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Dynamical decoupling (DD} is perhaps the simplest and least resource-intensive error-suppression
strategy for improving quantum computer performance. Here we report on a large-scale survey of the per-
formance of 60 different DD sequences from ten families, including basic as well as advanced sequences
with high-order error cancelation properties and built-in robustness. The survey is performed using three
different superconducting-qubit IBM() devices, with the goal of assessing the relative performance of the
different sequences in the setting of arbitrary quantum state preservation. We find that the high-order uni-
versally robust (UR) and quadratic DD (QDD) sequences generally outperform all other sequences across
devices and pulse-interval settings. Surprisingly, we find that DD performance for basic sequences such
as the Carr-Purcell-Meiboom-Gill and XY4 sequences can be made to nearly match that of UR and QDD
sequences by optimizing the pulse interval, with the optimal interval being substantially larger than the

minimum interval possible on each device.

DOL: 10,1103/ PhysRevApplied 20.064027

L INTRODUCTION

In the pre-fault-tolerance era, quantum computing
research has two main near-term goals: to examine the
promise of guantum computers via demonstrations of
quantum algorithms [1-3] and to understand how quan-
fum error correction and other noise mitigation methods
can pave a path towards fault-tolerant quantum comput-
ers [4,5]. The last decade has seen the rise of multi-
ple cloud-based quantum computing platforms that allow
a community of researchers to test error-suppression
and error-correction techniques [6—16]. Error suppression
using dynamical decoupling (DD) [17—21] is among the
earliest methods to have been experimentally demon-
strated, using experimental platforms such as trapped ions
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[22,23]. photonic qubits [24], electron paramagnetic
resonance [25], nuclear magnetic resonance (NMR)
[26—28], trapped atoms [29], and nitrogen vacancies in
diamond [30]. It is known that DD can be used to
improve the fidelity of quantum computation both with-
out [31-38] and with quantum error correction [39,40].
Several recent cloud-based demonstrations have shown
that DD can unequivocally improve the performance of
superconducting-qubit-based devices [41—46], even lead-
ing to algorithmic quantum advantage [47].

In this work, we systematically compare a suite of
known and increasingly elaborate DD sequences devel-
oped over the past two decades (see Table | for a com-
plete list and Ref. [62] for a detailed review). These DD
sequences reflect a growing understanding of how to build
features that suppress noise to increasingly higher order
and with greater robusimess to pulse imperfections. Our
goal is to study the efficacy of the older and the more
recent advanced sequences on currently available quan-
tum computers. To this end, we implement these sequences
on three different IBM Quantum Experience (IBMQE)
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TABLE 1. Summary of the DD sequences surveyed in this
work, along with the original references. A sequence has a uni-
form (pulse} interval provided 1; = t; forall i.j [see Eq.(7)] and
is nonuniform otherwise. A sequence is universal (in theory) if it
cancels an arbitrary Hyr [Eq. (2)] to first order in the pulse inter-
val, and practically this means that it protects all states equally
well. Otherwise, it only protects a subset of states (e.g., CPMG,
which only protects |£}). In practice, this distinction is more sub-
tle due to rotating frame effects, as discussed in Sec. [ D. For
those listed as both Y & N, such as RGA,,. we mean that not all
sequences in the family are universal. For example, RGA; is not
universal but RGA, for m > 4 is universal. The last column lists
whether our eventual implementation requires OpenPulse [48] or
can be implemented faithfully with just the traditional circuit API
[49.50] (see Appendix B).

Uniform Needs
Sequence interval  Universal  OpenPulse
Hahn echo [51] Y N N
PX or CPMG [32,53] Y N N
X¥4[54] Y Y Y
CDD, [55] Y Y Y
EDD [56] Y Y &N Y
RGA, [57] Y Y &N Y
KDD [58] X ¥ X
UR, [59] : 4 ¥ : 4
UDDx, [60] N N N
QDD, , [61] N Y ¥

transmon qubit-based platforms: ibmg_ammonk ( Armonk),
ibmg bogota (Bogota), and ibmq jakarta (Jakarta). We
rely on the open-pulse functionality [63] of IBMQE, which
enables us to precisely control the pulses and their timing.
The circuit-level implementation of the various sequences
can be suboptimal, as we detail in the Appendix B.

We assess these DD sequences for their ability to
preserve an arbitrary single-qubit state. Previous work,
focused on the XY4 sequence, has studied the use of DD
to improve two-qubit entanglement [41] and the fidelity
of two-qubit gates [44], and we leave a systematic sur-
vey of the multiqubit problem for a future publication,
given that the single-qubit case is already a rich and intri-
cate topic, as we discuss below. By and large, we find
that all DD sequences outperform the “unprotected™ evo-
lution (without DD)). The higher-order DD sequences, like
concatenated DD (CDD [55]), Uhrig DD (UDD [60]),
quadratic DD (QDD [61]). nested UDD (NUDD [64]),
and universally robust (UR [59]), perform consistently
well across devices and pulse placement settings. While
these more elaborate sequences are statistically better than
the traditional sequences such as Hahn echo [51], Carr-
Purcell-Meiboom-Gill (CPMG), and XY4 [54] for short
pulse intervals, their advantage diminishes with sparser
pulse placement. As both systematic and random errors,
e.g., due to finite pulse width and limited control, are
reduced, advanced sequences will likely provide further

performance improvements. Overall, our study indicates
that the robust DD sequences can be viewed as the pre-
ferred choice over their traditional counterparts.

The structure of this paper is as follows. In Sec. II
we review the pertinent DD background and describe the
various pulse sequences we tested. In Sec. I1l, we detail
the cloud-based demonstration setup, the nuances of DD
sequence implementation, and the chosen success metrics.
We describe the results and what we leamed about the
sequences and devices in Sec. IV. A summary of results
and possible future research directions are provided in
Sec. V. Additional details are provided in the appendices.

Il. DYNAMICAL DECOUPLING BACKGROUND

For completeness, we first provide a brief review of DD.
In this section we focus on a small subset of all sequences
studied in this work, primarily to introduce key concepts
and notation. The details of all the other sequences are pro-
vided in Appendix A. The reader who is already an expert
in the theory may wish to skim this section to become
familiar with our notation.

A. DD with perfect pulses
Consider a time-independent Hamiltonian

H = Hg + Hg + Hsp, (1)

where Hy and Hy contain terms that respectively act only
on the system or the bath, and Hgy contains the system-bath
interactions. We write Hs = Hy + H{, where H] repre-
sents an undesired, always-on term (e.g., due to crosstalk),
so that

Her = Hy + Hgp (2)

represents the “error Hamiltonian™ we wish to remove
using DD. Hamiltonian H{ contains all the terms we
wish to keep. The corresponding free unitary evolution for
duration 7 is given by

fr = Ulr) = exp(—itH). (3

DD is generated by an additional, time-dependent conirol
Hamiltonian H_(f) acting purely on the system, so that the
total Hamiltonian is

H(t) = Hy + Herx + Hg + H:A1). )

An “ideal” or “perfect” pulse sequence is generated by a
control Hamiltonian that is a sum of error-free, instanta-
neous Hamiltonians {£2,Hp J§_, that generate the pulses at
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corresponding intervals {T:}}_;:

n K
H)=Q) 8(t—tHp, Ht=) 75 (5
k=1 I1=1

Here we use the hat notation to denote ideal conditions and
let £2; have units of energy. Choosing £2; such that ;A =
m /2, where A is the “width” of the Dirac-delta function
(this is made rigorous when we account for pulse width in
Sec. II B | below), this gives rise to instantaneous unitaries
or pulses

-~

Py = ™R (6)
50 that the total evolution is
ﬁ[n =f1';,Pa e '.-ﬁ'z‘ﬁlf;;p]r I?}

where T=t, =) ;_, 7, is the total sequence time. The
unitary 0(T) = U(T)B(T) can be decomposed into the
desired error-free evolution LR(T) =exp{—:‘TH§} ®Ig
and the unitary emor B(T). Ideally, B(T) =I5z @ e,
where B is an arbitrary Hermitian bath operator. Hence,
by applying N repetitions of an ideal DD sequence of
duration 7T, the system stroboscopically decouples from
the bath at uniform intervals T; =jT forj = 1,....N. In
reality, we only achieve approximate decoupling, so that
B(T) = Is ® e '™ 4 em, and the history of DD design is
motivated by making the error term as small as possi-
ble under different and increasingly more realistic physical
scenarios.

1. First-order protection

Historically, the first observation of stroboscopic decou-
pling came from NMR spin echoes observed by Erwin
Hahn in 1950 [51] with a single X pulse [65]. Sev-
eral years later, Carr and Purcell [52] and Meiboom and
Gill [66] independently proposed the improved CPMG
sequence with two X pulses. In theory, both sequences
are only capable of partial decoupling in the ideal pulse
limit. In particular, B(T) =~ I5 ® ¢'™¥ only for states near
|£) = (]0) £ |1))/+/2 (where |0) and |1) are the +1 and
—1 eigenstates of o®, respectively), as we explain below.
Nearly four decades after Hahn's work, Maudsley pro-
posed the XY4 sequence [54], which is universal since
B(T) 7= Is ® e on the full Hilbert space, which means
that all states are equally protected. Equivalently, univer-
sality means that arbitrary single-qubit interactions with
the bath are decoupled to first order in 7.

To make this discussion more precise, we first write
Hy + Hgp in a generic way for a single qubit:

3

FEH3+H53=Z}’¢=0“®BQ (8)
o—0

with the B* bath terms and o™ = J.
Since distinct Pauli operators anticommute, ie.,
{oy, o7} = 218y, then, for k # 0,

opHoy = — Z Yo" & B* + 1304 @ By (9
ek

The minus sign is an effective time reversal of the terms
that anticommute with ¢;. In the ideal pulse limit, this is
enough to show that “pure-X.” defined as

PX=X—f; — X —f, (10)

induces an effective error Hamiltonian

Hyt = 1o ®@ B* + 5@ B+ O(1) (11)
every 2t. Note that the CPMG sequence is defined simi-
larly, i.e.,

CPMG=fip—X —fi =X —fip,  (12)
which is just a symmetrized placement of the pulse inter-
vals; see Sec. II C below. The PX and CPMG sequences
have the same properties in the ideal pulse limit, but
we choose to begin with the PX sequence for simplic-
ity of presentation. Intuitively, the middle X — f; — X is
a time-reversed evolution of the o~ terms, followed by
a forward evolution, which cancel to first order in T using
the Zassenhaus formula [67], explt(4 + B)} = e™e™® +
(X(z?), an expansion that is closely related to the familiar
Baker-Campbell-Hausdorff formula. The undesired noise
term Jyor® & B does not decohere |+), but all other states
are subject to bit-flip noise in the absence of suppression.
By adding a second rotation around y, the XY4 sequence,

(13)

cancels the remaining o term and achieves universal
(first-order) decoupling at time 41:

4=V XN -f-Y¥Y-f—-X—-f .

HY, =Is @B+ 0O(?). (14)
Practically, this means that all single-qubit states are
equally protected to first order. These resulis can be pener-
alized by viewing DD as a symmetrization procedure [68],
with an intuitive geometrical interpretation wherein the
pulses replace the original error Hamiltonian by a sequence
of Hamiltonians that are arranged symmetrically so that
their average cancels out [69].
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2. Higher-order protfection

While the XY4 sequence is universal for qubits, it
only provides first-order protection. A great deal of effort
has been invested in developing DD sequences that pro-
vide higher-order protection. We start with concatenated
dynamical decoupling, or CDDy, [55]. CDD, is an nth-
order recursion of the XY4 sequence [70]. For example,
CDD, = XY4 is the base case, and

CDD, = XY4([CDDy_1])
= ¥ OB, ] = [CDBy 4] ¥

B [CDDn—l] =il [CDDH—]]'I- “5}
which is just the definition of the XY 4 sequence in Eq. (13)
with every f; replaced by CDD,_,. This recursive struc-
ture leads to an improved error term (™) provided 1
is *small enough.” To make this point precise, we must
define a measure of error under DD. Following Ref. [39],
one useful way to do this is to separate the “good” and
“bad” parts of the joint system-bath evolution, i.e., to split
T(T) [Eq. (7)] as
(N =G+B, (16)
where G = Up(T) ® B'(T), and where—as above—L7y(T)
is the ideal operation that would be applied to the system in
the absence of noise, and B'(T) is a unitary transformation
acting purely on the bath. Operator B is the “bad” part, i.e.,
the deviation of L/(T) from the ideal operation. The error
measure is then [71]
oo = [|1BI. (17)
Put simply, npp measures how far the DD-protected evo-
lution T/(T) is from the ideal evolution . With this error
measure established, we can bound the performance of
various DD sequences in terms of the relevant energy
scales:
B=IHgl, J=I|Hsml, e=p+J. (I8)
Using these definitions, we can replace the coarse (O esti-
mates with rigorous upper bounds on fpp. In particular, as
shown in Ref. [39],

Nxva = (47 T)[3(4eT) + S(deT)’] + O(TY),
Heon, = 4" 2 (ceT)"(JT) 4 O™,

(19a)
(19b)

where ¢ is a constant of order 1. This more careful analysis
implies that (1) et < 1 is sufficient for the XY4 sequence
to provide error suppression and that (2) CDD, has an
optimal concatenation level induced by the competition

between taking longer (the bad approximate 4 scaling)

and more error suppression [the good (cet)" scaling]. The
corresponding optimal concatenation level is

Mope = Lloga (1/Tet) — 11, (20)
where || is the floor function and ¢ is another constant of
order | [defined in Eq. (163) of Ref [39]]. That such a
saturation in performance should occur is fairly intuitive.
By adding more layers of recursion, we suppress noise that
was unsuppressed before. However, at the same time, we
introduce more periods of free evolution f; that cumula-
tively add up to more noise. At some point, the noise wins
since there is no active noise removal in an open loop
procedure such as DD.

Though CDD, derived from recursive symmetrization
allows for ((t"*!) suppression, it employs approximately
4" pulses. One may ask whether a shorter sequence could
achieve the same goal. The answer is provided by the UDD
sequence [60]. The idea is to find which DD sequence
acts as an optimal filter fimction on the noise-spectral den-
sity of the bath while relaxing the constraint of uniform
pulse intervals [22.60,72,73]. For a brief overview, we first
assume that a qubit state decoheres as e *'_ For a given
noise spectral density S{w),

2 ™ Sw)

where the frequency response of the system to DD is cap-
tured by the filter function F{w{). For example, for n ideal
7 pulses executed at times {f,} [74],

R 2
R0 = [1+ e 23 C1ves |, @)

1=

which can be substituted into Eq. (21) and optimized for
{t;}; the result is UDD [60]. For a desired total evolution
T, the solution (and definition of UDD) is simply to place
m pulses with nonumiform pulse intervals,

" 2
O (i, [
2(n+1)

When we use n X -type pulses in particular, we obtain
UDDx,,. It turns out that UDDx,, achieves (?(t") suppres-
sion for states near |+) using only m pulses, and this is
the minimum number of & pulses needed [60,75]. It is in
this sense that UDD is provably optimal. However, it is
important to note that this assumes that the total sequence
time is fixed; only in this case can the optimal sequence
be used to make the distance between the protected and
unperturbed qubit states arbitrarily small in the number of
applied pulses. On the other hand, if the minimum pulse
interval is fixed and the total sequence time is allowed to

(23)
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scale with the number of pulses, then—as in CDD—longer
sequences need not always be advantageous [76].

UDD can be improved from a single-axis sequence to
the universal QDD sequence [61.75,77] using recursive
design principles similar to those that lead to the XY4
sequence and eventually CDD, from the PX sequence.
Namely, to achieve universal decoupling, we use a recur-
sive embedding of a UDDy,, sequence into a UDDx,
sequence. Each X pulse in UDDx, is separated by a free
evolution period f;,,; that can be filled with a UDDy,,
sequence. Hence, we can achieve min{tr”", ™} universal
decoupling, and when m = n, we obtain universal order
1" decoupling using only n” pulses instead of the approx-
imately 4" in CDD,. This is nearly optimal [61], and an
exponential improvement over CDD,. When m £ n, the
exact decoupling properties are more complicated [73].
Similar comments as for UDDx, regarding the difference
between a fixed total sequence time T wversus a fixed
minimum pulse interval apply for QDD as well [78].

While QDD is universal and near optimal for single-
qubit decoherence, the ultimate recursive generalization
of UDD is NUDD [64], which applies for general multi-
qubit decoherence, and whose universality and suppression
properties have been proven and analyzed in a number of
works [T8—80]. In the simplest setting, suppression to Nth
order of peneral decoherence afflicting an m-qubit system
requires (N + 1)*™ pulses under NUDD.

B. DD with imperfect pulses

So far, we have reviewed DD theory with ideal pulses.
An ideal pulse is instantaneous and error-free, but in real-
ity, finite bandwidth constraints and control errors matter.
Much of the work since CPMG has been concerned with
{1) accounting for finite pulse width, (2) mitigating errors
induced by finite width, and (3) mitigating systematic
errors such as over- or under-rotations. We address these
concemns in order.

1. Accounting for finite pulse width

During a finite width pulse, P, the effect of Hur + Hp
cannot be ignored, so the analysis of Sec. Il A needs
to be modified correspondingly. Nevertheless, both the
symmetrization and filter function approaches can be aug-
mented to account for finite pulse width.

We may write a realistic DD sequence with A-width
pulses just as in Eq. (7), but with the ideal control Hamil-
tonian replaced by

Afl

- 'y
A=) Q(t— w)Hp, f Q(Ndt = QA = =,
T —A2

(24)

where £2(f) is sharply (but not infinitely) peaked at t =0
and vanishes for [tf] = A /2. The corresponding DD pulses

are of the form

Tp+A 2
Pr= expl—if di[Q(t — ;) Hp, +HM+HB]}.
—Af
(25)

Mote that the pulse intervals remain t; as before, now
denoting the peak-to-peak interval; the total sequence time
therefore remains T = EL& T¢. The ideal pulse limit of
Eq. (7) is obtained by taking the pulse width to zero, so
that H; + Hy can be ignored:
—trHp /2

ﬁtz ]i]T]Ptzu‘.?

lim £2(f) = $2p8(8). (26)
A—0 A—=D

We can then recover a result similar to Eq. (9) by entering
the toggling frame with respect to the control Hamiltonian
H.(f) (see Appendix D), and computing npp with a Mag-
nus expansion or Dyson series [39]. Though the analysis
is involved, the final result is straightforward: gpp picks
up an additional dependence on the pulse width A. For
example, Eq. (19a) is modified to

[A)

Mioyvs = 4T A + fxys, (27)

which now has a linear dependence on A. This new depen-
dence is fairly peneric, i.e., the previously discussed PX,
XY4, CDD,, UDD,, and QDD, ,, sequences all have an
error 1 with an additive (’(A) dependence. Nevertheless,
(1) DD is still effective provided JA < 1 and (2) concate-
nation to order n is still effective provided the J A depen-
dence does not dominate the et" dependence. For CDD,,
this amounts to an effective noise strength floor [39],

Neop, = 16AJ, (28)

which modifies the optimal concatenation level ngp.

2. Mitigating errors induced by finite width

A natural question is to what extent we can suppress
this first-order (?( A) dependence. One solution is Eulerian
symmetrization [81], which exhibits robustness to pulse-
width errors [56,82.83]. For example, the palindromic
sequence

EDD = Xf, Yo Xf: ¥f: Yo Xfe Yo X,

which is an example of Eulerian DD (EDD)), has error term
[39]

(29)

Nepp = (B3JT)[3(BeT) + 2(8er)* + O(r)],  (30)
which contains no first-order ({ A) term. Nevertheless, the
constant factors are twice as large compared to the XY4
sequence, and it furns out that the EDID sequence outper-
forms the XY4 sequence when A/t 2 8er (see Fig. 9 of
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Ref. [39]) [84]. The same Eulerian approach can be used to
derive the pulse-width robust version of the Hahn-echo and
CPMG sequences, which we refer to with a “super™ pre-
fix (derived from the “Eulerian supercycle” terminology
of Ref. [E3]):

super-Hahn = X/, X ;.
super-CPMG = X\ X\, X X f+,

(31a)
(31b)

with

e T+AS2
P.t = exp |_=f df'[—ﬂ{f =F It)HF‘. +Harr + Hﬂ]l
Tp—a2
(32)

[compare to Eq. (25)]. Intuitively, if X is a finite pulse that
generates a rotation about the x axis of the Bloch sphere
then X is (approximately) a rotation about the —x axis, i.e.,
with opposite orientation.

These robust sequences, coupled with concatenation,
suggest that we can eliminate the effect of pulse width
to arbitrary order O{A™); up to certain caveats, this
indeed holds with concatenated dynamically corrected
gates (CDCGs) [85] (see also Ref. [86]) [87]. However,
this approach deviates significantly from the sequences
consisting of only m rotations we have considered so far.
To our knowledge, no strategy better than EDD exists for
sequences consisting of only m pulses [82].

3. Mitigating systematic errors

In addition to finite width errors, real pulses are also
subject to systematic errors. For example, £2(f) might be
slightly miscalibrated, leading to a systematic over- or
under-rotation, and any aforementioned gain might be lost
due to the accumulation of these errors. A useful model of
pulses subject to systematic errors is

P, =exp {:I:i%{l +e,}a“} (33)

for o € {x,y,z}. This represents instantanecus X, ¥, Z and
X, Y. Z pulses subject to systematic over- or under-rotation
by &, also known as a flip-angle error. Another type of sys-
tematic control error is axis misspecification, where instead
of the intended «® in Eq. (33) a linear combination of the
form o + ego? +€,07 is implemented, with €5,¢, < |
and & # f £ y denoting orthogonal axes [30].

Fortunately, even simple m pulses can mitigate sys-
ternatic errors if rotation axes other than +x and +y are
used. We consider three types of sequence: robust genetic
algorithm (RGA) DD [57], Knill DD (KDD) [58,88], and
UR DD [59].

The RGA-DD sequence. The basic idea of RGA is as fol-
lows. A universal DD} sequence should satisfy [_[L] P =

I up to a global phase, but there is a preat deal of free-
dom in what combination of pulses are used that satisfy
this constraint. In Ref. [57], this freedom was exploited to
find, by numerical optimization with genetic algorithms, a
class of sequences robust to over- or under-rotations.

Subject to a generic single-qubit error Hamiltonian as
in Eq. (8), optimal DD sequences were then found for a
given number of pulses under different parameter regimes
(i.e., the relative magnitudes of J, 8. etc.). This numer-
ical optimization “rediscovered” the CPMG, XY4, and
Eulerian DD sequences as base sequences with (Q(t7)
errors. Higher-order sequences were then found to be
concatenations of the latter. For example,

RGAg. = EDD,
RGA, = RGAg [RGA,].

A total of 12 RGA sequences were found in total; more
details are given in Appendix A.

The KDI sequence. This sequence is similar in its goal
to RGA because it mitigates systematic over- or under-
rotations. In design, however, it uses the principle of
composite pulses [B9-—91]. The idea is to take a universal
sequence such as XY4 and replace each pulse P; with a
composite series of pulses (CP), that have the same effect
as P, but remove pulse imperfections by self-averaging;
for details, see Appendix A.

The KDD sequence is robust to flip-angle errors
[Eq. (33)]. For example, suppose that €, = 7w /20 and that
we apply idealized KDD ten times [which we denote
by (KDD)'°]. Then, by direct calculation, |(KDD)'® —
I]) = 7 x 1077, whereas [|(XY4)! —J|| = 3 x 1072, and
in fact, KDD is robust up to G(Ef} [59,62]. This robust-
ness to over-rotations comes at the cost of 20 free evolution
periods instead of 4, so we only expect KDD to work
well in an e.-dominated parameter regime. As a preview
of the results we report in Sec. IV, KDD is not among
the top-performing sequences. Hence, it appears reason-
able to conclude that our demonstrations are conducted in
a regime that is not e, dominated.

The UR-DID sequence An alternative approach to devise
robust DD sequences is the UR,-DD family [59], devel-
oped for a semiclassical noise model. In particular, the
system Hamiltonian is modified by a random term instead
of including an explicit quantum bath and system-bath
interaction as for the other DD sequences we consider in
this work. The model is expressed using an arbitrary uni-
tary pulse that includes a fixed systematic error €, as in
Eq. (33), and reduces to a w pulse in the ideal case. As
detailed in Appendix A, this leads to a family of sequences
that give rise to an error scaling as e, ~ Ef‘fz using n pulses.

These sequences recover some known results at low
order: the UR; sequence is the CPMG sequence and the
UR, sequence is the X'Y4 sequence. In other words, the
CPMG and XY4 sequences are also robust to some pulse

(34a)
(34b)
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imperfections as they cancel flip-angle errors to a cer-
tain order. Moreover, by the same recursive arguments,
CDDy, can achieve arbitrary flip-angle error suppression
while achieving arbitrary (1"} (up to saturation) pro-
tection. Still, CDD, requires exponentially more pulses
than UR,, since UR,, is by design a semiclassical (J(z?)
sequence. Whether UR,; is also an (?(r?) sequence for a
fully quantum bath is an interesting open problem.

C. Optimizing the pulse interval

Monuniform pulse-interval sequences such as UDD and
QDD already demonstrate that introducing pulse intervals
longer than the minimum possible (Tyi,) can be advanta-
geous. In particular, such alterations can reduce spectral
overlap between the filter function and bath speciral den-
sity. A longer pulse interval also results in pulses closer
to the ideal limit of a small A /T ratio when A is fixed.
Empirical studies have also found evidence for better DD
performance under longer pulse intervals [58,62,73].

We may distinguish two ways to optimize the pulse
interval: an asymmetric or symmetric placement of addi-
tional delays. For example, the asymmetric and symmetric
forms of the XY4 sequence we optimize take the forms

XY4,(d) = YuXfa¥faXfa,
XY4:(d) = fap YaXfa¥faXfap,

(35a)
(35b)

where d sets the duration of the pulse interval. The asym-
mefric form here is consistent with how we defined the
XY4 sequence in Eq. (13), and except the CPMG sequence
we have tacitly defined every sequence so far in its asym-
metric form for simplicity. The symmetric form is a simple
alteration that makes the placement of pulse intervals
symmetric about the midpoint of the sequence. For a
generic sequence whose definition requires nonuniform
pulse intervals like UDD, we can write the two forms as

DD,(d) = Pify 14Pof ey id- - - Plru st
DD,(d) = fap2Pifs, +aPfeysd - - - Puloysap2-

(36a)
(36b)

Here, the symmetric nature of DD, is harder to interpret.
The key is to define P, = Pyf;, as the “effective pulse.”
In this case, the delay-pulse motif is j};zﬁjﬁﬂ for every
pulse in the sequence exhibiting a reflection symmetry of
the pulse interval about the center of the pulse. In the
asymmetric version, it is .5;_}‘,} instead. Note that PX;(7) =
CPMQG, i.e., the symmetric form of the PX sequence is
the CPMG sequence. As the CPMG sequence is a well-
known sequence, hereafter we refer to the PX sequence
as the CPMG sequence throughout our data and analysis
regardless of symmetry.

D. Superconducting hardware physics relevant to DD

So far, our account has been abstract and hardware
agnostic. Since our demonstrations involve IBM() super-
conducting hardware, we now provide a brief background
relevant to the operation of DD in such devices. We closely
follow Tripathi ef al. [44], who derived the effective sys-
tem Hamiltonian of transmon superconducting qubits from
first principles and identified the importance of model-
ing DD performance within a frame rotating at the qubit
drive frequency. It was found that DD is still effective with
this added complication both in theory and cloud-based
demonstrations and, in practice, DD performance can be
modeled reasonably well by ideal pulses with a minimal
pulse spacing of Ty, = A. We now address these points in
more detail.

The effective system Hamiltonian for two qubits (the
generalization to n > 2 is straightforward) is

g Mgy

He =
4 2 2

(37)
where the wy, are qubit frequencies and J £ 0 is an unde-
sired, always-on Z7 crosstalk. The appropriate frame for
describing the superconducting qubit dynamics is that
corofating with the number operator N =}, ;i (kK +
Iy |y (Kl =1 — %{Z. + Z3). The unitary transformation
into this frame is U(f) = e "', where wy is the drive fre-
quency used to apply gates [92]. In this frame, the effective
dynamics is given by the Hamiltonian

2
A=Y (@)z, +JZZ + Heg() + Hp, (38)

=1

where Heg = UM (1) Hg U(f). To eliminate unwanted inter-
actions, DD} must symmetrize JZZ and Hyg. The JZZ term
is removed by applying an X -type DD to the first qubit
(“the DD qubit™): X, 7,2 X) = —Z,7;, s0 symmetrization
still works as intended. However, the Hy term is time
dependent in the rotating frame L/{f), which changes the
analysis. First, the sign flipping captured by Eg. (9) no
longer holds due to the time dependence of Hyp. Second,
some terms in M., self-average and nearly cancel even
without applying DD [93]:

{crf,sz._,c‘f,U;,ﬂxﬂz,crzax,crl'crz,c'ztryi. (39)
The remaining terms,
fol,0%", 0”07 0", 070"}, {(40)

are not canceled at all. This differs from expectation in that
the two terms containing c‘f in Eq. (40) are not canceled,
whereas in the wy — 0 limit, all terms containing crf' are
fully canceled.
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Somewhat surprisingly, a nominally universal sequence
such as the XY4 sequence, is no longer universal in the
rotating frame, again due to the time dependence acquired
by Hgg. In particular, the only terms that perfectly can-
cel to Q) are the same Z, and Z7 as with the CPMG
sequence. However, the list of terms that approximately
cancels grows to include

{o’o",0"c’ 0’0", '}, (41)

and when T is fine-tuned to an integer multiple of 2w fay,
then the XY'4 sequence cancels all terms except, of course,
terms involving [}, which commute with the DD sequence.

Consequently, without fine-tuning 7, we should expect
the CPMG and XY4 sequences to behave similarly when
the terms in Eq. (41) are not significant. Practically, this
occurs when T} 3 T; for the qubits coupled to the DD
qubit [44]. However, when instead T; < T> for coupled
qubits, the XY4 sequence should prevail. In addition, the
analysis in Ref. [44] was carried out under the assump-
tion of ideal w pulses with T, = A, and yet, the specific
qualitative and quantitative predictions bore out in the
cloud-based demonstrations. Hence, it is reasonable to
model DD sequences on superconducting transmon qubits
as

DD = Pify, vnivo P vacs (42)

where f*} is once again an ideal pulse with zero width,
and the free evolution periods have been incremented by
A—the width of the actual pulse F;.

E. What this theory means in practice

We conclude our discussion of the background theory by
discussing its practical implications for actual DD memory
cloud-based demonstrations. This section motivates many
of our design choices and our interpretation of the results.

At a high level, our primary demonstration—whose full
details are fleshed out in Sec. [II below—is to prepare an
inifial state and apply DD for a duration T. We estimate
the fidelity overlap of the initial state and the final pre-
pared state at time T by an appropriate measurement at the
end. By adjusting T, we map out a fidelify decay curve [see
Fig. 1(a) for examples], which serves as the basis of our
performance assessment of the DD sequence.

The first important point from the theory is the pres-
ence of ZZ crosstalk, a spurious interaction that is always
present in fixed-frequency {ransmon processors, even
when the intentional coupling between qubits is turned
off. Without DD, the always-on ZZ term induces coherent
oscillations in the fidelity decay curve, such as the “Free™
curve in Fig. 1(a), depending on the transmon drive fre-
quency, the dressed transmon qubit eigenfrequency, and
calibration details [44]. Applying DD via pulses that anti-
commute with the ZZ term makes it possible to cancel

s URm g CPMG .

o X¥4 g Free r |
1] a0 40 1] & 100 13 B0 % :
Time (ps) I]-:"
(b) ,
|
URaf | Hb
oMo H 1
’ u
!
bt H[———
i
0E TE 10 F
Time-averaged fdelity L
(c)
£ 100

E O W W W W

gu_“ T
092 Mpgg,
L
E?g:: . URn u CPMG . XY4 5 Free
0 5 10 15 20 25
First N haar states
FIG. 1. Representative samples of our results for three DD

sequences and free evolution. The Bloch sphere representation
of the quantum states used for each plot is shown on the bot-
tom right. {a) Normalized fidelity f.(f)/f-(0) under four DD
sequences for the initial state |—i} and a fixed calibration cycle
on Bogota. (b) We summarize the result of many such fidelity
decay curves using a box plot. Each box shows the max (right-
most vertical black lines), inner-quartile range (the orange box),
median (the skinny portion of each orange box), and minimum
(leftmost vertical black lines) time-averaged fidelities, F{T =
75 ps) in Eq. (44), across the six Pauli states and ten cali-
bration cycles (for a total of 60 data points each) on Bogota
The vertical lines denote the performance of each sequence by
its median, colored with the same color as the comresponding
sequence. We use this type of box plot to summarize the Pauli
demonstration results. (¢) We show average fidelity convergence
as a function of the number of Haar-random states. In partic-
ular, the horizontal lines represent Ejgg e[/ (T = 3.27 ps)],
whereas each point represents Ey po[[0(T=3.27 ps)] for
increasing N, i.e., the rolling average fidelity. In all cases, we
find that 25 states are sufficient for reasomable convergence as
Fas paz [2(T)] is within 1% of Bygg pear[2(T)]. The data shown
are for Jakarta, but a similar result holds across all devices
tested.
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TABLE II. The three processors used in our cloud-based
demonstrations. The total number of qubits n varies from |
to 7, but in all cases, we applied DD to just one qubit: num-
ber 2 for Bogota and | for Jakarta (see the insets of Fig. 3
below for the connectivity graph of each device). The choice of
the qubit used is motivated by the prediction that Ty % T3 and
T = T: lead to different DD sequence behavior (see Sec. IIE
and Ref. [44]). The qubits we have chosen have the highest con-
nectivity on their respective devices and are therefore subject to
maximal ZZ crosstalk. The T and 77 times are the averages of
all reported values during data collection for the specified qubit,
along with the 2o sample standard deviation. Data were collected
over toughly 20 different calibrations, mostly between August
925, 2021 for the Pauli demonstration and January 11-19, 2022
for the Haar-interval demonstration.

Device ibmg_armonk ibmg bogota ibmg jakarta
# qubits 1 5 7
Qubit used q0 q2 ql

Ti (us) 140 + 41 105 + 41 149 + 61
T: (us) 227471 145 + 63 2143
Pulse duration (ns) 7111 3555 35.55

the corresponding crosstalk term to first order [44.46]. For
some sequences—such as URzy in Fig. 1{a)—this first-
order cancelation almost entirely dampens the oscillation.
One of our goals in this work is to rank DD sequence per-
formance, and 77 crosstalk cancelation is an important
feature of the most performant sequences. The simplest
way to cancel ZZ crosstalk is to apply DD to a single
qubit (the one we measure) and leave the remaining qubits
idle. We choose this simplest stratepy in our work since it
accomplishes our goal without adding complications to the
analysis.

Second, we must choose which qubit to perform our
demonstrations on. As we mentioned in our discussion in
the previous subsection, we know that the X'Y4 sequence
only approximately cancels certain terms. Naively, we
expect these remaining terms to be important when 7} <
T3 and negligible when T, » T5. Put differently, a uni-
versal sequence such as XY4 should behave similarly to
the CPMG sequence when these terms are negligible any-
way (I} 3 T:) and beat the CPMG sequence when the
terms matter (T; < 73). To test this prediction, we pick
three qubits where T = T3, I; = Ty, and T; < Th), as
summarized in Table I1.

Third, we must contend with the presence of systematic
gate errors. When applying DD, these systematic errors
can manifest as coherent oscillations in the fidelity decay
profile [42,58]. For example, suppose that the error is a sys-
tematic over-rotation by €, within each cycle of DD with N
pulses. In that case, we over-rotate by an accumulated error
Ne,, which manifests as fidelity oscillations. This explains
the oscillations for CPMG and XY4 in Fig. 1{a). To stop
this accumulation for a given fixed sequence, one strategy

is to apply DD sparsely by increasing the pulse interval 1.
However, increasing t increases the strength of the lead-
ing error term obtained by symmetrization, which scales
as ((t*) (where k is a sequence-dependent power).

Thus, there is a tension between packing pulses together
to reduce the leading error term and applying pulses
sparsely to reduce the build-up of coherent errors. Here,
we probe both regimes (dense and sparse pulses) and dis-
cuss how this trade-off affects our results. Sequences that
are designed to be robust to pulse imperfections play an
important role in this study. As the UR3g sequence demon-
strates in Fig. 1(a), this design sirategy can be effective at
suppressing oscillations due to both ZZ crosstalk and the
accumulation of coherent gate errors. Our work attempts
to empirically disentangle the various trade-offs in DD
sequence design.

1. METHODS

We performed our cloud-based demonstrations on three
IBM Quantum superconducting processors [94] with
OpenPulse access [48,50]: ibmg_armonk, ibmg bogota,
and ibmq_jakarta. Key properties of these processors are
summarized in Table I1.

All our demonstrations follow the same basic structure,
summarized in Fig. 2. Namely, we prepare a single-qubit
initial state [yr) = 7|0}, apply N repetitions of a given DD
sequence S5 lasting total time f, undo U by applying U7,
and finally measure in the computational basis. Note that
this is a single-qubit protocol. Even on multiqubit devices,
we intentionally only apply DD to the single qubit we
intend to measure to avoid unwanted Z£Z crosstalk effects,
as discussed in Sec. I1 E. The qubit used on each device is
listed in Table IL

We empirically estimate the Uhlmann fidelity

Fo(® = | (W] panaa(0) [¥r) I (43)

with 95% confidence intervals by counting the number
of 0's returned out of 8192 shots and bootstrapping. The
results we report below were obtained using OpenPulse
[48], which allows for refined control over the exact wave-
forms sent to the chip instead of the coarser control that
the standard Qiskit circuit AP1 gives [49.50]. Appendix B
provides a detailed comparison between the two APls,
highlighting the significant advantage of using OpenPulse.

We utilize this simple procedure to perform two types
of demonstrations that we refer to as Pauli and Haar, and
explain in detail below. Briefly, the Pauli demonstration
probes the ability of DD to maintain the fidelity of the
six Pauli states (the eigenstates of [, o, o"}) over long
times, while the Haar demonstrations address this question
for Haar-random states and short times.
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A. Pauli demonstration for long times

For the Pauli demonstration, we keep the pulse interval
T fixed to the smallest possible value allowed by the rel-
evant device, Tmip = A 7 36 ns (or approximately 71 ns),
the width of the X' and ¥ pulses (see Table Il for specific
A values for each device). Practically, this corresponds
to placing all the pulses as close to each other as possi-
ble, i.e., the peak-to-peak spacing between pulses is just A
{except for nonuniformly spaced sequences such as QDD).
For ideal pulses and uniformly spaced sequences, this is
expected to give the best performance [21,95], so unless
otherwise stated, all DD is implemented with minimal
pulse spacing, T = A.

Within this setting, we survey the capacity of
each sequence to preserve the six Pauli eigenstates
{10), 11} ) 5 |=) 5 [4+i) o [=i)} for long times, which we
define as T = 75 ps. In particular, we generate fidelity
decay curves like those shown in Fig. 1{a) by increment-
ing the number of repetitions of the sequence, N, and
thereby sampling f(f) [Eq. (43)] for increasingly longer
times f. Using the XY4 sequence as an example, we apply
PPy ... P, = (XYAT)" for different values of N while
keeping the pulse interval fixed. After penerating fidelity
decay curves over ten or more different calibration cycles
across a week, we summarize their performance using
a box plot like that shown in Fig. 1{b). For the Pauli
demonstrations, the box plot bins the average normalized
fidelity,

T
1 d t‘f; ()

L) Tl f0)

at time T computed using numerical integration with Her-
mite polynomial interpolation. Note that no DD is applied
at f-(0), so we account for state preparation and measure-
ment errors by normalizing. [A sense of the value of f.(0)
and its variation can be gleaned from Fig. 7 below.] The
same holds for Fig. 1{a).

We can estimate the best-performing sequences for a
given device by ranking them by the median performance
from this data. In Fig. 1(b), for example, this leads to the
fidelity ordering URsp = CPMG = XY4 > free evolution
on Bogota, which agrees with the impression left by the
decay profiles in Fig. 1{a) generated in a single run. We

F(I) {felt)r =

(44)

Rotate N reps. of DD

use F(T) because fidelity profiles f.(f) are generally oscil-
latory and noisy, so fitting f(f) to extract a decay constant
(as was done in Ref. [41]) does not return reliable results
across the many sequences and different devices we tested.
We provide a detailed discussion of these two methods in
Appendix C.

B. Haar-interval demonstrations

The Pauli demonstration estimates how well a sequence
preserves quantum memory for long times without requir-
ing excessive data, but it leaves several open questions.
(1) Does DD preserve quantum memory for an arbifrary
state? (2) Is T = Tpyip the best choice empirically? (3)
How effective is DD for short times? In the Haar-interval
demonstration, we address all of these questions. This
setting—of short times and arbitrary states—is particu-
larly relevant to improving quantm computations with
DD [31,35,39.96]. For example, DD pulses have been
inserted into idle spaces to improve circuit performance
[43,45.47.97,98].

In contrast to the Pauli demonstration, where we fixed
the pulse delay d =0 and the symmetry { = a [see
Egs. {35a) and (35b)] and varied 1, here we fix { = T and
vary d and ¢, writing f:(d, {:f). Furthermore, we now
sample over a fixed set of 25 Haar-random states instead
of the six Pauli states. Note that we theoretically expect
the empirical Haar average over n states Epjpa[f] =
(1/m) E:L]f;ﬂl':';} for |4r,} ~ Haar to converge to the true
Haar average (f.)yasr for sufficiently large n. As shown by
Fig. 1{c), 25 states are enough for a reasonable empirical
convergence, while keeping the total number of circuits to
submit and run on IBM() devices manageable in practice.

The Haar-interval demonstration procedure is now as
follows. For a given DD sequence and time T, we sam-
ple fo(d.£;8) for £ = {a. s} from d =0 to d = dpay for
eight equally spaced values across 25 fixed Haar-random
states and ten calibration cycles (250 data points for each d
value). Here d = 0 and d = dp,x correspond to the tightest
and sparsest pulse placements, respectively. At dpa., we
consider only a single repetition of the sequence during
the time window T. To make contact with DD in algo-
rithms, we first consider a short-time limit T = Tsenor &=
4 ps, which is the amount of time it takes to apply five

Unrotate

Jaaal

Py P

L

f11+d f*a+d

0)

A PoH frvd(1-aniH Ut

f'l:,_]'l"d

HoHZ

FIG. 2.

The “guantum memory™ circuit that underlies all of our demonstrations. By sampling the circuit using 8192 shots, we

estimate the Uhlmann fidelity, f-{#) in Eq. {43), between the prepared initial state and the final state under the DD sequence
Py Pafey - - - Py, We have included an additional adjustable pulse interval f;, where we set d = 0 for the Pauli demonstration
(Sec. I A) and systematically vary d for the Haar demonstration (Sec. [I1 B). The choice of & = 0 (1) corresponds to an asymmetric

(symmetric) placement of the additional delays.
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controlled-NoOT (CNOT) gates on the DD qubit. As shown by
the example fidelity decay curves of Fig. 1{a), we expect
similar results for T < 15 ps before fidelity oscillations
begin. To make contact with the Pauli demonstration, we
also consider a long-time limit of T = 75 ps. Finally, to
keep the number of demonstrations manageable, we only
optimize the interval of the best-performing UR. sequence,
the best-performing QDD sequence, as well as CPMG,
XY4, and free evolution as constant reference sequences.

IV. RESULTS

We split our results into three subsections. The first two
summarize the results of demonsirations aimed at preserv-
ing Pauli eigenstates (Sec. 111 A) and Haar-random states
{Sec. III B). In the third subsection, we discuss how theo-
retical expectations about the saturation of CDDy, [95] and
UR,, [59] compare to the demonstration results.

A. The Pauli demonstration result: DD works and
advanced DD works even better

In Fig. 3, we summarize the results of the Pauli demon-
stration. We rank each device's top-ten sequences by
median performance across the six Pauli states and ten or
more calibration cycles, followed by CPMG, XY4, and

free evolution as standard reference sequences. As dis-
cussed in Sec. 11 A, the fipure of merit is the normalized,
time-averaged fidelity at 75 ps [see Eq. (44)] that is a
long-time average.

The first significant observation is that DD is better
than free evolution, consistent with numerous previous DD
studies. This is evidenced by free evolution (Free) being
close to the bottom of the ranking for every device.

Secondly, advanced DI sequences outperform Free and
CPMG, XY4 (shown as dark-blue and light-blue vertical
lines in Fig. 3). In particular, 29 out of the 30 top sequences
across all three devices are advanced—the exception being
XY4 on ibmg_armonk. These sequences perform so well
that there is a 50% improvement in the median fidelity
of these sequences (0.85-0.95) over Free (0.45.55). The
best sequences also have a much smaller variance in per-
formance, as evidenced by their smaller interquartile range
in F. For example, on ibmg armonk 75% of all demon-
stration outcomes for Fupps,, (75 ps) fall between 0.9 and
0.95, whereas for Free, the same range is between (.55 and
0.8. Similar comparisons show that advanced DD beats
CPMG and XY4 for every device to varying degrees.

Among the top advanced sequences shown, 16/29 ~
55% are UDD or DD, which use nonuniform pulse
intervals. On the one hand, the dominance of advanced

Armonk Bogota Jakarta
Cm—— |
UDDx 351 i | QDD il 1 4 QDD 4} HH
.:_:\i'ﬁ: L i H 1 UDDx 24} s i_| 4 !..TR|-:}' =H
UDDx a4t FolH 1 QODD44} — =_| 1 RGAg | i b
QDD sr Kl { QDDy4f —amH {  URg . m
QDD;sf | HIl 1 QDD = | 1 URsyr ' Hi
QDD 5t :, 1  URapt H 4: {1 CDDgt — -
UR 20 H 1 UDDx a5f —f—  { QDDugt i HE
QDD 3¢ e 1 (DDjp —aH— | CDDsf | [ 1
xy4l | ] RGAL — + RGAst | L
UDDx (g} = 1 RGA 2.} —] —: 1 CDDsf Hi
UDDx o Haff | CPMG| H H | CPMG| Hi —
CPMG | [— = . H 1 . Y4l Y -+
Free[ H . Free| H —!—i 1 Free [ |Hils |
e 0% - Li 0.6 0.8 .0 0.6 0.8 I.0
Time-averaged fidelity Time-averaged fidelity Time-averaged fidelity
FIG. 3. A summary of the Pauli demonstration results for all three devices. The top-ten sequences are ranked from top to bottom

by median average fidelity [Eq. (44)] for the listed time T'= 75 ps. Also displayed in all cases are CPMG and XY4 along with
free evolution (Free). Colored vertical lines indicate the median fidelity of the correspondingly colored sequence (best UR, best
QDD, CPMG, XY4, and free evolution). Thin white lines through the orange boxes indicate the median fidelities in all other cases.
Otherwise, the conventions of Fig. 1{b) apply. Two main observations emerge. (1) DD systematically outperforms free evolution as
indicated by “Free” being at the bottom. The corresponding dash-dot red vertical line denotes the median average fidelity of Free,
Frree(75 ps), which is below 0.6 on every device. (2) Advanced DD sequences, especially the UDD and QDD families, provide a
substantial improvement over both CPMG and XY4azthe best median performance of the top sequence is indicated by a solid green
line, Fyya(75 ps) by a cyan line, and Frpyg (75 ps) by a dark blue line.
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DD strategies, especially UDD and (DD, is not surpris-
ing. Afier all, these sequences were designed to beat the
simple sequences. On the other hand, as reviewed above,
many confounding factors affect how well these sequences
perform, such as finite pulse-width errors and the effect of
the rotating frame. It is remarkable that despite these fac-
tors, predictions made based on ideal pulses apply to actual
noisy quantum devices.

Finally, we comment more specifically on CPMG and
XY4 as these are widely used and well-known sequences.
Generally, they do better than free evolution, which is
consistent with previous results. On ibmqg armmonk XY4
outperforms CPMG, which outperforms free evolution. On
ibmq bogota, both XY¥4 and CPMG perform compara-
bly and marginally better than free evolution. Finally, On
ibmg_jakarta XY4 is worse than CPMG—and even free
evolution—but the median performance of CPMG is sub-
stantially better than that of free evolution. It is tempting
to relate these results to the relative values of T7 and T3,
as per Table 1L, in the sense that CPMG is a single-axis-
(“pure-X") type sequence [Eq. (10)] that does not suppress
the system-bath o* coupling term responsible for T relax-
ation, while XY'4 does. Nevertheless, a closer look at Fig. 3
shows that such an explanation would be inconsistent
with the fact that both single-axis and multiaxis sequences
are among the top-ten performers for ibmg armonk and
ibmq_bogota.

The exception is ibmq jakarta, for which there are
no single-axis sequences in the top ten. This processor
has a much smaller 75 than T} (for ibmg armonk and
ibmq_bogota, T} = T3), so one might expect that a single-
axis sequence such as UDD or CPMG would be among the
top performers, but this is not the case. In the same vein,
the top-performing asymmetric QDD,, ,, sequences all have
n < m, despite this opposite ordering of T; and T5. These
results show that the relative value of T} with respect to
T; for a given device is not predictive of DD sequence
performance as simply as suggested by theory.

B. Haar-interval demonstration resulis: DD works on
arbitrary states, and increasing the pulse interval can
help substantially

We summarize the Haar-interval demonstration results
in Fig. 4. Each plot corresponds to fo(d, £*:f) as a func-
tion of 4, the additional pulse-interval spacing. We plot the
spacing in relative units of d/d_,. i.e., the additional delay
fraction, for each sequence. The value dp., corresponds to
the largest possible pulse spacing where only a single repe-
tition of a sequence fits within a given unit of time. Hence,
dmzx depends both on the demonstration time 7" and the
sequence tested, and plotting d & [0, dpay] directly leads to
sequences with different relative scales. Normalizing with
respect to dpa, therefore makes the comparison between
sequences easier to visualize in a single plot.

For each device, we compare CPMG XY4 the best
robust sequence from the Pauli demonstration, the best
nonuniform sequence from the Pauli demonstration, and
Free. The best robust and nonuniform sequences corre-
spond to UR, and QDD,, for each device. We only
display the choice of ¢ with the better optimum, and the
error bars correspond to the inner-quartile range across
the 250 data points. These error bars are similar to those
reported in the Pauli demonsiration.

L. d = 0: DD also continues to outperform free
evelution over Haar-random states

The d =0 (i.e., additional delay fraction d/dna, = 0)
limit is identical to those in the Pauli demonstration, ie.,
with the minimum possible pulse spacing. The advanced
sequences, UR, and QDD, ., outperform Free by a large
margin for short times and by a moderate margin for long
times. In particular, they have higher median fidelity, a
smaller interquartile range than Free, and are consistently
above the upper quartile in the short-time limit. But, up to
error bars, UR, and QDD, ,, are statistically indistinguish-
able in terms of their performance, except that UR, has a
better median than QDD,, ,, for ibmq_jakarta.

Focusing on CPMG, for short times, it does slightly
worse than the other sequences, yet still much better
than Free, but for long times, it does about as poorly
as Free. On ibmqg bopota and ibmgq jakarta, XY4 per-
forms significantly worse than UR, and QDD, . and is
always worse than CPMG. The main exception to this rule
is ibmq armonk where XY4 is comparable to UR, and
QDD,,, in both the short- and long-time limits.

Owerall, while all sequences lose effectiveness in the
long-time limit, the advanced sequences perform well
when the pulse spacing is d = (.

2. d = 0: Increasing the pulse inferval can improve DD
performance

It is clear from Fig. 4 [most notably from Fig. 4{d)]
that increasing the pulse interval can sometimes signif-
icantly improve DD performance. For example, consid-
ering Fig. 4(a), at 4 =0 CPMG is worse than the other
sequences, but by increasing d, CPMG matches the per-
formance of the sequences. The same qualitative result
occurs even more dramatically for long times [Fig. 4(b)].
Here, CPMG goes from a median fidelity around 0.6—as
poor as Free—to around 0.9 at d/d,, & 0.55. The signif-
icant improvement of CPMG with increasing 4 is fairly
generic across devices and times, with the only exception
being ibmq jakarta and long times. Thus, even a simple
sequence such as CPMG {or XY4, which behaves sim-
ilarly) can compete with the highest-ranking advanced
sequences if the pulse interval is optimized. Unsurpris-
ingly, optimizing the pulse interval can help, but the degree
of improvement is surprising, particularly the ability of
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FIG. 4. Summary of the Haar-interval demonstration across the three devices. We explore the relationship between the median
fidelity f.{d,Z*:f) across Haar-random states as a function of the relative spacing of the pulse intervals, d/dpa,. The value dpay
corresponds to the largest possible pulse spacing where only a single repetition of a sequence fits. While dpey is a sequence-dependent
quantity, we sample d/dngy evenly regardless of the sequence. For a given device and T, we plot the best robust sequence (UR,,) and
the best nonuniform sequence QDD, , from Fig. 3, as well as CPMG, XY4, and free evolution as reference sequences. The Free curve
has a solid line for its median and a dashed line above and below, representing its upper and lower quartiles. The parameters n, m
in QDD, , are chosen so that the sequence fits the time window. The left and right columns correspond to short (T = Tsenor) and
long times (T = 75 ps), respectively. The confidence intervals are upper and lower quartiles—75% and 25% of all fidelities lie below
them, respectively. When the interval is not visible, this is because it is smaller than the marker for the median. Both asymmetric (open
symbols) and symmetric (filled symbols) sequences were considered, but we display only the better of the two (for some empirically
optimal &*). (al) Armonk short time, Tsenor = 5 ps. (a2) Armonk long time, T = 75 ps. (bl) Bogota short time, Tsenor = 4.65 ps.
(b2} Bogota long time, T = 75 ps. (cl) Jakarta short time, Tsenor = 3.27 ps. (c2) Jakarta long time, T = 75 ps.

simple sequences to match the performance of advanced — d/dpay = 1). For CPMG at T= 75 ps, this comresponds
ones. to applying a pulse on average every 37.5 ps; this cer-
tainly does not obey the principle of making t small,

implied from error terms scaling as (™) as in the stan-

3. d = diygy: Performance at the single-cycle limit dard theory. There is always a trade-off between combating

In a similar vein, it is notable how well sequences do in noise and packing too many pulses on real devices with
the d = d,, limit (at the right of each plot in Fig. 4 where  finite width and implementation errors. Incoherent errors
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result in a well-documented degradation that reduces the
cancelation order for most of the sequences we have con-
sidered; see Sec. [[B. In addition, coherent errors build
up as oscillations in the fidelity; see Sec. 11 E. Low-order
sequences such as CPMG and XY4 are particularly sus-
ceptible to both incoherent and coherent errors, and are
therefore expected to exhibit an optimal pulse interval.
Moreover, the circuit structure will restrict the pulse inter-
val when implementing DI} on top of a quantum circuit.
The general rule gleaned from Fig. 4 is to err toward the
latter and apply DD sparsely. In particular, d = dpg, results
in a comparable performance to d =0 or a potentially
significant improvement.

Nevertheless, whether dense DD is better than sparse
DD can depend on the specific device characteristics,
desired timescale, and relevant metrics. As a case in point,
note the Haar demonstration results on ibmgq_jakarta in
the long-time limit. Here, most sequences—aside from
XY4 deteriorate with increasing 4. Surprisingly, the
best sirategy in median performance is XY4, which
does come at the cost of a sizeable inner-quartile
range.

UR, for 4 = 0 does substantially better than Free for
all six panels, which is an empirical confirmation of its
claimed robustness. Even for 4 > 0, UR, remains a high-
fidelity and low-variance sequence. Since other sequences
only roughly match UR, upon interval optimization, using
a robust sequence is a safe default choice.

C. Saturation of the CDD and UDD sequences, and an
optimum for the UR sequence

In Fig. 5, we display the time-averaged fidelity from
ibmq_bogota for CDD,, UR,, and UDD,_  as a function
of n. Related results for the other DD sequence families
are discussed in Appendix E. As discussed in Sec. ITA 2,
CDD, performance is expected to saturate at some fgy,
according to Eq. (20). In Fig. 5(a), we observe evidence of
this saturation at n,p = 3 on ibmgq_bogota. We can use this
to provide an estimate of € = ||Hg|| + || Hsp||. Substituting
Hopt into Eq. (20) we find that

TeA e [47°,47Y =[9.77 x 107%,3.91 x 107%]. (45)
This means that €A < | (we set T # 1), which confirms
the assumption we needed to make for DD to give a
reasonable suppression given that XY4 yields Q(et”) sup-
pression. This provides a level of empirical support for
the validity of our assumptions. In addition, A = 5] ns
on ibmg_bogota, so we conclude that e 7= 0.5 MHz. Since
qubit frequencies are roughly @y, =~ 4.5-5 GHz on IBM
devices, this also confirms that wy & €, as required for a
DD pulse. We observe a similar saturation in CDD, on
Jakarta and Armonk as well (Appendix E).

Likewise, for an ideal demonstration with fixed time
T, the performance of UDDx, should scale as O(r"),
and hence we expect a performance that increases
monotonically with n. In practice, this performance should

(a) (b) (c)
Xvap  f H e H o urd | !
UDDxa} — —
CDDs} H —1 1 URpt -
UDDxq} f—r +H
CDDst —1 URzo} i
UDDx 0} — 1
CDDyr — - URsql 1
y | —— UDDxasl —m 50 — i
CDDs; F—H 1 UDDxas| i | URiop |l
04 06 08 10 04 06 08 10 04 06 08 10
Time-averaged fidelity Time-averaged fidelity Time-averaged fidelity

Comparison of CDD seguences on Bogota

Comparison of UDD sequences on Bogota

Comparison of UR sequences on Bogota

FIG. 5. Average fidelity f.(f) at 75 ps for (a) CDD,,me({l,...,5], (b) UDD,.ne[1,2,9,24,25}, and (c) UR,.mne
{6, 10,20, 50, 100]. All three sequence families exhibit saturation on ibmg_bogota as we increase n, as expected from theory [39,59,76].
The vertical purple line denotes the median performance of the comespondingly colored sequence in each panel, which is also the

top-performing sequence by this metric.
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saturate once the finite pulse-width error O(A) is the
dominant noise contribution [76]. Once again, the UDDy,
sequence performance on ibmg_bogota is consistent with
theory. In particular, we expect (and observe) a consistent
increase in performance with increasing n until perfor-
mance saturates. While this saturation is also seen on
Armonk, on Jakarta UDDx, s performance differs signif-
icantly from theoretical expectations (see Appendix E).
UR,;, also experiences a trade-off between error sup-
pression and noise infroduced by pulses. After a certain
optimal n, the performance for UR,, is expected to drop
[59]. In particular, while UR,, yields ((e!’*) suppression
with respect to flip-angle errors (Sec. [1 B 3), all UR,, pro-
vide ((t?) decoupling, i.e., adding more free evolution
periods also means adding more noise. Thus, we expect
UR,, to improve with increasing n until performance sat-
urates. On ibmg bogota, by increasing up to UR,,, we
gain a large improvement over URy, but increasing fur-
ther to URsy or UR,y results in a small degradation in
performance; see Fig. 5. A similar saturation occurs with
ibmg_jakarta and ibmg_armonk (see Appendix E).

V. SUMMARY AND CONCLUSIONS

We performed an extensive survey of ten DD fami-
lies (a total of 60 sequences) across three superconducting
IBM devices. In the first set of demonstrations (the Pauli
demonstration, Sec. II1 A), we tested how well these 60
sequences preserve the six Pauli eigenstates over rela-
tively long times (2573 ps). Motivated by theory, we used
the smallest possible pulse interval for all sequences. We
then chose the top-performing (JDD and UR sequences
from the Pauli demonstration for each device, along with
CPMG, XY4, and free evolution as baselines, and studied
them extensively. In this second set of demonstrations (the
Haar demonstration; Sec. III B), we considered 25 (fixed)
Haar-random states for a wide range of pulse intervals, 7.

In the Pauli demonstration (Sec. Il A), we ranked
sequence performance by the median time-averaged
fidelity at T =75 ps. This ranking is consistent with
DD theory. The best-performing sequence on each device
substantially outperforms free evolution. Moreover, the
expected deviation, quantified using the inner-quartile
range of the average fidelity, was much smaller for DD
than for free evolution. Finally, 29 out of the 30 best-
performing sequences were “advanced” DD sequences,
explicitly designed to achieve high-order cancelation or
robusiness to control errors.

We reported pointwise fidelity rather than the coarse-
grained time-averaged fidelity in the Haar-interval demon-
stration (Sec. 11 B). At T = 0, the Haar-interval demon-
stration is identical to the Pauli demonstration except for
the expanded set of states. Indeed, we found the same hier-
archy of sequence performance between the two demon-
strations. For example, on ibmg jakarta, we found that

XY4 = CPMG < QDD, ¢ < UR,y for both Figs. 3 and 4.
This sugpests that a test over the Pauli states is a good
proxy to Haar-random states for our metric.

However, once we allowed the pulse interval (1) to vary,
we found two unexpected results. First, contrary to expec-
tations, advanced sequences, which theoretically provide
a better performance, do not retain their performance
edge. Second, for most devices and times probed, DD
sequence performance improves or stays roughly constant
with increasing pulse intervals before decreasing slightly
for very long pulse intervals. This effect is particularly
significant for the basic CPMG and XY4 sequences. Relat-
ing these two results, we found that with pulse-interval
optimization, the basic sequences’ performance is stafis-
tically indistinguishable from that of the advanced UR and
QDD sequences. In stark contrast to the theoretical predic-
tion favoring short intervals, choosing the longest possible
pulse interval, with one sequence repetition within a given
time, is generally better than the minimum interval. The
one exception to these observations is the ibmq_jakarta
processor for T = 75 ps, which is larger than its mean
T3 of 20.7 ps. Here, the advanced sequences significantly
outperform the basic sequences at their respective opti-
mal interval values (t = 0 for the advanced sequences),
and DD performance degrades with sufficiently larpe pulse
intervals. The short 7> for ibmq_jakarta is notable, since in
contrast, T = 75 ps < {T3) for both ibmg_armonk ((T3) =
230 ps) and ibmq bogota ({T3) = 146 ps). We may thus
conclude that, overall, sparse DD is preferred to tightly
packed DD, provided decoherence in the free evolution
periods between pulses is not too strong.

The UR sequence either matched or nearly matched the
best performance of any other tested sequence at any t for
each device. It also achieved near-optimal performance at
T = {} in four of the six cases shown in Fig. 4. This iz a
testament to its robusiness and sugpests that the UR, fam-
ily is a good generic choice, provided an optimization to
find a suitable n for a given device is performed. In our
case, this meant choosing the top-performing UR, mem-
ber from the Pauli demonstration. Alternatively, our results
suggest that, as long as T < T3, one can choose a basic
sequence and likely achieve comparable performance by
optimizing the pulse interval. In other words, optimizing
the pulse interval for a given basic DD sequence or opti-
mizing the order of an advanced DD sequence at zero
pulse interval are equally effective strategies for using DD
in practice. However, the preferred strategy depends on
hardware constraints. For example, if OpenPulse access
{or a comparable control option) is not available so that
a faithful UR, implementation is not possible, one would
be constrained to optimizing CPMG or XY4 pulse inter-
vals. Under such circumstances, where the number of DD
optimization parameters is restricted, using a variational
approach to identify the remaining parameters (e.g., pulse
intervals) can be an effective approach [97].

064027-15



NIC EZZELL ef al.

PHYS. REV. APPLIED 20, 064027 (2023)

Owerall, theoretically promising, advanced DD seque-
nces work well in practice. However, one must fine-tune
the sequence to obtain the best DD performance for a
given device. A natural and timely extension of our work
would be developing a rigorous theoretical understanding
of our observations, which do not always conform to pre-
vious theoretical expectations. Developing DD sequences
for specific hardware derived using the physical model
of the system instead of trial-and-error optimization, or
using machine leaming methods [99], are other interest-
ing directions. A thorough understanding of how to tailor
DD sequences to today’s programmable quantum comput-
ers could be vital in using DD to accelerate the attainment
of fault-tolerant quantum computing [39].

The code and data that support the findings of this study
are openly available from Zenodo [100]. In more detail,
this citable Zenodo repository contains (i) all raw and
formatted data in this work (including machine calibra-
tion specifications), (ii) PYTHON code to submit identical
demonstrations, (iii) the Mathemafica code used to analyze
the data, and (iv) a brief tutorial on installing and using the
code as part of the GitHub ReadMe.
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APPENDIX A: SUMMARY OF THE DD
SEQUENCES BENCHMARKED IN THIS WORK

Here we provide definitions for all the DD sequences
we tested. To clarify what free evolution periods belong
between pulses, we treat uniform and nonuniform pulse-
interval sequences separately. When possible, we define
a pulse sequence in terms of another sequence (or entire

DD sequence) using the notation [-]. In addition, several
sequences are recursively built from simpler sequences.
When this happens, we use the notation § = 5([s2]),
whose meaning is illustrated by the example of CDD,

[Eq. (15)].

1. Uniform pulse-interval sequences

All the uniform pulse-interval sequences are of the form

ﬂ_P1 _ﬁT_PE_ﬁT_"'_ﬁI_Pﬂ_Jﬁ" IM}
For brevity, we omit the free evolution periods in the
following definitions.

We distinguish between single-axis and multiaxis
sequences, by which we mean the number of orthogo-
nal interactions in the system-bath interaction (e.g., pure
dephasing is a single-axis case), not the number of axes
used in the pulse sequences.

First, we list the single-axis DI sequences:

Hahn = X, (Ala)
super-Hahn/RGA,, = X — X, (A2b)
RGA,;, =Y-7, (A2c)

CPMG =X — X, (A2d)
super-CPMG =X — X — X —X. (A2e)

Second, the UR,, sequence for n = 4 and even n is defined
as

UR, = (m)g; — (g — -+ — (W), (A3a)
k— k-2
= D00 Lt 1, (A3D)
ptim _ T gUmi) _ i : (A3c)
2m+1

where (), is a 7 rotation about an axis that makes an
angle ¢» with the x axis, ¢ is a free parameter usually set to
0 by convention, and ¢»» = /2 is a standard choice we use.
This is done so that URy = XY 4, as discussed in Ref. [59]
(note that despite this UR,; was designed for single-axis
decoherence).

Next, we list the multiaxis sequences. We start with the
Y4 sequence and all its variations:

HcoD=¥Y—-Y-Y_X, (Ada)
CDD, = XY4([CDD,_1]), (A4b)
RGA,=Y—-X-T7—X, (Adc)

RGN =F-F T~ F (A4d)

RGA;/XYR=K—Y=X ¥Y=F-K =F—X,

(Ade)
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RGAs, =X -Y-X-F

r-¥x-yY-%.
(A4f)

super-Boler =X — ¥ X -¥Y—F—-X-—¥F-X_—-X
—FiF_TFoT-X=F—X, (A%E)
KDD = [Ky2] — [Ko] — [Kzj2] — [Ko].  (A4h)

Here K is a composite of five pulses:

Ky = (M)npspe — (Mg — (Mnpoig — (g — (X )ussrs.
(AS5)

For example, (m)y =X and (7 )x;z = ¥. The series K(g)
is itself a w rotation about the ¢ axis followed by a
—m /3 rotation about the z axis. To see this, note that
a 7 rotation about the ¢ axis can be written (mw)y =
Re{—d)Ry(—m [2)Re () Ry(mw /2)Rx(¢p), and one can ver-
ify the claim by direct matrix multiplication. KDD (A4g)
is the Knill-composite version of X'Y4 with a total of 20
pulses [58.62]. Note that the altemation of ¢ between 0
and 7 /2 means that successive pairs give risetoa —m /3 +
/3 = 0 z rotation at the end.
Next, we list the remaining multiaxis RGA sequences:

RGA 155 = RGA4, ([RGA,,]), (A6a)
RGAz,; = RGA4([RGAg]), (A6b)
RGAz, = RGAg([RGA4]), (A6c)
RGAgse = RGAg ([RGAg]), (Abd)
RGAss = RGAg([RGAg]), (Abe)

RGA;56, = RGA4([RGAG, D). (Abf)

2. Nonuniform pulse-interval sequences

The nonuniform sequences are described by a general
DD sequence of the form

Jij—=Pi=fg = g — P (AT)

for pulses F; applied at times f, for 1 <j < m. Thus, for
ideal, zero-width pulses, the interval times are 7, = —
t;_y with f = 0 and 1, | = T, the total desired duration of
the sequence.

a. Ideal UDD

For ideal pulses, UDDx, is defined as follows. For
a desired evolution time 7T, apply X pulses at times f;

given by
: jm
t, = T'sin’
=T (2n+2)

forj=1,2,....nifnisevenand j = 1,2,...,n+ 1 if
n is odd. Hence, UDDx, always uses an even number of

(AE)

pulses—un when n is even and n+ | when n is odd——so
that, when no noise or errors are present, UDDx,, faithfully
implements a net identity operator.

b. Ideal QDD

To define QDD, it is useful to instead define UDDx, in
terms of the pulse intervals, 7, =, — f;_,. By defining the
normalized pulse interval,

h— 1 2= i
s;:*’r—l“zsm(E;T) csc (m) (A9)

forj =1.2,....n+ 1, we can define UDDx, over a total
time T,

UDDxﬂ{ﬂ ELLT_X ey __!;',.T_X _J’-TE-HT _Xn"
(A10)

where the notation X" means that the sequence ends with
X (1) for odd (even) n. From this, QDD, , has the recursive
definition

QDD,;, = UDDxp (51 T) — ¥ — UDDXp (5T} — - - -

— UDDx,,(5,T) — ¥ — UDDx,,(5,,,T) — ¥".
(A11)

This means that we implement UDDy,, (the outer ¥ pulses)
and embed an mth-order UDDx,, sequence within the free
evolution periods of this sequence. The inner UDDux,
sequences have a rescaled total evolution time 5; T, since
the decoupling properties depend only on 1, (and not the
total time), we still obtain the expected inner cancelation.
Written in this way, the total evolution time of QDD,, ,, is

S2T, where S, = Y711 5;.

To match the convention of all other sequences pre-
sented, we connect this definition to one in which the total
evolution time of QDD,,,, is itself 7. First, we implement
the outer UDDvy,, sequence with ¥ pulses placed at times
{; according to Eq. (A8). The inner X pulses must now be

applied at times

f; ¢ = T, 8in° i +1 (Al2)
= T; sin o
Ly § 2m+2 T
where j = 1.2.....nifniseven(orj =1.2,...,n4+1

if n is odd), with a similar condition for k£ up to m if m
is even (or m + 1 if m is odd). Note that, when m is odd,
we end each inner sequence with an X', and then the outer
sequence starts where a ¥ must be placed simultaneously.
In these cases, we must apply a £ = XV pulse (ignoring
the global phase, which does not affect DD performance).
Hence, we must apply rotations about X and Z when m is
odd and X and ¥ when m is even. This can be avoided by
instead redefining the inner (or outer) sequence as Z when
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m is odd and then combining terms to get X’ and ¥ again.
In this work, we choose the former approach. It would
be interesting to compare this with the latter approach in
future work.

c. UDD and QDD sequences with finite width pulses

For real pulses with finite width A, these formulas must
be slightly augmented. First, defining f, is ambiguous since
the pulse application cannot be instantaneous at time #,. In
our implementation, pulses start at time f = ¢, — A so that
they end when they should be applied in the ideal case.
Trying two other strategies—placing the center of the pulse
at f, or the beginning of the pulse at {,—did not result in
a noticeable difference. Furthermore, X" and ¥ have finite
width (roughly A = 50 ns). When UDDx, is applied for
even n, we must end on an identity, so the identity must
last for a duration A, ie, / =jf;. A similar timing con-
straint detail appears for QDD,,, when m is odd. Here, we
must apply a Z pulse, but on IBM devices, Z is virtual and
instantaneous (see Appendix B). Thus, we apply £ — fi to
obtain the expected timings.

APPENDIX B: CIRCUIT VERSUS OPENPULSE
APIS

We first tried to use the standard Qiskit circuit API
[49,50]. Given a DD sequence, we transpiled the circuit in
Fig. 2 to the respective device's native pates. However, as
we illustrate in Fig. 6(a), this can lead to many advanced
sequences, such as UR,;, behaving worse than expected.
Specifically, this fipure shows that implementing URay in
the standard circuit way, denoted UR 3y, (where c stands for
circuit), is substantially worse than an alternative denoted
URzgp (where p stands for pulse).

The better alternative is to use OpenPulse [48]. We call
this the “pulse” implementation of a DD sequence. The
programming specifics are provided in Ref. [100]; here, we
focus on the practical difference between the two methods
with the illustrative example shown in Fig. 6(b). Specifi-
cally, we compare the ¥f; ¥f; sequence implemented in the
circuit API and the OpenPulse APL

Under OpenPulse, the decay profiles for |+i) and |—i)
are roughly identical, as expected for the ¥f; ¥f; sequence.
The slight discrepancy can be understood as arising from
coherent errors in state preparation and the subsequent ¥
pulses, which accumulate over many repetitions. On the
other hand, the circuit results exhibit a large asymmetry
between |i} and |—i). The reason is that ¥ is compiled
into £, — X, where Z, denotes a virtual-Z gate [101]. As
Fig. 6(b) shows, Z, — X does nof behave like ¥. The sim-
plest explanation consistent with the results is to interpret
Z,, as an instantaneous Z. In this case, Z |4+1) = |—i) and
the subsequent X rotates the state from |—#) to |[+i) by
rotating through the excited state. The initial state |—i}, on
the other hand, rotates through the ground state. Since the
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FIG. 6. Comparison of the circuit and OpenPulse API
approaches to implementing (a) URzp and (b) ¥f; ¥f.. Panel (a)
demonstrates that the OpenPulse version is substantially better.
This is partially explained by (b). When using OpenPulse, the
¥f: ¥f: sequence behaves as expected by symmetrically protect-
ing |%i). in stark contrast to the circuit implementation, which
uses virtual-Z gates, denoted Z,,.

ground state is much more stable than the excited state on
IBMQ)'s transmon devices, this asymmetry in trajectory on
the Bloch sphere is sufficient to explain the asymmelry in
fidelity [102].

Taking a step back, every gate that is not a simple rota-
tion about the x axis is compiled by the standard circuit
approach into one that is a combination of Z,, X', and K.
These pates can behave unexpectedly, as shown here. In
addition, the transpiler—unless explicitly instructed other-
wise—also sometimes combines a £, into a global phase
without implementing it right before an X gate. Conse-
quently, two circuits can be logically equivalent while
implementing different DD sequences. Using OpenPulse,
we can ensure the proper implementation of (7). This
allows the fidelity of URzg, to exceed that of URzq.

Overall, we found (not shown) that the OpenPulse
implementation was almost always better than or com-
parable to the equivalent circuit implementation, except
for the XY4 sequence on ibmg armmonk, where the XY4,
sequence was substantially better than the XY 4, sequence.
However, the XY4, sequence was not the top-performing
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sequence. Hence, it seems reasonable to default to using
OpenPulse for DD when available.

APPENDIX C: METHODOLOGIES FOR
EXTRACTION OF FIDELITY METRICS

In the Pauli demonstration, we compare the performance
of different DD sequences on the six Pauli eipenstates for
long times. More details of the method are discussed in
Sec. II1 A and, in particular, Figs. | and 2. The resulis are
summarized in Fig. 3 and in more detail in Appendix E.

To summarize the fidelity decay profiles, we have cho-
sen to employ an integrated metric in this work. Namely,
we consider a time-averaged (normalized) fidelity,

I
NAD)

I
U;-{f}}r=?.f d 0

F .
< o Je(D)

(C1)

We combine this metric with an interpolation of fidelity
curves, which we explain in detail in this appendix. We
call the combined approach “interpolation with time aver-
aging” (ITA).

Past work has employed a different method for compar-
ing DD sequences, obtained by fitting the decay profiles to
a modified exponential decay function. That is, to assume
that f,(f) ~ e~*, and then perform a fit to determine A. For
example, in previous work [41], some of us chose to fit the
fidelity curves with a function of the form [103]

Je(Tr ) — fe(D)

fe(t) = T 1

[C(®) — 11+ 1e(0), (C2a)

T(f) = (e cos(ty) + /™), (C2b)
where f.(0) is the empirical fidelity at T = 0, f,(T} ) is the
empirical fidelity at the final sampled time, and ["(f) is the
decay function that is the subject of the fitting procedure,
with the three free parameters A, p, and o. This worked
well in the context of the small set of sequences studied in
Ref. [41].

As we show below, in the context of our present survey
of sequences, fitting to Eq. (C2a) results in various tech-
nical difficulties, and the resulting fitting parameters are
not straightforward to interpret and rank. We avoid these
technical complications by using our integrated (or aver-
age fidelity) approach, and the interpretation is easier to
understand. We devote this appendix to primarily explain-
ing the justification of these statements, culminating in our
preference for a methodology based on the use of Eq. (C1).

First, we describe how we bootsirap to compute the
empirical fidelities (and their errors) that we use at the
beginning of our fitting process.

1. Pointwise fidelity estimate by bootstrapping

We use a standard bootstrapping technique [ 104] to cal-
culate the 2o (95% confidence intervals) errors on the
empirical Uhlmann fidelities,

Jol®) = | (W] pra(0) 1W) - (C3)
To be explicit, we generate N, = 8192 binary samples (aka
shots) from our demonstration (see Fig. 2) for a given
{DD sequence, state preparation unitary [J, total DD time
T} 3-tuple. From this, we compute the empirical Uhlmann
fidelity as the ratic of counted ('s normalized by N,. We
then generate 1000 resamples (i.e., N, shots penerated from
the empirical distribution) with replacement, calculating
Jf=T) for each resample. From this set of 1000 f.(T)'s, we
compute the sample mean, (f;) r, and sample standard devi-
ation, oy, where the T subscript serves as a reminder that
we perform this bootstrapping for each time point. For
example, the errors on the fidelities in Fig. 1{a) are 2o
errors generated from this procedure.

2. A survey of empirical fidelity decay curves

(Given a systematic way to compute empirical fidelities
through bootstrapping, we can now discuss the gualita-
tively different fidelity decay curves we encounter in our
demonstrations, as illusirated in Fig. 7. At a high level,
the curves are characterized by whether they decay and
whether oscillations are present. If decay is present, there is
an additional nuance about what fidelity the curve decays
to and whether there is evidence of saturation, i.e., reach-
ing a steady state with constant fidelity. Finally, it matters
whether an oscillation is simple, characterized by a single
frequency, or more complicated. All these features can be
seen in the eight examples shown in Fig. 7, which we now
discuss.

The first four panels in Fig. 7 correspond to curves dom-
inated by decay, but that decay to different final values.
For the first two RGAg, plots, the final value seems sta-
ble (i.e., a fixed point). For CPMG and Free, the final
fidelity reached does not seem to be the projected stable
fidelity. The “Free, |0)" curve does not decay, consistent
with expectations from the stable |0} state on a super-
conducting device. The last three plots show curves with
significant oscillations. For the QDD,; plot, the oscilla-
tions are strong and only weakly damped. For CPMG,
the oscillations are strongly damped. Finally, the KDD
plot is a pathological case where the oscillations clearly
exhibit more than one frequency and are also only weakly

damped.
3. Interpolation versus curve fitting for time-series
data

To obtain meaningful DD sequence performance met-
rics, it is essential to compress the raw time-series data
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FIG. 7. A sample of fidelity decay curves from ibmqg_armonk that showcases the qualitatively different curve types. Each plot shows
curves generated from ten different calibration cycles. Note that all Pauli states are sampled within the same job, so data can be

compared directly without worrying about system drift across different calibrations.

into a compact form. Given a target protection time T, the The box plots we present throughout this work are gen-
most straightforward metric is the empirical fidelity, (7).  erated using Mathematica’s BoxWhiskerChart com-
Given a set of inifial states relevant to some demonstration =~ mand. As a reminder, a box plot is a common method to
(i.e., those prepared in a specific algorithm), one can then = summarize the quartiles of a finite data set. In particular,

bin the state-dependent empirical fidelities across the states  let (J, represent the xth quantile defined as the smallest
in a box plot. value contained in the data set for which x% of the data lies
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below the value (J,. With this defined, the box plot shows
(Jp as the bottom bar (aka the minimum), (s — (75 as the
orange box (aka the inner-quartile range), (s as the small
white sliver in the middle of the inner-quartile range, and
{140 as the top bar (aka the maximum). In our box plots,
we have also included the mean as the solid black line.
A normal distribution is symmetric, so samples collected
from a normal distribution should give rise to a box plot
that is symmeiric about the median and where the mean is
approximately equal to the median.

If there is no predefined set of states of interest, it is rea-
sonable to sample states from the Haar distribution, as we
did for Fig. 4. This is because the sample Haar mean is an
unbiased estimator for the mean across the entire Bloch
sphere. Indeed, for a large enough set of Haar-random
states (we found 25 to be empirically sufficient), the distri-
bution about the mean becomes approximately Gaussian.
At this point, the mean and median agree, and the inner-
quartile range becomes symmeiric about its mean, s0 one
may choose to report {f.(T)) &+ 2o instead.

When there is no target time T, we would like a statis-
tic that accurately predicts performance across a broad
range of relevant times. The empirical fidelity for a given
state at any fixed T is an unreliable predictor of per-
formance due to oscillations in some curves (see, epg.,
QDD, ;, CPMG, and KDD in the last three plots in Fig. 7).
To be concrete, consider that, for QDD ; protecting [+),
(020 ws)) = 0.2, whereas (f;(50 ps)) =~ 0.8. The stan-
dard statistic, in this case, is a decay constant obtained by
a modified exponential fit [e.g., Eq. (C2a)] [41].

So far, our discussion has centered around a statistic that
captures the performance of individual curves in Fig. 7.
i.e., a curve for a fixed DD sequence, state, and calibra-
tion. To summarize further, we can put all found A values
in a box plot. For simplicity, we call any method that fits
individual curves and then averages over these curves a
“fit-then-average™ (FTA) approach. This is the high-level
strategy we advocate for and use in our work. Note that we
include interpolation as a possible curve-fitting strategy as
part of the FTA approach, as well as fitting to a function
with a fixed number of fit parameters. In contrast, Ref. [41]
utilized an “average-then-fit” (ATF) approach, wherein an
averaging of many time series into a single time series was
performed before fitting [105]. Only fitting to a function
with a fixed number of fit parameters was used in Ref. [41],
but not interpolation. We discuss the differences between
the FTA and ATF approaches below, but first, we demon-
strate what they mean in practice and show how they can
give rise to different quantitative predictions. We begin our
discussion by considering Fig. 8.

The data in Fig. 8 correspond to the Pauli demonstra-
tion for free evolution (Free). On the left, we display the
curves corresponding to each of the 96 demonstrations (six
Pauli eigenstates and 16 calibration cycles in this case).
The top curves are computed by a piecewise cubic spline

interpolation between successive points, while the bottom
curves are computed using Eq. (C2a) (additional details
regarding how the fits were performed are provided in
Appendix C9). For a given state, the qualitative form of
the fidelity decay curve is consistent from one calibration
to the next. For |0}, there is no decay. For |1}, there is a
slow decay induced from T relaxation back to the ground
state (hence the fidelity dropping below 1/2). For the equa-
torial states, |+) and |[+i), there is a sharp decay to the fully
mixed state (with fidelity 1 /2) accompanied by oscillations
with different amplitude and frequencies depending on the
particular state and calibration. The |0} and |1} profiles are
entirely expected and understood, and the equatorial pro-
files can be interpreted as being due to T (relaxation) and
T3 (dephasing) alongside coherent pulse-control errors that
give rise to the oscillations. On the right, we display the
fidelity decay curves computed using the ATF approach,
i.e., by averaging the fidelity from all demonstrations at
gach fixed time. The two curves [top, interpolation; bot-
tom, Eq. (C2a)] display a simple decay behavior, which
is qualitatively consistent with the curves in Fig. 2 of
Ref. [41].

In Appendix C 4, we go into more detail about what the
approaches in Fig. 8 are in practice and, more importantly,
how well they summarize the raw data. Before doing so,
we comment on an important difference between the two
left panels of Fig. 8. Whereas the interpolation method pro-
vides consistent and reasonable results for all fidelity decay
curves, the fitting procedure can sometimes fail. A failure
is not plotted, and this is why some data in the bottom right
panel are missing. For example, most fits (15/16) for |0)
fail since Eq. (CZ2a) is not designed to handle flat “decays.”
State |1} also fails 11/16 times, but interestingly, the equa-
torial states produce a successful fitall 16 times. The nature
of the failure is explained in detail in Appendix C 9, but as
a prelude, a fit fails when it predicts fidelities outside the
range [0, 1] or when it predicts a decay constant A with
an unreasonable uncertainty. We next address the advan-
tages of the interpolation approach from the perspective of
extracting quantitative fidelity metrics.

4. ITA versus curve fitting for fidelity metrics

To extract quantitative fidelity metrics from the fitted
data, we compute the time-averaged fidelity [Eq. (C1)] and
the decay constant & [Eq. (C2a)]. The results are shown in
Fig. 9. The box plots shown in this fipure are obtained from
the individual curve fits in Fig. 8. The top panel is the ITA
approach we advocate in this work (recall Appendix C): it
corresponds to the time-averaged fidelity computed from
the interpolated fidelity curves in the top left panel of
Fig. 8. The bottom panel corresponds to fits computed
using Eq. (C2a), i.e., the bottom left panel of Fig. &, from
which the decay constant X is extracted.
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FIG. 8. [Mlustration of the qualitative difference between different fitting procedures with free evolution (Free) data collected on
ibmg_armonk. The empirical data (obtained from six different initial states and 16 calibration cycles, for a total of 96 time series
shown) are identical in the top left and bottom left panels (the open symbols). We employ two different techniques [interpolation
(top) and Eq. (C2a) (bottom)] to fit the data comesponding to individual time series (left) and averaged time series (right). Top left:
curves are computed by interpolation, separately for each time series. Bottom left: curves are computed by fitting each time series to
Eq. (C2a). The fits here must contend with three different types of behavior: constant (no decay: |0} ), pure and slow decay (|1}), and
damped oscillations (the remaining equatorial states). Right: the ATF approach. We first average the fidelity across all the data for
each fixed time and then fit it. Top: we utilize a piecewise cubic spline interpolation between points. Bottom: we use the fit given by
Eq. (C2a). We remark that fitting to Eq. (C2a) fails for some data sets, and this is why the bottom left panel contains fewer curves than
the top left panel. This is explained more in the text and in full detail in Appendix C 9.

Let us first discuss the bottom panel of Fig. 9. First,
we again comment on the effect of fit failures. Since |0)
does not decay, Eq. (C2a) is not appropriate (i.e., A — oo,
which is not numerically stable), and this results in only
1/16 fits leading to a valid A prediction. This is insuffi-
cient data to generate a box plot; hence, the absence of
the |0} data at the bottom. Similar numerical instability
issues—though less severe—arise for all of the fits. For
example, for |1}, only 5,/16 fits succeed. Among those that
do succeed, the variation in A is quite large, varying in the
range [ 103, 346]. When compared to the raw data in Fig. 8,
such a large variation should not be expected. In contrast,
all the fits for the equatorial states succeed, but the vari-
ation in A is again relatively large, in the range [17, 146].
To summarize, fitting Eq. (C2a) to our data has instabil-
ity issues that manifest as (i) failures to fit some data sets
and (ii) large variations in the reported A that are unphys-
ical. The problem is not specific to Eq. (C2a) and indeed
would likely occur for any function that tries to reasonably
model the entire set of curves found in practice, as in Fig. 7.
Apain, this is because (i) not all states decay as an expo-
nential (i.e., the decay if |0} is flat and that of |1) appear

roughly linear), (ii) A and ) are not independent, and (iii)
the notion of A itself depends on the final expected fidelity,
which is state dependent.

We argue that instead the approach of interpolating and
using time-averaged fidelities, i.e., the approach shown in
the top panel of Fig. 9, is preferred. The results shown there
demonstrate that this method gives consistent and reason-
able results for any fixed state. When significant variations
are present (as in the entire data set), it is representative of
the clear difference between initial states visible in Fig. 8
(top left). The key is to choose an appropriate value of T
to average over. When T is too small, it does not capture
the difference between sequences, and when T is too large,
the difference between most DD sequences becomes unob-
servable. As a compromise, we choose T long enough for
oscillatory sequences to undergo at least one but up to a
few oscillation periods.

Beyond the box-plot variation, it is also worth remark-
ing that the FTA mean F of 75 ps in Fig. 9 (top; blue
dashed line) is equal to the ATF F value for the interpola-
tion approach (top; green dash-dot line), i.e., the averaging
and fitting operations commute in this sense. Hence, the
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FIG. 9. Summary of the integrated and fitting approaches
when applied to the Free curves in Fig. 8. For both of the resulting
metrics, we display a state-by-state box plot showing the vara-
tion in the reported statistic over the 16 calibration cycles. Top:
for each of the 6 = 16 interpolated curves, we compute a time-
averaged fidelity at T =75 ps, using Eq. (Cl). These average
fidelities are shown in box-plot format, separated by state and
also combined together. Bottom: we attempt to extract A for each
of the 6 x 16 (|0} fails 15/16 times and |1} fails 11/16 times)
curves fitted to Eqg. (C2a) and shown in Fig. 8. The results are
shown in box-plot format, again separated by state and also com-
bined together. Top and bottom: also shown are the median (red
line) and mean (blue dashed line) of these FTA results. The green
dashed line is the ATF result (in this case, there is just a sin-
gle number, and hence no varation over calibration cycles or
states). The FTA (blue) and ATF (green) curves agree in the top
panel, as expected of a reasonable method, whereas they disagree
significantly in the bottom panel.

ITA approach has the nice property that we can recover
the coarse-grained ATF-integrated fidelity result from the
granular box-plot data by taking a mean. The same is
not true of fitting where the two mean values of A differ,
as in the bottom panel of Fig. 9 (dashed blue and green
lines). For the interpretation issues of fitting explained in
Appendices C 5 and C 6 below, alongside the practical rea-
sons explained here, we conclude that the ITA method we
use in this work is preferred to methods that attempt to
directly extract the decay constant from curve fitting to
functions such as fp(f). The ITA method is more versatile
and yields more stable and sensible results. Notably, it is

also granular and able to capture the behavior of individ-
ual (DI sequence, state) pairs. This granularity allows for
finer comparisons to theory (as discussed in Sec. [ E) and
also leads to practical benefits in our DID design, as seen in

Appendix B.

5. The “ambiguous 1™ problem and its resolution with
ITA

In the previous subsection, we established that the tech-
nical difficulties encountered when using FTA as compared
to ATF are resolved by interpolating and time averaging
the fidelity [ITA, Eq. (Cl1)], instead of averaging and then
fitting to a decay profile [Eq. {(C2a)]. In this subsection, we
provide further arguments in favor of the ITA approach.

First, we take a step back and discuss what we call
the “ambipuous A" problem when attempting to fit our
data using standard models such as Eq. (C2a). Practi-
cally, this problem makes A an unreliable estimator of DD
sequence performance without additional information, and
this additional information does not lead to a simple rank-
ing. As we discuss below, this problem is generic and
persists whether we consider individual decay curves or
averaged curves. We argue that our time-averaged fidelity
metric is a reliable estimator of performance for the top
sequences and resolves this issue. A fter this practical rank-
ing consideration, we consider the statistical meaning of
the FTA and ATF approaches in the context of current
noisy quantum devices and again argue in favor of the FTA
approach.

The crux of the issue lies in the desired interpretation of
the final statistic. In the ATF approach, the final decay con-
stant A gives an estimate of how well DD does on average
over an ensemble of demonstrations. While this might be
an appropriate metric for some benchmarking demonstra-
tions, it is not typical of any given memory demonstration
or algorithm. Here, we are interested in how well we expect
a DD sequence (or free evolution) to preserve an unknown
but fixed input state [} in any given demonstration, and
as we show below, ITA is better at addressing this “typical
behavior™ question.

As we mentioned, there is an “ambiguous A problem”™
when we try to interpret the meaning of the decay con-
stant in Eq. (C2a). In particular, the notion of decay in this
equation is not just a function of A but also of f.(Tr) —
J.(0) and y, and these fit parameters are not mutually
independent. To make this concrete, consider the four (arti-
ficial example) curves shown in Fig. 10 (top panel). These
curves do not preserve fidelity equally, and vet, by con-
struction, they all have decay time A = 50 ps. Neverthe-
less, the time-averaged fidelity, F (75 ps), does distinguish
between the four curves sensibly (middle panel). First, the
time-averaged fidelity metric predicts that c; is the best
curve and c; is the second best, which indeed seems rea-
sonable from the curves alone. On the other hand, c; = c4
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FIG. 10. Examples demonstrating the problem with using &
to rank performance. Top: four different artificially gemerated
fidelity curves from Eq. (C2a) with the same A value. The leg-
end labels each curve with c; and lists the value of y and f.(Ty )
used to generate it. Middle: the time-averaged fidelity evaluated
at 75 s for each curve. This metric differs for each curve. Bot-
tom: the best sequences—such as ranks 1 and 10 in Fig. 3—do
not exhibit oscillations across the six Pauli states.

is debatable and depends on the desired time scale. Had we
chosen, e.g., 120 = T < 150 ps, we would have found that
€4 > 3. Such ambiguities are inevitable when oscillations
of different frequencies are present with no preferred target
time 7. However, the best sequences do not have oscilla-
tions across the Pauli states, as we see by example in the
bottom panel of Fig. 1{}. Thus, this time-averaged fidelity
ambiguity for oscillatory curves does not affect the rank-
ing of the top sequences, which we present in Fig. 3 as the
main result of the Pauli demonstration. We remark that we
choose to plot example curves with the same A to avoid
complications with fitting noisy data, but that the real data

we have already encountered also faces the “ambiguous A
problem™ due to noise.

6. Job-to-job fluctuations complicate comparing data
from different jobs

We conclude our arguments in favor of the ITA
approach by bringing up a subtle problem in the usage
of cloud-based quantum devices. At a high level, users
of cloud-based devices often have an implicit assumption
that data taken within a fixed calibration cycle all come
from roughly the same distribution. Hence, the approach
of taking data for many states, averaging, and then fit-
ting (the ATF approach) is sensible. In other words, the
average over states is the Haar average computed on the
device with the given backend properties. However, this
is not generally true for all demonstrations. Some rele-
vant quantum memory demonstrations (such as probing
Free fidelities) violate this assumption, and data taken from
one job are as if sampled from a different distribution if
not appropriately handled. In this sense, we argue against
naive averaging of data not taken within the same job.
Whenever possible, we prefer to only make direct com-
parisons within a single job unless stability is empirically
observed.

To justify this caution, we carefully test the veracity of
standard a priori assumptions on a series of identical (pro-
cedurewise) Free demonsirations on ibmg armonk. The
Free demonstration procedure follows the standard DD
protocol we established in Fig. 2. Namely, we prepare [+,
idle for 75 ps by applying approximately 1000 identity
gates, unprepare [+), and then measure in the computa-
tional basis. To run statistical tests on the result of this
demonstration, we repeat it many times. Because [BM
quantum computers operate on a queuing system (similar
to a high-performance computing scheduler like Slurm),
there are actually several different ways to repeat a demon-
stration, and as we will show, which way is chosen makes
a difference. This is the reason for the rather pedantic
discussion that follows.

The first notion of repeating a demonstration is to sim-
ply sample the same circuit many times by instructing the
IBM job scheduler (we define “job™ below) to use N, shots.
For example, the simplest possible job testing the above
demonstration consists of sending ibmg_armonk the tuple
(C,N,), where C is the circuit encoding the above Free
demonstration. Upon receiving such a tuple, ibmgq_armonk
samples C for N; shots once the job reaches position one
in the queue. This repetition is the same as discussed in
Appendix C1, and hence is the basis of estimating the
empirical fidelity f; [Eq. (C3)] by bootstrapping the N, bit-
sirings. We are interested in the stability of f. and hence
the stability of repeating this entire procedure. Naively, we
could repeatedly send ibmqg _armonk the same tuple in M
different jobs, ie., [J; = (C.NLJ: = (CN). . ..Jy =
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(C,N;)], and compute M estimated empirical fidelities,
[fi./25 - - - .fu]. where we have dropped the e subscript for
simplicity of notation. However, submitting demonsira-
tions this way wastes substantial time waiting in the queue
since J; and J; are not generally nin contiguously due to
other users also requesting jobs.

More generally, a job consists of a list of circuits that
are sampled contipuously, ie., without interruption by
other users. For our purposes, each job .J; shall con-
sist of L; identical demonstration tuples, J; = [Ey; =
(Cr, Nedits EBea = (Co, N s ooy B gy = (G Nodir, 1
which allows us to compute Ly empirical fidelities, Ry =
Ui fezs- - - o Ser,] (Rg standing for result k). Since C;, =
C for all j, the index on C, is technically redundant,
but keeping it helps us make our final point on the
intricacies of collecting data within a job. In particular,
ibmg_armonk samples the L; x N, bitstrings by running
the circuits of J; in the order [Cy, Cs, . .., C; ] as opposed
to [C1]Y - - - [C.]Y, as one might naively expect. The goal
of this strategy is to try and prevent device drift from bias-
ing the results of E;; compared to, e.g., Eg;,. With the
notation defined, we can state exactly what tests we ran.

To generate our data set, we consiructed 67 jobs
Jis.oooy sy with a uniformly random wvalue of [; e
[10,75] (75 is the maximum demonstration allotment on
ibmg armonk), but an otherwise identical set of demon-
strations £y, and submitted them to the ibmq armonk
queue [ 106]. The value in choosing a random L is to check
whether the duration of the job itself has any effect on
results. We coarsely summarize the set of all job results in
Fig. 11, which we call the “stats test data set.” The entire
data set was taken over a 10-h period over a fixed calibra-
tion cycle. In fact, 22 of the 67 jobs were run contiguously
({i.e., one after the other without other user’s jobs being
run in between) [107]. Despite the jobs being localized in
time, there are large jumps in average fi values from job
to job, which violates our @ priori assumption of how sam-
pling from a quantum computer should work within a fixed
calibration cycle. We make this more precise in a series
of assumptions and results that support or reject the given
assumption.

Assumption 1 —Fidelities collected within a fixed job
are normally distributed. Using the above notation, sam-
ples within Ry = [f;1.. .. .fi1] are drawn from a fixed nor-
mal distribution, i.e., fiy ~= N{ s, op) for some unknown
mean and variance.

Result 1 —Assumption 1 is well supported by hypothe-
sis tests (Jarque-Bera, Shapiro-Wilk tests) and visual tests
{box plot, quantile-quantile plot).

The Jarque-Bera test is a means to test whether a sam-
ple of points has the skewness and kurtosis matching that
expected of a normal distribution [108]. We implement it
in Mathematica using the JarqueBeraAlMTest com-
mand. The Shapiro-Wilk test checks whether a set of
sample points has the correct order statistics matching that

2.2

LA
=]

[P
=]

Ly (# experiments in job &)
L &
=

=

=]

= =2 o= o=
fa Lm =2 =J
i
o
-
-
-
i S
"
-~
™
e
oo
-
-
-
™

Empirical fidelity f;

=

Lo
:-u

wa
m
"
-
-

=
i

Job k

FIG. 11. A coarse view of the entire “stats test data set™ taken
on ibmg_armonk. Top: the random value of demonstrations, L; £
[10, 75], chosen for each job. Bottom: the spread of fidelities for
each job summarized in 67 box plots. In our earlier notation, this
is a box plot over the empirical fidelities, R;. All data were taken
within a fixed calibration cycle over a 10-h period, and many
jobs (22/67) are contiguous, e.g., jobs 2 and 3 are run back to
back with no interruption from other users’ jobs. Despite this,
there is a large variation in fidelity from job to job, which does
not seem correlated with the job duration.

expected of a normal distribution [109]. We implement it
using the Mathematica command ShapiroWilkTest.
Both tests are hypothesis tests where the null hypothesis
Hy is that the data were drawn from a normal distribu-
tion and an alternative hypothesis H, that it was not. Like
most hypothesis tests, they are rejection-based methods.
Namely, the tests return a p-value comresponding to the
probability of Hy. If p =< 0.03, we reject the null hypothe-
sis with 95% confidence (this is the default setting for the
Mathematica command that we employ). Otherwise, we
say that the data do not support rejecting Hy—namely, it is
reasonable that a normal distribution could have produced
such a sample. We summarize the results of both tests in
Table IIL

From Table 111, we see that among the 67 jobs, only three
give us cause for concern. Namely, jobs {17, 22, 46} reject
the null hypothesis under the Shapiro-Wilk test. From the
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TABLE III. Summary of jobs where the null hypothesis that
the data are sampled from a normal distribution is rejected with
95% confidence.

Job’s &k where p-values of
Test used Hy rejected rejected jobs
Jarque-Bera test {1
Shapiro-Wilk test [17,22, 46) {0.028, 0.033, 0.048)

bar chart in Fig. 11, these jobs have {12, 59, 45} demonstra-
tions, respectively. Since there are several other jobs with
similar lengths whose data do not reject Hy, there does not

seem to be a correlation between job length and rejection
of normality.

We can also check the nommality of the data visually
using box plots or quantile-quantile ((Q)) plots, as we
do in Fig. 12. Recall that O, represent the xth quantile,
i.e., the smallest value contained in the data set for which
x% of the data lie below the value {J,. The QQ plot is
a way to compare the quantiles of two data sets. In our
case, we compare the quantiles of the sample data set
to that of a normal distribution with the same mean and
standard deviation of the data. Namely, given samples
Ry =[f,....f1,], we compare the quantiles of R; itself
to N (R, sg,), where Ry is the mean of the data and o,
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FIG. 12. Box plots and quantile-quantile (QQ)) plots corresponding to different job data from Fig. 11. The top two rows show the
three jobs that failed the Shapiro-Wilk test for normality. The bottom two rows show three jobs that did not fail the test and are
otherwise chosen to be the first, middle, and last jobs in the set of data. Normality is characterized visually as (i) a symmetric box plot
whose mean and median agree or (ii) a Q0 plot whose data fall approximately along the diagonal. This is best exhibited by the £ = 1
data in the third row. A deviation from normality is the negation of any of the above properties. For example, the £ = 17 job in the first

row departs from normality in all three respects.
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is the uncormrected sample standard deviation, i.e., sg, =
((1/N) Y, (i — Re)")'"2. Letting (O, be the quantiles of our
raw data and Q, the quantiles of the comresponding nor-
mal distribution, then points on our () plots correspond
to (O, @x}. Hence, if the two distributions are the same {or
close) then the data should fall on the diagonal 0, = QI._,
which indicates normality.

We illustrate the use of these plots in Fig. 12. In the top
two rows we exhibit the three example jobs that failed the
Shapiro-Wilk test for normality. For J;_,7, the correspond-
ing box plot is (i) not symmetric and (ii) has a mean that
deviates significantly from its median. The Q) plot also
deviates from a diagonal line, especially for larger fideli-
ties. As we move from k = 17 to &£ = 22 and then k£ = 46,
the data appear increasingly more normal, but still fail the
Shapiro-Wilk test. The extent to which they fail the visual
tests is best seen by considering a normal-looking exam-
ple, which we can glean from the bottom two rows of plots,
which were not rejected by either hypothesis test.

For the data shown, J;—; is the closest data set to normal.
Here, p = 0.982 for the Shapiro-Wilk test, the box plot is
symmetric, the mean and median agree, and the () plot
data hardly deviate from the diagonal. Given this almost
ideally normal data set, it is easier to see why the other
data sets fail to appear as normal. For example, even those
that pass hypothesis tests exhibit some non-normal fea-
tures. But among those rejected, we see deviations from
the diagonal line, skewness (a lack of symmetry in the box
plot), and a discrepancy between the mean and the media.

Since most jobs (64/67) have data that pass hypothesis
and visual normality tests, we conclude that Assumption |
is reasonable.

Assumption 2—Any demonstration within a fixed job is
representative of any other identical demonstration within
the same job. Hence, it is not necessary to repeat an iden-
tical demonstration within a fixed job. In other words,

Jfe1 £ o1, where oy is obtained by bootstrapping as in
Appendix C |, is a sufficient summary of the estimates p;
and oy in fr; ~ N (pe, on).

Resuit 2—Assumption 2 is justifying by a simple direct
comparison of mean fidelity and standard deviation esti-
mates. In particular, we compare (i} directly computing the
sample mean and sample standard deviation and assuming
normality, (ii) bootstrapping over the fidelities in R, and
(iii) bootstrapping over demonstration output counts used
to compute fi ;. For all jobs (i.e., for all £), the three meth-
ods are consistent with each other since the 2o error bars
have significant overlap in all cases. See Fig. 13.

The basic idea is that all three methods are consistent
with each other. By consistency, we mean the intuitive
notion that the error bars have significant overlap with each
other. Further rigor, in this case, is not necessary due to the
degree of matching with respect to job-to-job fluctuations
we discuss below. This consistency is significant because
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FIG. 13. We compare different approaches of summarizing the
fidelities from running repeated identical demonstrations within
a fixed job. In other words, we compare three ways to sum-
marize Ry = [f}.... Ji;]. The first method, *assume normal,” is
to simply compute the sample average f; and sample standard
deviation s4 and then report fi + 2s; as the average fidelity. The
second method, “bootstrap Ry,” is to bootstrap over the fidelities
in K. To correctly estimate the population standard deviation,
note that we must rescale the bootstrapped mean error by a fac-
tor of /T (see the text for more details). Finally, we can instead
bootstrap over the counts used to compute fi | directly, which we
call “bootstrap f; 1. This does not use the information for fi; for
J = 2 at all. Nevertheless, all three methods yield self-consistent
results, as seen visually by the significant overlap in ermor bars
between the three estimates. Note that we show only a subset
of the results for all jobs to ensure that the error bars are large
enough to be visible. For a sense of the consistency among the
approaches, note that job 31 has the largest deviation. Hence,
it is sufficient to use the bootsirap fi | methed as purported in
Result 2.

the final method shown in Fig. |3 bootstraps only over the
counts used to compute f; ;. Hence, it is sufficient to run a
demonstration only once within a single job and use the
results as being representative of repeating the identical
demonstration, thereby showing the claimed result.

We next detail the methods leading to the three
summaries in Fig. 13. The first is to summarize
Ry by the sample mean and sample standard devi-

ation, fr & 25, where fr= (/L)% fi and sp =

J[IJ{LE — DI, (i —f0)2 By Result 1, it is appro-
priate to then characterize the sample with the first two
moments—hence the name “assume normal.” The second
and third methods, called “bootstrap R;"” and “bootstrap
Ji1." both utilize the bootstrapping procedure discussed in
Appendix C 1. The difference is in what is treated as the
samples. In the R; case, we bootstrap over the fi; val-
ues using n, = 10000 L;-sized samples. From these n,
estimates of f;,, we can estimate (Ri) = (1/n,) Y1", fiy-
We can then estimate the sample standard deviation 55, =

J[]f{?‘i_g — 13] :';]{ﬁf — {R;)?. Tt is important to note
that sz, here has the meaning of the standard deviation of
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our estimate of the mean. As Ly — 0, 55, — 0, s0 s, is
not an estimate of o as in some parametric distribution
Nipg, ox). To match the same meaning as the “assume
normal” estimate, we report (Ry) £ 2,/T;sp, as the “boot-
strap R, estimate. In the f; , case, we bootstrap over the
counts used to compute f;; in exactly the same way as
discussed in Appendix C 1. Hence, this method does not
utilize the demonstrations fz; for j = 2, and the sample
standard deviation is an estimate of oy and is consistent
with “assume normal.”

Assumpiion 3—Given that Ry can be modeled as sam-
ples from N (jis, o3), data in a different job Ry forp £k
but in the same calibration cycle can also be modeled as
samples from N (s, o).

Result 3—Assumption 3 is not supported by the data we
have already seen in Figs. | 1-13. It is worth reiterating that
this assumption does not hold even when the calibration is
fixed or even when the jobs are contiguous.

In Fig. 1|, we see box plots scattered wildly with median
fidelities ranging from 0.24 to (.75 and whose ranges do
not overlap. Put more precisely, recall that, when “assum-
ing normality™ as in Fig. 13, we can simplify each job's
results to a single estimate fk =+ 25;. Once we have done
that, we find that min; f ; = 0.250 and max; f , = 0.734
and yet max; 5; = 0.013, so it is not possible for all the
data to be consistent as described in Assumption 3. This
discrepancy is not resolved when considering jobs that
are time proximate or contiguous, as we have discussed
before. To see this, note that all jobs were taken within a
10-h window for a fixed calibration: the first nine jobs were
taken within the first hour, the first three of which within
the first 10 min. Despite this, there are large variations that
violate Assumption 3 even within the first three jobs.

This result is the first major departure from expecta-
tions; it tells us that a demonsiration must be repeated
many times across different jobs to estimate the wvari-
ance in performance from run to nm. One consequence
is that if we test the preservation of |} in job 1 and
|¢) in job 2, it is not reliable to compare the fidelities
J (), T) and f (¢} , T) and draw conclusions about the
results of a generic demonstration testing both f (|¢r) , 1)
and f (|} , T). Alternatively, if we test the efficacy of two
sequences §; and 5, given the same state, but where the
data are taken from different jobs, this is not a reliable
indicator of their individual relative performance either.
Instead, many demonstrations must be taken where the
variance can be estimated, or direct comparisons should
only be made within a fixed job and then repeated to check
for the stability of the result.

The next two assumptions and results address to what
extent data taken across different jobs, or even calibrations,
can be modeled as being normally distributed.

Assumption 4—It is appropriate to model fi; ~
Npc, o) for some fixed calibration cycle C provided

all jobs k are in C. In other words, demonstrations taken
from different jobs can be viewed as sampled from a fixed
normal distribution.

Resulf 4—This assumption is justified since it is not
rejected by the Jarque-Bera and Shapiro-Wilk hypothesis
tests and is supported by visual indicators (box plot, QQ
plot, and error bar comparison plot).

Let 4 = [fi.1]2., be the set comprising the first empiri-
cal fidelity from each job. Given this data set, neither the
Jarque-Bera nor the Shapiro-Wilk test support rejecting
the hypothesis that f3 ; ~ N (e, o). More precisely, the
p-values are 0.348 and 0.192, respectively, so with 95%
confidence, we cannot reject the hypothesis.

In addition, we show the standard visual tests—box plot
and Q) plot—in Fig. 14 alongside the error bar compar-
ison plot similar to Fig. 13. The standard visual tests also
support assuming normality since the box plot is symmet-
ric, has a mean and median that almost agree, and the QQ)
plot data lies mostly along the diagonal. However, perhaps
the most important evidence is the error bar comparison
(bottom panel). By “assume normal,” we compute the sam-
ple mean (4) and standard deviation of o, of 4 as the
estimates of pc and o-. We find that A=048 and oy =
0.12. Hence, we would report 0.48 = 24 as the average
fidelity value across the fixed calibration. When instead
bootstrapping the samples of 4, we again find 0.48 £+ 0.24,
which remarkably has symmetric error bars.

Hence, in all, it is reasonable to model the fidelity sam-
ples from different jobs as samples of a fixed normal
distribution within a fixed calibration cycle. Note that we
were careful not to try and model the entire data set as nor-
mal; instead, we held the number of samples from each job
constant. Had we modeled the entirety of the data set, the
Jarque-Bera and Shapiro-Wilk tests would reject normal-
ity. This is because some samples are unfairly given more
weight, which is no longer normal [110].

Assumption 5—Let _fc be empirical fidelity samples sim-
ilar to f¢; from before but not necessarily sampled from a
fixed calibration. Then _f: ~ Af{j1, ) even across different
calibrations.

Result 5—This assumption is justified for the free evo-
lution (Free) data but is violated for some DD sequences
such as KDD. Nevertheless, for averape pointwise fidelity
estimates of the form f_.: 4+ 2o, the difference between
assuming normality or bootstrapping is negligible.

Here. we need to consider a different data set for the
first time in this series of assumptions and tests. Instead of
considering data from a fixed time T = 75 s, we consider
fidelity decay data as in Figs. 7 and 8. Namely, we consider
the preservation of |+) and |1) under Free and KDD as a
function of time. In each case, we consider the fidelity at 12
roughly equidistant time steps £'(|f) , T;); T; = % -
1y ps forj = 1,...,12. Here, 5 is a placeholder for the
sequence (Free or KDD), ¢ stands for the calibration at
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FIG. 14. We graph the visual normality tests for the data
set consisting of the first fidelity obtained from each job, 4 =
{_ﬁﬂﬂ]. Alongside the fact that both the Jarque-Bera and
Shapiro-Wilk tests do not reject normality, we can conclude
that data set 4 does indeed appear to have been sampled from
a normal distribution N (e, oc) by the same aforementionad
box-plot and QQ-plot criteria. In the bottom panel, we show the
difference between the “assume normal™ procedure for data set
A versus bootstrapping. Since both agree, it is not only reason-
able to assume normality but also to use either method to make a
consistent prediction for curve fitting.

which the fidelity was sampled, and [ denotes the state.
We test the normality for each set of fixed (s, [,j ), which
amounts to a set such as _,f, in Assumption 4.

We begin by applying both the Jarque-Bera and Shapiro-
Wilk hypothesis tests. We tabulate the cases where the
hypothesis of normality fails with 95% confidence in
Table IV. According to these tests, we can confidently
claim that the set of KDD fidelity decay curves for |+)

TABLE IV. Summary of Free and KDD decay curve data sets
that violate the null hypothesis of normality with 95% confidence
according to the Jarque-Bera (JB) or Shapiro-Wilk (SW) test.
The data set consists of a set of fidelities [,I':__[”(i."}l T =1, 144
where 5 denotes a DD sequence, ¢ denotes the calibration, |I)
denotes the state, and ; denotes the time point forj = 1,....12.
MNote that we test normality where samples are drawn over
different calibrations ¢ with the other parameters fixed.

5 f Rejected j by JB Rejected j by SW
Free [+} {6} {6)
Free 1) {2} 12
KDD [+} {} {3.4.5,6,7,8,9)
KDD |1} {6} {6,7.8]

does not obey all the properties we would expect for sam-
ples of a series of normal distributions. Namely, the times
I; forj = [3,9] do not have the right order statistics since
they fail the Shapiro-Wilk test. This seems reasonable
given Fig. 7, in which the KDD data appear to be bimodal
for the middle times.

We can also consider box plots for the data that support
the claims made in Table IV. As an example, in Fig. 15
we show the box plot for (Free, |1)), which agrees with
normality at each time point, and (KDD, |+}), which fails
to appear normal at most time points.

Despite not passing the tests for normality, we can still
formally pretend that the data are normal and compute
the sample mean and variance as estimates of p and o.
When we do this and compare the result to bootstrapping
the mean and rescaling the confidence interval, the results
are almost identical for both sets of data, as we can see
in Fig. 16. By rescaling the confidence interval (CI), we
mean that we compute the 95% CI of the mean estimate by
bootstrapping, (A, Ay), and report {JE A, -\.-"f Ay), where
/C is the number of calibration cycles (i.e., the number
of fidelities) we bootstrap over. The rescaling is done to
obtain an estimate of the spread of the underlying distri-
bution and not of the sample mean. In other words, we
observe that averaging via the bootstrap or by the sim-
ple sample mean and standard deviation agree even for
pathological data of the form we obtain for KDD.

This observation seems to suggest that we can compare
DD sequences by first averaging fidelities across calibra-
tions. This would be in line with preview work such as
Refs. [41,111] that did not report on the subtleties of job-
to-job variation. As outlined in the main text and implied
by the analysis presented in this appendix, we choose not
to do this; the next subsection clarifies why and what we
do instead.

7. Effect of job-to-job fluctuations

Let £.*) be a fidelity sample for state s and calibration
¢ for some fixed time and sequence. We saw in Result 5
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FIG. 15. We plot the fidelity decay of |1} under Free and |+)

under KDD. The variation in the box plots is obtained by running
identical demonstrations for that time across different calibra-
tions. The Free data appear mostly normal at each time, which is
corroborated by the hypothesis tests in Table I'V. The KDD data
do not appear normal for the intermediate times, in agreement
with the hypothesis tests.

that assuming that f,*) ~ A (u,, o) is not formally justi-
fied for all sequences and states. In particular, the [+) state
decay for KDD does not pass hypothesis tests for normality
at intermediate times. Nevertheless, if we are only con-
cerned with the average fidelity of a fixed state 5 across
calibrations,

N
=, (©4)
c=1

assuming normality or bootstrapping leads to consis-
tent predictions. But related work—such as Refs. [41,
l111}—was concermned with the average fidelity across
states,

(C5)

FIG. 16. Weshow that, regardless of whether the data formally
appear normal, the reported mean and confidence interval are
almost identical under this assumption or under bootstrapping.
In particular, the top panel appears normal to various normality
tests, whereas the bottom data do not. Despite this, reporting the
sample mean and the standard deviation is almost identical to
reporting the bootstrapped mean and confidence interval.

for some set of states § and fixed calibration ¢’. If £ ~
N (s o;) and independent and identically distributed
(IID) then f, ~N(p,0), where p = (1/|S]) ¥ s s
and o = (1/|51) ¥ esUs. Thus, we would expect the
state-average fidelity to be consistent from job to job.
In practice, however, this does not happen. For exam-
ple, the Pauli averaped fidelity (i.e., choosing § =
{10311y, 140, | =), |41, |—i}}) for different calibrations
for the KDD sequence at time T is given in Fig. 17.

The inconsistency of the average state fidelity as exhib-
ited in Fig. 17 has several consequences. First, data from a
single calibration are generally not enough to characterize
typical behavior. For example, if we only sampled a sin-
gle calibration and happened to sample ¢ = 6, we would
be left with the wrong impression of KDD's performance.
Second, data from a single calibration are also generally
not representative of average behavior. Indeed, the red dot
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FIG. 17. The average fidelity over the six Pauli eigenstates
across 14 calibrations under protection by the KDD sequence.
Time is fixed to T, as defined in Fig. 15. The red point is the
mean fidelity of the entire data set. This total average is not
representative of any calibration average.

in the middle corresponds to the average over the 14 cal-
ibration averages, and no single calibration has a mean
consistent with this average. Finally, averaging over states
sampled in different jobs can lead to misleading results.
For example, suppose that we queued up several runs of
|0} in calibration ¢ = 1, of |1} in ¢ = 2, etc. Then, accord-
ing to the average fidelities in Fig. 17, it is likely that a
|[+) run in ¢ = 3 would have substantially higher fidelity
than a [—) run in ¢ = 4. Yet, if we compared |+) to |-}
within the same calibration, they would have roughly the
same fidelity.

To clarify this averaging subtlety, we present the raw
data for each state as a box plot in Fig. 18. The variation
arises from the fidelity fluctuations of each state across cal-
ibrations. Interestingly, the polar states, |0} and |1}, give
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FIG. 18. The variation in fidelity across 14 calibrations for
each Pauli state protected under KDD for a fixed time Ty, The
final box compiles the data for all six Pauli states. The blue point
shows the average (with 95% bootstrapped confidence intervals)
across the data in each box plot.

surprisingly consistent results, while the remaining equa-
torial states have large variations in performance. This
suggests that in some calibrations, the equatorial states
were adversely affected, while the polar states were mostly
unaffected. By checking the data calibration by calibration,
we find this to indeed be true. Namely, the equatorial states
collectively have a similar performance that is worse in
some calibrations and better in others. This could happen,
e.g., if, in some calibrations, 7> dropped while T stayed
roughly the same. Thus, to have a direct comparison of
state performance, it is imperative to confine the compar-
ison to within a single job. The same can be said about
comparing the fidelities of a fixed state penerated at differ-
ent times. Without confining comparisons to a single job,
it is unknown if the difference in fidelities is due to drift or
other causes.

On the other hand, it is not possible to test all DD
sequences, states, and decay times within a short enough
window to avoid significant drift. Even if it were, fair queu-
ing enforces a maximum number of 75 circuits per job,
so this sets a hard cutoff on what can be compared reli-
ably in a fime-proximate way. As a compromise between
time-proximate comparisons and the hard 75 circuit-per-
job limit, we collected data as described in Sec. IIL
MNamely, within a single job, we collect the fidelity decay
curves for the six Pauli states. Each curve consists of 12
time points. In total, this takes up 72 circuits, and we pad
this with an additional set of two measurement error miti-
pation circuits. In this sense, we guarantee that the fidelities
for different states and times can be compared reliably
within this data set, i.e., they are not different due to drift.
We then repeat this demonstration over different calibra-
tion cycles to obtain an estimate of fidelity differences due
to drift. By reporting the median across this data set, we
provide an estimate of fypical performance—the perfor-
mance estimate of a hypothetical next demonstration. We
emphasize that the typical performance is different from
the average performance.

To further support this point, we have included aver-
age fidelities (with bootstrapped 95% confidence intervals)
superimposed on the box plots in Fig. 18. For all data
sets, the mean and median do not agree. For the polar
states (|0} and |1)), the difference iz slight, and their
respective median performance is included in the error
bar of the mean. We remark that averages and medians
generally agree, as they do here for the best-performing
DD sequences (see Fig. 3). The mean is heavily biased
downward for the remaining equatorial states, and the
confidence intervals do not include the mean. Once aver-
aging over the entire data set, the discrepancy is even
worse. Here, the mean falls on top of the 25% quan-
tile, and the top of the confidence interval differs from
the median by a significant amount. Hence, an average
method is inappropriate for DI} sequences whose perfor-
mance is highly sensitive to drift effects, and a median
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method is more appropriate. Again, we remark that this
should not affect the top-performing sequences shown in
Fig. 3, but it gives us a consistent way to sift through all the
sequences at once to even get to a top ranking in the first
place.

To summarize, we have shown that averaging fideli-
ties over states is a delicate issue that depends on how
the data are averaged. When averaging within a fixed job,
the results appear reasonable and simple averaging of the
fidelities over states gives an average state fidelity that
behaves as expected. When comparing state data across
different jobs, a straightforward average can be biased
due to a particularly bad calibration, resulting in an aver-
age sensitive to drift. A nonparametric comparison in
which fidelities are assessed via a box plot, on the other
hand, does not suffer from this issue. When confined to
a fixed job, the median over states pives a measure of
typical performance over the set of states. When fideli-
ties are collected over both states and calibrations, the
median is still a measure of typical performance, but now
over both states and calibrations. Hence, a measure of
typical performance is more robust than an average perfor-
mance metric when considering drift. In practice, typical
performance is more relevant for any given fixed demon-
stration. These facts, alongside the practical difficulties
of averaging and fitting, are why we opted for the FTA
approach.

8. Summary of fitting fidelity

The standard approach to comparing DD sequences is to
generate average fidelity decay curves, fit them, and report
a summary statistic like a decay constant. For this reason,
we call this an “average-then-fit” approach. In Ref. [41],
for example, the authors generated fidelity decay curves
for roughly 40 equally spaced times and 36 states (30
Haar-random and six Pauli eigenstates). For each time,
they computed a state-average fidelity constituting a sin-
gle average fidelity decay curve. They then fit this curve
to a modified exponential decay [Eq. (C2a)] and reported
the decay constant for the XY4 sequence compared to
free evolution. This was sufficient to show that, on aver-
ape, applying the XY4 sequence was better than free
evolution.

In this work, we aim to go beyond this approach and
identify any pitfalls. To do so, we set out to first compare
a large collection of DI} sequences and not just the XY4
sequence and Free. Second, we are interested in whether
the X'Y4 sequence retains universality for superconduct-
ing devices (see Sec. [1 D). This question requires us to
know precisely whether, e.g., |4} or |1) is better protected
under the XY4 sequence. This led us to two methodologi-
cal observations. (i) Using a standard fit such as Eq. (C2a)
to individual state decay curves results in several problems:

it does not always work in practice, leading to an ambigu-
ous interpretation of the decay constant, and it requires a
complicated fitting procedure. (ii) The fidelity of a given
state protected with DD for a fixed time is unstable from
job to job due to device drift. This means that one must be
careful when comparing fidelities not collected within the
same job.

We resolved both issues by (i) focusing on typical
performance instead of average and (ii) using an FTA
approach where we interpolate with time averaging. Along
the way, the insistence on not first averaging results in
the identification of significant and unexpected asym-
metries in performance between states (see Appendix B
and especially Fig. 6), which led to better DD sequence
design.

9. Details of fitting using Mathematica
a. Standard fit to exponential details
At a high level, we fit the fidelity decay curves
(see Fig. 7 for example curves and Fig. 8 for exam-
ple curves with fits) to Eq. (C2a) using Mathematica’s
NonlinearModelFit (NLM) [112,113] that performs
weighted least-squares regression. In more detail, NLM
finds the parameters [A, 77, &} that minimize the weighted
sum of squares

N
1
gzzﬁgm}n — (T h y @) (Cé)

=1 T

with the assumption that

€r; ™~ M{ﬂﬁ a-r;j'r
(CT)

(e =fe(Ts A% ¥, a%) +er,

for some unknown parameters i*, p*, and «*. Given a
good model and fitting procedure, the NLM procedure
yields i & A*,§ =~ p*, and & = o* [114]. Furthermore,
NLM computes the covariance matrix C between the
estimated parameters,

C=Xx"wx, (CBa)
hF (1) 9,F(T)) d,F(T))

X = : : : ., (C8b)
HF(Ty) F(Ty) 8F(Ty)

W = diag(1/o7,,...,1/o7.), (C8c)

where F(T) is the inteprated fidelity [Eg. (Cl)] and
this particular form of C and W results from setting
the Weights and VarianceEstimatorFuncticn
NLM settings appropriately for experimental data [115].
As usual, we compute the parameter standard errors
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{aka the standard deviations of the sfatistics) from the
covariance matrix as

SE; = +/Ci, SEs = 4/ Ca3.

(C9)

SE, = +/Cx,

From this, we can estimate the parameter 95% confi-
dence intervals by calculating a f score. To do this, we
first find the number of degrees of freedom we have, v =
N — # parameters. The f score is then the £] ;. such that
P(—150s = T = f345) = 0.95, T ~ StudentTDist{v).
(C10)

In the end, we report our best-fit parameters with 95%
confidence using
A=ALSEaxfios=iLd; (C11)

with an exactly analogous formula for y and e (i.e., same
£ 95 throughout) [116].

b. Consistency checks and selecting appropriate fitting
options

The previous section outlined the general methodology
and output of Mathematica’s NonlinearModelFit
function. One detail we glossed over is the method by
which NonlinearModelFit minimizes the weighted
sum of squares, §. By default, § is minimized using the
LevenbergMarquardt method—a particular imple-
mentation of the Gauss-Newton algorithm. Many of the
details and optimization settings are outlined in Mathe-
matica’s “Unconstrained Optimization: Methods for Local
Minimization™ [ 117] documentation. An important feature
of this method is that it is a local search method, and hence
the quality of the fit depends on the particular input set-
tings and randomness in each run. Coupled with the fact
that A, y, and & of Eq. (C2a) are not independent parame-
ters, it is important in practice to try many different settings
to obtain a good fit. A full enumeration of all settings we
attempted can be found in the fiffingFreeData.nb Mathe-
matica notebook contained in our code repository [100].
For example, we consider fits for which we reduce the
number of parameters (e.g., setting e /% = 1) or where

= 0 is either seeded or unseeded.

Upon frying many possible fits, we then need an objec-
tive way to compare their relative quality. To do so from
a fit obtained using NonlinearModelFit, one can
query its associated (corrected) Akaike information crite-
rion (AIC) [118] via Mathematica’s Fit ["ATCc"]. The
AIC estimates the relative quality of each model in a col-
lection of models for a given data set. In our case, the
sample size is relatively small: 12 points for each fit. To
remedy this, we employ the corrected AIC, which corrects
the tendency of AIC to favor overfitting for small sample

sizes. See Ref. [118] for a summary of the formulas for
AIC and corrected AIC. A more detailed introduction and
derivations of the formulas can be found in Ref. [119, pp.
51-74].

The lower the comrected AIC, the better the model is
relative to others. However, we must also ensure that the
final fit satisfies consistency condifions. Namely, a fit is
considered unreasonable if it (a) predicts a fidelity less
than zero or greater than one, (b) predicts a parameter
whose error is larger than the value itself, or (c) violates
the Nyquist-Shannon sampling theorem [120], i.e., has fre-
quency larger than the sample rate of the data itself. That is,
¥ in Eq. (C2a) must satisfy 0 < p < 27 /2Af = B, where
At = (150/12) ps is the spacing between data points in
our fidelity decay curves. After fitting, we reject fits that
violate properties (a) and (b) and correct those that violate
(). We next illustrate what this postselection or correction
looks like for our data.

First, we perform many fits without regard to whether
{a})H{c) are satisfied since enforcing constraints makes
the nonlinear fit results unstable, and moreover, the con-
siraints are not always enforced even when specified inside
NonlinearModelFit. We then postselect the fits that
respect (a) and (b), and among these, we select the fit with
the lowest corrected AIC. If no fit respecting (a) and (b)
is found, we drop that data set. Finally, we rescale the fre-
quency via ¥ — mod(}y, 8). This procedure—along with
the fits along the way—is summarized in Fig. 19. Note
that we are forced to postselect fits that are well modeled
by Eq. (C2a) in order to report a reasonable value of A
for the given data. For this reason, the fitting procedure
thus described is biased toward data that are appropriately
modeled by Eq. (C2a).

c. Time-averaged fidelity approach

We construct a polynomial interpolation of the fidelity
decay data using Mathematica's Interpolation func-
tion [112,121]. Then we integrate over the interpolation to
compute a time-averaged fidelity according to Eq. (C1).
By default, the interpolation uses a third-order Hermite
method [122] that we found to be sufficient to adequately
model our data. For example, the curves in Fig. 7 con-
sist of Hermite interpolations of the triangular raw data,
which appear reasonable. To compute Eq. (Cl) from the
interpolation, we used Mathemafica’s NIntegrate.

For a sense of stability, we also tried the popular cubic
spline interpolation method [123], but this does not affect
our results outside of the interpolation error bound itself.
For example, consider the complicated interpolation nec-
essary for KDD using the Hermite or cubic spline methods
in Fig. 20. Hence, either interpolation is equally valid when
using the time-averaged fidelity metric.

We remark that polynomial interpolation is much easier
to do than fitting to a model such as Eq. (C2a) since we
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FIG. 19. A summary of the postselection process necessary when fitting to Eq. (C2a) with Mathematica’s NonlinearModelFit. The
data are the same free evolution data displayed in Fig. 8. Left: for each curve, we select the fit with the lowest comrected AIC without
regard to whether the fit meets consistency conditions such as having positive fidelity. Middle: the result of first postselecting those fits
that satisfy consistency conditions and then choosing that fit with the lowest corrected AIC. Some data sets (especially the flat |0) state
decay) have no reasonable fits, so they are dropped. Right: finally, we rescale the frequency in accordance with the Nyquist-Shannon
sampling theorem (this does not affect the predicted decay constant A). This final plot is displayed as the result in Fig. 8 and the curves
for which the A's are reported in Fig. 9. Namely, data that do not have a reasonable fit are not included in the final summary, which

biases towards data that do fit Eq. (C2a).

need not (i) select reasonable fitting equations, (ii) fit them
using nonlinear least-squares regression, (iii) postselect fits
that satisfy consistency conditions and the low corrected
AIC. Additionally, the predictions are less susceptible to
ambiguities, as described in Appendix C 5. Finally, we are
not forced to discard any data sets that fail the postselection
criteria, so we do not bias the final summary results in any
particular way.
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FIG. 20. We compare third-order Hermite and cubic spline
interpolations on the fidelity decay curve generated by KDD
with the initial state |—}. The resulting interpolations are qual-
itatively similar, and the resulting average fidelities are within
6 x 10~ of each other for all 0 = T = 100 ps. Hence, they are
equally valid interpolations when using time-averaged fidelity as
a performance metric.

APPENDIX D: TOGGLING FRAME

We assume that without any external control, the sys-
tem and bath evolve under the time-independent noise
Hamiltonian H. A DD pulse sequence is realized via a
time-dependent control Hamiltonian H.(f) acting only on
the system, so that the system and bath evolve according to
H + H.(f) (we refer the reader to Sec. 11 A for definitions
of the various Hamiltonian terms).

For understanding the effects of the control Hamilto-
nian, it is convenient to use the interaction picture defined
by H.(f), also known as the foggling frame [21,31,34,124,
125]. The toggling-frame density operator ggg(f) is related
to the Schrédinger-picture density operator pgg(f) by

psa(f) = UL, 0)pss(0)U (1, 0)

= U.()pss(HUL(D), (D1)

where L(#,0) is the evolution operator generated by the
full Hamiltonian H + H.(f). Therefore, the toggling-frame
state evolves according to

psa(t) = U1, 0)psa(0)T' (£,0), (D2)
where the toggling-frame time evolution operator
U(t.0) = U (n U(t,0) (D3)
is generated by the toggling-frame Hamiltonian
H() = UN(DHU(1). (D4)

Since U, (1) acts nontrivially only on the system, A (f) can
be written as
H(t) = Hg + Her(1), (D5)

where H.(f) = U:[r}HmU.,{r} is the toggling-frame ver-
sion of H,,. Because the operator norm is unitarily
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invariant, we have |H(1)| = |H|| <€ and [Hu(D)] =
1 Herell < J.

Throughout, we consider cyclic DI, where U/ (f) returns
to the identity (up to a possible irrelevant overall phase) at
the end of a cycle taking time fpp:

Us(top) = U.(0) = 1. (D6)
Therefore, at the end of the cycle, the toggling-frame and
Schridinger-picture states coincide.

APPENDIX E: RESULTS OF ALL PAULI
DEMONSTRATIONS

In Fig. 3, we summarized the results of the Pauli demon-
stration for the top-ten sequences on each device and
the baseline of CPMG, XY4, and free evolution. This
appendix presents the data for all 60 tested sequences. In
particular, we split the data for each device into a 3 x 3
grid of plots shown in Figs. 2123, separating by family as
in Table I when possible. For convenience, CPMG, XY4,
and Free are still included in all plots along with colored
reference lines matching the convention in Fig. 3. The pur-
ple reference line denotes the best sequence in the given
family plot excluding the baseline sequences placed at the
end. For example, in Fig. 21{b) RGAg4, is the best RGA
sequence even though it does not outperform XY4: it is
marked with a purple reference line.

We plot the same families for each device ina 3 x 3
grid, labeled (a){i). In each caption, we make a few
general comments on DD performance overall and then
comment on observations specific to each sequence family.
Recall that a specific definition of each sequence is given
in Appendix A, and a summary of their properties along
with references in Table 1. To avoid excessive repetition in
each caption, we first provide a brief description of each of
the cases (a}{i) shown in Fig. 21-23.

(a) This “family™ serves as a catch-all for the basic
sequences Hahn [51], CPMG [52,53], and XY 4 [54], along
with sequences bom from their modifications. Namely, we
also plot the Eulerian supercycle versions [56,83] (denoted
by ), KDD [58,62], which is a composite pulse XY4, and
CDDy, [55,95], which is a recursive embedding of XY4.

(b) The RGA family [57].

(c) The UR family [59].

(d) The UDD family using X” pulses, UDDx [60].

{e}+{i) The QDD family with the same inner and outer
orders, QDD, ,; with fixed outer order 1, QDD, ,,; with
fixed outer order 2, QDD, s with fixed outer order 3,
QDD, ,: and with fixed outer order 4, QDD, . respec-
tively [61].

For each family, we expect the empirical hierarchy
of sequence performance to be a complicated function

of device-specific properties. Specifically, actual perfor-
mance is a competition between (i) error cancelation order,
(ii) number of free evolution periods, and (iii) system-
atic pulse errors due to finite width and miscalibrations,
among other factors discussed in Sec. I1. For each family,
we summarize our expectations regarding these factors.

(a) For ideal pulses, we expect that CDD,.; >
CDD, = KDD =5-XY4 = XY4 > 5-CPMG = CPMG =
S-Hahn = Hahn. With a finite bandwidth constraint, we
expect CDDyy = CDDy, to only hold up until some opti-
mal concatenation level n, after which performance sat-
urates. Using finite width pulses with systematic errors,
we expect that 5-Hahn = Hahn (and similarly for other
5 sequences) and KDD = XY4, provided the additional
robustmess is helpful. That is, if the pulses are extremely
well calibrated and errors are dominated by latent bath-
induced errors then we should instead see that Hahn =
S-Hahn.

(b} The expected performance hierarchy for RGA is
rather complicated, as indicated by the labeling, and is
best summarized in depth using Table 11 of Ref. [57]. A
quick summary is that if we have strong pulses domi-
nated by miscalibration errors (e A < €,) then we expect
RGAg, and RGAgy, to do well. In the opposite limit, we
expect RGAy, RGAg RGA 55, RGAgy, to do well. The
increasing number indicates the number of pulses, and as
this increases, the decoupling order (?(t") increases, and
the same competition between order-cancelation and free
evolution periods as in CDD,, also applies.

(c) The UR, sequence provides ﬂ{e’:’r 4 suppression of
flip-angle errors at the expense of using n free evolution
periods. The relationship of # to J(r) decoupling is not
well established in Ref. [59], but, by construction, seems
to be @(1?) for all n. Thus, our expectation is that UR,
improves with increasing n until performance saturates and
the @(r?) contribution dominates the G{E:ﬂ} contribu-
tion. To see this, note that, for a fixed time, the number of
free evolution periods will be roughly the same regardless
of n.

(d) Ideally, for a fixed demonstration duration T, the
performance of UDDx, should scale as O(t"), and hence
improves monotonically with increasing n. In practice, this
performance should saturate once the finite pulse-width
error (3 A) is the dominant noise contribution.

(ei) An extensive numerical study of QDD,, per-
formance is discussed in Ref. [75] with corresponding
rigorous proofs in Ref. [77]. For ideal pules, the decou-
pling order is expected to be at least O(f™"™"), where f,
is the total evolution time of implementing a single repeti-
tion. Since we are instead interested in a fixed total time T
consisting of multiple sequence repetitions with a minimal
pulse interval, the interplay of competing factors is quite
complicated. Furthermore, we are forced to apply rotations
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FIG. 21. Collection of all Pauli-demonstration results for ibmg_armonk. The best-performing sequence for each family {solid purple
line} substantially outperforms Free (orange) and CPMG (blue), but only marginally differs from the performance of XY4 (cyan). (a)
Results are not consistent with ideal-pulse theory, but are sensible when considering realistic competing factors. First, S-Hahn = Hahn
and 5-CPMG = CPMG are consistent with the large pulse widths on ibmg_armonk, for which A = 142 ns. That XY 4 works very well
is also consistent with its expected approximate universality given that T} = %Tg on ibmg_armonk. Given that XY4 already performs
well, it is not surprising that its robust versions, 53-XY4 and KDD, do worse. In particular, they have little room for improvement, but
also add extra free evolution periods that accumulate additional error. Finally, CDI, is roughly flat for all » tested, which is consistent
with an expected saturation that happens to occur at g, = 1. (b) The performance of RGA does not match theoretical expectations.
To see this, note that RGA, is itself a four-pulse sequence with error scaling (7(12) that is the same as XY4. Hence, it should perform
comparably to XY4, but it does significantly worse. Furthermore, it is also unexpected that the best RGA sequences are 8a, 64a, and
6idc. Indeed, 8a and 64a are expected to work best in a flip-angle error-dominated regime, but in this regime, 64¢ has a scaling of (7(g2),
s0 it is not expected to do well. (c) The UR,, sequence performance is consistent with theory. First note that URy = XY4. Thus, we
expect UR, form = 4 to improve upon or saturate at the performance of X'Y4, and the latter is what happens. (d) The UDD, sequence
performance is consistent with theory. In particular, we expect (and observe) a consistent increase in performance with increasing »n
until performance saturates. (e}Hi) The QDD,, , results in part match theoretical expectations, since they exhibit a strong even-odd
effect, as predicted in Refs. [75,77.80]. Nevertheless, the optimal choice of n and m has to be fine-tuned for ibmg_armonk. We note
that five out of ten of the top-ten sequences on ibmg_armonk are from the QDD family.
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FIG. 22. Collection of all Pauli-demonstration results for ibmg_bogota. The best-performing sequence for each family (solid purple
line) substantially outperforms Free (orange), CPMG (blue), and XY4 (cyan). (a) Results are not fully consistent with ideal-pulse the-
ory. For example, it is unexpected that Hahn > CPMG and that Hahn < 5-Hahn, while at the same time 3-XY4 = XY4. Nevertheless,
some trends are expected such as CDDy < CDD; < CDD; and then saturating. (b) Results are somewhat consistent with ideal-pulse
theory. First of all, RGA4 == XY4 in performance, which is sensible. The first large improvement comes from RGAg, and then from
numbers 32 and greater. This trend is similar to CDD, increasing, which is expected since larger RGA sequences are also recursively
defined (e.g., RGAgy, is a recursive embedding of RGAg, into itself). However, it is again unexpected that both “a"” and “c” sequences
should work well at the same time. For example, RGAjg. > RGAy, theoretically means that ibmg_bogota has negligible flip-angle
error. In such a regime, the decoupling order of RiGAg, is the same as RGAg,, since they are designed to cancel flip-angle errors. But,
we find that RGAgs, = RGAg, in practice. (c) The UR,, results are mostly consistent with theory. First, UR; is an improvement over
XY4, and though UR,, does increase with larger m, it is not simply monotonic as one would expect in theory. Instead, we find a more
general trend with an empirical optimum at # = 20. (d) The UDDx, results are mostly consistent with expectations. Again, perfor-
mance mostly increases with increasing n, but the increase is not fully monotonic. (e}Hi) The QDD , results are fairly consistent with
theory. In (), performance of QDD, , increases with » until # = 3. The degradation for m = 4 is consistent with expectations in the
bandwidth-limited setting [78]. In (f}{i) the results are again fairly expected: aside from parity effects (odd or even m), for QDD,,,,,
we expect monotonic improvement with increasing m until # = m, after which performance should saturate or even slightly improve;
this is the general empirical trend.
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FI1G. 23, Collection of all Pauli-demonstration results for ibmg_jakarta. The best-performing sequence for each family (solid purple
line) substantially outperforms Free (orange)} and CPMG (blue) but only marginally differs from the performance of XY4 (cyan). (a)
Results are not fully consistent with ideal-pulse theory. For example, it is unexpected that Hahn = CPMG and that Hahn > S-Hahn,
while at the same time 5-XY4 > XY4. Nevertheless, some trends are expected, such as CDDy < CDD; < CDDy = CDDy and then
saturating. (b) Results are somewhat consistent with the theory. First of all, RGAy > XY 4 is sensible and implies that we are in a flip-
angle error-dominated regime. However, we would then expect RGAy > RGAg,, which does not occur. Mevertheless, the recursively
defined sequences (number 32 and above) generally ocutperform their shorter counterparts, which is similar to CDD,, as expected. (c)
The UR, results are consistent with theory. First, URg is a large improvement over XY4, and from there URgp = URg. After this,
the improvement plateaus. (d) The performance of UDDx,, greatly differs from the theoretical expectation of monotonic improvement
with n. In fact, the behavior is so erratic that we suspect device calibration errors dominated the demonstration. Nevertheless, the
performance of UDDx) was excellent in this case. (e}i) The QDD, , results are fairly consistent with theory, and quite similar to
Fig. 22. The same comments as made there apply here.
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about X, ¥, and Z to implement QDD, ,, when m is odd,
but as noted in Appendix B, Z is virtual without Open-
Pulse. In summary, the naive theoretical expectation is that
QDD, ,, should improve with increasing min{n, m}, even-
tually saturating for the same reasons as UDDx,,. However,
we expect the fixed T and virtual-Z set-up to complicate the
actual results.
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