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Domain-speci!c languages for hardware can signi!cantly enhance designer productivity, but sometimes at the cost of ease
of veri!cation. On the other hand, ISA speci!cation languages are too static to be used during early stage design space
exploration. We present PEak, an open-source hardware design and speci!cation language, which aims to improve both
design productivity and veri!cation capability. PEak does this by providing a single source of truth for functional models,
formal speci!cations, and RTL. PEak has been used in several academic projects, and PEak-generated RTL has been included
in three fabricated hardware accelerators. In these projects, the formal capabilities of PEak were crucial for enabling both
novel design space exploration techniques and automated compiler synthesis.
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1 Introduction

Domain-speci!c languages (DSLs) for hardware allow designers to build generators that are impossible to express
using traditional hardware description languages such as SystemVerilog and VHDL [3, 40]. Such generators are
of increasing importance as specialized chips become the norm in a post-Dennard-scaling world [24, 39]. DSLs
can also provide better correctness guarantees through type safety (a well-known pain point in Verilog). These
factors have led to an explosion of new DSLs for hardware design over the last decade [3, 16, 26, 31, 40].
Unfortunately, the design of most hardware DSLs has not su"ciently taken into account the impact on

veri!cation [30]. For example, using a Verilog simulator to debug DSL-generated designs is notoriously di"cult,
as information is lost or obscured during the compilation process. A !rst step towards addressing this challenge
is to include support for writing properties that can be translated to SystemVerilog assertions (SVAs), and indeed
several languages provide this (e.g., Chisel [15] andMagma [41]). More ambitious e#orts aim to enable source-level
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debugging [42], which will likely be crucial for e#ective debugging of generated RTL, especially at later design
stages.
On the other hand, DSL models are well-positioned to dramatically improve the early-stage veri!cation

experience. In particular, they can be leveraged to greatly improve debugging and veri!cation during design space
exploration (DSE). Traditionally, separate functional models play a key role during this phase, but a promising
alternative supported by some DSLs (e.g., pyMTL [31]) is to automatically extract a high-performance executable
functional model from a DSL description. Moreover, with the right semantics and support, the user can even be
provided with direct access to an automatically-generated formal model for the design, enabling novel and early
uses of formal methods during the design exploration process. Current DSLs provide very limited support for
such features.
In this paper, we introduce PEak, a Python-embedded DSL, with an accompanying set of open-source tools,

including a compiler. PEak provides a single source of truth for compilation to RTL, functional simulation, and
formal modeling. Designers who use PEak do not need to implement the same thing multiple times, and the
di#erent implementations are guaranteed to be consistent with each other. Furthermore, these capabilities directly
enable novel formal-in-the-loop design methodologies.
PEak is partly motivated by work being done at the Stanford Agile Hardware center [4, 11, 17, 27],1 where

it has been used to generate coarse-grained recon!gurable array (CGRA) architectures2 for three generations
of chips, two of which were fabricated. Section 4 explains how the formal model generated by PEak was used
to synthesize compiler components for di#erent candidate architectures, thereby enabling a systematic and
automatic exploration of the design space.
The rest of this paper is organized into the following sections: Section 2 describe hwtypes and ast_tools

which PEak is built on; Section 3 describes the PEak language and how it can be extended; and Section 4 evaluates
PEak as a tool for DSE, showing it can generate both high performance RTL as well as SMT models which are
usable in a formal-in-the-loop design $ow. We discuss related work and conclude in Sections 5 and 6, respectively.

2 Hardware Types and AST-Tools

We !rst introduce two libraries we developed which serve as the foundation of PEak: hwtypes and ast_tools.
hwtypes3 serves as both the type system and compilation target for PEak. ast_tools4 is used for Python abstract
syntax tree (AST) analysis and rewriting, which is used both to build the PEak compiler and to extend PEak’s
meta-programming facilities. These libraries are independent of PEak, and may be of interest on their own.
The interplay between PEak, ast_tools, and hwtypes is illustrated in Figure 1. A PEak speci!cation is the

input to the PEak compiler. The PEak speci!cation uses the hwtypes type system for things like Bit, BitVector,
and algebraic data types. The PEak compiler uses ast_tools, !rst to transform the Python AST of the PEak
speci!cation, and then again to generate the !nal compiled speci!cation in the hwtypes expression language. In
the following subsections, we describe hwtypes and ast_tools in detail.

2.1 Hardware Types

The core of PEak is the Python-embedded expression language of hwtypes. hwtypes provides a uniform interface
for: functional simulation, via direct execution in Python; formal analysis, via automatic translation to formulas
in the language of satis!ability modulo theories (SMT) [6]; and RTL generation, via a compiler to Magma [41].
By unifying these types we ensure the equivalence of the generated functional, formal, and RTL models.

1aha.stanford.edu
2CGRAs [22, 32, 35] are a spatial architecture similar to FPGAs and are composed of processing element (PE) and memory tiles, and a
con!gurable routing network.
3https://github.com/leonardt/hwtypes
4https://github.com/leonardt/ast_tools
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Fig. 1. PEak, ast_tools, and hwtypes transform a PEak specification into a compiled hwtypes program.

hwtypes de!nes abstract interfaces and type constructors for a number of types and kinds. This includes a
Bit (Boolean) type, !xed-width BitVector types (signed and unsigned), arbitrary-precision $oating-point types,
and algebraic data types (ADTs). We !rst focus on the Bit and BitVector types (we discuss the use of ADTs
in Section 3.2). Bit type provides the usual Boolean operators: and &, or |, xor ^, and not ~; equality operators:
equals ==, and not equals !=; and an ite (if-then-else) method.
The SMT-LIB standard [5] de!nes a large set of arithmetic and bitwise functions on bitvectors. The hwtypes

BitVector interface de!nes a method for each of these functions. For instance, the equivalent of the SMT-LIB
term (bvadd x y) (bitvector addition), where x and y are of sort (_ BitVec 16), or 16-bit bitvectors, is the
hwtypes expression x.bvadd(y), where x and y are of the type BitVector[16]. More generally, if f is a function
over bitvectors de!ned by SMT-LIB, then there is an equivalent method named f on the hwtypes BitVector

type. As a convenience, these methods are also de!ned by overloading Python operators when appropriate. For
example: x.bvadd(y) can be invoked with x + y. The semantics of sign-dependent operators are de!ned by
their type. For example, x < y invokes x.bvslt(y) (signed less than) for signed x and x.bvult(y) (unsigned
less than) for unsigned x.

There are three implementations of the BitVector and Bit types. The !rst implementation is a pure Python
functional model over constant values. The second wraps pySMT [20] to generate SMT terms. Finally, Magma
provides a third implementation which allows for the de!nition of circuits. This uniform interface allows for the
same hwtypes program to be interpreted in multiple ways. The pure Python implementation is used to simulate
a circuit, the SMT implementation is used to generate a formal model, and the Magma implementation is used to
generate actual RTL.

The real power of hwtypes comes from its embedding in Python which facilitates the generation of complex
formulas. For example, we can generate an adder tree over any number of inputs with the use of a recursive
function as shown in Example 2.1. This can be easily generalized to perform reduction over any function as
shown in Example 2.2.

It is important to note that hwtypes is an expression language only; all statements are executed in pure Python
following typical Python semantics. This is in contrast to PEak (see Section 3, below), which breaks away from
the semantics of pure Python and reinterprets the meaning of if statements as ites using AST rewriting.

2.2 AST Tools

In order to be able to reinterpret Python code, we developed the ast_tools library, which provides a generic
infrastructure for composing passes that analyze and transform the Python abstract syntax tree (AST). The design
is the result of our experience developing ad hoc AST rewrites for various DSLs (including PEak) and recognizing
the need for a common infrastructure to serve these languages.

2.2.1 Pass Architecture. The entry point to the ast_tools library is the apply_passes function, which takes
a list of passes to run and returns a decorator that is used to transform a function or class. The apply_passes

ACM Trans. Embedd. Comput. Syst.
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def tadd(*args):

n = len(args)

if n == 0:

return 0

elif n == 1:

return args [0]

else:

left = tadd(*args[:n//2])

right = tadd(*args[n//2:])

return left + right

Example 2.1: hwtypes adder tree generator.

def treduce(f, ident , *args):

n = len(args)

if n == 0:

return ident

elif n == 1:

return args [0]

else:

largs = args[:n//2]

rargs = args[n//2:]

l = treduce(f,ident ,*largs)

r = treduce(f,ident ,*rargs)

return f(l, r)

Example 2.2: hwtypes reduction tree generator.

@apply_passes ([ loop_unroll ()])

def foo():

for i in unroll ([1 ,3 ,9]):

print(i)

def foo():

print (1)

print (3)

print (9)

Example 2.3: Code with loop unrolling applied.

function provides a generic prologue and epilogue, which handles logic common to most code transformers. The
prologue parses the marked code into an AST and captures a closure of the environment. The epilogue serializes
the transformed AST into code and executes it using the captured environment. Passes use a generic interface
that consumes as arguments the current AST, the current environment, and a metadata dictionary. A pass may
modify any or all of these and return them as results to be used for the next pass or for the epilogue.

ACM Trans. Embedd. Comput. Syst.
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In addition to the pass infrastructure, ast_tools provides several useful utilities such as the ability to generate a
free name in the environment, which allows new variables to be introduced without clobbering existing mappings.
It also includes a collection of generic transformation and visitor passes that perform common operations.

2.2.2 Macros. The macro sub-package provides a simple mechanism for performing syntactic rewrites of the
Python AST. When an explicit macro identi!er is encountered, such as unroll in Example 2.3, the corresponding
transformation is invoked (loop_unroll). PEak employs the macro pattern to allow staged expansion of the
speci!cation. For example, if statements marked as macros will be evaluated before they are compiled, allowing
the user to distinguish between conditional logic intended to describe the generation of the speci!cation versus
conditional logic intended to be part of the speci!cation.

3 PEak

The high-level aim of PEak is to provide a natural object-oriented view of hardware, in which a circuit is de!ned
as a Python class. PEak circuits declare sub-components in their __init__ method5 and de!ne their behavior in
their __call__ method.6 A circuit’s inputs are the arguments to its call method and its outputs are the return
values of the method. Sub-components are included simply by calling them as functions.

The underlying semantics of PEak is a synchronous hardware model that uses an implicit clock and implicit
wiring. In a PEak program with state, a single call to the __call__ method represents one clock cycle, updating
any state variables that have been declared in the __init__method. The goal of PEak is to make writing hardware
easier through a natural object-oriented view of the hardware. Therefore, PEak works best for specifying hardware
that can be encapsulated into well-de!ned modules with instructions, inputs, and outputs. Due to the implicit
clocking and wiring in PEak, designs with multiple clocks or combinational loops cannot be expressed.

In Example 3.1, we show a small example of PEak code. Code points of interest have been annotated with # n.
We start by explaining ALU (# 4) and RegALU (# 7); then, in Section 3.3 we discuss the remaining code points. The
ALU class performs either an add or a multiply on two data inputs (in_0, in_1) and is controlled by a single bit
op. We show the results of compiling this ALU to Verilog using the MLIR [29] backend to Magma in Example 3.2.
The RegALU class instantiates an ALU and two Registers. RegALU is controlled by a two-bit signal instr,

where bit 0 is the ALU op and bit 1 is an acc $ag. RegALU passes the contents of its registers to the ALU and outputs
the ALU’s output. When the acc $ag is set, it stores its output in reg_0; otherwise, it stores the !rst input. The
observant reader will note that the registers in Example 3.1 are not called as functions. Instead, they are simply
read and written as instance attributes. We provide this syntax to allow registers’ next state to be dependent on
current state (which is impossible with the __call__ syntax).

3.1 PEak Normal Form

The ast_tools library is used to convert a PEak program to a hwtypes program. This is achieved by !rst
performing a typical single static assignment (SSA) transformation [38], i.e., introducing unique variables for
every assignment and replacing control $ow with phi statements. Next, all return statements are replaced with
assignments to fresh identi!ers. Next, the bodies of if blocks are inlined into their enclosing blocks, and phi
nodes are replaced with ite calls (a method on the primitive type Bit). Finally, we construct the return value by
reconstructing the condition structure in a nested ite. In this form, the program is a pure hwtypes program. The
transformed PEak code for ALU.__call__ in Example 3.1 is shown in Example 3.3.
Special care is needed to handle attribute writes (e.g., registers) as they do not behave like other names. At a

high level, the compiler simply generates a fresh name for each written attribute which is initialized at the top of

5__init__ is the standard initializer method in Python, which is similar to but not quite equivalent to a constructor in C++. A more thorough
explanation can be found in the Python reference manual [19].
6__call__ overloads the function call syntax, i.e., foo(args) ≡ foo.__call__(args).

ACM Trans. Embedd. Comput. Syst.
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@family_closure(family_group) # 1

def gen(family ): # 2

BV = family.BitVector

T = BV[8]

Bit = family.Bit

Register = family.gen_register(T, 0)

@family.compile(locals(), globals ()) # 3

class ALU(Peak): # 4

def __call__(self ,

op: Bit , in_0: T, in_1: T) -> T: # 5

if op:

return in_0 + in_1

else:

return in_0 * in_1

@family.compile(locals(), globals ()) # 6

class RegALU(Peak): # 7

def __init__(self):

self.alu = ALU()

self.reg_0 = Register ()

self.reg_1 = Register ()

def __call__(self ,

instr: BV[2], in_0: T, in_1: T) -> T:

op = instr [0]

acc = instr [1]

out = self.alu(

op, self.reg_0 , self.reg_1

)

if acc:

self.reg_0 = out

else:

self.reg_0 = in_0

self.reg_1 = in_1

return out

return RegALU

Example 3.1: PEak code for ALU.

the program. Next, it replaces all references to the attribute with references to the fresh name. Finally, it writes
the generated name back to the attribute at the end of the program.
The existence of multiple returns complicates this basic scheme, as there are multiple “ends” of the program.

Hence, at each return location, the state of each attribute (i.e., the value held in the attribute’s associated name) is
stored in a “!nal” name, so that the proper value may be written to the attribute at end of the program. Then, at the

ACM Trans. Embedd. Comput. Syst.
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module ALU(

input op,

input [7:0] in_0 , in_1 ,

input CLK , ASYNCRESET ,

output [7:0] O

);

wire [1:0][7:0] _GEN = {

{in_0 + in_1}, {in_0 * in_1}

};

assign O = _GEN[op];

endmodule

Example 3.2: ALU compiled to Verilog using the MLIR backend of Magma.

class ALU(Peak):

def __call__(self ,

op: Bit , in_0: T, in_1: T) -> T:

cond_0 = op

r_val_0 = in_0 + in_1

r_val_1 = in_0 * in_1

r_val_f = cond_0.ite(r_val_0 , r_val_1)

return r_val_f

Example 3.3: ALU in PEak normal form as generated by the compiler modulo a slight simpli!cation of generated names.

end of the program the !nal names are multiplexed, in a similar matter to the rebuilding of return values, before
being written back. We show the transformation of the simple counter shown in Example 3.4 in Example 3.5.

3.2 Algebraic Data Types

PEak also supports algebraic data types (ADTs). As ADTs in PEak must be realizable in hardware, we limit them
to !nite (non-recursive) types. Beyond the usual bene!ts of abstraction and type safety, ADTs provide a natural
abstraction for ISAs: a sum type can be used to specify categories of instructions with di#erent layouts; and
product types can used to de!ne the !elds of each layout. Example 3.1 uses a single bit to control its operation.
However, by doing so we !x the encoding of the ISA. Instead, designers can de!ne ISAs as ADTs as shown in
Example 3.6.
Using ADTs to represent ISAs has two main bene!ts. First, it allows the decode logic to be modi!ed without

modifying the functional speci!cation (i.e., the __call__ method). For instance, to change the encoding of an
ADD instruction from op == 1 to op == 0 in the original example (3.1), we would need to update the line if op:

to if ~op:. In contrast, in Example 3.6, we just need to change the de!nition of AluOp. While these two edits are
of similar complexity for the toy examples shown here, the ADT-based speci!cation is much more maintainable
for more complex examples, as most of the complexity tends to lie in the __call__ method. The second main
bene!t of using ADTs to describe ISAs is type safety. In the original example, it would be possible for a designer
to accidentally use bit 0 as the acc $ag and bit 1 as the op. In contrast, comparing a member of AluOp to a member
of RegCtrl would lead to a type error.

ACM Trans. Embedd. Comput. Syst.
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@family.compile(locals(), globals ())

class Counter(Peak):

def __init__(self):

self.reg = Register ()

def __call__(self , en: Bit , rst: Bit) -> T:

if rst:

self.reg = T(0)

return T(0)

if en:

state = self.reg

if state < MAX_COUNT - 1:

next_state = state + 1

else:

next_state = T(0)

self.reg = next_state

return state

else:

return self.reg

Example 3.4: A counter with a reset and enable.

When ADTs are compiled to hardware, they must be encoded as bitvectors. While PEak provides reasonable
defaults for the encoding (e.g., Product types encoded as the concatenation of their !elds), a designer may desire
a speci!c bit-level encoding. PEak provides a simple interface to allow this.

3.3 PEak Internals and Extensions

We now explain the remaining code points in Example 3.1. We highlight a few simple requirements: PEak classes
must inherit from the Peak class (# 4 and # 7), and the type annotations in the __call__ method (# 5) are not
optional, as they are needed to generate ports in a Magma context.
Code point # 2 constructs a closure around the ALU and RegALU classes. It takes a single argument, which

is a family object. The family mechanism is the means by which the di#erent interpretations (Python, SMT,
Magma) for the same PEak code are provided. Each family object contains one set of implementations for the
primitives used by the constructed module (minimally: Bit, BitVector, ADTs, registers). Note how all types
are accessed through the family object. family.compile (# 3 and # 6) invokes the PEak compiler, passing the
current symbols to the compiler with locals(), globals(). Each family can de!ne its own compilation $ow.
For example, the SMT and Magma families rewrite __call__ code into the PEak normal form.
Finally, the family_closure decorator (# 1) takes a single parameter, which associates the decorated clo-

sure with a speci!c family group, an object (typically a module) with attributes PyFamily, SMTFamily, and
MagmaFamily, providing families with the Python, SMT, and Magma interpretations, respectively. Default im-
plementations for each family can be obtained by using a speci!c family group that is included with PEak. The
purpose of an explicit family group parameter is to allow extensions beyond this default implementation. For
example, an extended family group could include a $oating point type which wraps verilog IP in a Magma context,

ACM Trans. Embedd. Comput. Syst.
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def __call__(self , en: Bit , rst: Bit) -> T:

self_reg_0 = self.reg

cond_0 = rst

self_reg_1 = T(0)

self_reg_f_0 = self_reg_1

r_val_0 = T(0)

cond_2 = en

state_0 = self_reg_0

cond_1 = state_0 < MAX_COUNT - 1

next_state_0 = state_0 + 1

next_state_1 = T(0)

next_state_2 = cond_1.ite(

next_state_0 , next_state_1

)

self_reg_2 = next_state_2

self_reg_f_1 = self_reg_2

r_val_1 = state_0

self_reg_f_2 = self_reg_0

r_val_2 = self_reg_0

self_reg_f = cond_0.ite(

self_reg_f_0 ,

cond_2.ite(self_reg_f_1 , self_reg_f_2)

)

self.reg = self_reg_f

r_val_f = cond_0.ite(

r_val_0 ,

cond_2.ite(r_val_1 , r_val_2)

)

return r_val_f

Example 3.5: A counter in PEak normal form as generated by the compiler. The names have been simpli!ed and additional
line breaks have been inserted to increase readability.

uses the hwtypes $oating point type in a Python context, and constructs an uninterpreted function in an SMT
context.

3.4 Verification and Testing of PEak Circuits

Veri!cation is a complex task, and thorough veri!cation of a hardware design often takes more time and resources
than are required to design it in the !rst place. One of the goals of PEak is to simplify functional testing and
democratize formal veri!cation by making the experience nearly equivalent to writing functional tests. Functional
testing is made easier by raising the level of abstraction compared to Verilog testbenches and by providing several
useful helper functions to easily generate test vectors. Writing a functional testbench in PEak is as straightforward
as instantiating a PEak class, calling the PEak object with some instruction and inputs, and checking that the
outputs are correct. These features make PEak testbenches much simpler and easier to write than a conventional
Verilog testbench. Formal veri!cation is also much easier thanks to the formal interpretation feature of PEak. A

ACM Trans. Embedd. Comput. Syst.
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class AluOp(Enum):

ADD = 1

MUL = 0

class RegCtrl(Enum):

ACC = 1

BYPASS = 0

class Inst(Product ):

op = AluOp

ctrl = RegCtrl

...

@family.compile(locals(), globals ())

class ALU(Peak):

def __call__(self ,

op: AluOp , in_0: T, in_1: T) -> T:

if op == AluOp.Add:

return in_0 + in_1

else:

return in_0 * in_1

@family.compile(locals(), globals ())

class RegALU(Peak):

def __init__(self):

self.alu = ALU()

self.reg_0 = Register ()

self.reg_1 = Register ()

def __call__(self ,

instr: Inst , in_0: T, in_1: T) -> T:

out = self.alu(

instr.op , self.reg_0 , self.reg_1

)

if instr.ctrl == RegCtrl.ACC:

self.reg_0 = out

else:

self.reg_0 = in_0

self.reg_1 = in_1

return out

Example 3.6: De!ning an ISA as an ADT.

ACM Trans. Embedd. Comput. Syst.
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py_alu = gen.Py()

# iterate over all possible instructions

for alu_op in (AluOp.ADD , AluOp.MUL):

for reg_mode in RegCtrl.field_dict.values ():

# set initial state to random

py_alu.reg_0 = random_bv (8)

py_alu.reg_1 = random_bv (8)

# use random input variables

i0 = random_bv (8)

i1 = random_bv (8)

instr = Inst(alu_op , reg_mode)

out = py_alu(instr , i0 , i1)

post_condition = py_alu.reg_1 == i1

assert post_condition

Example 3.7: Random testing of a PEak circuit.

functional testbench can be converted into a formal veri!cation check simply by using the formal interpretation
and using SMT Bit and BitVector types.
As an example of both functional and formal veri!cation, we check whether the code in Example 3.6 always

writes its second input to reg_1, !rst using random testing then using formal veri!cation. In Example 3.7, a
Python instance of the ALU is instantiated. Next, all possible instructions are exhaustively generated by iterating
over all values of AluOp and RegCtrl.7 Then, the registers are set to random initial states, and random inputs are
passed to the ALU. Finally, we assert the postcondition that reg_1 contains the value of i1.
In Example 3.8 we show the formal veri!cation of this property which is similar to the random test. First,

free SMT variables for the initial state, inputs, and instruction are constructed. Then, we set the initial state and
execute the circuit. Finally, we use CVC4 [7] via pySMT to formally verify that reg_1 contains the value of i1 by
asserting the negation of the property.
The design of PEak makes it extremely natural to specify and verify hardware. The choice to embed PEak in

Python means that hardware designers familiar with Python can start writing PEak almost immediately. The
choice to use implicit wiring and clocking means that the designer no longer needs to worry about low-level
details and raises the level of abstraction to an appropriate level for the types of applications targeted by PEak.
Enabling an object-oriented view of hardware design makes reuse of common sub-components and smaller circuit
building blocks simple. The strong support for ADT types lends itself very well to the speci!cations of instructions
for hardware-like processors, simplifying the speci!cation and thereby reducing the risk of introducing bugs.
The access to the AST enables designers to extend PEak with powerful transformations, which enable higher
design productivity. Finally, the multiple interpretations of each PEak speci!cation not only make designing and
verifying circuits easier, but also enable powerful techniques like rewrite rule synthesis, which we discuss in
Section 4.2.

7The inner-loop uses the field_dict attribute of the RegCtrl type which returns a dict (mapping type) of names to enum members
allowing programmatic generation of such tests.
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initial_reg_0 = SMTBitVector [8]()

initial_reg_1 = SMTBitVector [8]()

i0 = SMTBitVector [8]()

i1 = SMTBitVector [8]()

instr = make_symbolic(Inst)

smt_alu = gen.SMT()

# set the initial state to be symbolic

smt_alu.reg_0 = initial_reg_0

smt_alu.reg_1 = initial_reg_1

# symoblically execute the circuit

out = smt_alu(instr , i0 , i1)

post_condition = to_pysmt(smt_alu.reg_1 == i1)

# pysmt code

with Solver(!cvc4!) as s:

s.add_assertion(Not(post_condition ))

if s.solve ():

print(!Counter example found!)

else:

print(!Verified!)

Example 3.8: Veri!cation of a PEak circuit using the CVC4 backend of pySMT.

4 Evaluation

PEak has been used in the design of three generations of CGRA-based programmable hardware accelerators:
Garnet [4], Amber [18], and Onyx [28]. Amber and Onyx were fabricated in 16 nm and 12 nm commercial CMOS
technologies respectively, and were veri!ed in silicon.
CGRAs are a class of programmable accelerators composed of an array of tiles: processing element (PE)

tiles, memory (MEM) tiles, and input/output (IO) tiles. PE tiles perform the arithmetic computation in the
application, MEM tiles bu#er data, and IO tiles send data to and from the array. These tiles communicate through
a recon!gurable interconnect. PEak was used to specify the PE tiles for all three generations of CGRAs.
A CGRA PE operates at the word level and contains arithmetic operations found in a variety of applications.

A typical PE contains an ALU with a variety of operations like add, multiply, shift, etc. It includes registers for
integer operands, bit registers for bitwise operands, and a lookup table (LUT) for bitwise operations.
In each generation of CGRA, we extended the previous PEak PE to include more complex operations. For

example, in the Garnet PE, the instruction set included only individual simple operations such asmultiplication and
addition. In the Amber PE, we wanted to include complex $oating point operations like division, exponentiation,
multiplication, natural log, and sine. The hardware for these operations was large and expensive, so we split
each operation into smaller parts (e.g., get mantissa, subtract exponents, $oat to int, etc.). Then, we implemented
these smaller operations within every PE, with the idea that when these expensive operations were required,
we could use several PEs to implement one complex operation. This kept area overhead low while extending
the capability of the CGRA. PEak made experimenting and implementing these complex operations easy, as the
functional model written in Python could be used directly for the implementation.
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In the Onyx chip, we extended the PEak PE instruction set to include larger operations such as multiply-add,
min-max, and multiply-shift. These operations made accelerating applications in the image processing and
machine learning domains much more e"cient and performant. Implementing and experimenting with these
operations in PEak was simple, and leveraging the formal model of each PE made veri!cation easy and fast.

As an indication that PEak is easy to use and to learn, the PEs for Garnet, Amber, and Onyx were developed by
13 students, 8 of whom did not participate in the development of PEak. For students who were familiar with
Python, the operation of PEak PEs were understood within minutes, and improvements could be made and
designs could be tested within hours. The design productivity that PEak enabled was instrumental in the fast
development of each of these accelerators.
PEak’s unique capabilities have also enabled a number of research projects. Here, we present a summary of

results from two of these projects. First, we discuss the CGRA specialization framework APEX [33], which uses
PEak to generate high-performance RTL. Second, we describe our work on compiler rewrite rule synthesis [13],
which uses PEak’s formal model to synthesize instruction selection rewrite rules e"ciently. Finally, we compare
a simple ALU speci!ed in PEak, PyRTL, and Chisel to highlight the advantages of PEak.

4.1 APEX

APEX aims to automatically specialize a CGRA’s processing element (PE) architecture to an application or a class
of applications. First, it uses frequent subgraph mining and analysis techniques to !nd common computational
patterns in applications of interest. After !nding frequent subgraphs, APEX merges these graphs into a new graph.
This new graph acts as a speci!cation of a specialized PE architecture capable of accelerating the applications.

APEX considers three axes while specializing PEs: number and type of operations within the PE, intraconnect
within each PE, and number of inputs and outputs to and from the PE. Each has a direct e#ect on the complexity
and capability of the PE and resulting CGRA.
After performing this analysis, APEX automatically converts the graph speci!cation of each PE into a PEak

program. At this point, APEX automatically inserts pipeline registers into the design to ensure high performance.
The meta-programming utilities in PEak, including loop unrolling and if-statement inlining, make this conversion
possible.

Figure 2 shows the results of evaluating APEX on four image-processing applications: camera pipeline, harris
corner detection, unsharp, and gaussian blur. For each application, we compare an APEX-specialized PE (CGRA-IP)
to results obtained using an FPGA, an unspecialized CGRA, and an ASIC. We compare both the energy consumed
and the application runtime. The specialized CGRA-IP consumes 18% to 47% less energy than a generic CGRA
with no specialization, while providing comparable performance.

The metaprogramming capability of PEak and the ability to easily generate parameterized designs that
explored the design space were crucial enablers for this project. The APEX application analysis framework
consumes application data$ow graphs and produces a data$ow graph representation of the PE specialized to
those applications. Translating this data$ow graph, which can contain a variety of di#erent operations, can have
any number of inputs/outputs, and can include various means of interconnection between the subcomponents,
into a hardware description is not straightforward.

For example, the parameter space of inputs and outputs in a PE is beyond the expressive capabilities of Verilog,
which cannot parameterize the number of ports on a module. In Verilog, a new speci!cation generator would need
to be created for every PE that requires a unique number of inputs and outputs. In PEak, such parameterization is
trivial, as the input ADT of each PE can be constructed with one line of Python code.
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Fig. 2. Energy and runtime comparison between an FPGA, an unspecialized CGRA, an APEX-specialized CGRA, and an ASIC.
Figure courtesy of Melchert et al. [33].

4.2 Rewrite Rule Synthesis

A working application compiler for each generated PE is required to perform realistic benchmarking of PEs
during design space exploration. In this context, design space exploration means the systematic exploration and
evaluation of many PE designs in order to optimize an objective such as power, performance, or area. During
the instruction selection phase of code generation, rewrite rules are used to map computations described in an
intermediate representation (IR) to concrete inputs, outputs, and instructions on the PE. Each distinct PE requires
its own set of rewrite rules. Creating these rules manually is both labor-intensive and error-prone. Furthermore,
manual construction would make automatic design space exploration impossible. In a recent work [13], we show
how these rewrite rules can be e"ciently and automatically synthesized, given a formal SMT model of the IR and
the target PE. In that work, we conveniently use PEak to describe both, making it easy to extract the SMT models.
As an example, consider the rewrite rule for a 16-bit subtraction targeting the ALU described in Example 4.1.

The rule speci!es that the invert_0, invert_1, and op !elds of Inst should be set to InverterCtrl.ident,
InverterCtrl.invert, and AluOp.ADD respectively. Instead of manually creating this rule, it can be synthesized
by solving the following SMT query: ∃ inst . ∀!," . bvsub(16, !,") = ALU (inst, !,"), where bvsub is the SMT
operator for bitvector subtraction and ALU is the result of executing the PEak program with the SMT family
interpretation (note that this is a simpli!ed form of the query and does not take into account several complications
discussed in [13] such as operand ordering, arity mismatches, and state). We show the construction of this query
in Example 4.2.

Another challenge is handling instructions that use compile-time constants such as immediate !elds (e.g., add
immediate). Using the above formula, we would need a distinct query for each possible compile-time constant.
Instead, we can modify the query by !nding an instruction that works for every value of the constant, i.e.,
∃ inst . ∀!,", # . bvadd(16, !, #) = ALU (inst (#), !,"). To solve this query, we want to treat some !elds of the
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class AluOp(Enum):

ADD = 0

AND = 1

OR = 2

class InverterCtrl(Enum):

ident = 0

invert = 1

class Inst(Product ):

invert_0 = InverterCtrl

invert_1 = InverterCtrl

op = AluOp

@family_closure

def gen(family ):

BV = family.BitVector

T = BV[8]

Bit = family.Bit

@family.compile(locals(), globals ())

class ALU(Peak):

def __call__(self ,

inst: Inst , in_0: T, in_1: T) -> T:

if inst.invert_0 == InverterCtrl.invert:

in_0 = ~in_0

if inst.invert_1 == InverterCtrl.invert:

in_1 = ~in_1

cin = Bit (1)

else:

cin = Bit (0)

if inst.op == AluOp.ADD:

res , cout = add_with_carry(

in_0 , in_1 , cin

)

return res

elif inst.op == AluOp.AND:

return in_0 & in_1

else:

return in_0 | in_1

return ALU

Example 4.1: An ALU supporting 6 operations: Add, Subtract, And, Or, Nand, Nor.
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i0 = SMTBitVector [8]()

i1 = SMTBitVector [8]()

instr = make_symbolic(Inst)

smt_alu = gen.SMT()

# symbolically execute the circuit

out = smt_alu(instr , i0 , i1)

# construct the synthesis query (pysmt code)

spec = to_pysmt(out == i0 - i1)

universal_vars = [to_pysmt(i0), to_pysmt(i1)]

query = ForAll(universal_vars , spec)

with Solver(!cvc4!) as s:

s.add_assertion(query)

if s.solve ():

val = s.get_py_value(to_pysmt(instr))

print(!Rule found using instruction:!)

print(disassemble(val))

else:

print(!No Rule!)

Example 4.2: Rewrite rule synthesis query using PEak and pySMT.

Fig. 3. Rewrite rule synthesis times for various IR instructions.

instruction as universally quanti!ed and others as existentially quanti!ed. PEak’s ability to represent instructions
as ADTs makes this possible.
Figure 3 shows the results of synthesizing rewrite rules for a set of IR instructions. The maximum time is 1.1

seconds. Synthesizing all of the rules takes less than 30 seconds, fast enough to be used in the loop during design
space exploration, and a signi!cant improvement over manual implementation of rules. This approach scales well
to larger, more complex processors as well. We implemented a RISC-V processor with the RV32IM instruction set.
It took 3 minutes to solve for all of the 37 rewrite rules for this architecture.
PEak’s formal interpretation was also critical to the success of this project. If this project were implemented

using another HDL, one without a formal interpretation, a separate formal representation of each design would
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have to be created. Automatically generating the formal representation not only saves a signi!cant amount of
time and e#ort, but it also ensures that the formal representation matches the behavior of the hardware and
functional model.

4.3 Comparison with PyRTL and Chisel

In this subsection, we show an example of a simple PE speci!ed in three di#erent languages: PEak, PyRTL [12],
and Chisel [3]. The goal is to illustrate how hardware speci!ed in PEak di#ers from these other languages, and
how a hardware designer familiar with Python would !nd writing a PEak speci!cation most natural.
PyRTL is a Python-embedded hardware design language intended to provide a more Pythonic method of

specifying hardware. Rather than a high-level synthesis approach, in which a design is inferred from a high-level
language, PyRTL instead provides a set of primitives in Python for constructing the hardware. Chisel is a popular
Scala-based hardware description language which focuses on object-orientation, functional programming, and
type safety.
In Example 4.3, we show the speci!cation and functional veri!cation code for a simple ALU written in PEak.

This ALU takes as input an instruction speci!ed as an ADT. The instruction encodes information about how many
inputs the ALU is using and whether the ALU is performing an addition or multiplication.
Example 4.4 shows a PyRTL speci!cation of the same ALU. While both the PyRTL and PEak languages are

embedded in Python, the PEak code uses fewer non-native Python APIs, and its structure is much more similar to
a native Python program. For example, inputs in PEak are speci!ed as inputs to the __call__method of the ALU
class, while the inputs in the PyRTL speci!cation are declared using pyrtl.Input. Additionally, the PEak ALU can
be instantiated and called like a normal Python class, while the PyRTL ALU must be simulated using PyRTL APIs.

Example 4.5 shows a Chisel speci!cation of the same ALU. As Chisel is embedded in Scala instead of Python,
the syntax used in this speci!cation is very di#erent. A typical hardware designer is more likely to know Python
than Scala, and therefore would have an easier time writing and understanding PEak than Chisel. PEak is less
verbose than Chisel and thus results in shorter, more concise code.

For this example, PEak has clear advantages over the other two languages. The PEak speci!cation and
veri!cation is more concise, and the support for ADT types simpli!es both the process of passing the instruction
to submodules and the logic for decoding the instruction. Furthermore, the focus on maintaining a Python-like
approach to constructing hardware makes PEak very natural for hardware designers familiar with Python to
learn and understand.

5 Related Work

The design of PEak draws inspiration from the classic work of Bell and Newell [8], which similarly separated the
logical description of an ISA from its semantics and bit-level representations. However, this idea seems to have
been largely lost over time and, to our knowledge, is not used in any modern system. PEak generalizes this idea
from ISAs to arbitrary ADTs.
There are many HDLs designed for general-purpose hardware construction, the most popular being Ver-

ilog. However, Verilog has extremely limited meta-programming capabilities, weak type systems, and poorly
de!ned semantics. More modern languages with strong type systems like Magma [40] and Chisel [3] ease
meta-programming by being embedded in Python and Scala, respectively. These languages de!ne hardware as a
graph of modules which is explicitly wired together. In contrast, PEak uses an implicit wiring model to avoid
combinational loops. This is a deliberate design decision to keep designs readable and to ensure deterministic
behavior.8 PEak also provides access to a formal model, a feature not available in other HDLs.

8This means that certain design patterns that use combinational loops, $ip-$ops constructed from NAND gates for example, are not expressible
in PEak.
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from peak import Peak, family_closure, Const, family

from hwtypes.adt import Product, Enum

import random

family = family.PyFamily()

T = family.BitVector[8]

class AluOp(Enum):

ADD = 0

MUL = 1

class NumInputsOp(Enum):

TWO = 0

THREE = 1

class Inst(Product):

alu_op = AluOp

num_inputs = NumInputsOp

@family.compile(locals(), globals())

class AddMul(Peak):

def __call__(self, alu_op: AluOp, a: T, b: T) -> T:

if alu_op == AluOp.ADD:

return a + b

else:

return a * b

@family.compile(locals(), globals())

class ALU(Peak):

def __init__(self):

self.addmul = AddMul()

def __call__(self, inst: Inst, a: T, b: T, c: T) -> T:

if inst.num_inputs == NumInputsOp.TWO:

c_temp = 0

else:

c_temp = c

return self.addmul(inst.alu_op, a, b) + c_temp

py_alu = ALU()

for alu_op in (AluOp.ADD, AluOp.MUL):

for num_inputs in (NumInputsOp.TWO, NumInputsOp.THREE):

inst = Inst(alu_op=alu_op, num_inputs=num_inputs)

a = random.randint(0, 10)

b = random.randint(0, 10)

c = random.randint(0, 10)

out = py_alu(inst, a, b, c)

if num_inputs == NumInputsOp.TWO:

assert out == (a+b) if alu_op == AluOp.ADD else out == (a*b)

else:

assert out == (a+b+c) if alu_op == AluOp.ADD else out == (a*b+c)

Example 4.3: Left: PEak speci!cation of a simple ALU. Right: PEak functional veri!cation code for the simple ALU.

PEak is also inspired by Lava [9], a Haskell-based DSL which supports multiple interpretations similar to
PEak. Lava programs, like Magma and Chisel programs, describe hardware structurally. C$aSH [2] is another
Haskell-based DSL which is less structural than Lava. It allows the use of case statements and pattern matching,
enabling the construction of complex control structures which are di"cult to build structurally. However, it
does not have direct support for formal analysis like PEak and Lava. Both of these languages have limited type
systems. In particular, they lack the ADT capability supported by PEak. Finally, while Haskell is appealing to DSL
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import random

import pyrtl

import enum

class AluOp(enum.IntEnum):

ADD = 0

MUL = 1

class NumInputsOp(enum.IntEnum):

TWO = 0

THREE = 1

def AddMul(a, b, op):

alu_out = pyrtl.WireVector(bitwidth=8, name="alu_out")

with pyrtl.conditional_assignment:

with op == AluOp.ADD:

alu_out |= a + b

with op == AluOp.MUL:

alu_out |= a * b

return alu_out

def ALU(alu_op, num_inputs, a, b, c):

c_temp = pyrtl.WireVector(bitwidth=8, name="c_temp")

with pyrtl.conditional_assignment:

with num_inputs == NumInputsOp.TWO:

c_temp |= 0

with num_inputs == NumInputsOp.THREE:

c_temp |= c

out = AddMul(a, b, alu_op) + c_temp

return out

a = pyrtl.Input(8, "a")

b = pyrtl.Input(8, "b")

c = pyrtl.Input(8, "c")

alu_op = pyrtl.Input(1, "alu_op")

num_inputs = pyrtl.Input(1, "num_inputs")

out = pyrtl.Output(8, "out")

out <<= ALU(alu_op, num_inputs, a, b, c)

sim_trace = pyrtl.SimulationTrace()

sim = pyrtl.Simulation(tracer=sim_trace)

cycle = 0

for alu_op in (AluOp.ADD, AluOp.MUL):

for num_inputs in (NumInputsOp.TWO, NumInputsOp.THREE):

a = random.randint(0, 10)

b = random.randint(0, 10)

c = random.randint(0, 10)

sim.step({

"a": a,

"b": b,

"c": c,

"alu_op": alu_op,

"num_inputs": num_inputs

})

out = sim_trace.trace["out"][cycle]

if num_inputs == 0:

assert out == (a+b) if alu_op == 0 else out == (a*b)

else:

assert out == (a+b+c) if alu_op == 0 else out == (a*b+c)

cycle += 1

Example 4.4: Left: PyRTL speci!cation of a simple ALU. Right: PyRTL functional veri!cation of the simple ALU.

designers, as it enables elegant meta-programming through the use of type class polymorphism and higher order
functions, practice has shown that getting working engineers to adopt a Haskell-based DSL is challenging.

For example, Bluespec SystemVerilog (BSV) [34], a term rewriting system (TRS) that describes circuits as a set
of guarded atomic actions (rules), originally had a Haskell-like syntax. However, to appeal to a wider audience,
it has since adopted an imperative syntax that is closer to behavioral Verilog. BSV rules describe a circuit’s
behavior as state updates and outputs predicated on current states and inputs. Abstractly, these rules are atomic
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import chisel3._

class AddMul extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val alu_op = Input(UInt(1.W))

val out = Output(UInt(8.W))

})

when (io.alu_op === 0.U) {

io.out := io.a + io.b

} .otherwise {

io.out := io.a * io.b

}

}

class ALU extends Module {

val io = IO(new Bundle {

val a = Input(UInt(8.W))

val b = Input(UInt(8.W))

val c = Input(UInt(8.W))

val alu_op = Input(UInt(1.W))

val num_inputs = Input(UInt(1.W))

val out = Output(UInt(8.W))

})

val alu = Module(new AddMul)

alu.io.alu_op := io.alu_op

alu.io.a := io.a

alu.io.b := io.b

val c_temp = Wire(UInt(8.W))

when (io.num_inputs === 0.U) {

c_temp := 0.U

} .otherwise {

c_temp := io.c

}

io.out := alu.io.out + c_temp

}

import chisel3.iotesters.{PeekPokeTester, Driver, ChiselFlatSpec}

class ALUTests(alu: ALU) extends PeekPokeTester(alu) {

for (alu_op <- 0 until 2) {

for (num_inputs <- 0 until 2) {

val a = rnd.nextInt(10)

val b = rnd.nextInt(10)

val c = rnd.nextInt(10)

var output = 0

if (alu_op == 0) {

output = (a+b)

} else {

output = (a*b)

}

if (num_inputs == 1) {

output += c

}

poke(alu.io.a, a)

poke(alu.io.b, b)

poke(alu.io.c, c)

poke(alu.io.alu_op, alu_op)

poke(alu.io.num_inputs, num_inputs)

step(1)

expect(alu.io.out, output)

}

}

}

class ALUTester extends ChiselFlatSpec {

behavior of !ALU!

backends foreach {backend =>

it should s!perform correct math operation on dynamic operand in $backend! in {

Driver(() => new ALU, backend)((alu) => new ALUTests(alu)) should be (true)

}

}

}

Example 4.5: Left: Chisel speci!cation of a simple ALU. Right: Chisel functional veri!cation of the simple ALU.

and are applied sequentially, one rule at a time. However, in practice this would lead to extremely ine"cient
hardware. Therefore, the BSV compiler attempts to schedule these rules concurrently when possible. When
multiple rules can update the same state element they must be scheduled sequentially. The choice of schedule
can have signi!cant impact on the quality of the resulting hardware. Kôika [10] is a BSV derivative which aims
to eliminate this by giving engineers direct control over the schedule.
A related line of work is high-level synthesis [14] (HLS) which allows designers to describe the behavior of

circuits using a high-level programming language such as C, C++, SystemC, or Matlab. HLS programs describe
the algorithmic behavior of a circuit, eschewing low-level details like pipelining and resource allocation. An
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HLS compiler then determines some minimal set of resources which are capable of performing the described
algorithm and an associated schedule of computation, i.e. where and when each operation in the source program
takes place. While HLS is a popular design paradigm and can provide signi!cant engineering e"ciency gains, it
often produces low-performance RTL [1].
Contemporary work on ISA speci!cation falls into two main categories: ad hoc speci!cation of existing

ISAs [21, 36] and frameworks which are more analogous to PEak for specifying ISAs such as SAIL [23], ILA [25],
and ISA-Formal [37]. These systems use declarative descriptions of the semantics of instructions as state updates
predicated on the bit-level representation of an instruction. These are powerful tools, but they cannot be used to
generate RTL. While this disconnect makes sense when verifying new RTL against an existing ISA speci!cation,
it is tedious when the ISA itself being developed, as for each new candidate ISA, both its RTL and its speci!cation
must be written separately. In contrast, PEak uses a procedural model in which bit-level encodings are decoupled
from the behavioral speci!cation. Further, PEak can be used both for speci!cation and RTL-generation.

6 Conclusion

PEak is built on top of hwtypes and ast_tools. hwtypes provides a Pythonic interface to functional simulation,
formal SMT models, and RTL generation via Magma. ast_tools provides infrastructure for Python AST analysis
and transformations and enables the reinterpretation of Python control $ow. PEak provides designers with
the means to specify a single source of truth for hardware design, which has proven to be a useful paradigm
for enabling novel automated design methodologies which incorporate formal methods. The design decisions
made when creating PEak, including the focus on an object-oriented view of the hardware, raising of the level
of abstraction through an implicit clocking and wiring model, multiple interpretations including a functional,
hardware, and formal model, strong support for ADT types, and access to the AST, have all been instrumental in
making PEak an excellent language for hardware design. PEak is easy to learn and has features that simplify both
design productivity and veri!cation. PEak has enabled us to develop three generations of CGRA architectures, a
PE specialization framework, and a rewrite rule synthesis technique. We hope that PEak, along with hwtypes

and ast_tools, will also encourage future work in this domain.
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