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Abstract—While  coarse-grained reconfigurable arrays
(CGRASs) have emerged as promising programmable accelerator
architectures, they require automatic pipelining of applications
during their compilation flow to achieve high performance.
Current CGRA compilers either lack pipelining altogether
resulting in low application performance, or perform exhaustive
pipelining resulting in high power and resource consumption. We
address these challenges by proposing Cascade, an end-to-end
open-source application compiler for CGRAs that achieves both
state-of-the-art performance and fast compilation times. The
contributions of this work are: 1) a novel post place-and-route
(PnR) application pipelining technique for CGRAs that accounts
for interconnect hop delays during pipelining but in a unique
way that avoids cyclic scheduling and PnR, 2) a register resource
usage optimization technique that leverages the scheduling logic
in CGRA memory tiles to minimize the number of register
resources used during pipelining, and 3) an automated CGRA
timing model generator, an application timing analysis tool, and
a large set of existing and novel application pipelining techniques
integrated into an end-to-end compilation flow. Cascade achieves
8 - 34x lower critical path delay and 7 - 190x lower energy-
delay product (EDP) across a variety of dense image processing
and machine learning workloads, and 3 - 5.2x lower critical
path delay and 2.5 - 52x lower EDP on sparse workloads,
compared to a compiler without pipelining. Cascade mitigates
the performance and energy-efficiency drawbacks of existing
CGRA compilers, and enables further research into CGRAs as
flexible, yet competitive accelerator architectures.

Index Terms—Accelerator compilers, application pipelin-
ing, coarse-grained reconfigurable arrays (CGRAs), hardware
accelerators.

I. INTRODUCTION

OARSE-GRAINED reconfigurable arrays (CGRAs) have
been widely studied in recent years as performant and
efficient configurable accelerator architectures. A CGRA can
achieve better performance and energy-efficiency than an
FPGA owing to its coarser-grained computation units and
interconnect, while still maintaining much more flexibility than
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an application-specific integrated circuit (ASIC). However, in
order to achieve commercial utility, CGRAs must demon-
strate performance and energy-delay product (EDP) that are
competitive with ASICs. To do so, CGRAs need to execute
applications at high clock frequencies, requiring carefully
pipelined applications.

The problem is that existing CGRA compilers fail at this
task. They attempt to tackle mapping, scheduling, placement
and routing (PnR), and pipelining of an application all within
one optimization step [6], [9], [11], [17], [20], [25]. This
coupling between the various pieces in the compilation flow
makes the search space very large, making the compilers slow,
produce poor results, and not scale well to large CGRAs. The
basic problem is that, in CGRAs, the programmable wiring has
large relative delay that the pipelining must take into account,
but since data waves need to be balanced, adding pipeline
registers along one path can require adding hardware to many
other paths. This additional hardware often changes the PnR
of the application on the CGRA, which causes this process to
restart.

To address this issue, we took inspiration from FPGA
compilers and decoupled mapping, scheduling, placement,
routing, and pipelining into largely independent steps. We
build upon the work presented in [12], which takes this
approach but only does wire-independent pipelining, to create
a compiler called Cascade. Our compiler only needs minimal
hardware support in the CGRA: configurable pipeline registers
on the programmable wires, an interconnect with single-cycle
multihop connections, and the ability to adjust the schedules
of the memory tiles at a cycle level. Using this hardware, we
add post-PnR pipelining, register absorption, and incremen-
tal rescheduling to a staged FPGA-style compiler, resulting
in state-of-the-art application performance and compilation
times.

The contributions of this article are:

1) We adapt FPGA and ASIC-like pipelining and register
retiming techniques [2], [13] to register-scarce CGRAs,
and propose a technique for absorbing registers into
memory tiles without affecting the mapping, placement,
and routing.

2) We propose a post-PnR pipelining technique that itera-
tively identifies the critical path in an application, breaks
it by turning on interconnect registers, and performs
rescheduling. Post-PnR pipelining accurately accounts
for interconnect delays while avoiding cyclic reschedul-
ing and PnR.
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Fig. 1. CGRA architecture, and examples of paths with various delays for an
application. The longest path found by STA is the critical path, that determines
the maximum clock frequency at which the application can run on the CGRA.

3) An end-to-end open-source CGRA compiler [1],' called
Cascade, which has (a) an automatic CGRA timing
model generator, (b) a static timing analysis (STA) tool
that uses the timing model to determine the critical
path of an application on a CGRA, and (c) a large
set of existing and our proposed pipelining techniques
integrated into an end-to-end flow.

Cascade targets a large class of CGRAs like [3], which
have big tile arrays, an interconnect that allows for single-
cycle multihop connections from any tile to any other tile,
and configurable pipelining registers on every hop of the
interconnect. Cascade enables 8 - 34 x lower critical path delay
and 7 - 190x lower EDP on dense workloads, and 3 - 5.2x
lower critical path delay and 2.5 - 5.2x lower EDP on sparse
workloads, compared to a compiler without pipelining. This
article provides a critical set of tools for the creation of high-
performance compilation infrastructure for CGRAs.

The rest of this article is organized as follows. After
introducing some background, we describe our novel CGRA
application pipelining techniques, 1) post-PnR pipelining that
avoids cyclic rescheduling and PnR in Section III, and 2)
our method for optimizing register resource consumption in
Section IV. Finally, 3) we present our end-to-end Cascade
compiler in Section V, and evaluate it in Section VI.

II. BACKGROUND

We first summarize the class of CGRAs we target, the
compiler infrastructure we build upon, static scheduling of
CGRA applications, and STA.

A. CGRA Architecture

CGRAs are typically composed of several processing ele-
ment (PE) tiles, memory (MEM) tiles, and input/output (IO)
tiles, arranged in a grid, as shown in Fig. 1. The tiles commu-
nicate via a configurable interconnect, which is comprised of
several horizontal and vertical routing tracks, connection boxes
that bring inputs into the tiles from the routing tracks, and

IThis project includes many techniques spread across several subreposito-
ries. Post-PnR pipelining and the application STA tools are in archipelago,
rescheduling is done using clockwork, register absorption and compute
pipelining are done using MetaMapper, broadcast signal pipelining and
hardening broadcasts are done in garnet, placement function cost optimization
is done in cgra_pnr, and low unrolling duplication is done in aha.
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switch boxes that take outputs from the tiles and route them
onto the routing tracks in different directions. In this article, we
primarily target CGRAs with large tile arrays (e.g., 512 tiles), a
configurable interconnect that allows for single-cycle multihop
connections from any tile to any other tile, and configurable
pipelining registers within every switch box. This style of
CGRA is similar to an FPGA in that the configuration of
the accelerator determines its maximum operating frequency.
An FPGA chip can be fabricated with a maximum frequency
of 1 GHz, but an FPGA compilation tool may compile an
application to the FPGA that has a maximum frequency of
200 MHz. The same is true for this class of CGRAs.

B. CGRA Compiler

We develop our pipelining framework on top of an existing
open-source agile hardware design toolchain that encompasses
application specification, scheduling, mapping, place and
route, and bitstream generation [12], summarized in Fig. 6.

First, the application goes through a compiler which pro-
duces a dataflow graph with primitive compute operations like
add, multiply, shift, etc. In this representation, the application
consists of compute kernels connected by “abstract” memories.
Next, the compute kernels get transformed by the compute
mapping tool into dataflow graphs of PEs and registers.
After compute mapping, the mapped compute kernels and the
abstract memories get fed into the scheduling and memory
mapping tool that produces a final dataflow graph of PEs,
memory tiles, IO tiles, and registers. Next, this fully mapped
application goes into the PnR tool which produces a placed
and routed result. The final stage of this compiler is bitstream
generation, which consumes the placed and routed dataflow
graph and generates the configuration bitstream to run the
application on the CGRA.

C. Static Scheduling of CGRA Applications

Many image processing and machine learning applications
have statically analyzable access patterns. This character-
istic enables CGRA compilers to statically schedule such
applications (e.g., all memory accesses can be scheduled at
compile time). The application scheduling process turns the
multidimensional loop statements in these applications into
operations (load/store) executed on the memory tiles. The
open-source CGRA compiler we build upon [15] generates
a cycle-accurate schedule which gives each statement in the
application’s iteration domain a 1-D timestamp, which repre-
sents the hardware’s runtime behavior and enables pipelined
parallelism. This static schedule overlaps data transfer with
computation and extracts data reuse to reduce latency and
improve energy efficiency.

D. Static Timing Analysis

STA is a standard technique for determining the critical
path, that is the path with the maximum delay, through a
circuit [10]. STA can be applied to any directed acyclic graph
(DAG), and it involves iterating through every node in the
DAG in reverse topological order and calculating the arrival
time at each node.
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The arrival time at node N is
arrival[N] = delay[N] + max(arrival[predecessors[N]) (1)

where delay[N] is the delay through node N in the circuit.
The arrival time at a node that breaks the critical path, such
as a pipeline register, is 0. Once the arrival time is calculated
for each node, the critical path length of the DAG is largest
arrival time at any node. The critical path itself can be found
by tracing back through the graph, following the nodes that
contribute most to the path delay.

III. POST-PLACE-AND-ROUTE PIPELINING

Most existing FPGA/ASIC compilers (with decoupled
stages) do not change pipelining decisions after the scheduling
and mapping stage [4], [5], [23]. Particularly, they do not
change pipelining decisions while/after PnR. This means
that they do not accurately take into account the effect of
wire/interconnect hop delays on pipelining (only coarse wire
load estimates are used). This is done in order to keep the
scheduling and mapping problem decoupled from PnR, to
keep the compilation problem tractable and compile times
low — since introducing registers after PnR will change the
application schedule, and then one may need to reschedule and
run PnR again, and this process may never converge. However,
not accurately accounting for interconnect hop delays during
pipelining leads to suboptimal clock frequencies. It is partly
due to this reason that typical clock frequencies that appli-
cations achieve on FPGAs hover around 200-300 MHz, even
though the maximum achievable frequency on the hardware
may be 3 times higher [8].

Unlike prior work, we perform pipelining that accounts for
the interconnect hop delays post-PnR, but in a unique way that
avoids cyclic scheduling and PnR, as described below.

A. Post-Place-and-Route Pipelining Algorithm

Post-PnR pipelining iteratively identifies the critical path
and inserts pipelining registers to break it. After PnR is
complete, we know exactly where each tile will be placed on
the array and where the nets will be routed. Using the timing
model and application STA tool we designed for CGRAs
(detailed later in Sections V-A and V-B), we determine the
critical path delay of the application. The CGRA timing model
contains delays for both the PE operations and memories,
as well as the delays of interconnect hops. Additionally, we
can use STA with back-tracing to determine what the critical
path is.

The interconnect of our CGRA has configurable pipelining
registers within every switchbox of the array. These pipelining
registers exist on every 16-bit and 1-bit track going out of the
switchbox in each of the four directions. After PnR, we can
modify the configuration of the CGRA to turn on individual
pipelining registers at places we want to break long paths. Note
that we only turn on registers that are unused on the existing
routes in the application PnR graph, and not elsewhere, since
we do not want to run PnR again (this process may not
converge if we rerun PnR). Adding registers on existing routes
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Fig. 2. Post-PnR pipelining takes the place and route result represented as
a dataflow graph and performs STA to identify the critical path. This path is
then broken by enabling registers in the switch box (SB), and the graph is
branch delay matched.

affects the execution of the application, so we must do branch
delay matching in order to maintain application functionality.

Branch delay matching matches the cycle arrival times of
every piece of data arriving at every functional element in the
application. We use an algorithm similar to STA for branch
delay matching, but instead of using the delay through each
hardware element, we instead use the number of cycles each
node takes to generate an output. If we find a node that has
more than one unique arrival time, we must insert registers
to ensure correct application execution. In the next section,
we will discuss a technique to reduce the number of registers
added during branch delay matching, which saves energy and
frees up resources for other purposes.

For example, in Fig. 2, the red path is the longest in
the application, so it is the critical path. During post-PnR
pipelining, we break this path by turning on the pipelining
register in the bottom-right switch box. Next, we run branch
delay matching to ensure that the application still functions
correctly, inserting pipelining registers to balance any paths
if needed. In this example, we need to break the blue path
to balance the arrival times of the two pieces of data at the
final PE. Then, we analyze the application again and repeat
the process until we cannot break any more paths or achieve
the desired clock frequency.

B. Updating Application Schedule Post Pipelining

When adding pipeline registers to a statically scheduled
CGRA application, the schedule needs to be updated to reflect
any changes to the compute latencies. Because we ensure that
the topology of the mapped application graph does not change
as we perform pipelining, in the first round of application
compilation we set all computation latencies to 0.

After an application finishes post-PnR pipelining, we know
all of the compute kernel latencies. We send these updated
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latencies to the static scheduler to incrementally update the
configuration of each memory tile used in the application. The
memory tiles send data to and receive data from the compute
kernels in the application graph. They have controllers (with
address and schedule or ‘enable’ generators) that read and
write to memories based on the static schedule, and we update
the delay registers in precisely these controllers. This allows
us to do just enough rescheduling to maintain application cor-
rectness, while avoiding any change to the mapped application
graph, and therefore the PnR result.

Finally, all the memories used by the application also need
to be synchronized at the beginning of application execution,
and that is done using a global flush signal. As we will
explain later, this flush signal also needs to be pipelined. We
use the flush arrival time after pipelining to adjust the static
schedules so that the counters are all synchronized properly.
If the flush signal arrives one cycle late, we need to adjust the
starting cycle of the memory address generator to begin one
cycle earlier, ensuring that the execution of the application is
unchanged.

To the best of our knowledge, ours is the first work that
discusses post-PnR pipelining in CGRAs and proposes a tech-
nique for incrementally updating the application schedule post
pipelining in a way that does not result in cyclic scheduling
and PnR. Other CGRA compilers do not have the flexibility
to pipeline and reschedule applications after they have been
placed and routed.

IV. OPTIMIZING REGISTER RESOURCE USAGE

The registers added by pipelining and branch delay match-
ing need to be placed on the configurable interconnect. This
added resource requirement increases execution energy, and
for large applications, may cause placement or routability
issues. Therefore, we introduce a technique for absorbing
registers into memory tiles and register files that dramatically
reduces the register resource usage while maintaining the
benefits of pipelining. Note that the registers we want to
remove from the configurable interconnect are only those that
are not on the critical path. These are typically introduced
on noncritical paths when we perform branch delay matching
after pipelining the critical path.

A register can be “absorbed” into a memory tile or a register
file through the mechanism shown in Fig. 3. This process
removes registers from the mapped application, so they do not
need to be placed and routed on the configurable interconnect.
This is possible because the static schedules of memory tiles
and register files can be adjusted as described in the previous
section. Removing a single register that is connected to the
output of a memory tile is as simple as scheduling the memory
to start outputting data one cycle later.

To take full advantage of this optimization, we modify
the structure of compute kernels to favor the use of chains
of operations rather than balanced trees of operations. Any
reduction operation can be structured as a balanced or unbal-
anced tree. Unbalanced trees have chains of operations, which
when pipelined, result in chains of registers. As shown in
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Fig. 3. Absorbing registers that exist inside compute kernels into memory
tiles and rescheduling the application to adjust the starting cycles of the
memory tile outputs.
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Fig. 4. First, compute pipelining is performed where registers at the inputs
of PEs are enabled and all branches are delay matched. Next, chains of
registers are absorbed into register files, configured to act as variable length
shift registers.

Fig. 3, these chains of registers can easily be absorbed into
memory tiles.

In some cases, many pipelining registers might exist in a
chain that cannot be absorbed into a memory tile. Many CGRA
architectures, including our target architecture, include register
files throughout the tile array. In these cases we utilize register
files in PE tiles to act as variable length shift registers to
eliminate these long chains of registers, thereby freeing up
resources. To act as a variable length shift register, the register
file needs to be configured to write to and read from the same
address with an offset of one or more cycles. In Fig. 4, we
show an example of this transformation for a chain of two
registers. This transformation is applied to every N chain of
registers, where N is a hyperparameter. In our experimental
results, we use N = 10, as this struck a good balance between
routability and energy-efficiency.

Note that this technique relies on the existence of register
files and ability to change the configuration of the memory tiles
in the array. However, the techniques for absorbing registers
into memory tiles and register files are independent, so if a
CGRA has a subset of the features of our target architecture,
we can apply a subset of the techniques as well.

We evaluate the effect of this technique in Section VI-B.

V. CASCADE

Finally, we design an end-to-end open-source CGRA com-
piler called Cascade, which like [12], has decoupled compiler
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Fig. 5. Given an interconnect specification written in Canal [19], we
automatically generate all paths of interest in a PE or memory tile. Using a
commercial ASIC STA tool we can find the worst-case delay of these paths
and use them in the application STA.

stages, but achieves higher performance. Cascade has 1) an
automatic CGRA timing model generator, 2) a STA tool that
uses the timing model to determine the critical path of an
application on a CGRA, and 3) a large set of existing and our
proposed pipelining techniques integrated into an end-to-end
flow that works both for dense and sparse applications.

A. Automatic CGRA Timing Model Generator

We propose an automated methodology for generating a
timing model of a CGRA, shown in Fig. 5. This model
contains information about all significant delays in the CGRA,
and is used later for application STA. To generate the model,
we first specify our interconnect in Canal [19]. Canal is an
interconnect specification language that gives us the ability
to describe a wide range of CGRA interconnect topologies
with a graph representation. We then add to Canal the ability
to enumerate all possible data and clock paths that have
significant delays.

Generally, a path within a CGRA (rather than a path at
the boundary between the CGRA and the memory system)
determines the maximum frequency of the accelerator. There
are two components which have large contributions to path
delay. First, there is significant delay associated with the
functionality within a tile, which we call a core. For example,
the PE tile core will include an ALU, and the memory tile core
will include SRAMs. Second, on the CGRA, we can configure
the interconnect to route any piece of data from one location
on the array to another. By default, this path will have no
registers along it, and its length will be determined by how
many tiles it passes through, or “hops” on the interconnect.

On real hardware, all hops on the interconnect will not have
the same delay. A memory tile has a much larger footprint
than a PE tile, so traveling from one side of a memory tile to
the other takes longer than the same path through a PE tile. We
also find that the lengths of the wires going in one direction
through a tile are not the same as those going in another
direction. Finally, we also have to consider the possibility that
the clock does not arrive at the same time at each tile due to
clock skew.

Canal generates the start and end points of these paths in the
corresponding Verilog representation. Cascade then estimates
the delays of these paths using a commercial STA tool (like
PrimeTime), running on the tile’s post-layout netlist annotated
with the parasitic delays of the wires in the circuit.

3059

This methodology enables the timing model to adapt to
hardware changes. In an agile hardware development flow
where designers iterate on a design, this adaptation is critical.

B. Application Static Timing Analysis Tool for CGRAs

We feed the delays described in the previous section into a
STA tool we designed for CGRA applications. The input to
this tool is the application dataflow graph representation after
the PnR stage of the compiler. As described in Section II-D,
we use the STA algorithm to calculate the arrival time of each
piece of data at every node in the dataflow graph. As shown
in Fig. 1, the maximum of these arrival times determines the
resulting critical path and the maximum frequency of the
application. We can use the STA tool to make pipelining
decisions. For example, for an application we are attempting
to pipeline the STA tool will let us know if we decreased the
critical path delay or increased it. We evaluate the accuracy of
this STA tool in Section VI-A.

C. Pipelining Techniques in Cascade

We integrate a large set of existing and our proposed
pipelining and register usage optimization techniques from
Sections III and IV into an end-to-end flow, that works both
for dense and sparse applications. We describe below the
techniques we have not already covered. The complete flow
is summarized in Fig. 6.

1) Compute Pipelining: During the compute mapping stage
of the application compiler, we translate a DAG of primitive
operations into a DAG of PEs. Note that our full appli-
cation graphs are not DAGs, but can be decomposed into
kernels which are DAGs. In our target CGRA, each PE has
configurable registers connected to each input. The compute
pipelining stage in Cascade turns on every available PE input
register and then performs branch delay matching to ensure
that the compute kernels maintain their functionality, as shown
in Fig. 4. The delay through a PE depends on the operation
being performed, but we measured our target CGRA PE to
have a maximum delay of 0.8ns. A typical compute kernel for
an image processing application has around 10 PEs along one
path from the input of the kernel to the output, so enabling PE
pipeline registers dramatically reduces the application critical
path.

We enable every PE input register because our goal is
to reach the maximum possible frequency of our array (the
CGRA used for our evaluation has a maximum frequency of
1 GHz). If the target frequency is lower, a subset of PE input
registers can be enabled to tradeoff some frequency gains for
energy efficiency.

Compute pipelining is an idea that has been used success-
fully in FPGA and ASIC compilers, and we evaluate it for
CGRAs in Section VI. To further improve critical path lengths,
we must use techniques focused on minimizing the actual wire
delays present in the applications post mapping and PnR.

2) Broadcast Signal Pipelining: In our target CGRA, the
delay through a PE tile is a maximum of 0.8 ns, while the
delay through one switch box is about 0.14 ns. If every PE
is pipelined during compute pipelining, then the path delays
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Fig. 6. CGRA application compiler that takes an application and a specification of the CGRA and produces a CGRA bitstream. Intermediate representations
are dataflow graphs. Bolded text indicates stages of the compiler that were added or modified in this work for pipelining.
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Fig. 7. Broadcast signal pipelining transformation where a broadcast signal
with one source and multiple destinations has pipelining registers inserted to
transform long combinational paths into many short pipelined paths.

in an application will become dominant after five hops on the
interconnect.

Broadcast paths that have one source and many destinations
end up being routed inefficiently on the CGRA, and typically
have many more than five hops on the interconnect. The
primary objective of the place and route algorithm is to mini-
mize wirelength. The minimum wirelength implementation of
a broadcast path typically “snakes” from one source to each
destination, with the branching points of the path very close
to the tiles. If the number of destination nodes is large, then
this broadcast path will be long and become the application’s
critical path.

To solve this problem, we can specifically pipeline broadcast
paths and use a tree structure to ensure that the maximum
wirelength is minimized, as shown in Fig. 7. There is a
tradeoff between number of registers added and critical path
length, so the parameters of this transformation pass (tree
levels, maximum number of pipeline registers, etc.) can be
adjusted.

3) Placement Algorithm Cost Function Optimization: Our
compiler places and routes the application onto the CGRA
using a simulated annealing-based placement algorithm and an
iteration-based routing algorithm [12]. We perform placement
in two stages: global placement and detailed placement. Global
placement uses an analytical algorithm that leverages the
standard conjugate gradient method to minimize the total
wirelength of the application. This wirelength is calculated by
summing the wirelength of each net, where the wirelength is
estimated using the half-perimeter wire length (HPWL). After
global placement, we perform detailed placement based on
simulated annealing.

The cost function for detailed placement (see (2)) is calcu-
lated by summing the HPWL cost for each net. To improve
the critical paths of applications that are placed and routed
using this technique, we add another hyperparameter « that
penalizes longer routes, similar to the criticality exponent
introduced in [16]. Typical placement algorithms do not use
this parameter, and therefore minimize total wirelength. By

introducing «, we can adjust how much long routes are
penalized. A higher value will mean that long routes cost much
more than shorter routes. The value of « is determined during
the execution of the place and route algorithm. Since a single
place and route run completes in seconds, we run it multiple
times with different values for «. For the experiments in this
article, every value of o from 1 to 30 is tried to determine the
highest frequency result

Costper = (HPWLpe)”. 2)

After placement, we route using the same approach as [12].

4) Low Unrolling Duplication: Image processing and
machine learning applications are typically unrolled (paral-
lelized) on hardware accelerators to improve performance.
We found that compiling applications with no unrolling and
performing place and route on a smaller portion of the CGRA
often leads to much shorter critical paths. The configuration
of the tiles and interconnect is then duplicated across the
array, effectively “unrolling” the application by the exact same
amount as before. This optimization allows the PnR tool to
solve a much smaller problem while maintaining all of the
benefits of parallelization.

5) Hardening Frequent Expensive Broadcast Paths: With
broadcast signal pipelining, expensive broadcast routes causing
long critical paths can be shortened. However, for broadcast
paths that have many destinations, the number of registers that
need to be placed on the CGRA is very large. For example,
the flush signal is a broadcast path with one source and
potentially hundreds of destinations, depending on the size
of the application. Pipelining this broadcast path using the
technique described in Section V-C2 is not feasible for these
applications, so if there is flexibility in designing the hardware,
we recommend hardening such signals. Instead of routing this
signal in the configurable interconnect, we directly connect it
to every tile outside of the interconnect. This signal is routed
from the top of the array to the bottom, running down each
column. We can ensure that this path is not too long by placing
pipeline registers at certain rows in the array hardware as
shown in Fig. 8.

D. Extensions for Pipelining Sparse Applications

So far we have focused our discussion on statically
scheduled applications. However, not all applications can be
completely statically scheduled. In particular, sparse appli-
cations may have data-dependent memory accesses. When
targeting a sparse CGRA application, we need to include
several additional considerations.

Sparse applications typically use a ready-valid interface
between all stages of an application. If a piece of data is routed
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Fig. 8. Hardened flush transformation pass that transforms a flush signal
that has to be routed in the configurable interconnect into a hardened signal
that does not exist on the interconnect. In this example, the hardened flush
signal is pipelined between the second and third rows of the array.

from Tile A to Tile B, a valid signal will be routed in the
exact same way, going through the same switch boxes and
connection boxes. A ready signal will be routed in the same
way but in the opposite direction. Each of these wires travel
the same distance as the original data signal.

If we identify a route in a sparse application as the critical
path, we cannot increase application frequency by adding
a register to the data signal alone, we need to register the
ready and the valid signals as well. However, naively adding
pipelining registers to all three signals would break the ready-
valid interface, which relies on single-cycle communication
of when a component is ready to receive another piece of
data. Therefore, all the techniques from Section V-C, except
placement cost function optimization and low unrolling dupli-
cation, require a small change. The change entails inserting
FIFOs instead of registers to break the long data, ready, and
valid paths together. These FIFOs include logic for handling
the ready and valid signals correctly, and allow us to apply
our pipelining flow to sparse applications. The insertion of
pipelining FIFOs requires that FIFOs exist within the target
CGRA interconnect in some form. In Section VI-E, we
compare how well this technique works for two different types
of interconnect FIFOs.

VI. RESULTS

We first evaluate the prediction accuracy of the application
STA model using standard delay format (SDF)-annotated
gate-level simulations. Then, we assess the impact of each
pipelining technique in Cascade on maximum frequency,
runtime, and EDP of several dense and sparse applications.
Finally, we compare Cascade against the state-of-the-art
CGRA compilers and pipelining approaches. We evaluate
these techniques within the application compiler shown in
Fig. 6. The CGRA architecture that we use is a 32 x 16 array
with 384 PE tiles and 128 MEM tiles. We perform physical
design of the CGRA in GlobalFoundries 12 nm technology.
Fig. 9 shows the final layout of the CGRA, along with a global
buffer for storing input, output, and intermediate data from the
applications.

A. Evaluating the Application STA Model

We evaluate the application STA model to ensure that the
critical path derived from the model matches the critical path
derived from SDF-annotated gate-level simulation. We use a
SDF-annotated gate-level simulation of the CGRA to search
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Fig. 9. Left: Evaluation of the STA critical path model. Each dot represents
an application running at the frequency indicated by the vertical axis. The dot’s
horizontal value is the STA-modeled clock period. The gray line represents a
perfect match. Right: CGRA chip layout.

B Before Pipelining ® Before Absorbing Regs
After Absorbing Regs

2000 T T40
m
£

815001 120
@ I
° \ K
21000 + - o 2
2 1806 <
2 o
3 =
@ 500+ 460 1 8
222 222 =

147,
na 7 g 097 - o

Harris  ResNet

Gaussian Unsharp Camera

Fig. 10.  Register resource utilization before pipelining (blue bar), after
pipelining but before absorbing registers (red bar), and after absorbing
registers (yellow bar). Critical path delay is also shown, which improves with
our optimization.

for the fastest clock period of applications with different
pipelining techniques. The simulation is performed on a post-
layout version of the CGRA netlist and includes both gate
delays and wire delays. The search granularity is 0.05 ns.

As shown in Fig. 9, the STA-modeled clock period is
generally higher, but well correlated, with that from SDF-
annotated gate-level simulation. This means that our STA
model is pessimistic and provides a lower bound for the actual
maximum frequency (which is what we want). This behavior
is expected as we collected the worst-case path lengths when
constructing this STA model. At clock frequencies above
500 MHz, which is the range we care the most about, the
average error is 13%. That is, the STA model has good
accuracy for predicting the critical path length for applications
running at high frequencies.

B. Evaluating Register Resource Usage Optimization

Next, we analyze the resource utilization impact of the
technique for absorbing interconnect registers from Section I'V.
We evaluate the impact of this optimization before the impact
of the pipelining techniques themselves, as it is necessary
to ensure that the applications do not exceed the resources
on the reconfigurable interconnect. For these experiments, we
report the register resource utilization of five image processing
and machine learning applications in Fig. 10. The amount of
register resource reduction from this technique varies by appli-
cation from 0% to 97%. The structure of the compute kernels
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Fig. 11. Incremental effect of each software pipelining technique on the

runtime of dense applications.

TABLE I
FREQUENCY, RUNTIME, POWER, AND COMPILER RUNTIME COMPARISON
BETWEEN UNPIPELINED AND PIPELINED VERSIONS OF
FIVE DENSE APPLICATIONS

Frequency Runtime Power Compiler

Dense Application

(MHz) (ms/frame) (mW) Runtime (s)
Gaussian 103 22.6 156 1072
Unsharp 66 21.4 139 580
Unpipelined Camera 47 28.3 318 716
Harris 30 70.6 85 555
ResNet 57 31.7 119 543
Gaussian 610 3.66 841 560
Unsharp 606 1.75 1072 970
Pipelined  Camera 457 2.96 678 2549
Harris 571 1.90 614 805
ResNet 457 3.96 304 1122

within each application determines the number of registers
that can be absorbed. Unsharp and ResNet convolution layer
benefit the most from this technique as they have a lot of
chained multiply-add operations. Without register absorption,
these chaining structures require many pipelining registers to
balance.

Note that many absorbed registers require no memory
resources, as they can be absorbed simply by changing the
configuration of the address generators within the memory
tiles. Register files that are used to replace chains of pipelining
registers cannot be used for anything else, so those memory
resources are consumed during this process. However, the
memory resource cost of this technique is negligible.

C. Evaluating Cascade on Dense Applications

We analyze the incremental impact of software pipelining
techniques from Sections III and V-C on the runtime of
five dense applications from image processing and machine
learning domains, which are also benchmarks in a previous
CGRA work [12]. These software pipelining techniques are
implemented as compiler passes. This is shown in Fig. 11
and Table I. The results in Fig. 11 are derived from our
STA model, while the results in Table I are verified with
SDF-annotated gate-level simulation. For image processing
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Fig. 12. EDP of unpipelined applications versus applications with all software
pipelining. The EDP decreases by 95% on average.
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Fig. 13. Hardening broadcast signals that reach many tiles reduces runtime
by 31%-56%.

applications, the frame size is 6400 x 4800 for Gaussian, 1536
x 2560 for Unsharp, 2560 x 1920 for Camera, and 1530
x 2554 for Harris. For machine learning, ResNet refers to a
single conv5_x layer of ResNet-18. In these experiments, we
have applied the flush signal hardening from Section V-CS5.
Furthermore, Fig. 12 shows the impact of our pipelining
flow on EDP. As shown in Table I, the software pipelining
techniques achieve an 84%-97% decrease in runtime ver-
sus unpipelined implementations. Compute pipelining alone
results in a 35%-81% reduction in runtime compared to the
un-pipelined applications, while the techniques applied during
and after PnR result in an additional 48%—-85% reduction in
runtime. The pipelining techniques result in an EDP decrease
of 86%—99%.

Overall, the compile time generally increased using these
pipelining techniques. The exploration needed to find the
best placement optimization hyperparameter caused the largest
increase in compile time. The low unrolling duplication
technique decreased compile time, which in the Gaussian
application contributed to a decrease in overall compile time.

Fig. 13 shows the impact of hardening broadcast signals
(the flush signal in the case of our CGRA) (Section V-C5). In
this experiment, all of the software only pipelining techniques
are applied to isolate the impact of the hardware change. As
shown in Fig. 13, the runtime is reduced by 31%—-56%.

D. Evaluating Cascade on Sparse Applications

We evaluate the effect of our pipelining techniques from
Section V-D on four sparse workloads from [7]. These sparse
workloads are small benchmarks with a sparsity of 70%.
Note that the sparse applications use FIFOs at the input
of every compute unit, so compute pipelining is applied by
default by the compiler and cannot be turned off. Additionally,
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Fig. 15. Runtime impact of the software pipelining techniques on Tensor

TTV for different levels of input sparsity.

broadcast pipelining and low unrolling duplication had no
effect on the frequency so only placement optimization and
post-PnR pipelining are evaluated. Fig. 14 shows the effect of
incrementally applying each technique.

Additionally, we show the runtime impact of the software
pipelining techniques on the Tensor TTV application for dif-
ferent levels of input sparsity in Fig. 15. As sparsity increases
from 0% to 99%, runtime decreases, but the relative runtime
impact of the pipelining techniques does not depend on the
input data sparsity. The software pipelining techniques have a
significant relative impact on the runtime and are necessary to
achieve high performance.

Table II shows the final numbers for maximum frequency,
runtime, and power consumption for sparse applications,
which are verified with SDF-annotated gate-level simulation.
As shown in Table II, the runtime of sparse applications
decreases by 52%-71% compared to versions with only
compute pipelining, and as shown in Fig. 16, the EDP reduces
by 60%—-81% with our techniques.

E. Comparison Against State of the Art

Finally, we compare the performance and energy effi-
ciency of Cascade versus the state-of-the-art pipelining
techniques for CGRA architectures. Cascade targets static
CGRA interconnects that allow for any tile to any tile con-
nections with configurable registers. We compare against three
alternative architectures: 1) ADRES [18] with its associated
compiler DRESC [17], which uses exhaustive pipelining (i.e.,
it adds a pipelining register after every interconnect hop) and
only allows for connections between neighboring tiles and con-
nections to tiles in the same row and column, 2) HyCUBE [9]
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TABLE 11
FREQUENCY, RUNTIME, AND POWER COMPARISON BETWEEN COMPUTE
PIPELINED AND FULLY PIPELINED VERSIONS OF FOUR
SPARSE APPLICATIONS

Sparse Application Frequency Runtime Power

(MHz) (ps)  (mW)

Vector Elementwise Add 305 0.77 187

Compute Matrix Elementwise Mul 435 0.41 246

Pipelining Tensor MTTKRP 300 349 194

Tensor TTV 260 10.0 170

Vector Elementwise Add 870 0.28 410

Al Mawix Elementwise Mul 909 020 432
Software

Pipelining Tensor MTTKRP 625 14.3 333

Tensor TTV 833 3.87 394

B Compute pipelining ® All software pipelining
-71%
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1000

EDP (fJ-s)

10
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MTTKRP
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Vector
Element Add Mul

Fig. 16. EDP comparison between compute pipelining only and all software
pipelining techniques applied to sparse applications (vertical axis has a log
scale).

which allows for single-cycle multihop connections, and
3) Plasticine [21] with its associated compiler Sara [24],
which uses exhaustive pipelining and interconnect FIFOs.
For a fair comparison, we have implemented these CGRA
interconnects within the same CGRA hardware generation
platform, meaning they are in the same technology, use the
same tile architectures, and are running the same applications.
The architecture and pipelining approach of ADRES and
DRESC are not flexible enough for our application bench-
marks. ADRES only has neighbor to neighbor and row/column
connections and requires that each connection take one
cycle. This restrictive interconnect topology is not appro-
priate for the large benchmarks and arrays that we are
targeting. Applications that have simple connectivity, with
routes that only have one source and one destination, may
be appropriate for this type of interconnect. However, our
applications, which have complex connectivity with routes
that have many destinations, cannot be placed and routed
onto this type of interconnect. The complexity of the tiles
themselves also influences which type of interconnect to use.
Our PE tiles have six inputs and two outputs, and our memory
tiles have six inputs and six outputs. These complex tiles
enable efficient computation, but require more flexibility in
the interconnect than ADRES provides. Additionally, in an
exhaustively pipelined interconnect, the number of cycles a
piece of data takes to get from its source to its destination
depends on the route that it takes. Matching the branch
delays (described in Section V-C1) is much more difficult, and
becomes impossible for the complexity of our benchmarks.
Next, we compare Cascade against a HyCUBE-like CGRA
and compiler. HyCUBE’s pipelining approach is very flexible,
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Fig. 17. Runtime and EDP comparison with a HyCUBE-like array and
compiler.

they allow for any tile to any tile connections, and register data
going into every tile. Routes between tiles take 1 cycle. While
the approach taken by HyCUBE is quite flexible, as it can
place and route applications with a wide range of connection
patterns, it was designed with a smaller array in mind. As
shown in Fig. 17, when HyCUBE’s approach is scaled up to a
32 x 16 CGRA, the critical paths become long, and compared
to HyCUBE, Cascade achieves 47%—95% lower runtime and
59%—-85% better EDP. In fact, Cascade would be well suited
for compiling to HyCUBE-like CGRAs.

Finally, we compare against a Plasticine-like array and com-
piler. To isolate the effect of the pipelining approach, we do
these experiments using the sparse benchmarks, which require
the use of the ready-valid interface present in Plasticine.
In this experiment, we present three different pipelining
approaches: a Plasticine-like approach that is exhaustively
pipelined using FIFOs at every hop in the interconnect, a
Cascade approach applied to the exact same interconnect, and
a Cascade approach using optimized FIFOs. These optimized
FIFOs are distributed, a size two FIFO is constructed using
two adjacent switchbox registers. Cascade enables the effective
use of this type of optimization, which relies on intelligently
analyzing routing delays and enabling registers post-PnR.

The runtime and power comparison is shown in Fig. 18.
We can see that the exhaustive pipelining approach taken
by Plasticine achieves low runtime, but has higher power
consumption than Cascade. The Plasticine-like array is within
10% of the runtime of Cascade approach, these differences
can be attributed to some randomness in the PnR results. The
power consumption of Cascade is 21%-36% less than the
Plasticine approach, demonstrating that Cascade can achieve
similar level of performance at a lower power cost. The FIFOs
needed at the input of every tile and within every switchbox
have a high power cost. The Cascade approach will selectively
enable only the FIFOs that are on the critical paths, thus
saving power. Finally, the optimized split-FIFO interconnect,
pipelined using Cascade, shows further power benefits at a
runtime cost. The runtime cost is usually small, with the
exception of Tensor MTTKRP, but the power savings are larger
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compiler.

than just using Cascade by itself, with a 13%—-39% reduction
in power over the Plasticine approach.

VII. RELATED WORK
A. FPGA and ASIC Pipelining Tools

Application pipelining when targeting FPGAs and ASICs
is a well studied problem; however, many of these techniques
cannot be directly applied to CGRA applications or do not
achieve the same level of improvement for CGRAs. Register
retiming [2], [13] is a common pipelining technique where
pipelining register stages are added to a design and retimed
into optimal positions.

Post-placement retiming and pipelining has been applied in
the past to both ASICs and FPGAs. Tien et al. [22] introduced
post-placement retiming and register insertion for ASICs.
The critical paths are identified post-placement and iteratively
pipelined to enable higher maximum frequency. Similarly,
Intel’s Stratix 10 [14] architecture includes pipelining registers
in the interconnect and does post-PnR performance tuning
including retiming and pipelining.

This class of techniques can be applied to CGRA applica-
tions, although the limited register resources and long delays
through PE tiles mean that the algorithms used for ASICs and
FPGAs do not directly apply to CGRA applications.

B. Types of CGRA Interconnects

CGRA interconnects fall into two main categories: static and
dynamic. Statically configured interconnects have routes that
are reserved during compile time and do not change during
the execution of the application. In contrast, a dynamically
configured interconnect, or network-on-chip, can change/time-
multiplex the connections on the array during application
execution. In this article, we only target static interconnects.
Note that a CGRA with a static interconnect is not necessarily
fully statically scheduled — while the routes in the application
may not change during application execution, the data flowing
on those routes may not be statically scheduled [21].

There are several different types of static CGRA
interconnects, and for this discussion, we break this design
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TABLE III
CATEGORIZATION OF CGRAS AND THEIR COMPILERS BASED ON CONNECTION FLEXIBILITY AND PIPELINING FLEXIBILITY OF THE INTERCONNECT.
ALSO SHOWN ARE THE CGRA S1ZES USED WHEN EVALUATING THE COMPILERS AND THE REPORTED APPLICATION FREQUENCIES

CGRA Compiler Connection Flexibility

Pipelining Flexibility

CGRA Size (# Tiles)  Application Frequency (MHz)

EPImap [6] Neighbors Exhaustive Pipelining 16 Not reported
Nowatzki [20] Neighbors Exhaustive Pipelining 16 Not reported
Zhao [25] Neighbors Exhaustive Pipelining 64 Not reported
DRESC [17] Neighbors and row/column Exhaustive Pipelining 64 100
Sara [24] Any tile to any tile Exhaustive Pipelining with FIFOs 420 1000
HyCUBE [9] Any tile to any tile Configurable Registers 16 704
Cascade (This work) Any tile to any tile Configurable Registers 512 450 - 1000

space along two main axes: connection flexibility and pipelin- Performance EPImap

ing flexibility. In terms of connection flexibility there are three Nowatzki[20]

main categories of interconnect topologies: neighbor to neigh- Zh8°[25]

bor connections (low flexibility), row and column connections Sara o

(medium flexibility), and any tile to any tile connections DRESC

(high ﬂe?(lblhty). I.n terms of. plp.el.lmng ﬂex1b1hty, there are Castade

three main categories: 1) no pipelining registers, 2) exhaustive

. .. . . L. . Flexibility Energy
pipelining registers, and 3) configurable pipelining registers. Efficiency

Table III classifies several existing CGRAs and their compilers
along these axes.

C. Comparison With Prior CGRA Compilers

A comparison between the different classes of CGRA
compilers is provided in Fig. 19 and Table III. Sara [24],
the compiler for the Plasticine architecture [21], assumes
an exhaustively pipelined interconnect. To accommodate
this exhaustive pipelining, Plasticine has FIFOs that handle
network delays. This type of architecture and exhaustive
pipelining results in high power consumption; [9] reports that
exhaustive pipelining has a 28% higher power cost than the
alternative without exhaustive pipelining. Sara targets CGRA
interconnects that have any tile to any tile connections so the
compiler can compile large applications to large arrays.

EPImap [6], DRESC [17], and the compilers introduced
in [20] and [25] target CGRAs that have neighbor to neighbor
connections and row and column connections, and are exhaus-
tively pipelined. Additionally, these CGRA architectures allow
for per-cycle reconfiguration of the tiles in the array. These
compilers must ensure that the paths in the array are balanced
in length so that the data arrives at each tile at the correct cycle.
These types of interconnect architectures are less flexible than
those that allow for any tile to any tile connections.

HyCUBE [9] is a CGRA architecture that supports single-
cycle multihop connections between tiles. It supports any-tile
to any-tile connections and uses configurable registers to allow
for single-cycle multihop connections. While this type of
interconnect is more flexible, the critical path of the application
running on the accelerator depends on the configuration of
the interconnect. Their work acknowledges that this archi-
tecture may have longer critical paths than other types of
interconnects, so they limit the number of hops a piece of data
can make on the interconnect in one cycle. The HyCUBE array
has only four rows and four columns, so the longest possible
critical path is very short.

Cascade targets CGRAs with high connection flexibil-
ity (any tile can send data to any other tile through the
interconnect) and has high pipelining flexibility through its

O
HyCUBE

Fig. 19. Performance, flexibility, and energy efficiency comparison between
the various CGRA compilers.

ability to selectively turn on registers only where they
are required (i.e., the most flexible option in Table III).
Furthermore, we target CGRA architectures that are much
larger than HyCUBE (e.g., containing 512 tiles versus 16
tiles), so limiting the number of hops on the interconnect is
not a solution that we can employ.

VIII. CONCLUSION

Cascade is an open-source end-to-end CGRA compiler that
achieves high performance and fast compilation through the
use of a decoupled FPGA-style compilation flow and new
pipelining techniques. It includes a novel post PnR application
pipelining technique for CGRAs that accounts for interconnect
hop delays during pipelining but in a unique way that avoids
cyclic scheduling and PnR. To work with the limited number
of registers present on CGRAs (compared to FPGAs or
ASICs), Cascade performs register resource optimization that
leverages the scheduling logic in CGRA memory tiles to min-
imize the number of register resources used during pipelining.
We put these techniques together with an automated CGRA
timing model generator, an application timing analysis tool,
and a large set of pipelining techniques to create an end-
to-end compiler. Cascade achieves 8-34x lower critical path
delay and 7-190x lower EDP across a variety of dense image
processing and machine learning workloads, and 3-5.2x
lower critical path delay and 2.5-5.2x lower EDP on sparse
workloads, compared to a compiler without pipelining. While
Cascade is a standalone compiler, the pipelining techniques
can be integrated into other CGRA compilers as well, enabling
the creation of high performance compilation infrastructure for
CGRAs and encouraging research into CGRAs as promising
acceleration platforms.
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