

1 ).

Let g ∈ G and t ∈ G with |t|G ≤ ρ. By Claim 3 and induction on |t|G, we
obtain

(18) ψ(gt) = ψ(g)s1 · · · sn
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where s1, . . . , sn ∈ S∪S−1 is the unique sequence satisfying n = |s1 · · · sn| ≤ ρ2

and

t = (ψ(g)−1x)e(s1) · · · (ψ(g)−1x)s1···sn−1(sn) = xψ(g)(s1) · · ·xψ(g)s1···sn−1
(sn).

Claim 4: φ is injective.

Proof of Claim 4. It suffices to prove ψ(φ(g)) = g for all g ∈ G. This is true

for g = e. By induction, it suffices to assume that ψ(φ(g)) = g and prove that

ψ(φ(gs)) = gs for s ∈ S ∪ S−1.

Let

t = xg(s) = φ(g)−1φ(gs)

where the second equality holds by (11) or (13). Since x ∈ AGρ , this implies

|t|G ≤ ρ. By (18), we have

ψ(φ(gs)) = ψ(φ(g)t) = ψ(φ(g))s1 · · · sn = gs1 · · · sn
where s1, . . . , sn ∈ S ∪ S−1 is the unique sequence satisfying

t = xg(s1) · · ·xgs1···sn−1(sn)

and

|s1 · · · sn| = n ≤ ρ2.

But we also have t = xg(s) so by uniqueness, s = s1 · · · sn and n = 1. So

ψ(φ(gs)) = ψ(φ(g)t) = gs1 · · · sn = gs,

as required.

Recall from the definition of ψ that for any s ∈ S ∪ S−1, g ∈ G,

ψ(gs) = ψ(g)s1 · · · sn
where s1, . . . , sn ∈ S ∪ S−1 is the unique sequence satisfying n = |s1 · · · sn| ≤ ρ

and

s = (ψ(g)−1x)e(s1) · · · (ψ(g)−1x)s1···sn−1(sn) = xψ(g)(s1) · · ·xψ(g)s1···sn−1
(sn).

In particular, since ψ = φ−1 this shows that |φ−1(s)|G ≤ ρ for all s ∈ S ∪ S−1.

Similarly, |φ−1(g)−1φ−1(gs)|G ≤ ρ for any g ∈ G. Thus φ ∈ symρ(G).

Because E(φ)=x and x∈Z is arbitrary, we must have Z⊂E(symρ(G)).

Since we have already shown the opposite inclusion, the two sets are equal.

This proves the theorem.
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5.1. Rearranging periodic orbits. Define F : syme(G) → AG by

F(φ)(h)(s) = �h
−1

φ(s) = h−1φ(φ−1(h)s).

Then F is an embedding and satisfies the equivariance condition

(19) F(�hφ) = hF(φ)

for h ∈ G, φ ∈ syme(G).

The next lemma enables us to re-arrange the orbit of a periodic point in AGρ .

If the original periodic point is approximately equidistributed with respect to an

invariant measure ζ on AGρ , then the new periodic point will be approximately

equidistributed with respect to (F ◦ E−1)∗ζ. This will help us map periodic

points which witness the entropy of (X,μ, T,G) to periodic points witnessing

the entropy of (X,μ, U,G).

Lemma 5.4: Let σ : G→ sym(n) be a homomorphism and x ∈ An. Recall the

pullback name xσv from §2. Suppose xσv ∈ Z = E(symρ(G)) for all v ∈ [n] (and

some ρ > 0). For v ∈ [n], let φv = E−1(xσv ) ∈ syme(G). Then there exists a

unique homomorphism τ : G→ sym(n) satisfying

τ(g)v = σ(φ−1
v (g−1)−1)v

for all g ∈ G and v ∈ [n]. Moreover,

F(E−1(xσv )) = xτv

for all v ∈ [n].

Proof. To prove that τ is a homomorphism, it suffices to prove that for any

t, g ∈ G, τ(t−1)τ(g−1)v = τ(t−1g−1)v. This is implied by

(20) φ−1
w (t)−1φ−1

v (g)−1 = φ−1
v (gt)−1,

where

w = σ(φ−1
v (g)−1)v.

Choose t1, . . . , tm ∈ S ∪ S−1 so that

φ−1
w (t) = t1 · · · tm.

Apply φw to both sides, then use (11), to obtain

t = φw(t1 · · · tm) = (xσw)e(t1)(x
σ
w)t1(t2) · · · (xσw)t1···tm−1(tm).
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For any 1 ≤ i ≤ m we follow the definitions of xσw, w and xσv to obtain

(xσw)t1···ti−1(ti) = x(σ(t−1
i−1 · · · t−1

1 )w)(ti) = x(σ(t−1
i−1 · · · t−1

1 φ−1
v (g)−1)v)(ti)

= (xσv )φ−1
v (g)t1···ti−1

(ti).

Combined with the previous formula, this gives

t = (xσv )φ−1
v (g)(t1)(x

σ
v )φ−1

v (g)t1
(t2) · · · (xσv )φ−1

v (g)t1···tm−1
(tm).

Now we apply Lemma 5.1 with φv in place of φ and xσv in place of x to obtain

φ−1
v (gt) = φ−1

v (g)t1 · · · tm = φ−1
v (g)φ−1

w (t).

Take inverses to obtain (20). This shows that τ is a homomorphism.

To prove the last statement, we check

F(φv)g(s) = g−1φv(φ
−1
v (g)s)

by definition of F. Since E(φv) = xσv , the definition of E gives

(xσv )φ−1
v (g)(s) = g−1φv(φ

−1
v (g)s).

So F(φv)g(s) = (xσv )φ−1
v (g)(s). By definition of xσv , τ and xτv , we have

(xσv )φ−1
v (g)(s) = x(σ(φ−1

v (g)−1)v)(s) = x(τ(g−1)v)(s) = (xτv)g(s).

Since g and s are arbitrary, F(φv) = xτv . Because φv = E−1(xσv ), this implies

the last claim.

Next we extend E and F as follows. Define Ẽ, F̃ : syme(G) × BG → AG × BG

by

Ẽ(φ, y) = (E(φ), y), F̃(φ, y) = (F(φ), y ◦ φ−1).

We claim these maps have the following equivariance properties:

(21) Ẽ ◦ Θ̃h = hẼ, F̃ ◦ �̃h = hF̃.

The first equality above is straightforward and left to the reader (use (10), (9)).

Verifying the second equality above is also straightforward but a little long. We

will use the notation y ◦h for the function which takes g ∈ G to y(hg). For any

(φ, y) ∈ AG × BG, the definition of �̃ and F̃ gives

F̃ ◦ �̃h(φ, y) = F̃(�hφ, φ−1(h−1)−1y) = F̃(�hφ, y ◦ φ−1(h−1))

= (F�hφ, y ◦ φ−1(h−1) ◦ (�hφ)−1).



836 L. BOWEN AND Y. F. LIN Isr. J. Math.

On the other hand,

hF̃(φ, y) = h(Fφ, y ◦ φ−1) = (hFφ, y ◦ φ−1 ◦ h−1).

By (19), the first coordinates are equal. So it now suffices to show that

y ◦ φ−1(h−1) ◦ (�hφ)−1 = y ◦ φ−1 ◦ h−1.

Equivalently, for all g ∈ G,

y(φ−1(h−1)(�hφ)−1(g)) = y(φ−1(h−1g)).

Removing the y’s, it suffices to show that

φ−1(h−1)(�hφ)−1(g) = φ−1(h−1g).

Multiply both sides by φ−1(h−1)−1, to obtain the equivalent

(�hφ)−1(g) = φ−1(h−1)−1φ−1(h−1g).

Now apply �hφ to both sides to obtain

g = (�hφ)(φ−1(h−1)−1φ−1(h−1g)).

This is a straightforward consequence of the definition of �hφ and so finishes

our verification of (21).

Lemma 5.5: Keep notation as in Lemma 5.4. Also let y ∈ Bn. Then

F̃(Ẽ−1(xσv , y
σ
v )) = (xτv , y

τ
v ).

Proof. Recall the notation φv = E−1(xσv ) ∈ syme(G). By definition of Ẽ,

Ẽ−1(xσv , y
σ
v ) = (φv, y

σ
v ).

By definition of F̃ and Lemma 5.4,

F̃(Ẽ−1(xσv , y
σ
v )) = (xτv , y

σ
v ◦ φ−1

v ).

So it suffices to show that yτv = yσv ◦ φ−1
v . For any g ∈ G,

yτv (g) = y(τ(g−1)v), yσv ◦ φ−1
v (g) = y(σ(φ−1

v (g)−1)v).

The definition of τ gives τ(g−1)v = σ(φ−1
v (g)−1)v. This finishes the proof.
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5.2. Proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we assume the standard hy-

potheses from §3. Because the actions T and U are boundedly orbit-equivalent,

there is a ρ ∈ N such that for μ-a.e. x ∈ X and every s ∈ S ∪ S−1, α(s, x)

and β(s, x) both have word-length ≤ ρ.

Let ν = Γ̃∗μ ∈ Prob(syme(G) × BG). Recall from §4.1 that it suffices to

show that fν(Θ̃) = fν(�̃). Recall the maps Ẽ, F̃ from §5.1. These maps are

injective (mod null sets) because E and F are injective (mod null sets).

They are also equivariant in the sense of (21). So it suffices to show

that f
Ẽ∗ν(A

G
ρ × BG) = fF̃∗ν(A

G
ρ × BG).

Let Z = E(symρ(G)) ⊂ AGρ and let Z̃ = Z × BG. Recall from §2 that Ω(σ,O)

is the set of all x ∈ Anρ × Bn such that P σx ∈ O where P σx is the empirical

measure of x (with respect to σ). Also ΩZ̃(σ,O) is the set of x ∈ Ω(σ,O) such

that P σx (Z̃) = 1.

Given an open subset O ⊂ Prob(AGρ × BG), we define the following subsets of

Hom(G, sym(n))× Anρ × Bn:

Ω(n,O) := {(σ, x, y) : (x, y) ∈ Ω(σ,O)},
ΩZ̃(n,O) := {(σ, x, y) : (x, y) ∈ ΩZ̃(σ,O)},

ΩZ̃(n) := ΩZ̃(n,Prob(A
G
ρ × BG)).

By Theorem 5.2, Z is a subshift of finite type. Therefore, Z̃ is also a subshift

of finite type. By Theorem 2.1 and the formula n!r = #Hom(G, sym(n)),

(22)

fẼ∗ν(A
G
ρ × BG) = inf

O�Ẽ∗ν
lim sup
n→∞

1

n
logEσ∼un |ΩZ̃(σ,O)|

= inf
O�Ẽ∗ν

lim sup
n→∞

1

n
log

(#ΩZ̃(n,O)

n!r

)
.

Define

Υn : ΩZ̃(n) → Hom(G, sym(n))× Anρ × Bn

by

Υn(σ, x, y) = (τ, x, y)

where τ is as defined in Lemma 5.4. To prove the theorem, we will show

that Υn maps periodic points witnessing the f -invariant for Ẽ∗ν to periodic

points witnessing the f -invariant for F̃∗ν. The first step is the following conti-

nuity property.
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Claim 1: Let U ⊂ Prob(AGρ ×BG) be an open neighborhood of F̃∗ν. Then there

exists an open neighborhood O of Ẽ∗ν such that Υn(ΩZ̃(n,O)) ⊂ Ω(n,U).

Proof of Claim 1. The map E−1 : Z → syme(G) is continuous by Lemma 5.1.

The continuity of F, F̃ and Ẽ−1 : Z̃ → syme(G)× BG follows directly from their

definitions. Therefore F̃ ◦ Ẽ−1 : Z̃ → AGρ × BG is continuous and the induced

map

(F̃ ◦ Ẽ−1)∗ : Prob(Z̃) → Prob(AGρ × BG)

is continuous. Since U ⊂ Prob(AGρ × BG) is an open neighborhood of F̃∗ν,
this implies that its pre-image in Prob(Z̃) is an open neighborhood of Ẽ∗ν.
In particular, there exists an open neighborhood O′ ⊂ Prob(Z̃) of Ẽ∗ν such

that (F̃ ◦ Ẽ−1)∗(O′) ⊂ U.

Because Z̃ is closed in AGρ × BG, the weak* topology on Prob(Z̃) is the re-

striction of the weak* topology on Prob(AGρ × BG). So there is an open neigh-

borhood O ⊂ Prob(AGρ × BG) of Ẽ∗ν such that O ∩ Prob(Z̃) ⊂ O′.
Let (σ, x, y) ∈ ΩZ̃(n,O). Since Υn(σ, x, y) = (τ, x, y), it suffices to show

that (τ, x, y) ∈ Ω(n,U). Because

(σ, x, y) ∈ ΩZ̃(n,O), P σ(x,y)(Z̃) = 1 and P σ(x,y) ∈ O.

So P σ(x,y) ∈ O′. Thus (F̃ ◦ Ẽ−1)∗P σ(x,y) ∈ U. However,

(F̃ ◦ Ẽ−1)∗P σ(x,y) =
1

n

∑
v∈[n]

(F̃ ◦ Ẽ−1)∗δ(xσ
v ,y

σ
v )

=
1

n

∑
v∈[n]

δ(xτ
v ,y

τ
v )

= P τ(x,y).

Above we have used Lemma 5.5 to conclude that

(F ◦ E−1)(xσv , y
σ
v ) = (xτv , y

τ
v ).

So P τ(x,y) ∈ U which implies (τ, x, y) ∈ Ω(n,U).

Claim 2: Υn is injective.

Proof of Claim 2. Suppose Υn(σ, x, y) = (τ, x, y). Recall that

φv = E−1(xσv ) ∈ syme(G).

By Lemma 5.4,

τ(g)v = σ(φ−1
v (g−1)−1)v.
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Set h = φ−1
v (g−1)−1. Then g = φv(h

−1)−1. Thus

σ(h)v = τ(φv(h
−1)−1)v.

Now suppose that h ∈ S ∪ S−1. By Lemma 5.1 with g = e,

φv(h
−1) = (xσv )e(h

−1) = x(v)(h−1).

Thus

σ(h)v = τ(x(v)(h−1)−1)v

for all h ∈ S ∪ S−1 and v ∈ [n]. This shows that σ is determined by τ and x.

Thus Υn is injective.

If O,U are as in Claim 1, then Claim 2 implies

#ΩZ̃(n,O) = #Υn(ΩZ̃(n,O)) ≤ #Ω(n,U).

So (22) implies

fẼ∗ν(A
G
ρ × BG) = inf

O�Ẽ∗ν
lim sup
n→∞

1

n
log

(#ΩZ̃(n,O)

n!r

)

≤ inf
U�F̃∗ν

lim sup
n→∞

1

n
log

(#Ω(n,U)

n!r

)
= fF̃∗ν(A

G
ρ × BG).

As mentioned above, since Ẽ and F̃ are embeddings, this shows that

fν(Θ̃) = fẼ∗ν(A
G
ρ × BG) ≤ fF̃∗ν(A

G
ρ × BG) = fν(�̃).

By symmetry, the same argument with T and U switched shows the opposite

inequality. This proves the theorem.

Appendix A. Open problems

(1) Is there an analog of the Rudolph–Weiss Theorem concerning invari-

ance of relative entropy under OE [RW00] for sofic entropy or the f -

invariant? The sofic-entropy formulation of the relative f -invariant in

[Shr23] might be useful for this problem. If the Rudolph–Weiss Theorem

generalizes to free groups, then it should be possible to extend the f -

invariant to actions of treeable groups via Hjorth’s Lemma [Hjo06].

(2) Can the results of this paper be extended to free products of amenable

groups or surface groups? The difficulty is that there is no analog of

Theorem 2.1 in these cases.



840 L. BOWEN AND Y. F. LIN Isr. J. Math.

(3) Suppose G is a finitely generated infinite group. If two Bernoulli shifts

over G are bounded orbit-equivalent, then do they necessarily have the

same base entropy?

(4) Is there some 1 ≤ p < ∞ such that the f -invariant is invariant under

Lp-OE?
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