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Abstract—The rapid expansion of distributed energy resources
is heightening uncertainty and variability in distribution system
operations, potentially leading to power quality challenges such
as voltage magnitude violations and excessive voltage unbalance.
Ensuring the dependable and secure operation of distribution
grids requires system real-time assessment. However, constraints
in sensing, measurement, and communication capabilities within
distribution grids result in limited awareness of the system’s
state. To achieve better real-time estimates of distribution system
security, we propose a real-time security assessment based on
data from smart meters, which are already prevalent in most
distribution grids. Assuming that it is possible to obtain a limited
number of voltage magnitude measurements in real time, we
design an iterative algorithm to adaptively identify a subset
of smart meters whose real-time measurements allow us to
certify that all voltage magnitudes remain within bounds. This
algorithm iterates between (i) solving optimization problems to
determine the worst possible voltage magnitudes, given a limited
set of voltage magnitude measurements, and (ii) leveraging the
solutions and sensitivity information from these problems to
update the measurement set. Numerical tests on the IEEE 123
bus distribution feeder demonstrate that the proposed algorithm
consistently identifies and tracks the nodes with the highest and
lowest voltage magnitude, even as the load changes over time.

Index Terms—Real-time assessment, smart meter, communi-
cation bandwidth, measurement adjustment, distribution grids

I. INTRODUCTION

The stochastic fluctuations in power injections from dis-
tributed energy resources (DERs), alongside load variability,
can induce constraint violations within distribution systems
[1]. These violations may culminate in equipment malfunction,
failure of electrical components, and, in extreme circum-
stances, power outages. Ensuring the dependable and secure
operation of distribution grids requires system real-time situa-
tional awareness, as this enables distribution system operators
(DSOs) to implement appropriate measures to uphold the
network’s security, reliability, and efficiency without violating
operating constraints [2]. Consequently, there is a pressing
need for the development and implementation of more efficient
monitoring tools and strategies to ensure the secure opera-
tion of distribution networks. Unfortunately, distribution grids
typically have very limited sensing, measurement, and com-
munication capabilities, resulting in limited awareness for the
system operator concerning the system state [3]. Consequently,
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methods that enable real-time security assessment of the power
distribution grid with limited information about the system
state, has become a focal point of interest for distribution grid
operators.

A. Literature Review

A fundamental requirement for monitoring distribution grids
is the sufficiency and uninterrupted availability of measure-
ment data. Considering the practical scarcity of such data in
distribution networks, state estimation (SE) arises as a cost-
effective alternative to overcome the lack of measurement data
[4]. The efficacy of these strategies significantly relies on
the volume and accuracy of information, particularly opera-
tional data [5]. The introduction of digital relays, microphasor
measurement units (uPMUs), Intelligent Electronic Devices
(IEDs), automated feeder switches, voltage regulators, and
smart inverters has provided an opportunity to enhance system
observability [2]. However, in practice, only a few real-time
measurement devices, such as PMUs, have been installed
to monitor medium and low-voltage feeders [2], resulting
in limited real-time measurements, primarily of current and
voltage magnitudes. To address the challenge of limited real-
time sensors, prior approaches to distribution system state
estimation (DSSE) have incorporated load forecasts as pseudo-
measurements [6], [7]. However, it has been demonstrated in
[3] that the utilization of forecasted or pseudo-measurements
in real-time can compromise estimation performance. Further-
more, due to the increased penetration of renewable energy
resources, highly variable loads in the power grid, and the in-
tegration of electric vehicles (EVs) into the grid, conventional
DSSE methods encounter challenges in effectively managing
heightened uncertainty and monitoring dynamic changes and
topology configurations [8], [9]. Additionally, conventional
DSSE approaches, relying on parameters and models of dis-
tribution networks, are complex, time-consuming, and highly
sensitive to initial conditions [10]. Addressing these challenges
has prompted the emergence of intelligent, data-driven, and
model-free state estimation algorithms, leveraging artificial
intelligence (AI) and machine learning (ML) techniques [3],
[11], [12]. These advancements aim to reduce computation
time and enhance result accuracy [13].

The primary objective of DSSE methods is to attain full
observability of the system state. However, managing signif-
icant volumes of data poses a considerable challenge. More-
over, conventional wisdom dictates the necessity of deploying
PMUs across the distribution network to obtain accurate state
estimates. However, the implementation of these devices is



associated with considerable costs and may require extensive
installations to deliver meaningful returns on investment [6].
In contrast, smart meters possess the capability to sense
customers’ phases, voltage, current, active and reactive pow-
ers, and power factors at frequent intervals. Moreover, smart
meters are already widely deployed across most distribution
networks, thereby eliminating the need for additional overhead
in terms of installation and maintenance. Prior work has
suggested that such data could be used as near-real-time
measurements for inferring system state [14]. However, at
present, limited communication bandwidth poses a challenge
in acquiring real-time measurements from all smart meters.
Consequently, only a selected subset of smart meter readings
can be transmitted to the utility in real-time [2].

In order to alleviate the computational burden in DSSE
and account for bandwidth considerations associated with
smart meter data, our work, in contrast to DSSE, refrains
from ensuring full observability of the distribution system.
Instead, our focus is on enhancing distribution system real-
time assessment by identifying the minimum and maximum
voltage magnitudes in the feeder, which allows us to achieve
the more limited goal of certifying secure operations. Secure
operation refers to the situation where we can certify that
there are no violations of the voltage constraints, despite
significant uncertainty regarding the exact power consumption
of most loads [15]. Specifically, we consider the scenario with
specified ranges of load variability (i.e. unknown, but bounded
real and reactive power consumption) and a limited subset of
nodes where voltages are measured and reported in real-time
by smart meters, and seek to verify whether there are any
voltage violations in the feeder.

Since the choice of the nodes with real-time measurements
impact what we know about the system, a specific set of mea-
surement nodes may be unable to certify secure operations,
while an alternative subset of measurements could potentially
ascertain the absence of voltage violations. Consequently, a
key contribution of our work is to devise an appropriate
algorithm for selecting the measurement subset.

We note that [15] investigates the certification of secure
operation using an optimization-based method given limited
measurement and control capabilities, but does not propose a
systematic method for locating the measurement data. In [16],
the sensor placement problem is addressed by formulating
a bilevel optimization problem, aiming to identify optimal
locations for installing sensors capable of capturing all po-
tential violations of voltage magnitude limits across different
operating conditions. In contrast with [16], which chooses
sensor locations and then keeps these locations constant, our
work seeks to adaptively update the measurement locations
(i.e., which smart meter we obtain data from) in real-time
based on the current system conditions.

B. Contributions

In our work, we propose an approach to obtain real-time
assessment of distribution grid security through adaptive smart
meter measurements. We assume that we can access a subset

of voltage magnitude measurements in real-time (with the
number of measurements limited by bandwidth constraints in
the smart meter communications infrastructure), that we can
adaptively choose which measurements to obtain, and that the
power consumption at each node is unknown, but bounded.
Given these assumptions, we propose an algorithm that iterates
between (i) solving optimization problems to certify whether
our current measurement set includes the nodes with the
highest and lowest voltage magnitudes in the feeder, and
(ii) adapting the measurement set given information obtained
from the optimization problem. In each iteration, the algorithm
provides bounds on the voltage magnitude ranges in the feeder
which can be used to assess distribution grid security.

The contributions are summarized as follows:

1) We formulate optimization problems to bound the volt-
age magnitudes in the network by adapting the maximiza-
tion/minimization framework proposed in [15] to a setting with
a limited set of voltage magnitude measurements. The goal
of this step is to determine the extreme achievable voltage
magnitudes at each node within the distribution system, given
the current set of measurements.

2) Using the solutions and sensitivities obtained from the
optimization problems, we propose an algorithm to adjust the
measurement set to improve (i.e. narrow) our estimates of the
extreme achievable voltage magnitudes.

3) The effectiveness of the proposed algorithm is validated
through numerical demonstrations in the provided case study.
The results demonstrate that the algorithm can effectively
identify the nodes in the system where the highest/lowest
voltages occur and certify that there is indeed no other nodes
with worse voltage magnitudes.

The remainder of this paper is organized as follows. Sec-
tion II describes the formulation of the secure operation
certification problem and provides the approach to update
the measurement set to enhance the real-time assessment. In
Section III, numerical simulations are conducted to analyze
the effectiveness of the proposed method, and conclusions are
drawn in Section IV.

II. PROBLEM DESCRIPTION

In this section, we first adapt the optimization model pro-
posed in [15] to a setting with limited voltage measurements.
Then we propose an algorithm to adjust the measurement set
to enhance the real-time assessment.

A. Optimization Problem for Extreme Achievable Voltages

In distribution grids, the power consumption varies due to
variability in generation from DERs and load patterns. Here,
we assume that the exact generation or load is unknown, but
bounded to lie within a range of net active and reactive power
injections p € [p, P|. ¢ € [g, @|. Here p,q represent
vectors of real and reactive power injections, while p, p, q,
and g are vectors of their respective upper and lower bounds.

Due to the bandwidth limitations in the smart meter commu-
nications infrastructure, the number of nodes where we have
access to the real-time voltage magnitude is limited. We use



the set V to represent the subset of nodes from which we
obtain voltage magnitude data in real-time. The number of
such nodes |V| is limited due to the bandwidth, but we can
choose which nodes is contained in V.

Our objective is to determine whether there exist a load
realization p, q in the specified ranges that causes voltage vi-
olations at any nodes, given the measured voltage magnitudes
at nodes in V. In contrast to DSSE, which estimates the voltage
magnitude for each node, our (more limited) objective is to
determine the extreme achievable voltage magnitudes. Once
we have bounds on the extreme achievable voltages, we can
compare these values with the upper and lower engineering
limits to ascertain whether there is a potential violation of
voltage constraints’.

The secure operation certification problem is formulated
as the following optimization problem, aiming to find the
extreme achievable voltage magnitude at all nodes subject
to constraints representing the operation of a three-phase
distribution system:
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The objective function (la) minimizes or maximizes the
square of voltage magnitude achievable at a particular node
n € N, where u¢ and @’ are the minimum and maximum
achievable squared voltage magnitude at phase ¢ at node n,
u? is the square of voltage magnitude at phase ¢ at node n, N’
is the set of all the nodes in the distribution system, and p, g
and w are the vectors of three-phase active power injection,
reactive power injection and square of voltage magnitude.

Constraints (1b) and (1c) model the range of variability in
the net power injections, where pi and q;f are the active power
injection, reactive power injection at phase ¢ at all nodes
except for the reference node.

Constraint (1d) enforces that the square of voltage mag-
nitudes equals the measured value if the smart meter at the
respective node is selected to report its data in real-time.
Here, V denotes the subset of nodes where smart meters are

'We note that while our focus is primarily on voltage magnitude constraints,
which are typically of greatest concern in distribution grid operations [17],
a similar methodology could be applied to investigate other factors such as
current flow or voltage unbalance.

chosen to provide real-time measured voltage magnitude to
the operator.

Constraints (le) to (1h) represent three-phase power flow
constraints. The power flow with a radial structure can be
described using the branch power flow model. We adopt a
linear distribution power flow (LinDistFlow) model [18] to
construct a linear optimization model. Here, uff,ot and uif
represent the squared root node voltage magnitudes and the

squared reference voltage magnitudes at phase ¢, while p”
and ql ; are the branch active power flow and reactive power
flow on line ij at phase ¢, respectively. Ny (j) is the set of
nodes connected by the lateral branching out from node j.

B. Criteria for Success

Based on the problem above, we define two criteria for
success of our problem.

1) Successful Certification for Secure Operations: Our first
criteria for success is whether we can verify the absence of
voltage violations given the range of load variability (1b) and
(1c) and the set of measurement nodes V. We use w™", 4™
to represent the lower and upper voltage engineering limits
corresponding to secure operating ranges that adhere to power
quality and safety requirements. We propose the following
criterion to certify the secure operation,

Criterion 1: udJ min u and u¢ < u¢ M Oie N (2)

If the minimum and maximum achievable voltage magni-
tudes (gf and ﬂf) obtained from (P1) fall within the specified
engineering limits w™", u™* for all nodes, the power flow
solutions associated with all potential power injections within
the specified ranges (1b) and (1c) will adhere to the engineer-
ing limits on voltage magnitudes, provided we have real-time
measured voltage magnitude data of the subset nodes V. In this
case, we can guarantee that the system is operating securely.

2) Successful Identification of Highest and Lowest Voltages:
Our second criteria for success is whether we can verify
that the measurement set ) contains the nodes with the
highest and lowest voltage magnitudes in the feeder. We
consider the problems (P1) with the most extreme achievable
voltage magnitudes i.e. the node with the lowest achievable

voltage u?, which we will refer to as u®'oves, and the node
with the largest achievable voltage magnitude ui , which we
will refer to as u®'@ We also identify the highest and
lowest measured voltage magnitudes u™®" 7™ among
our measured nodes V. We then calculate the differences
Au, Au between the highest (and lowest) achievable voltage
magnitudes, as identified by the optimization problems, and
the highest (and lowest) measured voltage magnitudes,

Au = gmeasure _ u¢ lowest (3)
Au = —¢,largest gmeasure 4
uU="1 u 4)

If the difference Au, Au is equal or less than a predefined
small enough value €, we can certify that we have found
the nodes in the network with the highest and lowest voltage
magnitudes (within the tolerance €). We also know that it is



not possible to identify a measurement set ) that would lead
to tighter bounds on the minimum and maximum achievable
voltage magnitudes u®'°%est g®laeest a5 those bounds are
already equal to actual measured voltages.

C. Algorithm for Adapting the Measurement Set

The extreme achievable voltages gf and ﬂf’ depend on the
considered range of load variability (1b) and (lc) and the
subset of nodes }V where we can access real-time voltage
magnitudes. While we consider the range of load variability
to be an input to our problem, we can choose the set of nodes
V which provides the narrowest range of extreme achievable
voltages. Specifically, we aim to choose )V in a way that
maximizes the lowest achievable voltages @? and minimizes
the largest extreme achievable voltage Hf’ to let gf’ Hf’ become
as close as possible to the actual highest and lowest voltage in
the system, and ideally make them equal (as outlined in our
second criterion for success above).

The challenge in updating the measurement set arises from
the fact that we do not know the new voltage measurement
until we have measured it. Assuming that our sampling pro-
cedure allows us to update the measurement set V' and obtain
a new measurement before the load changes significantly (e.g.
within a few seconds or a minute), we propose to update V
for the next time step based on the solutions and sensitivity
information obtained from our previous solution of (P1).

Our goal is to change our measurement set by“move in” (i.e.
adding a measurement to) the node that has the most impact
on the values of the lowest and largest extreme achievable
voltages (u®1oVest, 7#1areesty of the problem (P1) and “remove”
(i.e. stop taking a measurement from) the node with the least
impact. Since the dual variable of a constraint represents the
impact of this constraint to the objective function, we use the
dual variable )\? of the constraint (1d) to analyze the impact
of the measured nodes on the values of extreme achievable
voltages (u{ and 7).

1) Metrics to assess the value of a measured node:

We define two metrics to help us assess the value (i.e. the
information provided by) different nodes in our measurement
set. For each measured node, we define:
Metric I: We consider the problem (P1) with has the lowest
gf and largest ﬂ? (i.e. the problems that provide u?°** and
ulaeesty We take the absolute value of the dual variable of
constraint (1d) )\f for each measured node ¢ € V as our Metric
L.

N={plIvievoetaba},  ©
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where subscript k refers to the problem (P1) for the node with
the lowest achievable voltage and ¢ refers to the problem (P1)
for the note with the highest achievable voltage.

Metric II: We consider the average impact of the measured
nodes on the extreme achievable voltage magnitude across
all problems (P1). However, since most nodes only provide
information regarding other, nearby nodes (e.g. nodes on the
same branch of the feeder), we introduce a special way of

computing the average that only considers nodes for which
the impact (as measured by the value of the dual variable
associated with constraint (1d)) exceeds a given threshold
Athreshold “Thig ensures that we not only choose nodes that are
located in the longest feeder branch. We calculate the mean
of the absolute value of the dual variable of these scenarios
and use it as Metric II as follows,

AT = {mean\xjjk| [IAZ ] > A" i € Y VE € N, ¢ € {a, b, c}}
(7

2) Avoiding recursive loops: One important challenge of
our approach is to prevent recursive loops, where nodes are
switched in a cyclic manner (e.g., switching from node A to
node B in iteration 1 and then reverting from node B to node
A in iteration 2, and so forth). To address this, we implement
a loop check after we choose a new measurement set V. We
define the existence of a loop if the new measurement set is the
same as one of the past M measurement sets }, where M is a
predefined value. If a loop is identified, we select another new
measurement set V' to avoid the loop, which will be illustrated
in details in the following algorithm.

3) Iterative Algorithm to Adjust the Measurement Set:
At each time step, we use the following algorithm to adjust
the measurement set. Assuming that we exchange one node
at a time, the goal is to find a new subset V to achieve a
larger u®!°%*t or a lower u?!*€ to narrow the the extreme
achievable range for a better real-time assessment.

Step 1: In the first step, we solve the secure operation cer-
tification problem (P1) for all the nodes and phases. Check
if Criterion 1 is satisfied; if yes, we can guarantee that the
system is operating securely.

Step 2: In second step, we check if we need to update the
measurement set by checking if Au < e, Au < e. If these
conditions are satisfied, we have already identified the nodes
with the highest lowest voltage, and it is not possible to further
improve the set of measurements to achieve a tighter range.
In this case, we keep the measurement set the same and move
back to Step 1 once we receive new measurements. Moreover,
if Criterion 1 is not satisfied at this time, we can confirm that
the system is operating insecurely.

If the differences Au, Au are larger than ¢, it may be
possible to achieve a better bounds on u®!1oVest and 7®'areest
by updating the measurement set. In this case, we continue to
step 3.

Step 3 (Identify “Move in” node): Because we want to know
if the node with the lowest or largest extreme achievable
voltage value u®'o%est 79:1a72est reqlly has such a low or large
voltage value, we select this node to be added to the new
measurement set ) to obtain an exact real-time measurement
on this node.

Step 4 (Identify “Remove” node): To identify the node we

want to remove, we use Metric T (A, XI) and Metric 1T (A1)
to choose the node that should be removed. Assuming that
number of measurements per phase is fixed, we remove a node
from the same phase where we want to add a node (i.e. the
phase with the lowest or largest extreme achievable voltage
value u®lovest glareesty Therefore, we compare Metric I and
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Fig. 1. Flow chart of the proposed algorithm.

II for nodes in that phase. We follow a hierarchical approach
to decide which node to remove.

(i) First, we consider the measured nodes that have the least
impact on lowest u®°¥t or 7 by Jooking at Metric L.
We compare A' and XI of each measured node and remove the
node with the smallest value from V.

(i) If multiple nodes have the same smallest value for

Metric I, we remove the node that has the least average impact.
Specifically, we choose the node with the smallest value for
Metric II A" among the nodes that have the the same smallest
Metric I, and remove this node from V.
Step 5 (Loop check): Next, we do a loop check. If the loop
exists, according to the criterion defined above, we exclude
the previously identified node as a possible “Remove” node
and go back to Step 4. In this case, we turn to remove the
node with the next smallest Metric value.

If no loop exists, we have identified a new measurement set
V and return to Step 1 once we obtain the new measurements.

The steps of the algorithm are summarized in the flowchart
in Fig. 1.

III. NUMERICAL TEST
A. Simulation Setup

The proposed approach is tested on a modified unbalanced
three-phase 123-bus distribution system [19]. We simulate the
load change by multiplying the given load consumption with
a factor generated based on the real load data of the oak-park
substation located in a suburb Portland, OR. The information
of branch parameters and load profiles is available online [20].
Considering the the bandwidth limitations in the smart meter
communications infrastructure, we assume for each phase,
the number of measurements K is fixed and we can switch
one measurement in one phase at one time step. The power
flow calculated with the LinDistFlow method is used as the
measured value for the measured nodes. We check the loop in
past 20 time steps (M = 20). The predefined value ¢ is set to
be le~* and the threshold A\"rshold jg set to be 0.3. We test
the approach with different initial measurement sets, different
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Fig. 2. Value of load factor on scenario 1.

fixed measurement numbers K, and different load profiles. All
simulations were implemented using MATLAB on a personal
laptop with an Apple M1 Pro processor and 32 GB of RAM.

B. Test Result

First, we test the approach in scenario 1 with the initial mea-
surement set on nodes {22, 23, 24, 26,27, 28, 29, 30, 31, 32} at
each phase with the fixed measurement number K = 10. The
real-time assessment process started at 00 : 00 AM of one
day and the time step to update the measurement set is 1 min.
Because in scenario 1 there are no distributed generations, we
focus the lower bound of the voltage magnitude. Due to the
space limitation, we only illustrate the result of the first 30
time steps in Table I. The corresponding factor that multiplies
with the given load is illustrated in Fig. 2.

In Table I, status O represents the difference Awu between
the lowest achievable voltage value u®'°"®' and the lowest
measured voltage value u™*"® is larger than the predefined
value €, which indicates the need to update the measurement.
Status 1 represents the node with the lowest achievable voltage
value u®1°¥est is the same as the node with the lowest measured
voltage value u™*"*, Status 2 represents the difference Au
is equal or less than the value € but the node with the
lowest achievable voltage value u®'°"* is not the same as
the node with the lowest measured voltage value u™*""®. In
status 1 and 2, we don’t need to update the measurement set.
The last two columns illustrate the difference of the square
of voltage magnitude, where Au represents the difference
between the lowest achievable voltage value u®'°"®' and
the lowest measured voltage value u™*"e, Ayt represents
the difference between the lowest achievable voltage value
u®'ovest and the system’s lowest voltage value wreablowest,

We can observe that on status 1 and 2, when the lowest
achievable voltage u®'°¥*' is the same as the lowest measure-
ment voltage value u™"® within the tolerance ¢ (Au < ¢
), the lowest achievable voltage u®'°"* is also always the
same as the system’s real lowest voltage u™aoVest within
the tolerance ¢ (Au™ < & ). This is because the lowest
achievable voltage u®'°"* is always less than all the system
real operating voltage, and if the lowest achievable voltage
u®lowest reaches the lowest measured voltage value, which
is an actual voltage value, (status 1 or 2), it reaches the
lowest real voltage value. Therefore, under status 1 and 2,



TABLE I
RESULT OF SCENARIO 1

Lowest Measured Voltage

Lowest Achievable Voltage

Lowest Voltage Voltage Difference

Time Status | Node ¢ u Node ¢ u Node ¢ u Au Ay
0 0 30,31 a 0.9140 115 a 0.7413 115 a 0.8605 1.73e-1 1.19e-1
1 0 115 a 0.8601 86 c 0.8044 115 a 08601 | 557e-2 5.57e-2
2 0 115 a 0.8604 97 b 0.8135 115 a 08604 | 4.69¢-2  4.69¢-2
3 0 115 a 0.8610 95 a 0.8290 115 a 08610 | 3.20e-2  3.20e-2
4 0 115 a 0.8604 67 c 0.8420 115 a 08604 | 1.84e-2  1.84e-2
5 0 115 a 0.8601 72 a 0.8480 115 a 0.8601 1.21e-2 1.21e-2
6 0 115 a 0.8612 83 a 0.8578 115 a 08612 | 341e-3 3.4le-3
7 0 115 a 0.8621 112 a 0.8595 115 a 08621 | 2.62¢-3  2.62¢-3
8 0 115 a 0.8626 72 a 0.8524 115 a 0.8626 1.02e-2 1.02e-2
9 0 112 a 0.8662 115 a 0.8556 115 a 08634 | 1.06e-2  7.85e-3
10 2 115 a 0.8634 114 a 0.8634 115 a 0.8634 0 0
11 2 115 a 0.8631 114 a 0.8631 115 a 0.8631 0 0
12 0 115 a 0.8639 105 c 0.8626 115 a 0.8639 | 1.32¢-3 1.32e-3
13 2 115 a 0.8639 114 a 0.8639 115 a 0.8639 0 0
14 1 115 a 0.8650 115 a 0.8650 115 a 0.8650 0 0
15 1 115 a 0.8650 115 a 0.8650 115 a 0.8650 0 0
16 1 115 a 0.8655 115 a 0.8655 115 a 0.8655 0 0
17 1 115 a 0.8646 115 a 0.8646 115 a 0.8646 0 0
18 2 115 a 0.8646 114 a 0.8646 115 a 0.8646 0 0
19 1 115 a 0.8651 115 a 0.8651 115 a 0.8651 0 0

20 1 115 a 0.8653 115 a 0.8653 115 a 0.8653 0 0
21 2 115 a 0.8659 114 a 0.8659 115 a 0.8659 0 0
22 2 115 a 0.8663 114 a 0.8663 115 a 0.8663 0 0
23 2 115 a 0.8659 114 a 0.8659 115 a 0.8659 0 0
24 1 115 a 0.8659 115 a 0.8659 115 a 0.8659 0 0
25 1 115 a 0.8653 115 a 0.8653 115 a 0.8653 0 0
26 2 115 a 0.8660 114 a 0.8660 115 a 0.8660 0 0
27 2 115 a 0.8661 114 a 0.8661 115 a 0.8661 0 0
28 2 115 a 0.8665 114 a 0.8665 115 a 0.8665 0 0
29 1 115 a 0.8661 115 a 0.8661 115 a 0.8661 0 0

the system’s highest and lowest voltage value and node where
it occurs are the same as those of the highest and lowest
measured voltage. In this case, we obtain a good system real-
time assessment.

It can be observed that with the initial measurement set, it
takes 11 time steps to find a good measurement set where the
lowest achievable voltage u®'°**! is almost the same as the
lowest real voltage value u"a1o%est (status 2 at time 10), which
indicates a good system real-time assessment. The value of the
lowest achievable voltage u®'°**' shows an overall upward
trend during time O to time 10. After that, since the load does
not change significantly, we don’t update the measurement set
except at time 12. We observe after we get the good system
real-time assessment at time 9, for most following time steps,
we can always get a good system real-time assessment (status
1 or 2). Moreover, we observe that although at time 12 we
don’t have a good system real-time assessment, we can find a
new good measurement set in just one iteration. It is because
the initial measurement set at time 12 is better than that at
time 0.

To further illustrates the measurement update process, we
use Table II to show the update process from time 12 to
time 14. Due to space limitation, we only show the infor-
mation of the phase where the lowest achievable voltage
value u®'°%est gccurs. It can be observed that at time 12, we
solve the problem (P1) with the measurement set of phase
¢ on nodes {22,8,24,26,27,67,29,30,31,32}, the lowest

achievable voltage value u®'°"*' occurs on node 105 on
phase c. The voltage difference Aw is larger than the value
€. Therefore, we move node 105 on phase c into the new
measurement set V. Next, we compare Metric I on phase ¢
and find the smallest value of Metric I is 0 and occurs on
nodes {29, 30, 31}. Therefore, we compare Metric II of nodes
{29, 30,31} and find node 29 has the smallest Metric II value.
So we remove node 29 on phase ¢ and check that there no
loop exists. The updated new measurement set V is nodes
{22,8,24,26,27,67,29,30,31,32} on phase c. At time 13
and time 14, we take Step I and Step 2 and find the voltage
difference Au is 0, which is less than the value . Therefore,
we don’t update the measurement set. The difference between
the scenarios at time 13 and time 14 is that at time 14, the
node with lowest achievable voltage value u®'°"*" (node 115)
is already in the measurement set (status 1).

Next, we analyze the impact of the size of measurement
set, the initial measurement set and the load variation. Table
I illustrate the status of different scenarios. The settings
of scenario 2, 3 and 4 are the same as scenario 1 except
for the initial measurement set, where the initial measure-
ment sets are nodes {7,12,31,40,52,72,84,97,105,115},
{22,23,24,26,27,28,29}, {19,20,21,22,23,24,26,27,28,
29, 30,31, 32, 33,34} on each phase for scenario 2, 3 and 4,
respectively. The difference between scenario 5 and scenario
1 is that scenario 5 has more significant load fluctuations. The
corresponding factor that multiplies with the given load of



TABLE II
MEASUREMENT UPDATE PROCESS

Time 12 Phase ¢ Time 13 Phase a Time 14 Phase a

Start Set Mertic 1 Metric I New Set | Start Set MerticI  Metric L New Set | Start Set Mertic I  Metric I New Set
22 0.07740 3.02490 22 22 1.48e-16  5.18140 22 22 0 5.18044 22
86 0.78066 0.81971 86 72 2.66e-17  0.49237 72 72 0 0.49237 72
24 0.04222 2.98695 24 24 2.35e-16  7.13266 24 24 0 7.13392 24
26 0.00304 6.19873 26 95 8.33e-17  0.96107 95 95 0 0.96107 95
27 0.00468 1.04175 27 112 0 0.63394 112 112 0 0.63394 112
67 0.16017 0.56466 67 28 2.78e-17 1.28261 28 28 0 1.28280 28
29 0 0 105 29 6.61e-17 3.09891 29 29 0 3.09936 29
30 0 4.95827 30 83 0 0.87210 83 83 0 0.87210 83
31 0 3.23078 31 31 1.39¢-17 1 31 31 0 1 31
32 0.00164242  2.33333 32 115 1 0.48570 115 115 1 0.48570 115

Node of Phase of &, lowest Node of  Phase of &, lowest Node of  Phase of & lowest

uslowest u®slowest u uslowest u®-lowest u" uslowest u®slowest u
105 c 0.86256 114 a 0.86394 115 a 0.86498

Value of Load Factor

Time Step

Fig. 3. Value of load factor on scenario 5.

scenario 5 is illustrated in Fig. 3. It can be observed that with
the same number of the measurement, scenario 2 finds the
good system real-time assessment (status 1 or 2) more quickly
with 3 time steps. It is because its initial measurement set is
distributed more evenly so it can get more information of the
system to build a better optimization problem (P1). Comparing
scenario 1 with scenario 3 and 4, which have 10, 7 and 15
measurements on each phase respectively, we observe that as
the number of measurements increases, we can reach status
1 or 2 more quickly. In scenario 5, we observe that although
we reach status 1 and find a good system real-time assessment
at time 9, at time 11 to 14 and time 23 to 24 we need to
update the measurement set and cannot get a good system
real-time assessment. This is because in scenario 5, there
are significant changes in the load, and the measurement set
obtained from the current time step may not be able to improve
the lowest achievable voltage value u®'°"*s! at the next time
step. Nevertheless, we observe that during time steps 11 to 14
and time steps 23 to 24, it uses fewer time steps to reach status
1 or 2. This is because at these times, the initial measurement
set is better, helping us formulate a better problem (P1).

IV. CONCLUSION

In this paper, we propose a real-time assessment approach
of distribution power security through adaptive smart meter
measurements. Considering the bandwidth limitations in the
smart meter communications infrastructure, we formulate an

optimization problem to determine the extreme achievable
voltage magnitude across all nodes for a setting with limited
measurements. We identify criteria under which we can cer-
tify that the system is operating securely, or where we can
identify that we have found the nodes with the highest and/or
lowest voltage magnitudes in the system. Further, we propose
an algorithm to adjust the set of smart meters we obtain
measurements from based on solutions from our optimization
problems. This algorithm is designed to help narrow the range
of extreme achievable voltages, and ideally identify the true
range of voltages in the system. Numerical analyses were
tested using the modified three-phase unbalanced IEEE 123-
bus distribution system. The results illustrate that the proposed
algorithm can find better bounds on the extreme achievable
voltage magnitude and enhance the real-time assessment,
even when load fluctuations are present. The algorithm also
successfully identifies the node with the most extreme voltage
and obtain voltage magnitudes at this node. Moreover, test
results illustrate with more measurements and better initial
measurement set, it takes fewer time steps to achieve a good
real-time assessment. If the load fluctuation is significant,
it needs to update the measurement set more frequently to
improve the real-time assessment. In future work, we want
to investigate how to determine an optimal number of the
measurement and how to due with large load fluctuations.
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