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Abstract
Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding
it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given
experimental system may not exist; however, through the use of dynamical decoupling (DD),
one can induce symmetries that support DFSs. Here, we provide the first experimental
demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM
Quantum superconducting processors, we investigate two and three-qubit DFS codes
comprising up to six and seven noninteracting logical qubits, respectively. Through a
combination of DD and error detection, we show that DFS logical qubits can achieve up to a
23% improvement in state preservation fidelity over physical qubits subject to DD alone.
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This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results
showcase the potential utility of DFS codes as a pathway toward enhanced computational
accuracy via logical encoding on quantum processors.

Keywords: quantum control, quantum error correction, quantum error suppression

1. Introduction

Scalable quantum computation relies on the ability to perform
high-fidelity quantum logic operations. The path toward such
operations is challenging due to inherent system-environment
interactions and systematic errors. Ultimately, both induce
noise processes that degrade qubit coherence and gate accur-
acy. Therefore, addressing noise in quantum systems is para-
mount to attaining viable and reliable quantum computation.

Broadly, approaches designed to manage noise in quantum
systems seek to suppress, correct, or avoid errors [1]. Error
suppression approaches (e.g. dynamical decoupling (DD) [2–
4]) rely on the application of appropriately modulated con-
trol fields [5] such as fast and strong pulses to effectively
average out noise [6]. In contrast, quantum error correction
(QEC) leverages logical encodings of a collection of phys-
ical qubits to actively detect and correct errors [7–10]. As a
passive alternative, decoherence-free subspaces (DFSs) and
noiseless subsystems (NSs) form a special class of quantum
codes that provide error avoidance by exploiting symmet-
ries in the system-environment interaction [11–16]. The three
approaches can be unified under a single, symmetry-based
framework [17]. Error mitigation, the newest category of
quantum error management, utilizes information from an
ensemble of quantum experiments to reduce noise-biasing in
expectation values [18]. While in principle, each class of pro-
tocols can be employed on its own, it has long been appreciated
that practical quantum error management schemes are likely
to necessitate multiple approaches working in concert [19–27]
to achieve utility-scale quantum computation and, eventually,
fault tolerance [28].

Despite the elusiveness of fault tolerance, utility-scale
quantum computing may be on the horizon in part due to
advancements in error management. Demonstrations on cur-
rently available noisy quantum processors have showcased the
potential for classes of protocols to be executed independently
and simultaneously. For example, confirmation of quantum
error mitigation’s effectiveness has been shown for quantum
algorithms, such as the variational quantum eigensolver [29,
30] and quantum dynamics simulations [31]. Relatedly, a
quantum algorithmic scaling advantage enabled by error sup-
pression via DD has recently been demonstrated in super-
conducting systems [32, 33] building on longstanding exper-
imental evidence of its utility [34–48]. Combining the two
approaches has also been shown to be fruitful for enhancing
quantum algorithm performance [31].

Noisy quantum devices have further led to proof-of-
principle demonstrations of QEC [49–56]. This has included
instances of error detection utilized to protect variational
quantum algorithms [57]. Furthermore, verification of the
added benefits of DD has been observed. For example, it has
been incorporated into error correcting codes to protect idle
qubits during long syndrome measurement acquisition and
reset periods [52, 53, 56, 58, 59]. Error mitigation, DD, and
quantum error detection have all been combined in a recent
demonstration of better-than-classical execution of Grover’s
algorithm [60].

Despite early experimental instantiations [61–67], DFSs
have yet to be examined as a scalable approach to error man-
agement in the current quantum computing era [68]. Their
ability to circumvent measurement-based feedback gives them
a potential advantage over their error-correcting counterparts.
Furthermore, DFS codes can be readily integrated with error
suppression to dynamically engineer the required symmetries
of the code [21, 69–76]. Given their relative economy of qubit-
and control-resource requirements, the question arises: what
role can DFSs play in practical error management schemes for
near-term and future quantum processors?

We address this question specifically for error-protected
quantum memory and idle gates. DFSs are employed
in conjunction with DD [77, 78] and error detection
procedures to preserve logical qubit states on the IBM
Quantum Platform (IBMQP) superconducting qubit pro-
cessors. Specially designed DD sequences are used to engin-
eer an effective noise environment and enforce symmetry con-
ditions conducive to DFSs and NSs composed of two and
three physical qubits, respectively. We present evidence for
the existence of dynamically-generated DFSs and demonstrate
their ability to surpass the fidelity of physical qubits subject
to DD alone. The scalability of DFSs is showcased through
the simultaneous generation and preservation of multiple inde-
pendent logical qubits, where logical qubit fidelity up to 23%
better than those achieved by the physical qubit constituents is
observed. Together, these results highlight the potential utility
of DFSs when used in conjunction with error suppression and
detection procedures to enhance logical error management on
quantum processors.

An overview of our methodology is presented in figure 1.
Physical and logical protocols are compared by first encod-
ing the qubits and then subjecting them to an error manage-
ment protocol. As the objective is to evaluate each protocol’s
ability to preserve qubit states, we apply repetitions of said
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Figure 1. Schematic of the quantum state preservation experiment for all encoding schemes considered: unencoded (physical), 2-qubit DFS
(DFS2), and 3-qubit DFS (DFS3). The qubits are initially prepared according to the encoding scheme and then subjected toM repetitions of
DD or the equivalent free evolution duration, where the system is allowed to evolve according to its internal dynamics. The inverse of the
encoding procedure is then used to decode the qubit states prior to measuring in the computational basis. The encoding step for the DFS2

code utilizes the unitary Uψ to prepare the desired single-qubit state |ψ⟩ for the data qubit. In the 3-qubit encoding,Wj, j = 1,2,3 are
unitaries dependent upon the specifications of |ψ⟩. Each encoding scheme is associated with a specific DD protocol. Unencoded evolution
utilizes the XY4 universal decoupling sequence, while the 2-qubit DFS symmetrization sequence is composed of logical rotations about the
x and y-axes of the logical qubit Bloch sphere. Noise symmetrization is achieved in the 3-qubit case using a sequence of SWAP operators
Eij. The upper-right panel provides an illustration of (1) the system-environment interaction prior to DD and (2) the desired interaction after
DD. For physical qubits, the desired effect is a decoupling from the environment, while the DFS DD sequences seek to engineer a collective
interaction with the environment. Further information regarding the encoding circuits and DD sequences can be found in the appendices
appendices A–D.

protocols for equivalent time durations. State fidelity is then
determined by applying a decoding operation and measur-
ing in the computational basis. Physical qubits are protec-
ted by error suppression, while logical DFS qubits undergo
error suppression and detection. We focus on the 2 and 3-
qubit DFS code, with encoding operations and dynamical
symmetry-generating sequences for each shown in the bottom-
left and bottom-middle of figure 1, respectively. Error detec-
tion is applied after measurement via post-selection based on
the state of the ancilla qubits. In addition to the subsequent
sections, additional information regarding the state prepara-
tion circuits and DD sequences can be found in appendices
appendices A–D.

This paper is organized as follows. In section 2, background
on DFS codes and DD is presented. Sections 3 and 4 show-
case the results of the study. Evidence of collective inter-
actions generated by logical DD is exhibited in section 3,
while time-dependent preservation is the focus of section 4.
In the latter, we assess the performance of logical encod-
ings against physical error suppression and highlight instances
where DFS codes prevail. Section 5 summarizes the results
and conclusions.

2. Decoherence-free subspaces and dynamical
decoupling

2.1. Decoherence-free subspaces and noiseless subsystems

As passive error-correcting codes, DFSs leverage intrinsic
symmetries in the system-environment interaction. Their
construction is based on identifying subspaces of the system
Hilbert space unaffected by noise. More concretely, consider
an open quantum system described by the Hamiltonian

H= HS +HB +HSB, (1)

where HS is the pure system Hamiltonian and HB is the pure
bath Hamiltonian, generating dynamics only within the sys-
tem and bath Hilbert spaces HS and HB, respectively. The
interaction between the system and its environment is cap-
tured by HSB, which can be generically expressed as HSB =∑
αAα⊗Bα, where {Aα} and {Bα} act exclusively on the

system and bath, respectively.
DFS encoding relies on finding a ‘good’ subspace HG ⊂

HS that is unaffected by HSB. As long as the system is ini-
tialized in HG and no operations are performed by HS to take
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the system out of HG, the time evolution will be unaffected
by the decoherence resulting from HSB [15]. Group theoretic
arguments show that under reasonable mathematical assump-
tions about the system operators Aα,HG always exists and it is
possible to perform scalable, universal quantum computation
in the DFS [79]. More precisely, the system Hilbert space can
be decomposed as a direct sum over the irreducible represent-
ations (irreps) J of the associative algebra A generated by the
set {Aα}: HS =

⊕
JCnJ ⊗CdJ , such that each noiseless sub-

system CnJ , where nJ is the degeneracy of irrep J, is invariant
under the effects of A [16]. That is,

Aα|a⟩⊗ |b⟩= |a⟩⊗Mα|b⟩ ∀α, (2)

where the states |a⟩ ∈ CnJ remain invariant under the error
algebraA, while |b⟩ ∈ CdJ can be altered by the arbitrary oper-
ator Mα without consequence to the computation. Quantum
information is stored inCnJ . When the irrep dimension dJ = 1,
CnJ ⊗CdJ reduces to a DFS, i.e. a ‘good’ subspaceHG = CnJ .

In this study, we employ DFS protection against col-
lective interactions, which arises when the system-bath
coupling is invariant under qubit permutation. The N-
qubit system-environment interaction under such permuta-
tion symmetry is fully described in terms of the total spin
operator Aα =

∑N
i=1σ

α
i , where α ∈ {+,−,z}; thus, Hcol

SB =∑
α∈{+,−,z}Aα⊗Bα. Below, DFS codes consisting of N

qubits will be denoted as DFSN for brevity.

2.1.1. Collective Dephasing DFS. The simplest type of col-
lective system-bath interaction for which a DFS can be iden-
tified is collective dephasing, i.e., Hcol

SB with B± ≡ 0. In turn,
one can identify the smallest logical qubit encoded within two
physical qubits. The subspace invariant under collective deph-
asing, which we refer to as DFS2, is spanned by the logical
states |0L⟩= |01⟩ and |1L⟩= |10⟩. Such states can be read-
ily realized in semiconductor qubit systems [80–82] and have
been demonstrated in other systems as well [61, 66, 83].

A circuit describing the generation of an arbitrary state
|ψ⟩ within the logical subspace is shown in figure 1. Logical
manipulations that preserve the DFS consist of all Hermitian
operators that belong to the commutant of the error algebra,
Az ≡ {O : [O,Az] = 0}, i.e. all operators O that commute with
the noise. One such set of encoding operators is given by

σ̄x =
1
2
(σx1σ

x
2 +σy1σ

y
2) (3a)

σ̄y =
1
2
(σy1σ

x
2 −σx1σ

y
2) , (3b)

where σ̄z = i[σ̄x, σ̄y]/2 [79, 83]. Logical single-qubit rotations
within the DFS are therefore defined by R̄n̂(θ) = exp(−iθn̂ ·
⃗̄σ), where ⃗̄σ = (σ̄x, σ̄y, σ̄z). Two qubit operations can be gen-
erated via a logical controlled phase gate of the form R̄ijzz(θ) =
exp(−iθσ̄zi σ̄zj ) [83, 84]. Alternatively, one can generate a
logical CNOT between the ith and jth logical qubit using
CNOTij = CNOTi2 j1CNOTi2 j2 . CNOTik jl defines the control
(target) qubit as the kth (lth) physical qubit of the ith (jth)
logical qubit.

2.1.2. Collective decoherence DFS. Decoherence-free sub-
systems, or NSs, build upon the notion of noise-invariant sub-
spaces to more generally define subsystems corresponding to
preserved degrees of freedom. Such a subsystem can be con-
structed when a quantum system is subject to collective deco-
herence, i.e. Bz ̸= 0 and B± ̸= 0, using a minimum of three
physical qubits [16, 85]. The logical space is constructed from
four orthonormal states:

|1̄⟩= |S0⟩|0⟩, |2̄⟩= |S0⟩|1⟩

|3̄⟩=
(√

2|T+⟩|1⟩− |T0⟩|0⟩
)
/
√
3

|4̄⟩=
(
|T0⟩|1⟩−

√
2|T−⟩|0⟩

)
/
√
3.

(4)

These states are composed of the singlet state |S0⟩=
(|01⟩− |10⟩)/

√
2 and triplet states |T+⟩= |00⟩, |T0⟩=

(|01⟩+ |10⟩)/
√
2, and |T−⟩= |11⟩. While notably amenable

to semiconductor qubit systems [82, 86], such states have been
realized in nuclear magnetic resonance as well [62, 65].

The 3-qubit code (DFS3) is defined by the logical states

|0L⟩= γ|1̄⟩+ δ|2̄⟩
|1L⟩= γ|3̄⟩+ δ|4̄⟩,

(5)

where γ and δ specify the gauge. Note that here the gauge
degrees of freedom are that of a single qubit and thus, dJ = 2.
Figure 1 displays the encoding circuit for the DFS3 code with
γ= 1 and δ= 0; see appendix A for an extension to arbitrary
γ and δ. Computations on the three-qubit code are generated
by the logical operators [79]:

σ̄x =
1√
3
(E23 −E13) (6)

σ̄z =
1
3
(E13 +E23 − 2E12) , (7)

where Eij denotes a SWAP operation between the ith and jth
physical qubits. We note as an aside, that this forms the basis
for universal quantum computation using just the Heisenberg
interaction [79, 87, 88], specifically in quantum dot sys-
tems [76, 86, 89].

2.2. Error detection in DFS codes

Passive quantum codes share many commonalities with their
active correcting counterparts. Specifically, DFSs can be
described as a highly degenerate quantum error correcting
code with infinite distance when all operations are restricted
to the code space. Of course, in practice, logical operations are
not ideal and leakage outside of the code space can occur. It is
in this domain that the stabilizer properties of the DFS codes
can be employed for an additional layer of protection.

Under the stabilizer formalism, continuous (non-Abelian)
stabilizers can be defined based on the DFS condition,
equation (2) [79]. Collective dephasing yields Zcol =

⊗N
i=1Zi

as one of the stabilizer elements, while collective decoherence
includes additional collective Pauli operations as stabilizer ele-
ments: Xcol =

⊗N
i=1Xi and Ycol =

⊗N
i=1Yi. As a result, the
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DFS can detect any odd number < N of single-qubit bit-flips
under collective dephasing or of arbitrary single-qubit Pauli
errors under collective decoherence.

We draw on the error detection properties of the code and
complement the DFS and DD protocols with a post-selection
(PS) procedure. In this way, we utilize the deferred measure-
ment principle [90] to circumvent the need for costly mid-
circuit measurement and the introduction of additional ancilla
qubits. Through the examination of the state probability dis-
tributions after decode and measurement, we define detectable
error states specific to the code. Characteristics of these states
are then used to define criteria for conditioning the state of the
data qubit based on the state of ancilla qubits. In the case of
the DFS2, PS affords detection of single-qubit bit-flip errors.
Similarly, for the DFS3 code, PS can supply detection of bit-
flip or phase-flip errors. We further elaborate on our proced-
ures in appendix E.

2.3. Dynamically generated DFSs

2.3.1. Dynamical decoupling. Quantum processors rarely
possess intrinsic noise environments with the ideal permuta-
tion symmetry of collective interactions. However, through the
use of DD, such symmetries can be effectively engineered. DD
sequences generally comprise control pulses applied at pre-
determined time intervals to modify the system-environment
interaction HSB. Given a unitary evolution subject to the total
Hamiltonian H (equation (1)),

fτ ≡ e−iHτ , (8)

DD sequences with delta-function-like pulses result in the
evolution

UDD (T) = PKfτPK−1fτ . . .P1fτ .

The total evolution time T= Kτ and {Pj} are the control
pulses. Conventionally, DD sequences are designed to effect-
ively cancel the system-bath interaction (i.e. HSB = 0) up to
a certain order in T. More precisely, an ℓth order decoupling
sequence yields an effective time evolution given byUDD(T) =
e−i(HS+HB)T+O[(λT)ℓ+1], where λ depends on both ∥HSB∥
and ∥HB∥ [26, 91]. A notable example, which will be relevant
in this study, is the universal decoupling sequence [3]

XY4 = YfτXfτYfτXfτ . (9)

Utilizing X and Y pulses, representing π-rotations about the x
and y axes of the single qubit Bloch sphere, respectively, XY4

offers first order (ℓ= 1) decoupling for general single qubit
noise.

Beyond suppression of system-environment interactions,
DD can be used to selectively average out components of
HSB to create the necessary conditions for a DFS. The group-
theoretic foundations for such ‘symmetrizing’ sequences are
given in [4, 21]. Specific sequences for generating collective
interactions are derived in [69] and are elaborated upon below.
In principle, achieving symmetrization conditions conducive

to a DFS can require fewer pulses than complete suppression
of general multi-qubit system-environment interactions [84];
this is a potential advantage of combining DFSs with DD.

2.3.2. Dynamically generated collective dephasing. Two-
qubit collective dephasing is generated by DD sequences con-
sisting of logical operations. In the most general two-qubit
setting, where single and two-qubit couplings to the environ-
ment are allowed, two-qubit collective dephasing is created by
a concatenation of three sequences consisting of rotations on
the logical Bloch sphere (see appendix B):

Ȳ ◦ X̄ ◦Π ◦ fτ = ȲX̄†fτΠ fτ X̄fτΠ fτ Ȳ
†X̄†fτΠ fτ X̄fτΠ fτ . (10)

The inner-most sequence composed of Π = R̄x(π) operations
is used to suppress leakage out of the DFS. In contrast, con-
catenating logical operators Ȳ= R̄y(π/2) and X̄= R̄x(π/2)
enables cancellation of all logical single-qubit errors. Note that
the suppression properties of the sequence are independent
of concatenation ordering. All variations lead to an effective
Hamiltonian Hcol

SB with B± ≡ 0.

2.3.3. Dynamically generated collective decoherence. The
three-qubit collective decoherence condition can be generated
using the sequence

E12fτE01fτE12fτE01fτE12fτE01fτ . (11)

Intuitively, the resulting evolution is akin to rapidly swap-
ping the states of the qubits such that the environment can-
not distinguish between them [76, 92]. The sequence assumes
the underlying noise model is given by HSB =

∑N
j=1 σ⃗j · B⃗j,

with σ⃗j = (σ+
j ,σ

−
j ,σ

z
j ) and B⃗j = (B+

j ,B
−
j ,B

z
j ). The effective

Hamiltonian resulting from the DD sequence is Hcol
SB.

Practical implementation of the above sequences on the
IBMQP requires composite pulses consisting ofmultiple noisy
two-qubit gates. For example, Ejk includes three CNOTs, each
of which demands two faulty cross-resonance gates [93]; see
appendix C for further details. As such, realizations of these
sequences are quite far from the noiseless, delta-function-
pulse idealization from which they were derived. Nonetheless,
as we show below, dynamically generating DFSs with these
composite operations is achievable despite the imperfections
inherent in the two-qubit gates.

3. Evidence of collective symmetry

3.1. Logical state invariance

We investigate the presence of native and dynamically gener-
ated collective decoherence on the IBMQP. A single logical
qubit is compared against its physical qubit constituents
using a state-dependent fidelity analysis. The system is pre-
pared in a quantum state lying in the (x, z)-plane of the
Bloch sphere, such that |ψ(θ)⟩= cos

(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩ for

physical qubits and equivalently |ψL(θ)⟩= cos
(
θ
2

)
|0L⟩+

5
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Figure 2. Fidelity as a function of elevation angle θ for unprotected and protected states. Initial states |ψ(θ)⟩ are chosen to be a subset of
states that lie in the (x, z)-plane of the Bloch sphere. Each data point corresponds to the evolution of an unprotected or protected state for
T= 14.89µs, or the equivalent of M= 1 repetitions of the DFS2+DD sequence (M= 2 repetitions of the DFS3+DD sequence) with state
encoding and decoding. DFS protocols (with post-selection) correspond to free evolution bookended by encoding and decoding circuits.
State invariance is not observed, indicating that the native noise does not satisfy the DFS conditions. DFS2+DD and DFS3+DD utilize the
collective symmetrizing DD and post-selection to achieve the expected state invariance (independence on θ). Data points represent
estimated means and shaded regions denote 95% CIs, all of which are determined from bootstrapping over five realizations of the
experiment. All data were collected from the five-qubit Manila device.

sin
(
θ
2

)
|1L⟩ is defined for DFS codes. For the DFS3 code

(equation (5)), we first focus on the particular gauge γ= 1 and
δ= 0 for this comparison. An investigation of gauge depend-
ence is presented below. We do not scan over the azimuthal
angle ϕ as previous work has shown that the free evolution
fidelity depends almost entirely on the elevation angle θ [43,
47] (see the discussion following equation (15) in [94] for an
explanation of this effect).

Following physical or encoded state preparation, the system
is allowed to freely evolve or is subjected to DD; the resulting
state is denoted by ρout(t). An inverse state preparation com-
pletes the evolution prior to measurement in the computational
basis. This sequence of operations is used to evaluate a phys-
ical or logical protocol’s ability to preserve an initial state via
the state fidelity

f|ψ(θ)⟩ (t) = ⟨ψ (θ) |ρout (t) |ψ (θ)⟩, (12)

where ρidealout (t)≡ |ψ(θ)⟩⟨ψ(θ)|. We investigate this fidelity as a
function of θ for both unprotected states undergoing free evol-
ution and protected states. The term ‘protected’ refers to both
DD and logical DFS encodings, or their combination.

Unprotected states are obtained from idle (free) evolution,
where the system is allowed to evolve according to its internal
dynamics after state preparation. In order to equalize qubit
resources between unprotected and encoded states, we report
the best fidelity of three adjacent physical qubits. Unprotected
states are compared against DFS encodings without DD
(DFS2, DFS3) and with DD (DFS2+DD, DFS3+DD). All res-
ults, unless otherwise specified, include PS. For the DFS2

code, PS is performed by conditioning the data qubit state
on the ancilla returning to the ground state. Alternatively, the

DFS3 code utilizes a PS procedure that is based on condition-
ing the data qubit state on qubit q2 (see figure 1) returning to
the ground state. We find that PS leads to an overall increase
in fidelity for both logical encodings whether or not DD is
employed. This is discussed further in section 4.1, with addi-
tional details presented in appendices E and I.

In figure 2, we show the state fidelity f|ψ(θ)⟩(t) as a func-
tion of θ for a total evolution time of t≈ 14.89µs, or one
repetition of the DFS2+DD sequence (two repetitions of the
DFS3+DD sequence), including logical state encoding/de-
coding. Experiments are performed on the five-qubit Manila
device using qubits (2, 3, 4); see appendix F for further details
regarding device specifications. While this subset of qubits
yields the highest fidelity for logical encodings, we observe
qualitatively similar behavior for alternative configurations;
see appendix J. Estimates of fidelity (solid lines) and 95%
confidence intervals (CIs; shaded regions) are determined by
bootstrapping over five realizations of the demonstration using
8000 measurement shots.

Logical encodings alone are not sufficient to observe col-
lective dephasing/decoherence. The DFS2 code exhibits a
state-dependent fidelity that is more consistent with free evol-
ution than collective dephasing. In particular, we observe sub-
stantial degradation in fidelity for states close to the (x, y)-
plane of the logical qubit Bloch sphere. In this regime,
logical states are most susceptible to phase errors, which may
arise from coherent (i.e. detuning or crosstalk) or dissipative
(i.e. phase damping) noise. Importantly, these noise sources
are not typically uniform across qubits on the IBMQP [46,
95, 96] and thus, are not invariant under the DFS2 code.
Similarly, non-uniform phase errors contribute to the logical
state dependence observed for the DFS3 code. As we show via
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Figure 3. Investigation of gauge invariance for the DFS3 code. State fidelity as a function of initial state |ψ(θ,ϕ)⟩ is plotted for the DFS3

(top) and DFS3+DD (bottom) protocols. In the former, the system is encoded in the DFS3 code, subject to free evolution equivalent to
M= 1 repetitions of the DFS3 DD sequence, and returned to the ground state prior to measurement. The latter follows a similar procedure,
except the free evolution is replaced by the symmetrizing DD sequence. Both protocols include PS. Plots show mean fidelities estimated
from bootstrapping data collected over a five-day period on Manila; 8000 measurement shots are used. Results indicate an enhanced gauge
invariance when using the DFS3 encoding in conjunction with PS and DD.

simulation in appendix H, non-uniform phase errors can lead
to an asymmetric θ-dependence in the fidelity.

The inclusion of DD leads to substantially different beha-
vior. Phase errors are symmetrized and thus, the DFS2+DD
protocol produces a near-state-invariant behavior consistent
with collective dephasing. DD is beneficial for nearly all states
considered, except for those near θ= 0. This result is con-
sistent with previous studies of DD on physical qubits [43].
Namely, faulty DD pulses can lead to a combined error accu-
mulation that is greater than allowing the qubits to idle. In the
case of the DFS2 code, f|ψ(0)⟩(t) = 0.984 without DD (similar
to the free evolution case: f|ψ(0)⟩(t) = 0.986), while with DD
f|ψ(0)⟩(t) = 0.908. The DFS3 code does not display such a sig-
nificant difference (f|ψ(0)⟩(t) = 0.923 and f|ψ(0)⟩(t) = 0.94 for
the code with and without DD, respectively) most likely due
to the large depth state preparation circuit which may induce
a majority of the error.

Similar to the two-qubit code, the DFS3+DD pro-
tocol conveys enhanced state invariance. Residual θ-
dependence remains, however, specifically for states near
θ = π. Analyzing the measurement outcome distributions for
θ < π/2, we find that a majority of the errors are consistent
with phase errors. The PS procedure assists in discarding a
substantial subset of these errors, primarily leaving less prob-
able single-qubit bit-flip errors. For π/2⩽ θ ⩽ π, we observe
an increase in bit-flip errors. As a result, the PS procedure par-
tially biases state fidelities such that smaller elevation angles
yield higher fidelity. We further elaborate on the effect of PS
in appendix I.1.

3.2. Gauge invariance

Noiseless subsystems possess a gauge invariance that enables
the logical computational basis states to be defined as subsys-
tems, rather than subspaces. As an additional verification of

collective decoherence generation, we examine the existence
of this gauge invariance for the DFS3 code.We perform a state-
dependent analysis similar to the previous subsection but also
permit rotations within the gauge subspace. More concretely,
we consider states of the form

|ψ (θ,ϕ)⟩= cos

(
θ

2

)
|0L (ϕ)⟩+ sin

(
θ

2

)
|1L (ϕ)⟩, (13)

where

|0L (ϕ)⟩= cos(ϕ/2) |1̄⟩+ sin(ϕ/2) |2̄⟩
|1L (ϕ)⟩= cos(ϕ/2) |3̄⟩+ sin(ϕ/2) |4̄⟩,

(14)

with the four constituent states defined in equation (4). The
DFS3 code is prepared via the above state and subject to a
single repetition of the DFS3+DD sequence or allowed to
freely evolve for an equivalent duration. The state decoding
procedure is performed before measurement in the computa-
tional basis and subsequent PS.

A comparison between a freely evolving DFS3 and the
DFS3+DD protocol is shown in figure 3. Experiments are
performed on the five-qubit Manila device using 8000 meas-
urement shots. Estimates of mean fidelity (equation (12))
are determined by bootstrapping over five realizations of the
demonstration.

Evidence of gauge invariance is observed for both the
DFS3 encoding alone and with the inclusion of the collective-
symmetry-generatingDD protocol. In the top panel of figure 3,
the DFS3 fidelity determined via equation (12) is shown as a
function of θ and ϕ. While there is a clear dependence of fidel-
ity on the logical state, signatures of invariance to the gauge
are more prominent. We quantify this invariance by examining
the standard deviation of the fidelity over the gauge states and
averaged over initial logical states. For the DFS3 encoding, the
average standard deviation in fidelity is 0.023. In contrast, the
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DFS3+DD protocol exhibits an average standard deviation of
0.018. The absence of a significant difference in gauge invari-
ance between the DFS3 and DFS3+DD protocols indicates
that the gauge degree of freedom is robust under this device’s
intrinsic decoherence mechanisms.

Consistent with the analysis in the previous subsection,
DD improves the fidelity for all NS logical states. One of
the most prominent features is the significant boost in fidel-
ity for the gauge state with ϕ= 0; see the bottom panel of
figure 3. This feature is easily explained by the state prepar-
ation circuit which requires an additional CNOT gate between
the ancilla qubits for all ϕ ̸= 0. Ultimately, due to the topo-
logy of the hardware, this requires an additional SWAP opera-
tion as well; hence, the notable degradation in fidelity. Further
details regarding the ϕ ̸= 0 state preparation are discussed in
appendix A.

4. Preservation of logical qubits

Ultimately, the goal of our protection protocols is to extend
the preservation of arbitrary quantum states. In this section, we
evaluate each protocol’s performance by allowing the system
to evolve under free or controlled evolution, i.e. the experiment
depicted schematically in figure 1. Under unprotected (free)
evolution, we prepare the state U|0⟩ (we define U below),
let the system evolve according to its internal dynamics for
fixed periods of time, apply U†, and measure in the compu-
tational basis. In the protected case, after encoding followed
by the application of Ū (logical-U), the system is subject to
M repetitions of a DD sequence for a total evolution time of
TDD(M) =MtDD, where tDD is the time for a single DD cycle.
As in the case of free evolution, the experiment is completed by
applying Ū†(decoding) and a measurement of all qubits in the
computational basis. Below, we examine arbitrary state preser-
vation for logical qubit encodings, startingwith a single logical
qubit and then scaling the protocols up to seven logical qubits.
Unprotected states are compared against protected states using
equivalent physical resources.

4.1. Preservation of one logical qubit

First, we focus on the time-dependent state preservation of a
single logical DFS qubit. Ideally, the preservation of an arbit-
rary state would be determined by sampling over the Haar dis-
tribution and calculating the average fidelity EHaar[f|ψ⟩(t)] =´
dψ f|ψ⟩(t) [90]. We estimate the Haar fidelity via

F(t) =
1
L

L∑
i=1

f|ψi⟩ (t) , (15)

using an ensemble of L= 20 states consisting of 14 Haar ran-
dom states and the six eigenstates of the Pauli matrices, which
we refer to as the poles of the Bloch sphere. We find this set to
be sufficient for estimating EHaar[f|ψ⟩(t)].

The average fidelity as a function of time is shown in
figure 4 for experiments performed on the five-qubit Manila

device. Mean fidelities and error bars are determined by boot-
strapping over five realizations of the experiment and 8000
measurement shots. As in section 3.1, results are shown for
the configuration of qubits with the highest average fidelity
for logical encodings, i.e. qubits (2, 3, 4). Results for physical
qubits consider the highest average fidelity among the three
physical qubits used for the DFS3 code. While the DFS2 code
only requires two physical qubits, we do not find a significant
difference in performance when selecting the best performing
qubit among two or three physical qubits. This holds for both
the Free and XY4 cases. In the latter, the best performing qubit
is typically the one subject to DD; hence, an additional neigh-
bor qubit evolving freely does not alter the best performance.

Solid lines designate fits to the data using

F(t) = C1f(t)+C2,

f(t) = e−t/τ1 cos(ωt)+ e−t/τ2 .
(16)

C1,C2 denote dimensionless weight parameters, such that

C1 =
F(Tmax)−F(T0)

f(Tmax)− f(T0)
, C2 = F(T0)−C1f(T0) . (17)

The time required to evolve the system for Mmax repetitions
of a DD sequence (or the free evolution equivalent) is given
by Tmax = T0 + TDD(Mmax), where T0 is the time for state
encode, decode, andmeasurement. Short and long-term coher-
ence times are determined by τ 1 and τ 2, respectively, while ω
is the oscillation frequency. Additional information regarding
the fitting procedure can be found in appendix G.

Figure 4(a) displays the time-dependent state-averaged
fidelity for unprotected physical (Free) and logical (DFS2,
DFS3) qubits subject to PS alone. The fidelities of the Free
and DFS2 cases are statistically indistinguishable. However,
the DFS3 case has a notably longer short-term decay time,
while its long-time decay is essentially infinite; see table 1.
The longer decay time is accompanied by a higher fidelity.
We attribute PS to the enhancement in fidelity, and substanti-
ate this claim via an examination of the time-averaged fidelity:

FT =
1

T− T0

ˆ T

T0

F(t)dt. (18)

In figure 4(c), the time-averaged fidelity is shown for all proto-
cols in two regimes designated by the DD repetition time of the
sequence used for the DFS2 code. The short-time limit is set
by the single repetition time T= T0 + tDD ≈ 14.89µs, where
T0 ≈ 0.81µs, while the long-time limit corresponds toM= 3,
i.e., T= T0 + 3 tDD ≈ 43.05µs. All estimates of FT are calcu-
lated by cubic spline integration, with subsequent means and
CIs determined by bootstrapping.

The DFS3 code benefits substantially from PS in both the
short and long-time limit. PS results in approximately 14% and
17% improvement in the DFS3 time-averaged fidelity over the
bare encoding, respectively. The DFS2 code obtains a mere
1.3% and 3% in comparison. This result is consistent with the
stabilizer properties of the code in the sense that the DFS2 code
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Figure 4. Time-dependent arbitrary state preservation of a single logical qubit. DFS encodings are compared against unencoded qubits
using equivalent physical resources. Panel (a) shows the decay of logical states encoded within the DFS codes and subject to PS. The DFS3

code appears to benefit the most from PS, achieving an improvement in performance over physical qubits subject to free evolution alone. In
(b), logical encodings are used in conjunction with DD and PS and compared against XY4 on a physical qubit. Logical protocols outperform
physical protocols particularly forM> 2 repetitions of logical DD. The behavior of each protocol is further captured by panel (c) in the short
and long-time limit via the time-averaged fidelity (equation (18)). All experimental data is collected from the 5-qubit Manila device using
8000 measurement shots. Estimates of means and CIs are determined by bootstrapping five realizations of the data collected over five days.

Table 1. Fit parameters and standard error estimates for the fidelity decay of various logical and physical protocols. Corresponding fits are
shown in figure 4, while the fit is given by equation (16).

Protocol τ 1 (µs) ω (Hz) τ 2 (µs) F(T0)

Free 3.95± 0.55 0 319.98± 88.35 0.98± 0.02
XY4 100.49± 3.26 265.03 ∞ 0.99
DFS2 w/PS 3.79± 0.36 0 ∞ 0.99± 0.01
DFS2 w/DD+PS 229.91± 29.41 0 ∞ 0.99± 0.01
DFS3 w/PS 5.86± 0.42 0 ∞ 0.97± 0.01
DFS3 w/DD+PS 47.35± 3.94 0 ∞ 0.97

cannot detect all single-qubit errors and is limited to bit-flips.
The DFS3 possesses a larger set of detectable errors and there-
fore, obtains a more robust code space.

In examining the enhancement afforded by error detection
as a function of the initial state, we find that the DFS3 par-
ticularly benefits from PS for states approaching θ= 0 on the
logical Bloch sphere; see appendix I. States near the logical
(x,y)-plane suffer from logical errors that typically render
lower fidelities with PS. In contrast, DFS2 logical states only
gain from PS near the logical |+⟩ state. Ultimately, this beha-
vior leads to state-averaged fidelities that favor DFS3 when
error detection is employed.

Despite the utility of PS, DD typically results in greater
improvement in fidelity. In the case of DFS2, the short-time
decay rate is greatly enhanced by the inclusion of DD. For
example, we observed an approximate 60× increase in τ 1

(from 3.79 µs to 229.91 µs) when DD is used in conjunc-
tion with PS as compared to PS alone. Qualitatively similar
behavior appears for the time-averaged fidelity as well. DD
results in a short-time limit increase of 17% and long-time
limit increase of 3% relative to PS. Further incorporating PS
with DD boosts FT by 3% and 7%, respectively, indicating
that (1) DD is most impactful in the short-time limit (consist-
ent with DD’s propensity to suppress non-Markovian but not
Markovian errors) and (2) both protocols perform best when
used together.

The DFS3 code exhibits similar characteristics, however,
PS plays an important role in the short-time limit as well. On
their own, PS and DD enable similar short-time fidelities; DD
yields a 15% increase over the DFS alone, with PS further
improving the DFS3+DD fidelity by 7%. This is accompan-
ied by a nearly 8× improvement in τ 1 from 5.86 µs for DFS3

9



Rep. Prog. Phys. 87 (2024) 097601 G Quiroz et al

with PS to 47.35 µs when DD is incorporated. In contrast, DD
has a less appreciable effect on FT in the long-time limit. DD
enhances the time-averaged fidelity of the DFS3 code (without
PS) by approximately 8%. DD and PS again prove to be more
beneficial when used together, achieving a 21% increase over
the DFS3 encoding alone.

In figure 4(b), the logical encoding schemes with PS and
DD are compared against DD on physical qubits. Qubit 3 is
subject to XY4, while qubits 2 and 4 are allowed to evolve
freely. After each total evolution time, the best qubit fidelity
is taken, where the DD cycle time is tDD = 4tg ≈ 142.2 ns for
a gate time of tg ≈ 35.6 ns. Alternative physical DD protocols
were considered as well, e.g. applying XY4 simultaneously on
all qubits, however, they typically resulted in worse fidelity.
We attribute the degradation in fidelity to quantum crosstalk,
which is exacerbated by simultaneous operations on nearest-
neighbor qubits. As such, the protocol chosen here is one such
approach that suppresses parasitic interactions and combats
local environmental noise.

Utilizing XY4 as a benchmark for noise protection in phys-
ical qubits, we evaluate each logical protocol’s ability to out-
perform its physical qubit constituents. We find that DFS2

(with DD and PS) and XY4 possess comparable short-time
fidelity decay; see table 1. Similar results are observed for the
time-averaged fidelity in the short-time limit. However, in the
long-time limit, the distinction between the protocols becomes
more apparent. The DFS2 code with DD and PS achieves a
7.25% improvement over XY4, while the DFS3 code attains
a 1.25% enhancement. Overall, these results indicate that it
is possible for DFS encodings to perform on-par with phys-
ical error suppression protocols in the short-time limit, while
providing greater long-term protection of quantum memory.

4.2. Preservation of multiple logical qubits

In order to justify the resource overhead of logical encod-
ing, one must demonstrate that K logical qubits can yield per-
formance advantages over N= nK physical qubits, where n
is the encoding overhead, i.e. n= 2 and 3 for the DFS2 and
DFS3 cases, respectively. The analysis in the previous sub-
section sheds light on this comparison for K= 1, where a
single logical qubit performs similarly, if not better than phys-
ical qubits alone. We now expand this analysis to determine
whether performance advantages persist with increasing K.
We focus on the preservation of the best K physically adja-
cent logical (physical) qubits selected from a set of K′ sim-
ultaneously generated logical (physical) qubits. Prepared in
this way, the logical qubits are not readily amenable to two-
qubit logical operations, as additional symmetrizing opera-
tions are required [69, 75]. However, this comparison provides
key insight into a significant preliminary milestone: the sim-
ultaneous preservation of multiple independent logical qubits.

In figure 5, we summarize two comparisons in which
N= 14 (N= 18) physical qubits are encoded intoK ′ = 7DFS2

(K ′ = 6 DFS3) logical qubits on the 27-qubit Montreal device.

(Device specifications are discussed in appendix F.) The time-
averaged fidelity serves as the comparison metric, where T is
the total time for encoding/decoding and one repetition of the
DFS2+DD sequence, i.e. the so-called ‘short-time limit’ dis-
cussed in section 4.1. The state-average fidelity is estimated for
the L= 20 states discussed in section 4.1, using 8000 meas-
urement shots. FT is determined by cubic spline integration
of F(t) up to T≈ 26.65µs. This is approximately equivalent
to two repetitions of the DFS3 DD sequence, including state
encode/decode procedures. Estimates of the mean and CI for
the time-averaged fidelity are determined by bootstrapping.

Logical qubits are compared against physical qubits using a
combination of DD and free evolution. We consider physical
qubit protocols corresponding to free evolution on all qubits
and a DD-protection scheme in which every other qubit within
the array is subject to XY4. Those qubits not protected by DD
are allowed to evolve freely. As in the case of the single logical
qubit, this protocol outperforms simultaneously XY4 on all
qubits due to its suppression of parasitic crosstalk [46, 48]. A
schematic illustration of the DD protocol is shown below pan-
els (a) and (b) in figure 5. We consider similar logical encod-
ing schemes: (1) the qubits are prepared in the logical subspace
and allowed to evolve freely and (2) upon preparing the logical
subspaces, every other logical qubit is subject to the symmet-
rizing DD sequence. As in the case of the physical qubit DD-
protection protocol, we find that simultaneous logical opera-
tions on neighboring qubits typically result in lower fidelity.
As before, we suspect this behavior is due to crosstalk between
neighboring physical qubits that propagates into logical errors.
The logical qubit DD-protection protocols for the DFS2 and
DFS3 encodings are summarized at the bottom of figures 5(a)
and (b), respectively.

Above the protocol schematics in figure 5 are comparis-
ons of the time-averaged fidelity as a function of the num-
ber of logical qubits for each protocol. In panel (a), results
are shown for the DFS2 code. Among the available 27 qubits,
we select the best set of N= 14 physically adjacent physical
qubits based on CNOT gate error rates and decoherence times
to perform our demonstrations. Physical qubit protocols are
applied to the N-qubit set, while the DFS2 protocols involve
encoding the N qubits into K ′ = 7 logical qubits. We then ask
the question: requiring physical adjacency, how do the best
K logical qubits compare against the best K physical qubits?
Panel (a) summarizes our findings as a function of K, where
the DFS2 encoding with PS typically performs similarly to
physical qubit free evolution. In contrast, upon incorporating
DD, the DFS2 code outperforms the physical qubit DD pro-
tocol particularly forK> 2.Within error bars, the performance
advantage of the DFS remains consistent up to K= 7, where
time-averaged fidelities range from 12.5% to 24.7% higher
than DD-protected physical qubits.

The performance advantage of DFS3 over physical qubits is
even more substantial than DFS2. In figure 5(b), N= 18 qubits
are again selected based on CNOT gate error rates and deco-
herence times. Physical qubit protocols on N qubits are com-
pared against the DFS3 protocols on K ′ = 6 logical qubits.
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Figure 5. Time-averaged fidelity FT as a function of the number of logical qubits. Panels (a) and (b) show results comparing physical and
logical protocols for the DFS2 and DFS3 encodings, respectively. The DD and DFS2+DD protocol is shown below panel (a), while a similar
illustration for the DFS3 comparison is shown below panel (b). Each panel includes free-evolution (purple squares; solid line), physical
qubit DD (dark-blue circles; solid line), the DFSN (light blue up-triangles; dashed line), and DFSN+DD (green down-triangles; dashed line)
protocols. For the DFS2 code, N= 14 physical qubits are simultaneously prepared into K ′ = 7 physically adjacent logical qubits. The
time-averaged fidelity is examined for the best K⩽ K ′ logical qubits using a total time of T= 26.65µs, or one repetition of the longest
DFS2+DD sequence. An identical analysis is performed for the DFS3 using N= 18 physical qubits to prepare K ′ = 6 logical qubits.
Physical qubit fidelities are determined from the best K adjacent physical qubits among the available N. Experiments are performed on the
27-qubit Montreal device using 8000 measurement shots. Estimates of FT means and CIs are determined from bootstrapping five
realizations of the data captured over five days. The results indicate that both the DFS2+DD and DFS3+DD protocols with PS outperform
the physical DD protocol, particularly for K> 2.

Contrary to theDFS2 code, theDFS3 codewith PS alone yields
sizable and consistent advantages over physical qubits subjec-
ted to free evolution; note the consistency with the discussion
in section 4.1. We find that this performance advantage per-
sists as the number of logical qubits increases. Surprisingly,
the benefits of the DFS3 with PS are considerable enough to
result in near-equivalent time-averaged fidelity with that of DD
on physical qubits, particularly for K> 3. As in the case of
the DFS2 encoding, the inclusion of DD results in improved
fidelity for the DFS3 code. The relative improvement in time-
averaged fidelity varies from approximately 9.7%–17.7% over
the physical qubit DD protocol beyond K= 1. If instead the
time-averaged fidelity is considered up to one cycle of the
DFS3 (T≈ 12.33 µs) then a maximum improvement of 23.6%
over physical DD is achievable; a result comparable to the
DFS2 case. In both cases, we find that DFS encoding, when
combined with error detection and suppression outperforms
physical error suppression on its own.

5. Conclusions

In this work, we investigated the viability of DFS codes on
currently available quantum devices. Using IBMQP supercon-
ducting qubit devices, we showed that DFS codes can achieve
advantages over physical error suppression in the task of
quantum state preservation. This was accomplished by devis-
ing logical qubit protection protocols that incorporate two key
aspects: (1) noise-symmetrizing DD and (2) error detection
provided by the stabilizer properties of the code. We estab-
lished the advantage of these protocols for up to seven logical
qubits, hence demonstrating their potential applicability and
scalability on current and near-term quantum processors.

In evaluating the efficacy of the codes, we showed that the
collective system-bath interactions required by DFS codes do
not natively exist on the devices. However, such symmetries
can be enforced through the application of specially designed
pulse sequences. Despite their considerable gate depth, these
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sequences enable logical subspace invariance indicative of a
DFS code with fidelity gains relative to unencoded qubits.

We showed that state invariance leads to improved logical
qubit fidelity over error suppression protocols that are applied
directly to physical qubits. We observed an enhancement
in fidelity up to seven DFS2 and six DFS3 qubits encoded
into 14 and 18 physical qubits, respectively. Error detection
employed via post-selection resulted in logical qubit fidelit-
ies that surpass the XY4 DD sequence, particularly in the case
of the DFS3 code. Moreover, when noise-symmetrizing DD
was used in conjunction with post-selection, even greater per-
formance gains were attainable. The DFS codes obtained up
to a 24% and 17% improvement over XY4 in terms of the
time-averaged fidelity, respectively. This constitutes a beyond-
breakeven fidelity improvement for DFS-encoded qubits.

Additional studies are required to investigate the poten-
tial practical implementation of encoded quantum computa-
tion based on DFS codes. In particular, a demonstration of
entangled logical qubits based on the methods we explored
here is a natural next step. Nevertheless, we have already
found encouraging results for the preservation of quantum
states encodedwithin noninteracting copies of multiple logical
qubits. Our protocol integrates error detection, avoidance, and
suppression, and thus, highlights the significant potential of
constructing error management schemes consisting of numer-
ous techniques working in concert to enhance logical qubit
fidelity.
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Appendix A. DFS3 state preparation

TheDFS3 encoded states are prepared using the circuit defined
in [97] and shown in figure 6. q0 denotes the data qubit,
while q1 and q2 designate an additional ancilla qubit and
gauge qubit, respectively. The controlled unitaries shown in
the unoptimized circuit of figure 6(a) are defined via

G1 =
1√
3

(
1

√
2

−
√
2 1

)
(A1)

G2 =
1√
2

(
1 1
−1 1

)
. (A2)

The circuit defined within the gray, dashed box is only
executed if the gauge qubit is prepared in any state other than
|0⟩. Note that by definition of the DFS3 code, the gauge qubit
can be initialized in any state while still satisfying the DFS
preservation condition.

Compiling the state preparation circuit to the IBMQP gate-
set requires decomposition of the controlled gates CG1 and
CG2. The combined product of these gates can be replaced by
a circuit that only requires one CNOT gate. This decompos-
ition is accomplished via the Schmidt decomposition, where
|Ψ⟩= CG2CG1|ψ⟩⊗ |0⟩ is rewritten as

|Ψ⟩= α|ψ1⟩⊗ |ϕ1⟩+β|ψ2⟩⊗ |ϕ2⟩, (A3)

where ⟨ψ1|ψ2⟩= ⟨ϕ1|ϕ2⟩= 0. The Schmidt decomposition is
computed by taking the partial trace of each of the bipartite
systems and computing the corresponding eigenvalues. For
ρAB = |Ψ⟩⟨Ψ|, we have ρA = TrB[ρAB] and ρB = TrA[ρAB]. We
denote byα,β the eigenvalues of ρA. The eigenstates of ρA and
ρB are |ψi⟩ and |ϕi⟩, respectively. The resulting unitaries from
the decomposition are:

W̃1 =

(
α β∗

β −α∗

)
, (A4)

which can be derived from the Schmidt eigenvalues, and

W2 = |ψ1⟩⟨0|+ |ψ2⟩⟨1|,
W3 = |ϕ1⟩⟨0|+ |ϕ2⟩⟨1|.

The final optimized circuit is shown in figure 6(b).
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Figure 6. State preparation circuits for DFS3 encoding. Panel (a)
shows the unoptimized circuit expressed in terms of controlled gates
CG1 and CG2. The optimized circuit resulting from a Schmidt
decomposition is displayed in panel (b). The gates encapsulated by
the gray, dashed box are only implemented if the gauge qubit (q2) is
not prepared in |0⟩.

Appendix B. DFS2 DD protocol

The DD sequence in equation (10) generates collective deph-
asing up to first-order in time-dependent perturbation theory.
The sequence can achieve this suppression condition for gen-
eral two-qubit system-environment interactions of the form

HSB =
∑
α1,α2

(σα1
1 σα2

2 )⊗Bα1α2 , αi ∈ {0,x,y,z} , (B1)

where Bα1α2 denotes a bounded bath operator coupled to the
system. The interaction Hamiltonian can be rewritten as

HSB = HLeak +HLogi +HDFS, (B2)

where HLeak = span(PLeak) denotes leakage errors, i.e. terms
that cause transitions between states inside and outside of the
DFS. TheHamiltonianHLogi = span(PLogi) includes operators
that form undesirable logic gates on the DFS that couple to the
bath and cause decoherence. Lastly, HDFS = span(PDFS) des-
ignates operators that either vanish or are proportional to iden-
tity on theDFS. The spanning subspaces for eachHamiltonian,
in terms of the two-qubit Pauli basis are

PLeak = {σx1,σx2,σ
y
1,σ

y
2,σ

x
1σ

z
2,σ

z
1σ

x
2,σ

y
1σ

z
2,σ

z
1σ

y
2}

PLogi = {σ̄x, σ̄y, σ̄z}

PDFS =

{
σz1 +σz2

2
,
σx1σ

y
2 +σy1σ

x
2

2
,
σx1σ

x
2 +σy1σ

y
2

2
,

I4,σ
z
1σ

z
2} , (B3)

where I4 is the two-qubit identity operator and the logical oper-
ators in PLogi are defined in equation (3).

Following [71], it can be shown that logical operations can
be used to design DD sequences that suppress all terms acting
non-trivially on the DFS. Specifically, the sequence shown in
equation (10) utilizes a concatenation of three sub-sequences
that together suppress HLeak and HLogi in the ideal, instantan-
eous pulse limit. Each sub-sequence contains two pulses sep-
arated by free evolution periods of duration τ . As such, the
generic construction of the sub-sequences can be defined by
U ◦ fτ ≡ UfτU†fτ , where fτ = e−iHSBτ . Note that Π = R̄x(π)
anticommutes with PLeak, so it suppresses leakage out of the
DFS. The logical operators Ȳ= R̄y(π/2) and X̄= R̄x(π/2) can
be used to suppress PLogi via a standard XY4 sequence, i.e. a
concatenation of X̄ and Ȳ. The concatenation of the leakage
suppression and logical error suppression sequences yields the
following sequence:

Ȳ ◦ X̄ ◦Π ◦ fτ
= Ȳ ◦ X̄ ◦

(
Π fτΠ

†fτ
)

= Ȳ ◦
[
X̄(Π fτΠ fτ ) X̄

† (Π fτΠ fτ )
]

= ȲX̄†fτΠ fτ X̄fτΠ fτ Ȳ
†X̄†fτΠ fτ X̄fτΠ fτ ,

(B4)

where in the last line we used Π =Π† along with X̄Π = X̄†

and X̄†Π = X̄.

Appendix C. Implementation of DFS2 DD pulses

The DD sequence used to generate the collective dephasing
DFS requires logical operations R̄x(θ) and R̄y(θ). These logical
unitaries are generated by logical operators σ̄x and σ̄y, respect-
ively, which can take many forms. Belonging to the com-
mutant of the error algebra only requires that the Hermitian
operators be expressed as a linear combinations of the iden-
tity, σzi , σ

z
1σ

z
2, and σ⃗1 · σ⃗2 = σx1σ

x
2 +σy1σ

y
2 +σz1σ

z
2. The operat-

ors given in equation (3) define symmetric logical operators
that satisfy the so-called independence property [79] (i.e. they
act entirely within the specified DFS) and preserve all DFSs
in the two-qubit Hilbert space [83]. Hence, operators on the
logical subspace defined by {|01⟩, |10⟩} do not enable mix-
ing between the one-dimensional subspaces defined by |00⟩
and |11⟩. While alternative, non-preserving logical operators,
such as

σ̄x = σx1σ
x
2

σ̄y = σx1σ
y
2 +σy1σ

x
2

σ̄z =−σz2

(C1)

can be defined, empirical evidence shows that the symmetric
operators yield higher fidelities.

The preference towards the symmetric operators is quite
surprising considering that their gate decomposition requires
twice as many CNOT operators. This can be seen by util-
izing commutativity to decompose the logical operators into
products of two-local rotation operators. For example,

R̄x (θ) = e−iθ/2σ
x
1σ

x
2e−iθ/2σ

y
1σ

y
2 , (C2)
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Figure 7. Decompositions for the symmetric logical rotation gates
in terms of the IBMQP gateset. (a) shows the logical x-rotation gate,
while the logical y-rotation gate is given in (b).

Figure 8. Comparison of different logical operator definitions for
the DFS2+DD protocol. Symmetric logical operations yield higher
fidelity than the non-symmetric case. Demonstrations are performed
on the 5-qubit IBMQP Manila device, with data points and error
bars denoting means and CIs, respectively. Bootstrapping over five
realizations of the demonstration is employed to calculated
statistical quantities. 8000 shots are used per demonstration
execution.

where each two-qubit interaction unitary can be decomposed
into single qubit rotations bookended by CNOT gates; see
figure 7(a). Following a similar decomposition, one obtains
the circuit for R̄y(θ) in terms of the IBMQP gateset G =
{Xπ/2,Xπ,Rz(θ),CNOT} as shown in figure 7(b). The aver-
age logical gate time across the five data collection periods
was 1.47± 0.30µs on the 5-qubit Manila device. The aver-
age logical gate time for the 27-qubit Montreal device was
1.67± 0.33µs.

Note that the definitions of non-symmetric logical operators
yield unitaries similar to the first two-local interaction in the
symmetric decomposition. For example, the non-symmetric
logical x-rotation operator is R̄x(θ) = e−iθσ

x
1σ

x
2 , which only

requires twoCNOT gates when decomposed viaG. Despite the
reduction in gate time and depth, the non-symmetric operators
do not outperform their symmetric counterparts; see figure 8.

Moreover, we do not observe improved performance from
optimizing the gate decompositions of the symmetric logical
operators. The decompositions given in figure 7 utilize four
CNOTs, onemore thanwhat should be required for the decom-
position of any two-qubit gate [90]. However, we find that

Figure 9. NS symmetrization sequence consisting of six SWAP
operations. Each SWAP gate is decomposed into three CNOT gates
when implemented on IBMQP processors. The timing between
gates follows equation (11) with τ = 0. Implementation of the gates,
however, is subject to the control timing resolution. As such, the
true inter-pulse delay is τtrue ≈ 0.2 ns.

optimizing the number of CNOT gates does not lead to bet-
ter performance. We suspect that the four CNOT gate decom-
position permits some form of inherent noise robustness not
afforded by the optimized variation. Further investigation of
the inherent hardware noise model is needed to fully under-
stand this effect.

Appendix D. FS3 DD protocol

The collective decoherence condition for the DFS3 code can
be generated by the DD sequence shown in equation (11).
This sequence is sufficient to symmetrize any linear system-
environment interaction of the form

HSB =
3∑

i=1

σ⃗i · B⃗i, (D1)

where B⃗i = (Bxi ,B
y
i ,B

z
i ) and Bµi are bounded bath operators.

In the ideal, instantaneous pulse limit, the dynamics after the
sequence are governed by an effective Hamiltonian of the form
Heff =

(∑
i σ⃗i

)
· B⃗ ′ +O(τ 2), where τ is the duration of free

evolution between pulses and B⃗ ′ = 2(B⃗1 + B⃗2 + B⃗3). This res-
ult can be shown by writing the sequence as

U(T= 6τ) =
6∏

j=1

P†
j fτPj, (D2)

and computing the first-order term in the Magnus expansion
with

Pj ∈ {I,E12,E12E23,E13,E12E13,E23} . (D3)

Note that equation (D2) can be reconciled with equation (11)
by using E23 = E12E13E12 = E13E12E13 and E12 = E23E12E13.
The sequence’s circuit diagram is shown in figure 9. Note that
the inter-pulse delay τ is effectively set to zero in our experi-
ments. Due to control hardware, however, the true delay time
set is τtrue = δt, where δt≈ 0.2 ns is the time resolution of the
controller.

It is important to note that the sequence used in this study is
not the only choice. An alternative originally proposed in [69]
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also enables collective decoherence at the cost of 14 SWAP
gates. Equation (11) utilizes only 6 pulses while still achieving
the same first-order effect.

Appendix E. Post-selection protocols

Aiming to exploit the stabilizer properties of the DFS codes
used in this study, we identify PS procedures to discard a sub-
set of states corresponding to detectable errors. Ideally, condi-
tioning the measurement outcomes on the state of the ancilla
qubits ultimately results in a boosted fidelity for the data qubit.
Here, we elaborate on the PS procedure used for both the two-
and three-qubit codes.

We begin by formally calculating the state after measure-
ment. Consider the case where a logical DFSN state ρL(0) =
|ψL⟩⟨ψL| is prepared and then subject to an error channel EP.
Let this error channel be a composition of channels EP =
EPN ◦ · · · ◦ EP1 , where

EPi (ρ) = (1− pi)ρ+ piPi ρP
†
i (E1)

acts on the ith qubit and pi is the error probability. The error
operator Pi is assumed to be a single-qubit Pauli operator and
thus inherently satisfies the required completeness relation to
be trace-preserving.

Subjecting the logical DFS state to the error channel results
in

ρ̃L = EP (ρL (0))

≈ p̃0ρL (0)+
N∑
i=1

p̃iPi ρL (0)P
†
i , (E2)

where the approximation is valid in the weak noise limit, i.e.
pi ≪ 1 ∀i. The effective error rates are p̃i = pi

∏
j̸=i(1− pj),

with p̃0 =
∏N

i=1(1− pi). Measurement outcomes are determ-
ined by first applying the unitaryUdec to decode the state. This
is followed by a measurement of each qubit in the computa-
tional basis via a composition of maps EM = E(N)

M ◦ · · · ◦ E(1)
M ,

with E(i)
M (ρ) = E(i)

0 ρE
(i)†
0 +E(i)

1 ρE
(i)†
1 . The projection operat-

ors E(i)
0 = |0⟩⟨0| and E(i)

1 = |1⟩⟨1| act on the ith qubit. Note that
we have assumed ideal measurement on each qubit.

The resulting density operator can be expressed as

ρ̃dec = EM
(
UdecEP (ρL (0))U†

dec

)
≈ p̃0|0⟩⟨0|+

N∑
i=1

p̃i
∑
k

ei,k|k⟩⟨k|. (E3)

The first contribution results from perfect decoding of the state
back to |0⟩= |0 · · ·0⟩. The second term arises from projections
onto the computational basis states |k⟩ ∈ HS. The presence
of these states is determined by the resulting overlap ei,k =
⟨k|UdecPiρL(0)P

†
i U

†
dec|k⟩, which depends upon the underlying

noise channel. As we will show below, the error state distri-
butions for the DFS can be distinguished based on the type of
error considered.

E.1. DFS2 protocol

The DFS2 code can detect single-qubit bit-flip errors. We use
the expressions above to investigate the error states resulting
from such errors by selecting Pi = σxi . Single-qubit bit-flip
errors can be shown to result in the state |01⟩. Thus, detect-
able errors are those in which the ancilla qubit has flipped upon
decode and measurement. We exploit this fact and condition
the measurement outcomes on the ancilla qubit remaining in
the ground-state at the end of the demonstration. Notably, a
similar analysis can be performed for higher weight errors as
well. As expected, we find that weight-2 bit-flip errors result
in phase-flip errors that are not detected and thus, do not result
in a unique error state. Furthermore, it is important to note that
|10⟩ does not appear as an error state in the analysis since we
have neglected phase flip errors. Performing a similar analysis
with Pi = σzi reveals this additional error state.

E.2. DFS3 protocol

The three-qubit code provides detection of an odd number
of bit and phase-flips. Thus, ideally, the PS procedure would
account for both types of errors simultaneously. In devising
our procedure, we first examine weight-1 errors for Pi = σxi
and Pi = σzi . The set of error states are

SX
1 = {|100⟩, |110⟩, |101⟩, |111⟩}

SZ
1 = {|010⟩, |001⟩, |011⟩}

, (E4)

where |q0q1q2⟩ defines the qubit layout with q1 denoting the
data qubit. Albeit quite distinct, states that correspond to errors
on the data qubit (i.e. q1 = 1) tend to have a common ancilla
qubit bit-flip on q0 or q2. Naively, one may come to the con-
clusion that conditioning the measurement outcomes on both
ancilla qubits being in the ground state would, therefore, be a
reasonable PS criterion. However, this criterion also results in
the discarding of states where the data qubit correctly returns
to the ground state. Based on empirical evidence, which we
further elaborate on in appendix I.1, we find that a reasonable
balance between discarded error states and correct data qubit
states is achieved by conditioning the measurement outcomes
on q2 = 0.

For completeness, we can further characterize higher
weight errors. We find that weight-2 and weight-3 bit-flip
errors have the following error signatures:

SX
2 = {|001⟩, |010⟩, |011⟩}

SX
3 = {|100⟩, |110⟩, |101⟩}

. (E5)

In contrast, SZ
2 = SZ

3 = SZ
1 ; thus, regardless the weight, phase-

flip errors have identical error states.

Appendix F. Hardware specifications

All demonstrations were performed on the IBMQP, a cloud-
based quantum computing resource that offers access to super-
conducting transmon quantum processors. All circuits were
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Figure 10. Connectivity graphs for the 5-qubit IBMQP Manila (top) and 27-qubit Montreal (bottom) devices.

Table 2. Device specification for Manila and Montreal. QV and CLOPS denote quantum volume and circuit layer operations per second,
respectively.

Device Manila Montreal

Processor Falcon r5.11L Falcon r4
QV 32 128
CLOPS 2.8 K 2.7 K

Table 3. Physical parameters for the Manila device averaged over five realizations of demonstrations collected during 20–25 September,
2022. Uncertainties denote one standard deviation.

Qubit T1 (µs) T2 (µs) 1Q Gate Error (×10−3) Readout Error (×10−2)

0 120.8± 25.0 71.3± 18.4 0.31± 0.11 2.93± 0.65
1 173.9± 42.9 68.9± 6.6 0.22± 0.01 2.57± 0.26
2 136.6± 20.4 26.0± 2.0 0.31± 0.04 2.50± 0.30
3 200.0± 20.6 60.4± 6.3 0.20± 0.02 2.54± 0.25
4 148.7± 17.0 43.0± 1.3 0.49± 0.07 3.51± 1.42

Table 4. CNOT gate error rates and durations for specific control (C) and target (T) qubits for Manila. Values denote averages with one
standard deviation determined from calibration data collected during 20–25 September, 2022. Reversing control and target qubits requires
an additional single qubit gate that increases the gate time by 35 ns and effectively increases the error rate based on table 3.

Qubits (C,T) CNOT Error Rate (×10−3) CNOT Duration (ns)

(0,1) 6.91± 0.23 277.33
(1,2) 13.78± 4.06 469.33
(2,3) 7.61± 1.53 355.55
(4,3) 5.61± 0.82 298.67

written in Python using the Qiskit API created by IBM. We
used the 5-qubit Manila and 27-qubit Montreal devices in our
experiments. Each processor’s connectivity graph is shown in
figure 10. The processor type, quantum volume (QV), and
circuit layer operations per second (CLOPS) are detailed in
table 2.

Qubit characteristics, such as T1, T2 times, gate error
rates, readout error rates, and gate durations for each
device are presented in tables 3 and 4. In all cases, qubit

characteristics are collected over the duration of data col-
lection, i.e. five realizations of each demonstration col-
lected over multiple days. Values shown in the tables
denote averages with error bars indicating one standard
deviation.

Qubit characteristics for Manila are shown in tables 3 and 4
for experiments performed during 20–25 September, 2022. T1

typically ranges from 120.8 µs to 200 µs, whereas T2 varies
from 43 µs to 71.3 µs. Single qubit gate error rates are on the
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Table 5. Qubit characteristic timescales and error rates for Montreal. Data shown for qubits used in demonstrations only. Averages and
error bars (one standard deviation) determined from calibration data collected 11–20 October, 2022.

Qubit T1 (µs) T2 (µs) 1Q Gate Error (×10−3) Readout Error (×10−2)

0 96.3± 14.2 38.2± 10.4 0.19± 0.02 1.10± 0.12
1 99.5± 13.8 22.7± 0.8 0.21± 0.06 1.63± 0.41
2 87.2± 7.1 106.5± 6.4 0.32± 0.1 1.39± 0.38
3 80.3± 4.1 71.5± 3.5 0.2± 0.02 0.93± 0.09
4 76.8± 8.6 104.7± 13.0 0.24± 0.07 1.57± 0.36
5 85.5± 7.1 95.5± 11.6 0.27± 0.18 1.21± 0.64
7 75.3± 14.8 67.2± 11.2 0.55± 0.11 5.36± 0.82
8 95.1± 13.7 120.4± 9.0 0.27± 0.08 1.14± 0.13
9 86.9± 7.6 107.6± 9.9 0.26± 0.03 1.02± 0.29
10 86.5± 17.6 86.3± 9.8 0.32± 0.07 0.82± 0.15
11 93.5± 5.3 60.9± 9.8 0.22± 0.04 1.53± 0.31
12 101.9± 10.9 140.0± 26.8 0.29± 0.08 2.02± 0.51
13 58.9± 18.9 55.6± 11.0 0.35± 0.09 1.34± 0.31
14 79.4± 17.4 100.2± 24.0 0.41± 0.27 1.08± 0.3
15 97.8± 4.3 121.3± 9.6 0.39± 0.17 1.81± 0.75
16 82.2± 5.9 87.3± 4.7 0.3± 0.13 1.24± 0.82
18 73.7± 12.6 28.7± 2.2 0.46± 0.17 3.14± 0.73
19 89.9± 5.6 137.8± 17.9 0.24± 0.15 1.11± 0.29
21 105.2± 11.3 50.6± 5.4 0.51± 0.1 3.53± 0.56
23 55.6± 24.4 55.9± 18.0 0.41± 0.35 2.03± 1.44
24 79.5± 7.5 56.9± 3.6 0.32± 0.09 2.41± 1.34

order of 10−4 and readout error rates on the order of 10−2. In
table 4, specifications for CNOT gate error rates and durations
are shown to range from 5.61× 10−3 to 13.78× 10−3 and
approximately 277 to 469 ns. Data is shown for control-target
qubit pairs where the gate duration is shorter. Reverse ordering
will incur an additional single qubit gate that increases both
the error rate in accordance with table 3 and gate duration by
approximately 35.55 ns.

A similar set of data forMontreal is shown in tables 5 and 6.
We show data specifically for the qubits used in the demon-
strations. Averages and standard deviations are determined
from calibration data collected during 11–20 October, 2022.
Qubit relaxation and dephasing times vary across the device
as 55.6−105.2 µs and 22.7−140.0 µs, respectively. Similar to
Manila, single qubit gate error rates are on the order of 10−3

and CNOT error rates are on the order of 10−3. Readout error
rates are on the order of 10−2 for a majority of the qubits used
in the demonstrations. Variations in CNOT gate error rates are
accompanied by varying duration for a significant subset of
qubits; see table 6.

Appendix G. Data collection and analysis

G.1. Data collection practices

The IBMQP devices are subject to recalibration every few
hours. During calibration, the characterization of qubit trans-
ition frequencies, error rates, and decoherence times are per-
formed alongside updates to single-qubit and two-qubit pulse
waveforms. We observe that qubit performance can vary
significantly between, and even within, calibration cycles.

Fluctuations in qubit characteristic parameters typically mani-
fest as large shifts in fidelity when data is collected across cal-
ibrations. Furthermore, variations in the fidelity are observed
depending upon when one performs the experiment. For
example, experiments performed soon after a calibration can
be distinct from those performed just before a calibration.
While this variability is likely due to drift in qubit frequen-
cies and/or the control master clock, knowledge of the poten-
tial origin of the errors does not necessarily imply that it is
straightforward to mitigate.

Our demonstrations require a large suite of quantum cir-
cuits to be executed and thus, we are subject to data collec-
tion across multiple calibration cycles. In order to address the
effects of hardware variability, we incorporate three practices
in our circuit execution. Let us describe each practice by first
defining a demonstration D= {Cj}Nj=1 consisting of N sets of
circuits Cj. Each set Cj = {cj,k}Kk=1 is composed of K circuits
each of approximately equivalent total time Tj. For example,D
could describe a DD experiment where N different DD repe-
titions are applied and Cj consists of different DD sequences
of equivalent total time.

The first practice is intrinsic to the definition of D. During
circuit creation, we organize the circuits such that those with
the same total time are performed immediately after each
other; hence, Cj. In this manner, we aim to mitigate poten-
tial variability in the hardware noise environment as data is
collected for different error protection protocols at the same
Tj. In addition, the order in which circuits are implemented
is randomized with respect to j. For example, a demonstration
consisting ofN= 4 total timesmay be executed on hardware in
the following order: C3,C1,C2,C4. We find that this approach
effectively averages variability due to calibrations across all
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Table 6. CNOT error rates and durations for IBMQP Montreal for qubits used in demonstrations. Average calibration values shown for data
collected 11–20 October, 2022. Error bars denote one standard deviation.

Qubits (C,T) CNOT Error Rate (×10−3) CNOT Duration (ns)

(0,1) 7.6± 3.95 412.08± 44.8
(3,2) 7.53± 1.12 375.79± 9.6
(1,4) 10.19± 2.7 492.13± 54.4
(5,3) 7.4± 1.8 350.63± 19.2
(4,7) 13.37± 4.49 294.47± 16.0
(9,8) 5.97± 0.85 373.79± 6.4
(11,8) 7.8± 1.87 470.06± 35.2
(12,10) 6.49± 0.66 374.88± 3.2
(13,14) 12.37± 5.59 502.7± 19.2
(15,12) 9.58± 2.1 369.78± 0.0
(16,14) 9.89± 3.43 309.97± 16.0
(15,18) 18.62± 7.05 597.33
(16,19) 13.70± 2.35 270.22
(23,21) 12.50± 3.61 391.11
(23,24) 10.28± 2.87 397.31± 12.8

Tj rather than isolating it to specific total times. Lastly, mul-
tiple realizations (or replications) of each demonstration are
executed over many hours or even days to collect data under
a variety of hardware conditions. The data is then compiled
and used to estimate various statistical quantities via boot-
strapping. We find that this approach enables a more reliable
estimate of an error protection protocol’s performance.

G.2. Bootstrapping

The results reported in the main text display the mean and
confidence intervals estimated via the bootstrapping method
described in [98]. This technique is implemented by randomly
sampling N data points (with replacement) from a data set
of size N and then computing the mean of this bootstrapped
sample. By repeating this procedure K times, a new, boot-
strapped data set of size K is generated. The mean and confid-
ence interval (CI) can be calculated based on this bootstrapped
data set. This approach is used to estimate mean fidelities and
CIs for equations (12), (15), and (18), which are used in the
comparisons shown in figures 2–5.

G.3. Fitting protocol

Data fits are performed for fidelity vs. time comparisons shown
in figure 4. Bootstrapped estimates of fidelity are fit to the
generic fit equation given in equation (16). Parameter reduc-
tions of the fit equation are also considered, most notably in
cases where generic fits suggest parameters are inconsequen-
tial. Various fits derived from equation (16) are compared
using the Akaike information criterion (AIC) [99], an estim-
ator of prediction error. Fits shown in the main text correspond
to the cases where AIC is minimal among the fit variations
considered.

Appendix H. DFS3 logical state asymmetry

In section 3.1, the DFS3 encoding is shown to exhibit an asym-
metry in fidelity as a function of the elevation angle θ. This fea-
ture is particularly prominent for the logical encoding without
DD. Here, we argue that this behavior is in part due to non-
uniform detuning among the physical qubits on the IBM pro-
cessors [46, 95, 96].

Figure 11. Simulation of DFS3 subject to non-uniform detuning.
The logical qubit is prepared according to |ψL(θ)⟩ (see section 3.1)
and then evolved via the Hamiltonian described in equation (H1).
The fidelity [calculated via equation (12)] as a function of the
elevation angle θ conveys an asymmetry in the initial state. This
effect, in part, is suspected to contribute to the asymmetry observed
in figure 2.

In figure 11, we display a comparison of fidelity as a func-
tion of θ for the DFS3 code. The system is prepared in the
logical state |ψL(θ)⟩ as described in section 3.1. It is then
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subject to the evolution U(T) = e−iHdT, where

Hd =
3∑

i=1

ωiσ
z
i , (H1)

with ω1 = π/2, ω2 = π/4, and ω3 = π. The fidelity is then
determined via equation (12) without PS.

The comparison is performed for various Hamiltonian
strengths J= ∥Hd∥∞, where ∥ · ∥∞ denotes the operator norm
or largest singular value. The total time is set to T = 1. As the
strength of the detuningHamiltonian increases, the asymmetry
in the fidelity becomes more pronounced for θ ∈ [0.1,0.6]
as observed in figure 2. Although the model is able to cap-
ture general features of the asymmetry, it is not sufficiently
expressive to capture all fluctuations in the fidelity. Further
modeling is required to obtain an in-depth understanding of
the observed dynamics; this is left for future work.

Appendix I. Post-selection analysis

A crucial component for the success of the DFS codes is the
use of post-selection (PS) to detect errors in the logical states.
In the DFS2 protocol, post-selected states are aggregated based
on the state of the ancilla qubit. Namely, combined two-qubit
states in which the ancilla returns to the ground state after
decoding are deemed viable. In the DFS3 code, the gauge qubit
(q2 in figure 6) is used to identify valid states. In this section,
we examine PS from a variety of different viewpoints to high-
light its impact on fidelity and protocol resources.

I.1. State-dependence

The impact of PS on fidelity is strongly dependent upon the
logical state and encoding. In the case of the DFS2 code,
only minor improvements in fidelity are found when using PS
without error suppression. States near the |+⟩ state are particu-
larly enhanced by PS, as can be seen in figure 12(a). Near equi-
valent fidelity between the DFS with and without PS suggests
that the logical states are predominately plagued by logical
errors or bit-flip errors rather than detectable single qubit
phase-flip errors. Through DD, the logical fidelity greatly
improves on average, and similarly, so does the effective-
ness of error detection. The reduction of the logical error rate
enables detectable errors to become more pronounced so that
PS yields an average increase in the fidelity of 6.1%; see
figure 12(c).

The DFS3 code offers a striking contrast to the DFS2 code
when DD is not employed. States near |0⟩ of the logical Bloch
sphere are highly susceptible to noise that error detection can
reduce considerably. Conversely, states between logical |±⟩
are negatively impacted by PS; see figure 12(b). The source of
this behavior can be revealed by examining the measurement
outcome distributions.

In figure 13, the measured state probability distributions
are shown for the DFS3 code and DFS3+DD. Panels (a) and
(b) convey the distributions for the DFS3 code at elevation

Figure 12. Fidelity as a function of initial state for DFS encodings
with and without PS. Panels (a) and (b) denote DFS2 and DFS3

encodings alone, respectively. Encodings with DD are shown in
panels (c) and (d). The most prominent impact on fidelity is
observed for the DFS3 case, specifically states that are near the
poles of the logical Bloch sphere. Data points denote means and
shaded regions are CIs. Statistical quantities are estimated from
bootstrapping over five realizations of the demonstration using 8000
shots.

angles θ= 0 and θ = π/2, respectively. Importantly, for θ= 0,
we observe that the errors predominately originate from dis-
carded error states (shown in dark blue); hence, the significant
improvement in fidelity when utilizing PS. Error states become
increasingly distributed after reaching logical |+⟩, such that
the PS procedure has less of a positive impact on qubit fidelity.

Despite the distinctions between the DFS2 and DFS3 codes,
as shown in figure 12(d), similarities re-emerge upon the intro-
duction of DD. Symmetrization leads to an overall improve-
ment in logical state fidelity and detectable errors. On average,
PS yields a 9.7% improvement in the DFS3+DD fidelity, with
deviations from uniform fidelity being corroborated with the
error distributions shown in figures 13(c) and (d). Namely, near
|0⟩ the errors primarily fall within the discarded error states,
while those for π/2< θ < π are more distributed among PS
and discarded error states.

I.2. Time-dependence

Investigating the effectiveness of PS as a function of time
provides an alternative perspective on each protection pro-
tocol. In this section, we study the number of post-selected
shots and state-averaged fidelity as a function of time. The
former is shown in figure 14, while the latter is displayed in
figure 15. Both are produced from the same data set used to
create figure 4 in the main text; hence, they focus on the time-
dependent state preservation of a single logical qubit.

The cost of PS is a reduction in the total number of exper-
imental measurements (or shots) that can be used to estimate
state fidelity. Figure 14 illustrates the cost for each code with
and without DD. Interestingly, DD does not always increase
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Figure 13. Measured state probability distributions for the DFS3

code [(a) and (b)] and the DFS3+DD protocol [(c) and (d)] for the
data shown in figure 12. The distributions for θ= 0 are shown in
panels (a) and (c), while (b) and (d) display distributions for
θ = π/2. Measured bit strings are ordered as q2q1q0 following the
qubit layout shown in figure 6. States are categorized as PS states
(q2 = 0; purple) and discarded error states (q2 = 1; dark blue).
Results indicate that high probability discarded error states are
typically associated with phase errors.

Figure 14. Total number of post-selected shots used to determine
the state-averaged fidelity in figure 4 as a function of time. Markers
denote means, and error bars denote CIs, both of which are
determined by bootstrapping. Overall, we observe that the inclusion
of DD negatively impacts the PS shot count for the DFS2 code,
while improving the number of viable shots for the DFS3 code.
Despite this behavior, DD has an overall positive effect on code
performance as it reduces logical errors, i.e. errors not detected by
PS.

the total number of viable shots. In the case of the two-qubit
protocol, the total number of post-selected shots reduces more
slowly with the DFS alone. After one cycle of DD, the quant-
ity of PS shots reduces by approximately 4%. Of course, this
does not imply an increase in state fidelity due to the presence
of logical errors, as is indicated by figure 4. DD with PS is still

Figure 15. State-averaged fidelity as a function of time for one
logical qubit. Panels (a) and (b) show results for the DFS2 and DFS3

codes, respectively. Data and fits are shown for each code with PS,
DD, or both. The results shown here supplement those shown in
figure 4, where the data was used to calculate the time-averaged
fidelity in the short- and long-time limits. Data points denote means
while error bars denote CIs, both obtained from bootstrapping over
five experimental data sets, each using 8000 measurement shots.

more advantageous than PS alone but ultimately requires more
shots to achieve a particular sampling threshold.

The three-qubit DFS code contrasts with the two-qubit
case. Specifically, the DFS3 code benefits from DD in
regards to the total number of PS shots. The DFS3 code
alone is subject to a dramatic reduction after approxim-
ately 10 µs, where only about half of the total shots sat-
isfy the PS criteria. DD affords a substantial improve-
ment, increasing the total PS shot counts by over 31%. As
such, PS and DD improve the total viable shot count and
fidelity.

Despite the dissimilarity in total PS shot count between
the codes, the trend in fidelity is universal: DD and PS used
together typically supply the greatest positive impact on code
performance. In figure 15, the state-averaged fidelity as a
function of time is shown for each code under a variety of
conditions. The data shown in each panel is used to pro-
duce the time-averaged fidelity shown in figure 4. It serves
an additional purpose here, giving an additional viewpoint on
PS and DD over a range of times not limited to the short-
and long-time limits. This is particularly useful for observing
crossovers in fidelity between protocols. For example, while
DD+PS yields the highest fidelity for both protocols at short
times (one repetition), PS is generally better suited for peri-
ods of long state preservation. The transition in preferred
protocol arises due to apparent steady-state behavior in the
fidelity that is inconsistent with the completely mixed state.
In fact, it is more consistent with a convergence towards
a partial symmetric subspace, most notably in the case of
the DFS3 code. Further analysis is required to clarify this
behavior.
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Appendix J. Logical qubit fidelity and qubit
variability

In the main text, we showcase demonstrations that provide
evidence of logical encodings outperforming physical qubits
via DFS codes combined with error detection and suppres-
sion. In sections 4.1 and 4.2, data is shown for specific sub-
sets of qubits on Manila and Montreal. In this section, we
show that the behavior observed from these devices is not
limited to those subsets; it can also be found in other qubit
configurations.

J.1. One logical qubit

First, we focus on the single logical qubit case discussed in
section 4.1. The results shown in figure 4 are for the qubit
mapping (q0,q1,q2) = (3,4,2), following the qubit mapping
shown in figure 6.While this subset of qubits yields the highest
fidelity for the logical protection protocols, it is not the only
subset that conveys an advantage from logical encoding. In
figure 16, results are shown for two additional qubit configur-
ations (a) (q0,q1,q2) = (3,2,4) and (b) (q0,q1,q2) = (2,3,1);
see figure 10 for device topology. Average qubit fidelity is
determined by bootstrapping over the set of 20 states discussed
in section 4.1. Mean fidelities and CIs are determined from
one realization of the demonstration performed on 20 October,
2022. Note that in both cases, the DFS encoding, DD, and PS
together yield higher fidelities and slower fidelity decay rates
than XY4 alone. Thus, empirical findings suggest that the rel-
ative improvements from the DFS protocol are robust to vari-
ability in qubit characteristics.

J.2. Multiple logical qubits

We further illustrate the robustness of the DFS code through
additional studies of the time-averaged fidelity as a function of
the number of logical qubits. In figure 17, the time-averaged
fidelity in the short-time limit is shown for two additional con-
figurations of physical qubits outlined in table 7. Panels (a)
and (b) display results for configurations 2 and 3, respectively,
with configuration 1 shown in the main text (figure 5). Each
panel contains a comparison between the physical DD and
logical DFS2+DD (with PS) protocols outlined in section 4.2.
In both cases, the logical encoding performs similarly or some-
what better than physical-qubit DD, consistent with the results
shown in the main text.

Appendix K. Time-averaged fidelity at different
integration times

In the main text, results were shown for the time-averaged
fidelity with an integration time equivalent to one DFS2+DD
repetition, including encoding and decoding time. In this
section, we consider additional integration times and examine
the efficacy of each logical protocol. In figure 18, the DFS2 and
DFS3 codes are compared against physical encoding schemes

Figure 16. State-averaged fidelity as a function of time for two
different qubit mappings on Manila. Panel (a) shows results for
XY4, DFS2+DD, and DFS3+DD for (q0,q1,q2) = (3,2,4). Similar
results are shown in panel (b) for (q0,q1,q2) = (2,3,1). Means
(data points) and CIs are estimated from bootstrapping over one
demonstration performed on 20 October, 2022, using 8000 shots. In
both cases, logical encodings used in conjunction with DD and PS
yield higher fidelity and slower fidelity decay than DD alone. Thus,
the success of the protocol is independent of the qubit configuration.

Figure 17. Time-averaged fidelity versus the number of logical
qubits for distinct physical qubits configurations on Montreal.
Panels (a) and (b) show comparisons for configurations 2 and 3
(table 7), respectively. The DD and DFS2+DD protocols used for
the comparison are equivalent to those described in section 4.2. In
both cases, DFS2+DD performs similarly or better than physical
DD alone. Data is processed using bootstrapping to estimate means
and CIs (error bars). Bootstrapping is performed over five
realizations of the demonstration that were collected from 20–22
October, 2022, each using 8000 shots.

in the long-time limit in panels (a) and (b). Panel (c) compares
the DFS3 code to physical encodings for an integration time of
one DFS3+DD repetition with encoding and decoding. As in
the main text, all logical protocols utilize PS.

Longer integration time lowers the fidelity. This is particu-
larly true for both the physical DD and DFS2+DD protocols.
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Table 7. Logical qubit configurations for DFS protocol performed on IBMQP Montreal. Each pair (q0,q1) denotes a logical qubit, with qi
designating the qubit number based on the hardware topology graph shown in figure 10. Results for configuration 1 are shown in figure 5,
while results for 2 and 3 are given in figure 17.

Configuration Logical Qubits

1 (15,18),(10,12),(4,7),(13,14),(11,8),(16,19),(5,3)
2 (22,25),(20,19),(24,23),(21,18),(15,12),(13,14),(11,8)
3 (4,1),(2,3),(10,7),(5,8),(15,12),(11,14),(17,18)

Figure 18. Time-averaged fidelity as a function of the number of logical qubits for different integration times. Comparisons between
physical and logical protocols in the long-time limit (i.e. 3 repetitions of the DFS2+DD sequence) are shown in panels (a) and (b) for the
DFS2 and DFS3 code, respectively. Physical (solid lines) and logical (dashed lines) protocols are described in section 4.2. In both cases, the
advantage of the logical protocols is observed, particularly when incorporating DD and PS; this is most notable for the DFS3 code. In panel
(c), the DFS3 code again exhibits an advantage over physical encoding, but for a total integration time of one DFS3+DD repetition. Data
shown here was collected concurrently with the data used to produce figure 5 and therefore, follows the same data collection and processing
practices.

Reduction in fidelity is accompanied by near equivalent per-
formance among both DD-based protocols. Alternatively, the
DFS2 without DD exhibits improvements in this regime such
that it begins to outperform all protocols forK> 5. The steady-
state behavior observed in figure 15 in the long-time limit ulti-
mately explains this crossover in performance.

PS continues to be an essential part of the DFS3 protocol
outperforming physical qubit error suppression. Both DFS3

and DFS3+DD achieve a higher fidelity than DD alone, with
the advantage of the DFS3 increasing with K. The perform-
ance improvement is so significant that both the DFS3 and
DFS3+DD protocols perform nearly identically for K> 5.

Lastly, we comment on an additional short-time limit scen-
ario relative to the DFS3 code. The main text defines the short-
time limit as one cycle of the DFS2+DD sequence or approx-
imately two cycles of the DFS3+DD sequence. Here, we con-
sider an integration time of one DFS3+DD sequence, with res-
ults of this comparison shown in figure 18(c). The result is a
more pronounced disparity between the physical and logical
protocols. The DFS3 code achieves fidelities nearly equival-
ent to DD, while the DFS3+DD protocol yields a maximum
improvement in FT of 23.6% over DD. The success of both
protocols further justifies employing passive QEC codes as a
viable logical encoding option for near-term devices.
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