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Abstract

Onyx is the first fully programmable accelerator for
arbitrary sparse tensor algebra kernels. Unlike prior work, it
supports higher-order tensors, multiple inputs, and fusion. It
achieves this with a coarse-grained reconfigurable array
(CGRA) that has composable memory primitives for storing
compressed any-order tensors and compute primitives that
eliminate ineffectual computations in sparse expressions.
Further, Onyx improves dense image processing and machine
learning (ML) with application-specialized compute tiles,
memory tiles optimized for affine access patterns, and hybrid
clock gating in the global buffer. We achieve up to 565x better
energy-delay product (EDP) for sparse kernels vs. CPUs with
sparse libraries, and up to 76% and 85% lower EDP for image
processing and ML, respectively, vs. Amber [1].

Introduction
CGRAs are widely-used programmable fabrics for building

accelerators, but prior work has focused on dense applications
[1, 2]. Given that important applications ranging from
machine learning to scientific computing leverage sparsity for
efficiency, we present Onyx, the first fabricated CGRA
accelerating both dense and sparse applications (Fig. 1). The
Onyx SoC (Fig. 2) has a CGRA with 384 processing element
tiles (PE) and 128 memory tiles (MEM) on an interconnect
that supports static (dense) and dynamic (sparse) data
movement. The CGRA connects to a 4 MB global buffer
(GLB) with 16 tiles, each with load and store engines. An
Arm M3 processor orchestrates kernels on the accelerator.

Sparse Acceleration Hardware
Prior sparse accelerators have focused on sparsity in

specific kernels [3, 4], mostly matrix multiplication, leaving
out support for other kernels, higher-order tensors, multiple
inputs, and fusion. Onyx addresses this by building on a
streaming representation of fibertrees [5] (Fig. 3), enabling us
to store and process any-order tensors and eliminate
unnecessary memory accesses. We convert stored tensors into
coordinate, reference (pointer to fiber), and value streams that
move between CGRA tiles using level writer, level buffer, and
level scanner primitives, which we implement in the memory
tile (Fig. 3). We partition a single-port 512x64b SRAM in the
level buffer into segment and coordinate arrays. The level
writer consumes a coordinate stream and generates segment
and coordinate addresses to write to the partitioned memory.
The level scanner takes a reference pointing to a segment pair,
requests that pair from the level buffer to determine the
coordinate array length, and then generates addresses to read
the coordinate stream from the level buffer. It also produces
the corresponding reference stream for downstream tiles. We
add cache lines in the level buffer to avoid redundant reads of
the same 4-element word in consecutive accesses.
We eliminate all ineffectual computation by adding

intersecter/unioner and coordinate dropper primitives to the
PEs (Fig. 4). The intersecter/unioner computes on the input
coordinate streams to determine the output coordinates that
have non-zero values. Since this can produce empty fibers,
the coordinate dropper removes these fibers by dropping

adjacent stop tokens in the inner-coordinate stream and the
matching outer coordinate. To support tensor algebra, we also
add a reducer, which sums a stream, and a repeater which
duplicates streams for tensor broadcasting. Fig. 5 shows a
sparse matrix multiplication mapped on Onyx to demonstrate
the composability of our primitives. Our generality supports
higher-order tensors, multiple inputs, and, importantly, fusion
for expressions such as MTTKRP (Xij=∑klBiklCjkDjl), whose
fused schedule eliminates ineffectual compute across all
inputs and is up to 6.6x faster than two unfused kernels.
To support non-deterministic latency, we add ready-valid

capability to the interconnect in [1] by replacing pipeline
registers with FIFOs. However, we avoid doubling the
number of registers by designing a “SplitFIFO” (Fig. 5)
composed of pipeline registers in adjacent tiles sharing
control signals, saving us 13% in interconnect area.

Dense Acceleration Hardware Optimizations
In contrast to Amber [1], which performs a single Int16 or

BFloat16 operation per PE, Onyx improves compute density
by performing single or multiple (multiply-add, add-add,
multiply-shift, min-max) Int16 operations per PE. This allows
higher parallelization, decreasing execution cycles by up to
50%. Compared to the memory controllers in [1], we
eliminate a write address generator by reusing the addresses
generated by the read address generator and adding a delay
block for read-modify-write operations (Fig. 6). We also
reduce the depth of the serial-in, parallel-out buffer and bit
widths of counters and configuration registers. These
optimizations reduce the area of the memory tile by 24%.
Finally, since the number of active GLB tiles varies between
kernels, we only clock the active memories to save power.
Clock gating the GLB poses a challenge since although
CGRA data transfers are static, off-chip data transfers are
only known at runtime. We implement hybrid static/dynamic
gating for each GLB tile, that for typical double-buffering
workloads, reduces GLB power by 24%.

Results
We use the Halide [1] and Custard [5] compilers to map

dense and sparse expressions, respectively. For image
processing, we achieve up to a 76% EDP reduction vs. Amber
[1] (Fig. 7). ResNet layers achieve a 78–85% lower EDP vs.
Amber. On sparse kernels, we achieve a 4.4x–565x geomean
improvement in EDP versus a CPU with sparse libraries
(MKL and TACO). Fig. 8 shows comparisons against other
fabricated chips. Onyx is fabricated in GF 12 nm and achieves
a 756 INT16 GOPS/W peak energy efficiency, 41% better
than Amber. Unlike [3, 4], which put together specialized
accelerators for different applications on the same chip, Onyx
is the first programmable accelerator for arbitrary dense and
sparse tensor algebra, demonstrating a promising approach for
accelerating fast evolving application domains.
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Fig. I Onyx: A programmable accelerator for sparse and dense tensor algebra. 
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Fig. 3 MEM tile primitives that write, store, and read fibertrees. 
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Fig. 7 Measured results on (a) dense applications: image processing EDP vs. 

other platforms, and machine learning (ResNet-18) runtime and energy vs. 

Amber (b) sparse applications: EDP vs. CPU with MKLf[ACO sparse library. 
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Fig. 2 Onyx system-on-chip architecture with 384 PE and 128 MEM tiles. 
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Fig. 4 PE tile primitives that compute on tensor indices and addresses. 
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Fig. 6 Memory tile area optimizations and benefits. 
Dense Controllers " =SRAMs 

This Work Amber VLSI 22 Zhang VLSI 22 Huang VLSI 22 
CNN/ Sparsity-Aware Arch itecture SoC w/ CGRA SoC w/ CGRA Image Processing CNN-GCN PE Array 

Programmability ., ., ., )( 
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Technology/Area 12 nm/ 23 mm2 16 nm/ 20 .1 mm2 22 nm/ 8.8 mm 2 28 nm/ 8.3 mm2 

Formats Supported BFloat16, INT16 BFloat16, INT16 INT16 INT8 

# of Cores 384 PEs, I M3 384 PEs, 1 M3 576 PEs, RISC 1024 8-bit MACs Core, Custom M33 

Tota l SRAM 4.5 MB 4.5 MB 1428 KB, 292 KB 2MB MRAM 
Voltage & 0.78 V 0.84 V @580 MHz 0.5 - 1.0 V 10 - 200 MHz Frequency @970 MHz 1.29 V @955 MHz 56 KHz · 190 MHz 
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Fig. 8 Comparison with state-of-the art SoCs. 
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