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Abstract
Let f be an analytic polynomial of degree at most K − 1. A classical inequality
of Bernstein compares the supremum norm of f over the unit circle to its supre-
mum norm over the sampling set of the K-th roots of unity. Many extensions of this
inequality exist, often understood under the umbrella of Marcinkiewicz–Zygmund-
type inequalities for Lp,1 ≤ p ≤ ∞ norms. We study dimension-free extensions of
these discretization inequalities in the high-dimension regime, where existing results
construct sampling sets with cardinality growing with the total degree of the poly-
nomial. In this work we show that dimension-free discretizations are possible with
sampling sets whose cardinality is independent of deg(f ) and is instead governed
by the maximum individual degree of f ; i.e., the largest degree of f when viewed
as a univariate polynomial in any coordinate. For example, we find that for n-variate
analytic polynomials f of degree at most d and individual degree at most K − 1,
‖f ‖L∞(Dn) ≤ C(X)d‖f ‖L∞(Xn) for any fixed X in the unit disc D with |X| = K . The
dependence on d in the constant is tight for such small sampling sets, which arise
naturally for example when studying polynomials of bounded degree coming from
functions on products of cyclic groups. As an application we obtain a proof of the
cyclic group Bohnenblust–Hille inequality with an explicit constant O(logK)2d .

Mathematics Subject Classification 41A17 · 41A63 · 42B05 · 32A08

1 Introduction and motivation

Discretization inequalities control the Lp , 1 ≤ p ≤ ∞ norm of functions f by their
Lp norm over some finite sampling set. In this work we present discretization in-
equalities in a parameter regime motivated by harmonic analysis on high-dimensional
discrete spaces. We sketch these motivations now; self-contained statements of our
main results are in Sect. 1.1.

Exemplary among applications of harmonic analysis to discrete spaces is har-
monic analysis on the hypercube {−1,1}n, which has led both to new proofs (and
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sharpenings) of classical results [6, 12], as well as to many discoveries in combina-
torics and theoretical computer science—seminal examples of which are [25, 26, 32];
see [42] for more. A guiding application for us is the recent introduction of the
Bohnenblust–Hille (BH) inequality to statistical learning theory.

The classical BH inequality [13] states that for an n-variate degree-d analytic poly-
nomial f on the polytorus Tn = {z ∈ C : |z| = 1}n,

‖ˆf ‖ 2d
d+1

≤ C(d)‖f ‖Tn , (1.1)

for a constant C(d) that, crucially, is independent of dimension n. Here and through-
out the norm ‖ · ‖X for a space X denotes the supremum norm, and ˆf denotes the
sequence of coefficients of f . Equation (1.1) has a long history: it generalizes Lit-
tlewood’s celebrated 4/3 inequality [38] and derives from Bohnenblust and Hille’s
resolution [13] of the Bohr’s strip problem [14] on the convergence of Dirichlet se-
ries

∑

n ann
−s . Since then, the BH inequality has become an important tool in har-

monic analysis and functional analysis, for example to study Sidon constants and the
asymptotic behavior of Bohr radii [5, 21]. We remark that in these applications it is
important to have good control of the BH constants. See the recent monograph [22]
for more discussion and applications to infinite dimensional holomorphy, probability
theory, and analytic number theory.

In view of these developments, it is natural to ask for generalizations of the BH
inequality to other groups, such as the discrete hypercube. The hypercube BH in-
equality, which was first proved in [11] and sharpened in [23], gives the analogous
estimate for any f : {±1}n → R of degree at most d :

‖ˆf ‖ 2d
d+1

�d ‖f ‖{±1}n . (1.2)

Here and in what follows, A �d B means A ≤ C(d)B for a constant C(d) > 0 de-
pending only on d . The sharp dependence on degree d of the constants in (1.1) and
(1.2) are longstanding open problems; see [20, 22, 23] for more.

Surprisingly, Eskenazis and Ivanisvili [24] recently applied the hypercube BH in-
equality to obtain exponential improvements in a central task in statistical learning
theory called low-degree learning: find (with high probability) an L2 approxima-
tion to an unknown degree-d polynomial f : {±1}n → [−1,1] using only the data
{(

x(j), f (x(j))
)}

j
for x(j)’s drawn independently and uniformly from {−1,1}n.

Low-degree learning was introduced in the seminal work of Linial, Mansour, and
Nisan [37] who gave an algorithm using O(nd logn) samples

(

x(j), f (x(j))
)

. The
best dependence on dimension n for this task remained n�(d) until Eskenazis and
Ivanisvili [24] obtained the dramatic reduction to O(logn ·Cpoly(d)) (one should think
d � n). They applied the hypercube BH inequality to obtain strong Fourier concen-
tration results for bounded low-degree functions, leading to an efficient thresholding
approach for estimating f via its Fourier coefficients ˆf . Extensions of this idea to
quantum learning theory, with corresponding noncommutative (or qubit) variants of
the BH inequality (1.2), swiftly followed [29, 48].

To expand the reach of these applications, it is necessary to extend harmonic anal-
ysis results from the hypercube to other discrete spaces. A primary generalization is
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the discrete n-torus,

�n
K := {e2π ik/K : k = 0,1, . . . ,K − 1}n ,

which arises naturally as the “hypergrid” in property testing [10, 19], is a key setting
for studying the hardness of approximation (e.g., the Plurality is Stablest Conjecture
of [35], see also [41]), and is crucial for understanding operators on K-level qudits
in the quantum (or noncommutative) setting [46]. Already there is a wealth of appli-
cations of harmonic analysis to �n

K in combinatorics [1, 39], number theory [3], and
graph theory [2], for example.

All functions f : �n
K → C can be extended to analytic polynomials with indi-

vidual degree (the maximum degree in any variable) at most K − 1 using Fourier
expansion. In the spirit of generalizing the hypercube BH inequality (1.2) and learn-
ing theory applications to �n

K , we shall pursue Fourier-type estimates for functions
f : �n

K → C whose corresponding polynomials also have total degree bounded by d .
Note that our applications stipulate the parameter regime K < d � n.

Attempts to prove inequalities that are standard on the hypercube (K = 2) meet
significant challenges on the discrete n-torus for larger K . For example, if one tries
to prove the BH inequality on �n

K (even for K = 3) by repeating the argument that
worked for both the polytorus and the hypercube, one quickly encounters trouble, as
detailed in [45, Appendix A].

We now sketch a difficulty appearing already for a simpler estimate: bounding
spectral projections of low-degree polynomials. Concretely, given a polynomial f :
�n

K → C of total degree at most d and individual degree at most K − 1, we seek to
control its degree-ℓ homogeneous part fℓ as follows:

‖fℓ‖�n
K

≤ C(d,K)‖f ‖�n
K

. (1.3)

This sort of estimate is a typical dimension-free inequality in harmonic analysis.
When the domain is the polytorus (K = ∞) this comparison is a trivial Cauchy
estimate and bears constant 1. For the hypercube (K = 2), this estimate, usually
attributed to Figiel [40, §14.6], comes fairly easily as well: given f : �n

2 → R,
deg(f ) ≤ d , and with x∗ ∈ �n

2 a maximizer of |fℓ|, one considers the polynomial
Q(t) := f (tx∗

1 , . . . , tx∗
n) for t ∈ [−1,1] (f is extended to [−1,1]n as a multiaffine

function). A Markov–Bernstein-type estimate gives

‖fℓ‖�n
2
= |Q(ℓ)(0)|

ℓ! ≤ C(d, ℓ)‖Q‖[−1,1] ≤ C(d, ℓ)‖f ‖[−1,1]n ,

with optimal constant C(d, ℓ) ≤ (1 + √
2)d [23, Lemma 1.3 (4)]. The final step is

to recognize that ‖f ‖[−1,1]n = ‖f ‖{−1,1}n because the extension of f to [−1,1]n is
affine in each coordinate.

However, as soon as K = 3 it is quite unclear how to proceed. For example, one
could analogize the argument from above, constructing a polynomial Q(t) with t now
in the disk D, to obtain via a Cauchy estimate for holomorphic functions

‖fℓ‖�n
K

= |Q(ℓ)(0)|
ℓ! ≤ ‖Q‖D = ‖Q‖T .
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Unfortunately, there is no simple way to relate ‖Q‖T to ‖f ‖�n
3
. Of course ‖Q‖T ≤

‖f ‖Tn , but then it seems we would need a dimension-free comparison of the form

‖f ‖Tn �d,K ‖f ‖�n
K

. (1.4)

Naive attempts to prove (1.4) lead to constants with exponential dependence on
dimension n. And that is for good reason, as the inequality (1.4) would be quite
strong. Not only would it give the spectral projection bound (1.3), but it would also
immediately imply the Bohnenblust–Hille inequality for �n

K via:

‖ˆf ‖ 2d
d+1

(1.1)
�d ‖f ‖Tn

(1.4)
�d,K ‖f ‖�n

K
. (1.5)

A proof of the inequality (1.4) and its generalizations are the subject of this work.

1.1 Main results: discretizations of L∞ norms by small sets and a new
interpolation formula

Our main result is a generalization of (1.4) where �K is relaxed to any set of points
of cardinality K with uniform spacing in the complex unit disk.

Theorem 1 Let n ≥ 1 and K ≥ 2. Consider Yn =∏n
j=1 Zj for sets Z1,Z2, . . . ,Zn ⊂

D such that for all 1 ≤ j ≤ n we have |Zj | = K , and denote by η the minimum
pairwise distance,

η = min
1≤j≤n

min
z �=z′∈Zj

|z − z′| > 0. (1.6)

Then for any analytic polynomial f : Dn → C of degree d and individual degree
K − 1,

‖f ‖Dn ≤ C(d,K)‖f ‖Yn . (1.7)

Here the constant C(d,K) := C(d,K,η) = C(K,η)d , and C(K,η) > 0 depends
only on K and η.

Moreover if all Zj = �K = {e2π ik/K : k = 0,1, . . . ,K − 1} then C(d,K) ≤
(

O(logK)
)2d , which proves (1.4).

The term individual degree here means the maximum degree of f viewed as a
univariate polynomial in variable zj , 1 ≤ j ≤ n. That is, we say f is of degree at
most d and individual degree at most K − 1 if it can be expressed as

f (z) =
∑

α∈{0,1,...,K−1}n:|α|≤d

ˆf (α)zα, ˆf (α) ∈ C. (1.8)

The monomial notation in (1.8) will be used throughout: for any multi-index α =
(α1, . . . , αn) ∈ Zn

≥0 and point z = (z1, . . . , zn) ∈ Cn we define

|α| :=
∑

1≤j≤n

αj , and zα := z
α1
1 · · · zαn

n .
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Note also that η is not completely independent of K ; there is an upper bound on what
η is possible because all points are constrained to be in D.

Remark 1 Theorem 1 holds in the real category as well: specialize the inequality to
polynomials with real coefficients and choose Yn ⊂ [−1,1]n to be a real sampling
set. See also Corollary 8.

In fact, Theorem 1 comes as an immediate consequence of a novel polynomial
interpolation formula.

Theorem 2 Let Yn and η be as in Theorem 1. Then for all z ∈ Dn, there exist coeffi-
cients {c(z)

ξ }ξ∈Yn
⊂ C such that for any degree-d polynomial f ,

f (z) =
∑

ξ∈Yn

c
(z)
ξ f (ξ) (1.9)

with
∑

ξ |c(z)
ξ | ≤ C(d,K) for a constant C(d,K) := C(d,K,η) = C(K,η)d inde-

pendent of dimension n. When Yn = �n
K , the explicit bound C(d,K) ≤ (O(logK)

)2d

holds.

In the statement of Theorem 2 we avoid giving explicit forms of the c
(z)
ξ ’s as they

are complicated (see (3.22)) and a significant portion of the proof is devoted to their
development. For now we remark they are naturally expressed in a probabilistic lan-
guage, a perspective in approximation theory that has been around since Bernstein’s
probabilistic proof of the Weierstrass approximation theorem [7] (n.b. that Bernstein’s
proof gives an approximation to continuous, univariate f through a probabilistic ar-
gument, whereas we find an exact interpolation formula for multivariate polynomial
functions with coefficients having ℓ1-norm free of dimension).

1.2 Theorems 1 and 2 in the context of approximation theory

Let us situate our main results in the context of discretization inequalities in approx-
imation theory, beginning with dimension n = 1. Various corollaries and extensions
of Theorems 1 and 2, as well as discussions of the optimality of various parameters,
are deferred to Sect. 2.

For 1 < p < ∞, the so-called Marcinkiewicz–Zygmund inequality [51, Chapter X,
Theorem (7.5)] states that for all analytic polynomials f of degree at most K − 1,
one has

C−1
p · 1

K

∑

z∈�K

|f (z)|p ≤
∫

T
|f (z)|pdz ≤ Cp · 1

K

∑

z∈�K

|f (z)|p. (1.10)

Here Cp is a constant depending only on p (independent of K), and T = {z ∈ C :
|z| = 1} denotes the unit circle.

The inequality (1.10) is an example of a discretization of the Lp-norm, and integral
norm inequalities of this type are usually called Marcinkiewicz-type theorems. At the
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endpoint p = ∞ this type of inequality is often called a Bernstein-type theorem or a
discretization of the uniform norm (see [8, 9] and [51, Chapter X, Theorem (7.28)]).
In our notation, the p = ∞ endpoint of (1.10) reads

‖f ‖�K
≤ ‖f ‖T ≤ C(K)‖f ‖�K

. (1.11)

In this p = ∞ case (and unlike 1 < p < ∞) we emphasize the right-hand side in-
equality cannot have constant independent of K . See for example [43, Theorem 5].

We refer to surveys [18, 33] and references therein for more historical background
about norm discretizations. Bernstein-type discretization theorems also have some
overlap with discrete Remez-type inequalities; see [15, 16, 50] for more discussion.
(These are discretizations of the classical Remez inequality, which controls the supre-
mum norms of bounded-degree polynomials by their absolute suprema over subsets
of positive measure; see for example [44, 47] for more.)

Now let us return to the high-dimensional case, where Theorem 1 can be under-
stood as a Bernstein-type discretization inequality for bounded-degree multivariate
polynomials in many dimensions n. In this setting there are intricate tradeoffs be-
tween the cardinality (and structure) of the sampling set, the constant in the dis-
cretization inequality, and the function space to which the estimate applies. Recently
there has been very important progress on understanding the minimum cardinality of
sampling sets when one demands a universal constant (independent from any notion
of degree or dimension) in the inequality.

In [34], Kashin, Konyagin, and Temlyakov give a discretization of the uniform
norm that applies to any N -dimensional subspace of continuous functions on a com-
pact subset of Rn, achieving a universal constant 2 with a sampling set of cardinality
9N . Moreover, as the authors show, this is essentially the best possible sampling set
cardinality for a Bernstein-type discretization inequality at this level of generality.

On the other hand, much smaller sampling sets—again for L∞ norm discretiza-
tions with universal constants—can be had when one fixes the function space to be
polynomials of degree at most d . A significant recent work along these lines is [17].
Here Dai and Prymak resolved an important problem of Kroó [36] in real approxi-
mation theory by showing there are discretizations of the uniform norm for n-variate
polynomials of (total) degree at most d over any convex domain in Rn, with universal
constant 2 and a sampling set of cardinality Cnd

n in our notation.1 When degree d

is large in comparison to dimension n, this cardinality Cnd
n matches the dimension

of the set of such polynomials, and is therefore the best possible. (N.b. our primary
interest is in the opposite of their regime, d � n.)

Our motivating application to functions on �n
K—that is, to obtain a comparison

‖f ‖Tn �d,K ‖f ‖�n
K

for analytic polynomials f of individual degree at most K −1 and total degree at most
d—is in some ways more demanding, and in other ways much more relaxed, than the
works above. On the one hand, the sampling set �n

K is a fixed product set of small
cardinality. Existing Bernstein-type estimates do not seem to apply in the parameter

1N.b., in the notation of [17] it will be Cdnd where they used d for the dimension and n for the degree.
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regime K < d , which is the setting dictated by applications to harmonic analysis in
the high-dimensional realm of combinatorics, computer science, and learning theory.
On the other hand, we do not require an absolute constant; indeed, as we discuss
in Sect. 2, dependence of the constant on degree d is unavoidable under these con-
straints. We also remark that even smaller sampling sets are achievable in our setting,
though they are no longer product sets. This is explained in the next section.

2 Discussion: corollaries and aspects of optimality

We now remark on several aspects of optimality of Theorem 1 and summarize the
remaining results of this paper.

Sharp degree-dependence of the constant For simplicity we will argue with Yn =
�n

K . Consider the univariate inequality

‖f ‖T ≤ C(K)‖f ‖�K
(2.1)

for polynomials f with degree at most K − 1. A Lagrange interpolation argument
shows the best constant in (2.1) has C(K) > 1 for any K ≥ 3 [45, Appendix B].
Let g be any extremizer of this inequality and put f (z) =∏d/(K−1)

j=1 g(zj ), assuming
K − 1 divides d for simplicity. Then

‖f ‖Tn = (C(K)
)d/(K−1)‖f ‖Yn =: D(K)d‖f ‖Yn

which is exponential in d .
On the other hand, for this specific construction one may calculate that D(K) > 1

does not grow in K . It remains an interesting question to determine the optimal K-
dependence of the constant in (1.7).

Question 1 What is the optimal dependence on K in the constant in (1.7) of Theo-
rem 1?

On the cardinality of the sampling set Minimal cardinality of product sampling sets.
The cardinality of Yn in Theorem 1 is optimal in the following sense. If the sampling
sets are of the product form Yn =∏1≤j≤n Zj and one expects (1.7) to hold at least for
polynomials of individual degree at most K − 1, then each Zj must have cardinality
at least K and so Yn contains at least Kn points. If |Yn| were any smaller, there would
exist a j such that Zj has at most K − 1 points, and no such inequality can hold: the
polynomial fj (z) :=∏ξ∈Zj

(zj − ξ) is of degree at most K − 1 but ‖fj‖Yn = 0.

Contrapositively, if the sampling set has a product set structure Yn = ∏n
j=1 Zj

with |Zj | = K , then the individual degree constraint on f is of course necessary.
Improvements for non-product sets. On the other hand, if we remove the product

constraint on our sampling set, we can do better. Indeed, in Sect. 4 we show that we
may take a “small” part of

∏n
j=1 Zj and retain a dimension-free constant.
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Theorem 3 Let K ≥ 2. Consider {Zj ⊂ D}j≥1 a sequence of sets such that for all
j ≥ 1 we have |Zj | = K and

η := min
1≤j≤n

min
z �=z′∈Zj

|z − z′| > 0.

Then for any ε > 0 one can find a subset Yn of size at most C1(d, ε)(1 + ε)n con-
tained in

∏n
j=1 Zj such that for any analytic polynomial f : Dn → C of degree d

and individual degree K − 1,

‖f ‖Dn ≤ C2(d,K,η, ε)‖f ‖Yn, (2.2)

where

C1(d, ε) ≤
(

d

ε

)100d

.

Furthermore, if 0 < ε ≤ 1/2, then

C2(d,K,η, ε) ≤ exp
(

C3(d,K,η)
(

ε−1 log(ε−1)
)d
)

,

for some constant C3(d,K,η) depending on d,K and η.

Sharp dependence of sampling set cardinality on dimension n. On the other hand,
the cardinality of Yn cannot be sub-exponential in n. It suffices to prove this for d = 1;
the general d ≥ 1 case follows immediately by definitions and the case d = 1.

Theorem 4 Suppose that the uniform norm discretization (1.7) holds for sampling set
Vn ⊂ Dn with d = 1,K = 2; that is,

‖f ‖Dn ≤ C0‖f ‖Vn

holds for all multi-affine polynomials f of degree 1 with C0 > 1 being the best con-
stant, then |Vn| ≥ C1C

n
2 , where C1 > 0 is universal and C2 > 1 depends on C0.

See Sect. 5 for the proof of Theorem 4.

Uniform separation In Theorem 1, the constant C(K,η)d grows with η−1, where
η is the minimum pairwise distance between points in the Zj ’s. In fact, this is un-
avoidable; uniform separation (i.e., independence of η from n) is required to retain
the dimension-freeness of the inequality of Theorem 1. This is easy to see in one
dimension, nor can it be avoided in higher dimensions, as illustrated by the following
example.

Suppose Y1, Y2, . . . is a sequence of sets with Yn ⊂ Dn and c(n) is a sequence
of coordinates; that is, 1 ≤ c(n) ≤ n for all n. Let Pn = {zc(n) : z ∈ Yn} ⊂ D be the
projection of Yn onto the c(n)-th coordinate. Suppose |Pn| = K for all n and

lim
n→∞ min

z �=z′∈Pn

|z − z′| = 0 .
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For each Pn we may then choose a subset An ⊂ Pn with |An| = K − 1 and an ex-
cluded point ζ ∗

n such that Pn = An � ζ ∗
n and

min
ζ∈An

|ζ ∗
n − ζ | ≤ εn,

where limn→∞ εn = 0. Now consider the sequence of polynomials

fn(z) :=∏ζ∈An
(zc(n) − ζ ) .

Certainly ‖fn‖Dn is at least as large as any of its coefficients, so we have ‖fn‖Dn ≥ 1.
On the other hand, ‖fn‖Yn is very small: fn(z) = 0 for all z ∈ Yn except those z with
zc(n) = ζ ∗

n , and for these z we have

|fn(. . . , ζ
∗
n , . . .)| = ∣∣∏ζ∈An

(ζ ∗
n − ζ )

∣

∣≤ εn · 2K−2,

which tends to 0 as n → ∞. Therefore no dimension-free uniform norm discretiza-
tion (1.7) is available for such (Yn)n≥1.

Proof ideas of the main result Our approach is probabilistic and we sketch it here
with Yn = �n

K for simplicity. In one coordinate, polynomial interpolation admits a
probabilistic interpretation of the form

f (z) = D · E[R · f (W)], (2.3)

where D = D(K) > 1 is a constant and R and W are correlated random variables
taking values in �4 and �K respectively. Repeating (2.3) coordinatewise gives the
identity

f (z) = Dn E
[(

∏n
j=1 Rj

)

f
(

W1, . . . ,Wn

)

]

, (2.4)

which immediately implies a discretization inequality of the desired form, except
with exponential dependence on n. The idea is to notice that (2.4) is an expectation
over n-many independent pairs of variables (Rj ,Wj ), while f is of bounded total
degree d and thus is not very “aware” that

(

(R1,W1), . . . , (Rn,Wn)
)

is a product
distribution.

It turns out that by introducing certain correlations among the Wj ’s, we can reduce
the power on D at the expense of picking up an error term:

f (z) = Dd E
[(

∏d
j=1 Sj

)

f
(

˜W1, . . . , ˜Wn

)

]

+ errorf,z . (2.5)

Here the Sj ’s are i.i.d. over �4 and the ˜Wj ’s are still over �K , but now the joint dis-
tribution (˜W1, . . . , ˜Wn) has an intricate dependence structure. If we only had the first
term we would be done of course, and with the right d-dependence in the constant.
To remove the error term, we will take advantage of algebraic features of the error’s
relationship to the introduced correlations. Specifically, the correlation construction
actually defines a family of identities similar to (2.5) of the form

f (z) = Dm E
[(

∏m
j=1 S

(m)
j

)

f
(

˜W
(m)
1 , . . . , ˜W(m)

n

)

]

+ errorf,z

(

1
m

)

,
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for any integer m > 1, and where errorf,z is a fixed polynomial in 1/m of degree
at most d − 1 and with no constant term. These properties imply there is an affine
combination of these identities for m = d, d + 1, . . . ,2d − 1 that eliminates the error
term:

f (z) =
2d−1
∑

m=d

amf (z) =
2d−1
∑

m=d

amDm E
[(

∏m
j=1 S

(m)
j

)

f
(

˜W
(m)
1 , . . . , ˜W(m)

n

)

]

, (2.6)

and where the absolute sum of the am’s is suitably small. This directly gives Theo-
rem 1.

A new polynomial interpolation formula All the expectations in (2.6) are over finite
probability spaces, so we actually have proved a new interpolation formula of the
form

f (z) =
∑

ξ∈Yn

c
(z)
ξ f (ξ) , (2.7)

where
∑

ξ |c(z)
ξ | is bounded independent of dimension. This is Theorem 2.

Comparing (2.7) to classical multivariate polynomial interpolation formulas, we
obtain coefficients with dimension-free absolute sum at the expense of sampling more
points than strictly necessary. As a result the linear combination (2.7) is not unique,
and it is interesting to understand whether this flexibility can lead to sharpenings of
Theorem 1.

In the full proof, the identity (2.7) appears in detail as Equation (3.22). We hope
this interpolation formula can have future applications and offer as a first example
usage a short proof of a dimension-free discretization inequality for Lp norms, 1 ≤
p < ∞, as we describe next.

Dimension-free discretization for Lp norms Let Lp(Tn) and Lp(�n
K) denote the

Lp-space with respect to the uniform probability measures on Tn and �n
K , respec-

tively. When Yn = �n
K , one way to prove a dimension-free Lp discretization in-

equality for p < ∞ would be to use hypercontractivity over Tn [30] and over �n
K

[31, 49]. Hypercontractivity is a workhorse of high dimensional analysis [4, 28] and
implies dimension-free L2-Lp comparisons for bounded-degree polynomials when
1 ≤ p < ∞ (see [42, Chap. 9.5] and [21, 22, Chap. 8.4] for discussion). For example,
with 2 ≤ p < ∞, and f a degree-d function on �n

K , the argument is

‖f ‖Lp(Tn) �d,p ‖f ‖L2(Tn) = ‖f ‖L2(�n
K) ≤ ‖f ‖Lp(�n

K) ,

where hypercontractivity on the polytorus is applied in the first inequality. Note, how-
ever, that such a hypercontractivity argument does not work for p = ∞.

In Sect. 6 we show a proof that avoids hypercontractivity altogether by making use
of the interpolation formula (2.7) (or more concretely, Equation (3.22)). The main
result of Sect. 6 is the following.
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Theorem 5 Let d,n ≥ 1,K ≥ 2. Let 1 ≤ p ≤ ∞. Then for each polynomial f : Tn →
C of degree at most d and individual degree at most K − 1, the following holds:

‖f ‖Lp(Tn) ≤ C(d,K)‖f ‖Lp(�n
K)

with C(d,K) ≤ d(C1 log(K) + C2)
d with universal C1,C2 > 0.

We remark that the constant in the inequality of Theorem 5 is independent from
p but dependent on d , so has a different character from Marcinkiewicz–Zygmund
inequalities, where the constant depends on p but is typically required to be indepen-
dent from the total degree d for 1 < p < ∞.

Consequences It is worthwhile to mention that our results improve various known
work.

As outlined before (1.4), we may combine Theorem 1 with a standard Cauchy esti-
mate to obtain the so-called Figiel’s inequality for spectral projections of polynomials
on �n

K .

Corollary 6 Let f : �n
K → C be a degree-d polynomial with individual degree at most

K − 1. For 0 ≤ ℓ ≤ d let fℓ be the degree-ℓ homogeneous part of f . Then

‖fℓ‖�n
K

≤ (O(logK)
)2d‖f ‖�n

K
.

The chain of inequalities (1.5) shows that Theorem 1 relates the best constants
BH≤d

�K
, BH≤d

T in the BH inequality for cyclic groups and the polytorus by

BH≤d
�K

≤ (O(logK)
)2d · BH≤d

T .

In [5] the authors obtain the best-known bound for the BH inequality on the polytorus,
showing that BH≤d

T ≤ C
√

d logd . As a consequence the following BH inequality holds
for cyclic groups.

Corollary 7 Let f : �n
K → C be a degree-d polynomial with individual degree at most

K − 1. Then

⎛

⎝

∑

|α|≤d

∣

∣ ˆf (α)
∣

∣

2d
d+1

⎞

⎠

d+1
2d

≤ (O(logK)
)2d‖f ‖�n

K
, (2.8)

where C is a universal constant.

This improves upon the constant C(K)d
2

previously obtained in [45] and, as an
application, improves the sample complexity of various classical and quantum learn-
ing tasks.

Note that the best constant BH≤d
{±1} in the hypercube BH is also known to be at most

C
√

d logd [23]. This raises a natural question about the best constant for intermediate
K , 3 ≤ K < ∞.
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Question 2 What is the best constant for the cyclic-group Bohnenblust–Hille, BH≤d
�K

?

As a starting point, is BH≤d
�K

subexponential in d?

When specialized to real polynomials, our inequality is related to the discrete vari-
ants of Remez inequalities of [15, 50]. Theorem 1 shows that for certain grids, the
constant can be dimension-free (c.f., [50, Equation (2.5)]). We formulate here a real
variable version for convenience, in the case of the regular grid.

Corollary 8 Fix d,n ≥ 1. Let f : [−1,1]n → R be a real polynomial of degree at most
d and individual degree at most K − 1, that is,

f (x) =
∑

α∈{0,1,...,K−1}n: |α|≤d

aαxα, aα ∈ R.

Then we have

‖f ‖[−1,1]n ≤ C(d,K)‖f ‖Gn
K
, (2.9)

where GK is the grid of K points equi-distributed on [−1,1]. Here C(d,K) > 0 is a
constant depending on d and K only.

Proof Let us use Theorem 1 with f a real polynomial of degree at most d and indi-
vidual degree at most K − 1, and sampling set Gn

K ⊂ [−1,1]n. �

3 Discretizations from product sets

Here we prove Theorem 2 and obtain Theorem 1 as an immediate consequence.

3.1 Some preparations

We start with a lemma that records a standard estimate for inverses of Vandermonde
matrices.

Lemma 9 Suppose that d ≥ 1 and (x0, . . . , xd−1) ∈ Cd is a vector such that

max
0≤j≤d−1

|xj | ≤ M, min
0≤j<k≤d−1

|xj − xk| ≥ η (3.1)

with 0 < η,M < ∞. Let V [x0, . . . , xd−1] = [ajk]d−1
j,k=0 be the d-by-d Vandermonde

matrix associated to (x0, . . . , xd−1) with ajk = x
j
k . Then its inverse, V [x0, . . . ,

xd−1]−1 = [bjk]d−1
j,k=0 satisfies

|bjk| ≤ Md−1−k
(

d−1
k

)

ηd−1
, 0 ≤ j, k ≤ d − 1. (3.2)
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Proof Recall that

bjk = (−1)d−1−ked−1−k({x0, . . . , xd−1} \ {xj })
∏

0≤m≤d−1:m �=j (xj − xm)
, (3.3)

where ek({y1, . . . , yd−1}) := ∑

1≤i1<···<ik≤d−1 yi1 · · ·yik . Then the desired estimate
follows immediately from the assumption (3.1). �

Fix a family of distinct points {yj }j=0,...,K−1 ⊂ D such that

min
j �=k

|yj − yk| ≥ η .

We denote by Vy the K-by-K Vandermonde matrix associated to y := (y0, . . . , yK−1)

with Vy = [yj
k ]0≤j,k≤K−1. Then Vy is invertible with V −1

y = [bjk]0≤j,k≤K−1 satisfy-
ing

|bjk| ≤ η1−K

(

K − 1

k

)

, 0 ≤ j, k ≤ K − 1 (3.4)

according to Lemma 9. So for any x ∈ D, the system (putting 00 = 1)

K−1
∑

k=0

ck(y;x)y
j
k =

K−1
∑

k=0

ck(x)y
j
k = xj , 0 ≤ j ≤ K − 1 (3.5)

has a unique solution

(c0(x), c1(x), . . . , cK−1(x))T = V −1
y (1, x, . . . , xK−1)T ∈ CK

such that by (3.4)

K−1
∑

j=0

|cj (x)| ≤
K−1
∑

j=0

K−1
∑

k=0

|bjk||x|k ≤ K

ηK−1

K−1
∑

k=0

(

K − 1

k

)

= K

(

2

η

)K−1

(3.6)

uniformly in x ∈ D. We remark that ck(x) = ck(y;x) depends on y, while most of
the time we only need the estimate (3.6) that is uniformly bounded for y ∈ Dn. So in
the sequel, we omit the dependence on y whenever no confusion can occur.

We write each complex number ck(x) in the following form

ck(x) = c
(1)
k (x) − c

(−1)
k (x) + ic(i)

k (x) − ic(−i)
k (x),

where c
(s)
k (x) = c

(s)
k (y;x) are given by

c
(1)
k (x) = (�ck(x))+, c

(−1)
k (x) = (�ck(x))−,

and

c
(i)
k (x) = (�ck(x))+, c

(−i)
k (x) = (�ck(x))−.
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Note that (3.5) with j = 0 becomes
∑K−1

k=0 ck(x) = 1, so that

K−1
∑

k=0

c
(1)
k (x) =

K−1
∑

k=0

c
(−1)
k (x) + 1 =: c(�)(x) = c(�)(y;x), (3.7)

and

K−1
∑

k=0

c
(i)
k (x) =

K−1
∑

k=0

c
(−i)
k (x) =: c(�)(x) = c(�)(y;x). (3.8)

Put

L = max
x∈D,y∈Dn

{

c(�)(y;x), c(�)(y;x)
}

≥ 0.

Notice that by definition of L and (3.6)

L ≤ max
x∈D,y∈Dn

K−1
∑

k=0

|ck(y;x)| ≤ K

(

2

η

)K−1

. (3.9)

So L is a constant depending only on K and η.
By definition of L, we can choose non-negative t (s)(x) = t (s)(y;x), s ∈ {±1,±i}

such that

K−1
∑

k=0

c
(1)
k (x) + t (1)(x) = L + 1, (3.10)

K−1
∑

k=0

c
(s)
k (x) + t (s)(x) = L, s = −1, i,−i. (3.11)

It follows immediately from (3.7), (3.8), (3.10), and (3.11) that

t (1)(x) = t (−1)(x) and t (i)(x) = t (−i)(x). (3.12)

Put D := 4L+1. We need certain functions on [0,D]. The first one is r = r(t) that
depends only on D. The second one is w(x)(t) = w

(x)
y (t) that depends on x ∈ D and

y ∈ Dn. As before, we omit the y-dependence in the notation whenever no confusion
can occur.

We first divide the interval [0,D] = [0,4L+ 1] into the disjoint union of intervals

[0,D] = I (1) ∪ I (−1) ∪ I (i) ∪ I (−i),

with lengths |I (1)| = L + 1 and |I (−1)| = |I (i)| = |I (−i)| = L. Then the function r :
[0,D] → {±1,±i} is defined as follows:

r(t) = s, t ∈ I (s).
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To define w(x) for any x ∈ D, recall that (3.10) and (3.11) allow us to further decom-
pose each I (s) into disjoint unions:

I (s) =
K−1
⋃

k=0

(

I
(s)
k (x) ∪ J

(s)
k (x)

)

, s = ±1,±i

with (recall again the omitted y-dependence so actually I
(s)
k (x) = I

(s)
k (y;x) and

J
(s)
k (x) = J

(s)
k (y;x))

|I (s)
k (x)| = c

(s)
k (x) and |J (s)

k (x)| = t (s)(x)

K

for all 0 ≤ k ≤ K − 1 and s ∈ {±1,±i}. Then the function w(x) = w
(x)
y : [0,D] →

{y0, . . . , yK−1} is defined as

w(x)(t) = yk, t ∈ I
(s)
k (x) ∪ J

(s)
k (x)

for all 0 ≤ k ≤ K − 1 and s ∈ {±1,±i}.
Now assume that U is a random variable uniformly distributed on [0,D]. Then by

definition

E[r(U)] = 1

D
. (3.13)

When U takes values in I
(s)
k (x) ∪ J

(s)
k (x), we have

r(U) = s, w(x)(U) = yk.

This, together with definitions of c
(s)
k (x), I

(s)
k (x), J

(s)
k (x), and equations (3.5) and

(3.12), implies

E
[

r(U)w(x)(U)α
]

= 1

D

∑

s=±1,±i

K−1
∑

k=0

syα
k

(

c
(s)
k (x) + t (s)(x)

K

)

= 1

D

K−1
∑

k=0

yα
k

∑

s=±1,±i

sc
(s)
k (x) + 1

D

∑

s=±1,±i

st(s)(x)

= 1

D

K−1
∑

k=0

ck(x)yα
k + 0

= 1

D
xα,

whenever 0 ≤ α ≤ K − 1. We record this fact for later use: For U uniformly dis-
tributed on [0,D], we just proved that

E
[

r(U)w(x)(U)α
]

= 1

D
xα, x ∈ D, 0 ≤ α ≤ K − 1. (3.14)



484 L. Becker et al.

3.2 The proof idea and difficulty

We fix y = (y0, . . . , yK−1) ∈ DK,x = (x1, . . . , xn) ∈ Dn and follow the notations in
the previous subsection. We are going to use the functions r : [0,D] → {±1,±i} and

w(xj ) = w
(xj )
y : [0,D] → {y0, . . . , yK−1} defined above to prove that

|f (x)| ≤ C max
z∈{y0,...,yK−1}n

|f (z)|

with a dimension-free constant C for certain polynomials f . The idea is based on
(3.13) and (3.14). Let us fix d ≥ 1 and start with a monomial

M(z) = z
αi1
i1

. . . z
αik

ik
, z = (z1, . . . , zn)

where i1 < · · · < ik and 1 ≤ αij ≤ K − 1. Suppose that U1, . . . ,Un are i.i.d. ran-
dom variables uniformly distributed on [0,D]. Then for any supp(α) ⊂ J ⊂ [n] :=
{1, . . . , n}, we have by (3.13), (3.14) and the independence that

E

⎡

⎣

∏

j∈J

r(Uj ) · M
(

w(x1)(U1), . . . ,w
(xn)(Un)

)

⎤

⎦

=
k
∏

j=1

E
[

r(Uij )w
(xij

)
(Uij )

αj

]
∏

j∈J\supp(α)

E
[

r(Uj )
]

= 1

D|J | x
α1
i1

· · ·xαk

ik
= 1

D|J | M(x).

Recall that w(x) takes values in {y0, . . . , yK−1} and |r(t)| ≡ 1, and we may then
deduce

|M(x)| ≤ D|J | max
z∈{y0,...,yK−1}n

|M(z)|,

as desired. Note that for a single monomial of degree at most d , we may choose
J = supp(α) and thus |J | ≤ d . If we consider linear combinations of monomials
whose supports are contained in some bounded interval J , then the above argument
gives the desired estimate with constant D|J | by linearity in M for fixed J . However,
this is no longer the case if the size of J is large enough; that is, when |J | depends on
n. Consider polynomials of degree at most d = 2 for example. The above argument
works for z1z2 + z2z3 with a choice of J = {1,2,3} giving a constant of D3, but for
z1z2 + z2z3 + · · · + zn−1zn we need to choose J = [n] which results in a dimension-
dependent constant Dn.

3.3 Proof of partial Theorems 1 and 2: product of many copies of a single subset

As before, we fix y = (y0, . . . , yK−1) ∈ DK,x = (x1, . . . , xn) ∈ Dn. We want to show
that for each polynomial f : Dn → C of degree at most d and individual degree at
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most K − 1, it holds that

|f (x)| ≤ C(d,K) max
z∈{y0,...,yK−1}n

|f (z)|.

As explained in the last subsection, the proof relies on the functions r,w(x) and we
shall overcome the difficulty of unbounded | ∪α supp(α)| mentioned there as follows.
For a monomial zα of degree at most d ≥ 1, the length of its support |supp(α)| is at
most d as well. Fix m ≥ d (one may take m = d for the moment). Consider some
map

P : [n] → [m].
Instead of working with polynomials in w(x1)(U1), . . . ,w

(xn)(Un), we shall consider

w(x1)(UP(1)), . . . ,w
(xn)(UP(n)),

which may potentially resolve the problems of constants being not dimension-free.
However, it may break the independence and we need to estimate the error terms. For
this, we make P random as well.

Recall that y = (y0, . . . , yK−1) ∈ DK is fixed, with respect to which one defines
w(x) = w

(x)
y function as above for any x ∈ D. As before, U1, . . . ,Un are i.i.d. random

variables taking values in [0,D] uniformly.

Proposition 1 Fix k ≥ 1. Consider

M(z) = zα = z
αi1
i1

. . . z
αik

ik

a monomial on Dn with 1 ≤ αij ≤ K − 1 and

supp(α) = {1 ≤ i1 < · · · < ik ≤ n}.
Then for any x = (x1, . . . , xn) ∈ Dn there exists a polynomial pα,x,y of degree at most
k − 1 such that pα,x,y(0) = 0 and the following holds. For any m ≥ k, let P : [n] →
[m] be constructed by choosing for each j ∈ [n] uniformly at random P(j) ∈ [m],
then we have

M(x) = DmEU,P

⎡

⎣

m
∏

ℓ=1

r(Uℓ) ·
n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦+ pα,x,y

(

1

m

)

. (3.15)

Before proceeding with the proof, note that by the independence of Uℓ’s, for any
fixed P : [n] → [m] we have

EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ) ·
n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦

= EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ) ·
∏

j∈supp(α)

w(xj )(UP(j))
αj

⎤

⎦
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= EU

⎡

⎣

m
∏

ℓ=1

⎛

⎝r(Uℓ)
∏

j∈supp(α):P(j)=ℓ

w(xj )(Uℓ)
αj

⎞

⎠

⎤

⎦

=
m
∏

ℓ=1

EU

⎡

⎣r(Uℓ)
∏

j∈supp(α):P(j)=ℓ

w(xj )(Uℓ)
αj

⎤

⎦ .

To estimate each term in the product let us consider the partition of supp(α). Fix a
partition S = {Sj } of supp(α). For any P : [n] → [m] we say P induces S if

{P −1({j}) ∩ supp(α) : j ∈ [m]} = S

that is

∀j, |P(Sj )| = 1 and ∀j �= k, P (Sj ) �= P(Sk) .

Simple combinatorics give that for any partition S of supp(α)

Pr[P : [n] → [m] induces S] = m(m − 1) · · · (m − |S| + 1)

m|supp(α)| . (3.16)

In particular, it can be represented as

Pr[P induces S] =
{

1 + q|S|,|supp(α)|
( 1

m

)

if |S| = |supp(α)|
q|S|,|supp(α)|

( 1
m

)

if |S| < |supp(α)| (3.17)

for some polynomials q = q|S|,|supp(α)| with q(0) = 0 and deg(q) < |supp(α)|.

Proof of Proposition 1 As discussed above, the calculation of expectation in (3.15)
depends on the partition S of supp(α). Clearly, |S| ≤ |supp(α)| = k. In the special
case when |S| = |supp(α)|, S is a singleton partition. In this case, we may write
{jℓ} = P −1(ℓ), ℓ ∈ [m] for P that induces S . For such P we may calculate

EU

⎡

⎣r(Uℓ)
∏

j∈supp(α):P(j)=ℓ

w(xj )(Uℓ)
αj

⎤

⎦= EU [r(Uℓ)] = 1

D

if jℓ /∈ supp(α), according to (3.13); and

EU

⎡

⎣r(Uℓ)
∏

j∈supp(α):P(j)=ℓ

w(xj )(Uℓ)
αj

⎤

⎦= EU

[

r(Uℓ)w
(xjℓ

)(Uℓ)
αjℓ

]

= x
αjℓ

jℓ

D

if jℓ ∈ supp(α), according to (3.14). All combined, we find

EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦=
∏

ℓ:jℓ∈supp(α)

x
αjℓ

jℓ

D

∏

ℓ:jℓ /∈supp(α)

1

D
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= xα

Dk
. (3.18)

For general P that induces S with |S| < |supp(α)|, it is not easy to calculate

EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦ .

We claim that there exists a constant E(S,α,x,y) independent of m such that

EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦= D−mE(S,α,x,y). (3.19)

The exact value of E(S,α,x,y) is not important; we will find a way to eliminate it
afterwards. What matters to us is that it is independent from m.

To see the claim, note that for P that induces S with |S| < |supp(α)|,

EU

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦

=
m
∏

ℓ=1

EU

⎡

⎣r(Uℓ)
∏

j∈supp(α)∩P −1(ℓ)

w(xj )(Uℓ)
αj

⎤

⎦

= 1

Dm−|S|
∏

ℓ:supp(α)∩P −1(ℓ)�=∅
EU

⎡

⎣r(Uℓ)
∏

j∈supp(α)∩P −1(ℓ)

w(xj )(Uℓ)
αj

⎤

⎦

︸ ︷︷ ︸

(∗)

where we used (3.13) in the last equality. We observe that the expectation (∗) may
depend on (S,α,x,y), but does not depend on the specific P inducing S , nor on m.
Thus we may define E(S,α,x,y) by setting D−|S|E(S,α,x,y) equal to (∗).

According to the above discussion and (3.17), we have (we omit the constraint that
S is a partition of supp(α) in the summation for notational convenience)

EU,P

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

⎤

⎦

=
∑

S
EU,P

⎡

⎣

m
∏

ℓ=1

r(Uℓ)

n
∏

j=1

w(xj )(UP(j))
αj

∣

∣

∣

∣

∣

P induces S

⎤

⎦Pr[P induces S]

=
∑

|S|=|supp(α)|

xα

Dm
Pr[P induces S]
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+
∑

|S|<|supp(α)|

E(S,α,x,y)

Dm
Pr[P induces S]

=
∑

|S|=|supp(α)|

xα

Dm

[

1 + q|S|,|supp(α)|
( 1

m

)

]

+
∑

|S|<|supp(α)|

E(S,α,x,y)

Dm
q|S|,|supp(α)|

( 1
m

)

= xα

Dm
+ 1

Dm
pα,x,y

( 1
m

)

with

pα,x,y(z) :=
∑

|S|=|supp(α)|
xαq|S|,|supp(α)|

(

z
)

+
∑

|S|<|supp(α)|
E(S,α,x,y)q|S|,|supp(α)|

(

z
)

.

Recalling (3.17), pα,x,y satisfies pα,x,y(0) = 0 and deg(pα,x,y) < |supp(α)|. �

Proposition 1 generalizes immediately to low-degree polynomials by linearity.

Proposition 2 Let d ≥ 1 and suppose that f is an analytic polynomial on Dn of de-
gree at most d with individual degree at most K − 1. Then for any x = (x1, . . . , xn) ∈
Dn, there exists a polynomial p = pf,x,y of degree at most d−1 such that pf,x,y(0) =
0 and the following holds. For any m ≥ d , let P : [n] → [m] be constructed by choos-
ing for each j ∈ [n] uniformly at random P(j) ∈ [m]. We have

f (x) = DmEU,P

[

m
∏

ℓ=1

r(Uℓ) · f
(

W(x)(UP )
)

]

+ pf,x,y

(

1

m

)

(3.20)

where

W(x)(UP ) :=
(

w(x1)(UP(1)), . . . ,w
(xn)(UP(n))

)

∈ {y0, . . . , yK−1}n = yn.

Proof This follows immediately from (3.15) by linearity and choosing

pf,x,y(z) =
∑

|α|≤d

∑

|S|=|supp(α)|
aαxαq|S|,|supp(α)|

(

z
)

+
∑

|α|≤d

∑

|S|<|supp(α)|
aαE(S,α,x,y)q|S|,|supp(α)|

(

z
)

for f (z) =∑|α|≤d aαzα . �

Now we are ready to finish the proof of Theorem 2 when all Zj ’s are identical.
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Proof of Theorem 2 when Zj ’s are identical Assume that

Zj = {y0, . . . , yK−1} ∈ DK

for all j , and we shall follow the above notations, e.g. y = (y0, . . . , yK−1) and x =
(x1, . . . , xn) ∈ Dn is fixed. Choose positive integers

d = m0 < m1 < · · · < md−1

and real numbers a0, . . . , ad−1 in such a way that

d−1
∑

j=0

aj = 1 and
d−1
∑

j=0

aj

mk
j

= 0, k = 1, . . . , d − 1 . (3.21)

According to Proposition 2, we have for all m ≥ d that

f (x) = DmEU,P

[

m
∏

ℓ=1

r(Uℓ) · f
(

W(x)(UP )
)

]

+ pf,x,y

(

1

m

)

.

Applying this identity to m = m0, . . . ,md−1 as above, we get

f (x) =
d−1
∑

j=0

ajf (x)

=
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

W(x)(UP )
)

]

+
d−1
∑

j=0

ajpf,x,y

(

1

mj

)

=
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

W(x)(UP )
)

]

(3.22)

where in the first and last equalities we used (3.21). Equation (3.22) is the explicit
form of (1.9). It remains to instantiate the mj ’s and control

∑d−1
j=0 |aj |Dmj .

Let us choose simple mj ’s and estimate the |aj |’s. For this, recall that (3.21) is
equivalent to

V (a0, . . . , ad−1)
T = (1,0, . . . ,0)T

where V = [ajk]d−1
j,k=0 is the Vandermonde matrix with ajk = ( 1

mk

)j . Denoting

[bjk]d−1
j,k=0 the inverse of V , then aj = bj,0. Now let us estimate the absolute sum

of bj,0’s.
Now we choose mj = d + j,0 ≤ j ≤ d − 1. Then

max
0≤j≤d−1

|m−1
j | ≤ 1

d
, min

0≤j<k≤d−1
|m−1

j − m−1
k | ≥ 1

4d2 .
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By (3.3), we have

|aj | = |bj,0| =
∏

0≤k≤d−1:k �=j m−1
k

∏

0≤k≤d−1:k �=j |m−1
j − m−1

k | =
∏

0≤k≤d−1:k �=j

mj

|mk − mj | .

Recalling mj = d + j , one obtains the estimate

|aj | = (d + j)!
j !(d − 1 − j)! = d − j

d + j

(d + j)d

d!
(

d

j

)

≤ C · (2e)d
(

d + j

d

)d

≤ C · (4e)d,

for all 0 ≤ j ≤ d − 1 with some universal C > 0, and thus

d−1
∑

j=0

|aj |Dmj ≤ Cd(4eD2)d ≤ C(K,η)d , (3.23)

for some C(K,η) > 0 depending on K and η only. Therefore, we have shown that

|f (x)| ≤ C(K,η)d max
z∈{y0,...,yK−1}n

|f (z)|

for all x ∈ Dn. This finishes the proof of Theorem 2 when all the Zj ’s are the same.
�

Proof of Theorem 1 when Zj ’s are identical Let x maximize |f | on Dn. Then directly
from (3.22) we conclude

‖f ‖Dn = |f (x)| ≤
d−1
∑

j=0

|aj |Dmj · max
z∈{y0,...,yK−1}n

|f (z)|

≤ C(K,η)d‖f ‖Yn . �

3.4 Improved estimate for groups �n
K

Now let us prove the second claims of Theorems 1 and 2, that is, we may choose the
constant C in (1.7) to be C(d,K) ≤ (O(log(K)

)2d when all Zj = �K , j = 1, . . . , n.
This is based on the following lemma.

Lemma 10 Suppose z ∈ D, ω = e
2π i
K . Then there exists c := (c0, . . . , cK−1) such that

for all k = 0,1, . . . ,K − 1,

zk =
K−1
∑

j=0

cj (ω
j )k.

Moreover, ‖c‖1 ≤ B log(K) for a universal constant B .
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Proof A direct computation shows that

cj = 1

K

K−1
∑

k=0

ω−jkzk = 1 − zK

K(1 − ω−j z)
, 0 ≤ j ≤ K − 1. (3.24)

Since z ∈ D, we have by triangle inequality that

|cj | ≤ min

{

1,
2

K|ωj − z|
}

, 0 ≤ j ≤ K − 1. (3.25)

By symmetry, we may assume that ω0 = 1 is a closest point in �K to z and ω is the
next-closest point in �K to z. It can be that z = 1, so we use the upper bound |c0| ≤ 1.
We also estimate |c1| ≤ 1. For 2 ≤ j ≤ K − 1, we use the estimate

K−1
∑

j=2

2

K|ωj − z| ≤ 2

� K−1
2 �
∑

j=2

2

K|ωj − z| .

For 2 ≤ j ≤ �K−1
2 �, we use the estimate

|ωj − z| ≥ 2 sin

(

(j − 1)π

K

)

≥ 4

π
· (j − 1)π

K
= 4(j − 1)

K
.

All combined, we get

K−1
∑

j=0

|cj | ≤ 1 + 1 + 2

� K−1
2 �
∑

j=2

2

K|ωj − z| ≤ 2 + 2

� K−1
2 �
∑

j=2

2

4j
≤ 2 +

� K−1
2 �
∑

j=2

1

j
. (3.26)

Then the proof is finished using the estimate
∑L

k=1 1/k ≤ log(L) + 1. �

This gives a better upper bound of L, namely L ≤ C log(K) improving (3.9). So

D = 4L + 1 ≤ 4C log(K) + 1 (3.27)

and we obtain the desired bound following the proof of the previous subsection (see
(3.23)).

3.5 Proof of Theorems 1 and 2: the general case

In this subsection we prove Theorems 1 and 2 for general Yn =∏n
ℓ=1 Zℓ ⊂ Dn with

Zℓ = {yℓ,0, . . . , yℓ,K−1}, 1 ≤ ℓ ≤ n

uniformly separated by η > 0 as stated in the theorem; that is,

min
1≤ℓ≤n

min
0≤j<k≤K−1

|yℓ,j − yℓ,k| ≥ η.
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The proof is essentially the same as the case when Zℓ’s are identical. In fact, fix
1 ≤ ℓ ≤ n and put yℓ = (yℓ,0, . . . , yℓ,K−1) ∈ DK . As before, for any x ∈ D there exist
ck(x) = ck(yℓ, x) such that

K−1
∑

k=0

ck(yℓ, x)y
j
ℓ,j = xj , 0 ≤ j ≤ K − 1, (3.28)

and we have the same universal bound

K−1
∑

k=0

|ck(yℓ, x)| ≤ K

(

2

η

)K−1

as in (3.6). This allows us to choose the same L and D = 4L + 1 as in Sect. 3.1
to define the functions r and w(x). Recall that r : [0,D] → {±1,±i} is the same as
before, since it depends only on D. The definition of w

(x)
yℓ

: [0,D] → Zℓ depends
on x ∈ D and the reference set Zℓ as well as some order yℓ. Then we still have the
following identity as in (3.14)

E
[

r(U)w(x)
yℓ

(U)α
]

= 1

D
xα, x ∈ D, 0 ≤ α ≤ K − 1 (3.29)

for all 1 ≤ ℓ ≤ n. Repeating the previous proof word by word, as in (3.20) we arrive
at

f (x) = DmEU,P

[

m
∏

ℓ=1

r(Uℓ) · f
(

W
(x)
Yn

(UP )
)

]

+ pf,x,Yn

(

1

m

)

(3.30)

for any x = (x1, . . . , xn) ∈ Dn and f : Dn → C in Theorem 2, where

W
(x)
Yn

(UP ) :=
(

w(x1)
y1

(UP(1)), . . . ,w
(xn)
yn

(UP(n))
)

∈ Yn,

pf,x,Yn(0) = 0 and pf,x,Yn is of degree at most d − 1 as before. Here the notation

W
(x)
Yn

might not be a perfect choice as it depends on the some orders of each Zℓ, as
indicated in its definition. But we abuse the notation here since we only need the fact
that it takes values in Yn. The rest is the same as the end of Sect. 3.3 and thus we
finish the proof of Theorem 2. The general case of Theorem 1 follows immediately.

4 Small sampling sets

In this section we show sampling sets of cardinality C(1 + ε)n exist for arbitrary
ε > 0. Denote by C(d,K,η) the constant obtained in Theorem 1.

Proof of Theorem 3 For any n ≥ 1, let k ≥ 1 be an integer such that

((d + 1)kd)1/k ≤ 1 + ε . (4.1)
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We temporarily assume first that n is a multiple of k, n = n′k. The reader should think
that n′ is very large, and k is of the order d

ε
log d

ε
which is not too large. We are going

to choose the desired sampling set in the following way. Write

n
∏

j=1

Zj =
n′−1
∏

j=0

Zjk+1 × · · · × Zjk+k,

and for each 0 ≤ j ≤ n′ − 1, we are going to choose M (to be defined later) points in
Zjk+1 × · · · × Zjk+k .

More precisely, define (denoting ‖α‖p the ℓp-norm of a vector α)

� = {α ∈ Nk : ‖α‖1 ≤ d,‖α‖∞ ≤ K − 1} , (4.2)

so that {zα : α ∈ �} is a C-vector space basis of the polynomials of degree at most d

and individual degree at most K − 1 in k variables z1, . . . , zk ∈ D. The cardinality of
� is

M := |�| ≤ (d + 1)kd . (4.3)

Let Y ∈ (Dk)M . We will write

Y = (y1, . . . ,yM) , yj = (yj1, yj2, . . . , yjk) ∈ Dk .

For any z = (z1, . . . , zk) ∈ Dk , we want to solve the system of M equations

zα = z
α1
1 . . . z

αk

k =
M
∑

j=1

cj (z)y
α
j =

M
∑

j=1

cj (z)

k
∏

r=1

y
αr

jr , α ∈ � (4.4)

where cj (z) = cj (Y;z) depends on Y and z if it exists. The system is solvable for all
z ∈ Dk whenever the determinant

P(Y) := det[yα
j ]1≤j≤M,α∈� = det[yβi

j ]1≤i,j≤M =
∑

σ∈SM

sgn(σ )

M
∏

j=1

y
βσ(j)

j (4.5)

does not vanish, where {βi : 1 ≤ i ≤ M} is some reordering of {α : α ∈ �}, and
SM denotes the permutation group on M letters. If this is the case, we can further
explicitly express the solutions of (4.4) using Cramer’s rule as

cj (z) = cj (Y;z) = Pj (Y,z)

P (Y)
,

where Pj (Y,z) is the determinant of the M × M matrix obtained by replacing the

j -th column of [yβi

j ]1≤i,j≤M by (zα)α∈� = (zβi )1≤i≤M . All the coefficients of this
matrix are contained in the unit disc, so by a theorem of Hadamard [27] we have

|Pj (Y,z)| ≤ MM/2 .
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On the other hand, the monomials in (4.5) for different σ are all different, hence using
orthogonality of monomials in L2(TkM) we obtain

∫

Y∈TkM

|P(Y)|2 dY = M! .

Here we equip TkM with the uniform probability measure dY. Therefore, for this
analytic polynomial P over DkM of degree at most dM and individual degree at most
K − 1, we have

‖P ‖DkM = ‖P ‖TkM ≥ ‖P ‖L2(TkM,dY) = √
M!.

By Theorem 1, for any 1 ≤ i1, . . . , ik ≤ n and the sets Zi1, . . . ,Zik , there exists Y ∈
(Zi1 × · · · × Zik )

M with

|P(Y)| ≥ C(dM,K,η)−1
√

M! > 0 . (4.6)

For Y satisfying (4.6), the above system (4.4) is solvable and we can estimate the size
of the solutions cj (Y;z) of (4.4):

|cj (Y;z)| ≤ |Pj (Y, z)|
|P(Y)| ≤ C(dM,K,η)

MM/2

√
M!

≤ C(K,η)dM MM/2

(M/e)M/2
≤ C(K,η)dMeM/2. (4.7)

Note that cj (Y;z) depends on Y and z but this upper bound of |cj (Y;z)| does not.
We now construct our sampling set. Recall that n = n′k is a multiple of k. For each

s = 0, . . . , n′ − 1, consider a tuple of points

Y (s) = (y
(s)
1 , . . . ,y

(s)
M ) ∈ (Zsk+1 × · · · × Zsk+k)

M

such that (4.6) holds for Zij = Zsk+j , j = 1, . . . , k. These are the M points that we
choose in Zsk+1 × · · · × Zsk+k . Our sampling set will be

Y :=
n′−1
∏

s=0

Y (s) ,

which satisfies, by (4.1) and (4.3),

|Y| ≤ Mn′ ≤ ((d + 1)kd)n/k ≤ (1 + ε)n .

It remains to show that Y is a sampling set with dimension-free constant. The
argument is essentially the same as in the proof of Theorem 1; the only difference is
that the functions w take values in Y (s) ⊂ DkM . Let f (z) =∑α aαzα be a polynomial
in n variables of degree at most d and individual degree at most K − 1. Fix

z = (z0, . . . ,zn′−1) ∈ Dn = (Dk)n
′

with zs ∈ Dk

and α such that aα �= 0. Then zα =∏n′−1
s=0 z

αs
s .
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Since each Y (s) satisfies (4.6), the determinant of the system (4.4) does not vanish.
So we have

zαs
s =

M
∑

j=1

cj (zs)(y
(s)
j )αs , αs ∈ �

and by (4.7)

M
∑

j=1

|cj (zs)| ≤ MC(dM,K,η)eM/2 =: L. (4.8)

As before, L is independent of Y (s) and z.
Now for the convenience of the reader we sketch the construction in Sect. 3 with

minor modifications. Again, we write each complex number cj (zs) in the following
form

cj (zs) = c
(1)
j (zs) − c

(−1)
j (zs) + ic(i)

j (zs) − ic(−i)
j (zs),

where all c
(r)
j (zs)’s are non-negative such that

c
(1)
j (zs) = (�cj (zs))+, c

(−1)
j (zs) = (�cj (zs))−,

and

c
(i)
j (zs) = (�cj (zs))+, c

(−i)
j (zs) = (�cj (zs))−.

Same as before, we may choose non-negative t (1)(zs) = t (−1)(zs), t
(i)(zs) = t (−i)(zs)

in such a way that

M
∑

j=1

c
(1)
j (zs) + t (1)(zs) = L + 1, (4.9)

M
∑

j=1

c
(r)
j (zs) + t (r)(zs) = L, r = −1, i,−i. (4.10)

Moreover,

t (1)(zs) = t (−1)(zs) and t (i)(zs) = t (−i)(zs). (4.11)

Again, we put D = 4L + 1 and divide the interval [0,D] into the disjoint union

[0,D] = I (1) ∪ I (−1) ∪ I (i) ∪ I (−i),

with |I (1)| = L + 1 and |I (−1)| = |I (i)| = |I (−i)| = L. Define the function r :
[0,D] → {±1,±i} as before

r(t) = s, t ∈ I (s).
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For each zs we further decompose each I (r) into disjoint unions:

I (r) =
M
⋃

k=1

(

I
(r)
k (zs) ∪ J

(r)
k (zs)

)

, r = ±1,±i

with

|I (r)
k (zs)| = c

(r)
k (zs) and |J (r)

k (zs)| = t (r)(zs)

K
, 1 ≤ k ≤ M.

Then we define the function w
(zs )

Y (s) : [0,D] → Y (s) as

w
(zs )

Y (s) (t) = y
(s)
k , t ∈ I

(r)
k (zs) ∪ J

(r)
k (zs)

for all 1 ≤ k ≤ M and r ∈ {±1,±i}.
Suppose U is a random variable uniformly distributed on [0,D], then

E[r(U)] = 1

D
, (4.12)

and

E
[

r(U)w
(zs )

Y (s) (U)αs

]

= 1

D
zαs
s , zs ∈ Dk,αs ∈ �.

Arguing as before, we may deduce that there exists a polynomial p = pf,z,Y of
degree at most d − 1 such that pf,z,Y(0) = 0 and the following holds. For any m ≥ d ,
let P : [n′] → [m] be constructed by choosing for each i ∈ [n′] uniformly at random
P(i) ∈ [m]. We have

f (z) = DmEU,P

⎡

⎣

m
∏

j=1

r(Uj ) · f
(

W
(z)
Y (UP )

)

⎤

⎦+ pf,z,Y

(

1

m

)

(4.13)

where

W
(z)
Y (UP ) :=

(

w
(z0)
Y0

(UP(1)), . . . ,w
(zn′−1)

Yn′−1
(UP(n′))

)

∈ Y,

pf,z,Y(0) = 0 and pf,z,Y is of degree at most d − 1 as before.
The rest of proof is exactly as before. Thus Y discretizes the uniform norm with

constant at most

Cd(4eD2)d . (4.14)

This completes the proof when n is a multiple of k.
In general, if n′k < n < (n′ + 1)k ≤ n + k − 1, then we may project the sampling

set from D(n′+1)k onto Dn so that there exists a sampling set (Yn) of size at most

|Yn| ≤ (1 + ε)n+k−1 = C1(d, ε)(1 + ε)n . (4.15)
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Finally, let us compute the precise dependence of C1(d, ε) and C2(d,K,η, ε) on ε.
The condition (4.1) on k holds for all d ≥ 1 and 0 < ε ≤ 1/2 if k is the largest integer
smaller than

100
d

ε
log

(

d

ε

)

.

This yields for C1(d, ε), using (4.15)

C1(d, ε) ≤ (1 + ε)k ≤ exp(100d log

(

d

ε

)

) =
(

d

ε

)100d

.

For C2(d,K,η, ε), we obtain with (4.3), (4.8) and (4.14) the bound

C2(d,K,η, ε) ≤ exp(C(d,K,η)(ε−1 log(ε−1))d) .

The number 100 in the exponent can be brought arbitrarily close to 1, if ε is assumed
to be sufficiently small. �

5 Necessity of exponential-cardinality sampling sets

Now we prove Theorem 4 which says sampling sets with cardinality sub-exponential
in dimension cannot exist.

Proof of Theorem 4 For any ε = (ε1, . . . , εn) ∈ {−1,1}n, consider the polynomials
fε(x) =∑n

j=1 εj xj on {−1,1}n of degree at most 1. Then by definition,

n = ‖fε‖{±1}n ≤ C‖fε‖Vn.

In other words, we have for all ε ∈ {−1,1}n that

max
v=(v1,...,vn)∈Vn

∣

∣

∣

∣

∣

∣

n
∑

j=1

vj εj

∣

∣

∣

∣

∣

∣

≥ 2δn with δ = 1

2C
∈ (0,∞).

So we have the inclusion {−1,1}n ⊂⋃v∈Vn
�v , where

�v :=
⎧

⎨

⎩

ε ∈ {−1,1}n : |fv(ε)| =
∣

∣

∣

∣

∣

∣

n
∑

j=1

vj εj

∣

∣

∣

∣

∣

∣

≥ 2δn

⎫

⎬

⎭

, v ∈ Vn.

For each v ∈ Vn and i.i.d. Bernoulli random variables ε1, . . . , εn, we have by Hoeffd-
ing’s inequality that

|�v| = 2nPr

⎡

⎣

∣

∣

∣

∣

∣

∣

n
∑

j=1

vj εj

∣

∣

∣

∣

∣

∣

≥ 2δn

⎤

⎦
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≤ 2nPr

⎡

⎣

∣

∣

∣

∣

∣

∣

n
∑

j=1

�(vj )εj

∣

∣

∣

∣

∣

∣

≥ δn

⎤

⎦+ 2nPr

⎡

⎣

∣

∣

∣

∣

∣

∣

n
∑

j=1

�(vj )εj

∣

∣

∣

∣

∣

∣

≥ δn

⎤

⎦

≤ 2n+1 exp

(

− δ2n2

2‖a‖2
2

)

+ 2n+1 exp

(

− δ2n2

2‖b‖2
2

)

,

where a = �v and b = �v are real vectors. Recalling that v ∈ Vn ⊂ Dn, we have
‖a‖2

2 ≤ n and ‖b‖2
2 ≤ n. Therefore,

|�v| ≤ 2n+2 exp
(

−δ2n/2
)

= 4
(

2e−δ2/2
)n

.

All combined, we just proved

2n = |{−1,1}n| ≤
∑

v∈Vn

|�v| ≤ 4|Vn|
(

2e−δ2/2
)n

.

This gives the bound

|Vn| ≥ 1

4
e

δ2n
2 ,

as desired. �

6 Discretizations of Lp norms

In this section, we prove Theorem 5 about an Lp version of dimension-free discretiza-
tions for products of cyclic groups.

Proof of Theorem 5 Write Yn =∏n
j=1 Zj with Zj = �K and y = (1,ω, . . . ,ωK−1)

with ω = e
2π i
K . According to (3.22), we have for all x = (x1, . . . , xn) ∈ Tn that

f (x) =
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

W
(x)
Yn

(UP )
)

]

where aj ,mj ,0 ≤ j ≤ d − 1 are as defined in Sect. 3.3 and

W
(x)
Yn

(UP ) :=
(

w(x1)
y (UP(1)), . . . ,w

(xn)
y (UP(n))

)

∈ Yn = �n
K.

Again, we abuse the notation W
(x)
Yn

which actually depends on some order of each
Zj as specified in its definition. See Sect. 3.5. For any ξ = (ξ1, . . . , ξn) ∈ �n

K , denote
xξ = (x1ξ1, . . . , xnξn) the multiplication of x and ξ as elements in the group Tn.
Then xξ ∈ Tn and

f (xξ) =
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

W
(xξ)

Yn
(UP )

)

]

.
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For any 0 ≤ j ≤ K − 1, recall that ω
(xj ξj )
y takes values in �K with

Pr
[

ω
(xj ξj )
y (U) = ωk

]

= 1

D

∑

s=±1,±i

(

c
(s)
k (y;xj ξj ) + t (s)(y;xj ξj )

K

)

= 1

K
+ 1

D

{
∑

s=±1,±i

c
(s)
k (y;xj ξj ) − 1

K

K−1
∑

ℓ=0

c
(s)
ℓ (y;xj ξj )

}

,

where we used (3.10) and (3.11). Also, (ck(y;xj ξj ))k is uniquely determined by

K−1
∑

k=0

ck(y;xj ξj )ω
kℓ = (xj ξj )

ℓ, 0 ≤ ℓ ≤ K − 1,

or equivalently

K−1
∑

k=0

ck(y;xj ξj )(ω
kξj )

ℓ = xℓ
j , 0 ≤ ℓ ≤ K − 1.

So ck(y;xj ξj ) = ck(yj ;xj ) with yj = (ξj , ξjω, . . . , ξjω
K−1) that is the same as �K

as a set. Here we used the group structure of �K . Therefore,

Pr
[

ω
(xj ξj )
y (U) = ωk

]

= 1

K
+ 1

D

{
∑

s=±1,±i

c
(s)
k (y;xj ξj ) − 1

K

K−1
∑

ℓ=0

c
(s)
ℓ (y;xj ξj )

}

= 1

K
+ 1

D

{
∑

s=±1,±i

c
(s)
k (yj ;xj ) − 1

K

K−1
∑

ℓ=0

c
(s)
ℓ (yj ;xj )

}

= Pr
[

ω
(xj )
yj

(U) = ξjω
k
]

.

So we just argued that ω
(xj ξj )
y (U) = ξjω

(xj )
yj

(U). Thus we find

f (xξ) =
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

W
(xξ)

Yn
(UP )

)

]

=
d−1
∑

j=0

ajD
mj EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

ξW
(x)

Y ′
n

(UP )
)

]

where Y ′
n = Yn with a different ordering of each Zj :

W
(x)

Y ′
n

(UP ) =
(

w(x1)
y1

(UP(1)), . . . ,w
(xn)
yn

(UP(n))
)

∈ �n
K.
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So by Jensen’s inequality, and recalling (3.23) and (3.27),

|f (xξ)|p ≤ dp−1
d−1
∑

j=0

|ajD
mj |p

∣

∣

∣

∣

∣

EU,P

[ mj
∏

ℓ=1

r(Uℓ) · f
(

ξW
(x)

Y ′
n

(UP )
)

]∣

∣

∣

∣

∣

p

≤ dp−1
d−1
∑

j=0

|ajD
mj |pEU,P

∣

∣

∣f
(

ξW
(x)

Y ′
n

(UP )
)∣

∣

∣

p

≤ dp−1(C1 log(K) + C2)
dpEU,P

∣

∣

∣f
(

ξW
(x)

Y ′
n

(UP )
)∣

∣

∣

p

.

Since W
(x)

Y ′
n

(UP ) takes values in �n
K and �n

K is a group, we have

Eξ∼�n
K

∣

∣

∣f
(

ξW
(x)

Y ′
n

(UP )
)∣

∣

∣

p = ‖f ‖p

Lp(�n
K)

.

Similarly, for any ξ ∈ �n
K ⊂ Tn, we have

Ex∼Tn |f (xξ)|p = ‖f ‖p

Lp(Tn)
.

All combined, we conclude

‖f ‖p

Lp(Tn)
= Eξ∼�n

K
Ex∼Tn |f (xξ)|p

≤ dp−1(C1 log(K) + C2)
dpEU,P Ex∼TnEξ∼�n

K

∣

∣

∣f
(

ξW
(x)

Y ′
n

(UP )
)∣

∣

∣

p

= dp−1(C1 log(K) + C2)
dp‖f ‖p

Lp(�n
K)

.

This finishes the proof of the theorem. �
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