
Build Issue Resolution from the Perspective of Non-Contributors

Sunzhou Huang
sunzhou.huang@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

Abstract

Open-source software (OSS) often needs to be built by roles who are

not contributors. Despite the prevalence of build issues experienced

by non-contributors, there is a lack of studies on this topic. This

paper presents a study aimed at understanding the symptoms and

causes of build issues experienced by non-contributors. The find-

ings highlight certain build issues that are challenging to resolve

and underscore the importance of understanding non-contributors’

behavior. This work lays the foundation for further research aimed

at enhancing the non-contributors’ experience in dealing with build

issues.

CCS Concepts

• Information systems→ Open source software; • Software

and its engineering → Application specific development en-

vironments.

Keywords

open source software, development environment, build issue reso-

lution

ACM Reference Format:

Sunzhou Huang and Xiaoyin Wang. 2024. Build Issue Resolution from the

Perspective of Non-Contributors. In 39th IEEE/ACM International Conference

on Automated Software Engineering (ASE ’24), October 27-November 1, 2024,

Sacramento, CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/

10.1145/3691620.3695304

1 Introduction

Open-source software (OSS) frequently requires building from

source code. This “build” process often encompasses several steps,

including compiling the source code, resolving dependencies, pack-

aging, testing, performing static analysis, generating documenta-

tion, and preparing for deployment. The primary roles of those

engaged in these building activities are those of project contribu-

tors, who manage repositories and commit code. However, there are

also numerous non-contributors who need to build the project for

their own goals. Examples of such non-contributors are as follows:

Users: Not all OSS projects provide pre-built installation pack-

ages. Even when available, these packages may not be compatible

with a user’s operating system (OS) or local environment. So some

users may need to build projects from source code in their local

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695304

environments. Advanced users might also prefer non-default con-

figurations, utilize new features not yet included in a stable release,

or compile directly from the source code for security reasons, such

as in blockchain scenarios [1].

Learners: Individuals who are new to OSS development and are

in the learning phase also engage in building OSS. They may start

by compiling and experimenting with the source code to under-

stand the project structure and functionality better. This hands-on

experience is essential for their growth as OSS contributors.

Potential contributors: Individuals who wish to propose fea-

ture improvements or bug fixes for OSS must also build the project

initially. This step is necessary before they can validate their revi-

sions and submit a pull request. However, because OSS often has

diverse build environments, these potential contributors frequently

lack the required local build setups. Setting up these environments

themselves can pose its own set of challenges.

In this paper, within the context of the OSS build process, we

use the term “non-contributor” to refer to roles that lack familiarity

with the build environment of the target OSS and need to set up

their local environment. These roles may have varying degrees of

background knowledge about the target OSS, but they all share the

common objective of building the OSS from its source code.

Since non-contributors are often unfamiliar with the build envi-

ronments of the OSS projects they aim to work on, many encounter

challenges in this process. On Stack Overflow (SO), filtering by

the keywords “not build” yielded 6,760 out of 43,140 (15.7%), 7,374

out of 95,275 (7.73%), and 10,336 out of 73,559 (14.1%) relevant SO

questions for three well-known open-source projects: Tomcat, Hi-

bernate, and OpenCV, respectively [12]. Since OSS contributors are

unlikely to address internal build issues on Stack Overflow (prefer-

ring internal issue tracking systems like GitHub Issues or JIRA), it

is reasonable to infer that most of these SO questions are from non-

contributors experiencing build issues in their local environments.

These numbers highlight the prevalence and difficulty of build is-

sues faced by non-contributors. Another illustrative example is

evident in computer science (CS) classes, where students frequently

encounter initial project hurdles. These difficulties typically arise

from their inability to build or install the frameworks or tools on

their own systems.

Despite the prevalence of build issues from non-contributors,

existing research has largely overlooked these challenges, focusing

primarily on the perspective of contributors, such as the developers

of the project being built. For instance, extensive studies have been

conducted on the effort required to maintain build scripts [10, 11],

the categorization and distribution of bugs in build scripts [3, 16, 22],

the patterns of fixing build scripts [9, 23], and how build failures

occur in new integration scenarios such as Continuous Integration

(CI) chains [24] or Docker environments [21]. It is important to

note that build issues experienced by non-contributors may have



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Sunzhou Huang and Xiaoyin Wang

different root causes compared to those experienced by contributors.

The latter are often caused by flaws in the build scripts or code of

the project being built, while the former are likely related to the

local environments of the non-contributors, assuming that most

OSS projects are released with validated build scripts. One potential

reason why build issues experienced by non-contributors are not

studied may be due to data collection challenges. Most existing

studies gather data from version histories and build logs, while

non-contributors’ experienced build issues are never systematically

tracked or recorded.

In this paper, we present a study to investigate build issues

experienced by non-contributors, aiming to answer the prevalent

question,Why does the OSS project not build onmymachine?.

Our study tracks the behaviors of senior-year and graduate com-

puter science students as they undertake build tasks for various

OSS projects. We believe these students are representative subjects

for our study, as they currently occupy learner roles for the target

OSS projects and could potentially transition to user or potential

contributor roles with appropriate guidance. All these students

have a certain level of background in information technology (most

have some internship and working experience), which positions

them for a more advanced user role in utilizing the target OSS

projects. We have designed these build tasks as a course project

for a cross-listed software engineering course, where we instructed

31 students to build 12 different OSS projects in 6 programming

languages (PLs) in order to explore the symptoms and causes of

build issues experienced by non-contributors.

2 Related Works

The research efforts most related to our research are user studies

on software build tasks. Kwan et al. [7] studied developers from

IBM to find out whether team composition and coordination may

have an impact on software build success. Dawns et al. [4] stud-

ied the operation of a build team to evaluate an automatic build

management tool that enforces the build failure handling process.

Philips et al. [13] studied software building teams at Microsoft and

found that most challenges are on the social aspects of the team.

Kerzazi et al. [6] studied 3,214 software builds and found that 17.9%

of builds failed and more than 300 man-hours were cost to fix them.

Hilton et al. [5] performed interviews with 16 developers to find

out their opinion on whether the CI process may enhance software

productivity. Vassallo et al. [19] performed a study with 17 par-

ticipants to find out how well developers can take advantage of

BART, a tool for summarizing build failure reasons. Different from

our research, all these studies are from the perspective of project

managers or senior developers instead of non-contributors.

Besides user studies, there have been a lot of empirical studies

on software build history and build failures. Mcintosh et al. stud-

ied the version histories of proprietary and open source software

projects to estimate the effort required to repair build scripts [10]

and to correlate effort with type of bulid systems [11]. Xia et al. [22]

performed studies to summarize bugs in software build systems.

Zhao et al. [23] studied build failure reports in five OSS and found

that build failures take much more time to fix than others. Barrak

et al. [3] studied how build failures are correlated with code smells

in build scripts and code. Licker and Rice [8] investigated the in-

correct rules in build scripts by using a mutation testing approach.

Wu et al. [21] studied the characteristics of build failures in the

context of docker environments. These existing studies focus on

build failure logs and build failure fixes in the commit history. In

contrast to previous studies, our research collects and analyzes the

entire process of completing multiple OSS build tasks in a local

environment, taking into account the system environment factors

that influence the build process.

3 Study Design

We conducted a study that gathered data on build issues from 31

participants involved in 12 OSS projects. This provided us with a

comprehensive understanding, enabling us to identify key symp-

toms and examine their resolution process. We aim to answer the

following research question:

What are the common symptoms of build issues experi-

enced by non-contributors during the build process, and to

what extent can these symptoms be mitigated?

3.1 Participants and Tasks

Our participants were 31 students enrolled in the same software

testing course. This course is a cross-listed elective for senior-year

undergraduates and graduate students, with software engineering

as a prerequisite. The course, taught by two of the authors at a

university, focuses on software testing approaches, test planning,

test case design, and build systems with CI/CD concepts. In our

study, students shared many characteristics with non-contributors

who only needed to build the released OSS without modifying the

source code. None of the students have the experience to set up

the specific build environments required by the OSS projects in our

study. Almost all of the students will work or are already working

part-time or full-time as developers, so studying their behavior

could further help us understand the build issues when newcomers

are onboarding.

As shown in Table 1, we selected 6 popular PLs from the top

15 used on GitHub. For each PL, we chose 2 of the top 10 most

popular OSS projects on GitHub, ranked by the number of stars. We

made our best effort to choose PLs and OSS projects with distinct

real-world application scenarios. Participants picked a project from

the 12 OSS projects on a first-come, first-served basis. We limited

each project to three slots to ensure that each project had at least

one participant. Participants were instructed to write a report docu-

menting at least 10 non-trivial build issues. They were encouraged

to resolve the issues if they could.

Table 1: Selected OSS projects

PL Project No. Participants No. Issues

C++ opencv/opencv 3 30

tensorflow/tensorflow 3 38

Go gohugoio/hugo 4 32

kubernetes/kubernetes 2 18

Java elastic/elasticsearch 2 18

spring-projects/spring-boot 3 46

JavaScript electron/electron 1 4

vuejs/vue 4 36

PHP fzaninotto/Faker 2 9

guzzle/guzzle 1 15

Python pallets/flask 3 26

scikit-learn/scikit-learn 3 31

Total 31 303



Build Issue Resolution from the Perspective of Non-Contributors ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Students were required to complete the study as one of their

major course projects. We designed a three-stage task list to help

participants become familiar with the study process: 1) Setup. Par-

ticipants were instructed to use the Google Cloud Platform (GCP)

online console to set up a GCP project with $50 education credits

and enabled APIs for creating virtual machines (VMs). 2) Warm-

up. Participants were instructed to create a warm-up VM instance.

They then performed warm-up build activities to familiarize them-

selves with the logging and snapshot-taking processes. 3) Build

OSS projects. Each of the participants picked one OSS project for

their build tasks. They utilized log scripts, snapshots, and textual

issue reports to document build issues encountered during the build

process of the target OSS project.

The anticipated outcomes of the study included successfully com-

piling the OSS projects and passing all tests using the commands

specified in the build tasks. Beyond the build outcome, participants’

grades would be evaluated based on their effort invested in com-

pleting the tasks, as evidenced by snapshots and issue reports. This

grading approach was designed to accommodate participants who

might not be able to successfully build the OSS projects. As the

conductors of the study, our role was to provide clarity on the objec-

tives of the build tasks. Our study protocol underwent assessment

and received approval from our local Institutional Review Board

(IRB). All students were informed that they may withdraw their

data after grading, ensuring their data would not be included in our

dataset for this study or any future research activities.

3.2 Data Collection

We designed protocols to collect data throughout the build process.

As participants performed build tasks on a virtual machine (VM),

we used the following methods to capture all relevant data.

VM state logging.When encountering build issues, participants

used a script to log command history, environment variables, and

network information. This logging helped correlate system data

with reported issues. Participants also logged the final VM state

upon completing tasks, with all logs saved for later analysis.

VM snapshots. Snapshots captured the entire VM state at spe-

cific moments, including files, settings, and configurations. Partici-

pants manually took snapshots upon encountering build issues and

upon task completion, though temporary environment variables

could be lost in the process.

Build issue report. Participants documented build issues, in-

cluding inputs, outputs, and solutions, along with details about the

build environment (e.g., language versions, tools). They summa-

rized their process and provided feedback, offering insights into

their problem-solving strategies.

4 Results and Analysis

We collected a total of 303 build issues from 31 build issue reports,

along with 380 snapshots containing environment logs. One stu-

dent changed from the “electron/electron” project to “vuejs/vue”

due to low GCP credit. One student worked on the wrong project

in Go. Eventually, for each OSS, there was at least one student

and a maximum of four students. For each PL, there were at least

three students and a maximum of six students. In the collected 303

build issues, the minimum number of issues reported was 4 for

the “electron/electron” project, with only 1 student participant. The

maximum number of issues reported was 46 for the sprint-boot

project, with 3 participants. The number of reported issues was

not correlated with only the number of participants but was also

project-specific.

We implemented a qualitative analysis on these 303 build issues,

utilizing the open coding procedure [15]. This procedure was exe-

cuted by two of the authors. The first author coded all build issues,

drawing from error messages and solutions reported within issue

reports, and identified any borderline cases. Subsequently, the sec-

ond author validated this coding and engaged in discussions about

any borderline cases. In instances where conflicts arose, the first au-

thor leveraged corresponding snapshots and collected environment

information to attempt to reproduce the build issue. Decisions were

made based on the reproduced build results or the history avail-

able in the snapshot, with the two authors discussing and reaching

consensus. Additionally, two authors were responsible for labeling

the resolution state of the issues. If no solution was provided, the

issue was labeled as Unsettled. However, if either of the two authors

believed that a solution or workaround was provided, the issue was

labeled as Settled.

Figure 1 illustrates the 14 distinct symptoms of build issues iden-

tified in our study. The light-colored bars represent unsettled build

issues, while the remaining dark-colored bars denote settled issues.

Out of the total 303 issues analyzed, 182 (60.1%) remained unsettled,

highlighting the persistent challenges faced in addressing build

issues experienced by non-contributors. To better understand the

characteristics of these symptoms, we further categorized them

into four broad categories: environment, process, system, and test-

related issues. By grouping the 14 symptoms into these categories,

we aim to provide a structured analysis of the underlying factors

contributing to build issues. In the following sections, we examine

each category, analyzing the symptoms and their implications for

build issue resolution.

Environment-related symptoms include those related to in-

compatibility and missing components, which together account

for the majority (181 out of 303) of build issues. Incompatibility-

related symptoms, such as those involving build tools, dependencies

(Dep.), and PL, occur when OSS projects cannot work with nec-

essary components. Missing-related symptoms arise when build

tools, dependencies, environment (Env.) variables (Var.), PLs, and

external resources are not available in the current workspace. These

two dependency-related symptoms have a high unsettled rate, a

finding that aligns with studies of contributors-experienced build

Figure 1: Symptoms experienced by non-contributors.



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Sunzhou Huang and Xiaoyin Wang

issues [9, 18, 17, 25]. Missing resources, common in evolving OSS

systems, are challenging for non-contributors to resolve due to the

difficulty in fetching external resources. The incompatible PL has

a good settlement rate, primarily because the error messages in

selected projects are easy to identify, unlike those for incompati-

ble dependencies. Missing environment variables may mask other

symptoms, as those issues require specific environment variables.

We observed during the coding process that many incompatibility

symptoms can be converted to other symptoms as non-contributors

seek solutions.

Process-related symptoms refer to build issues caused by

participants’ mistakes during key steps of the build process. For

example, “misuse command” symptom can occur when participants

fail to escape special characters in command options, and “remnant

conflict” symptom can arise when participants neglect to clean

up the build remnants. Resolving these issues can be complex if

participants are unable to correctly interpret the error messages,

and the difficulty can be compounded by the complexity of the

required build process.

System-related symptoms refer to “Insufficient system (Sys.)

resources (Res.)” and “Permission error”. The insufficient system

resources symptom ranks among the top four symptoms, as most

of the selected OSS projects are real-world projects that require a

larger amount of system resources than our participants anticipated.

Moreover, non-contributors often lack an effective approach to

estimating the system resources required before they perform the

build activities. This could explain the high unsettled rate of 10

out of 22. This symptom is also common since VMs created by

our participants typically do not have many redundant system

resources. For instance, participants experienced system crashes

due to disk space exhaustion, followed by failures to reconnect to

VMs. They did not realize the issue until the system resources were

exhausted. Another symptom is the “permission error”, which is

caused when underlying software requires higher permissions than

it currently has. In our study, we found that Docker commands

often need superuser permissions. This is a common issue among

OSS projects that rely on Docker [2].

Test-related symptoms refer to “Style violations” and “Test

case failures”. Style violation test failures typically occur when a

project does not adhere to a certain standard. Participants can often

find a workaround to bypass this issue. However, it is important to

note that the root cause of this symptommay be due to compatibility

issues. The most common symptom in our study is the “Test case

failures” symptom, which also has a high unsettled rate. This aligns

with existing studies [14, 20]. Notably, some test failure messages

are difficult to interpret, making it hard to identify the root cause.

The symptom could be the result of other underlying issues.

The distribution of these categories among the participants is

as follows: “Environment” was experienced by 29 participants

(93.6%), “Process” by 2 participants (6.5%), “System” by 10 par-

ticipants (32.3%), and “Test” by 24 participants (77.4%). Figure 2

illustrates the distribution of categories across different PLs. En-

vironment and test related symptoms are present in all PLs. In

contrast, system-related symptoms are project-specific, which can

be attributed to the fact that lightweight projects do not consume

significant system resources. Upon further investigation of process-

related symptoms, we observed that a participant encountered both

Environment Process System Test

C++

Go

Java

JavaScript

PHP

Python

40 1 5 22

31 0 5 14

42 2 9 11

19 0 5 16

9 0 0 15

40 0 0 17

0

10

20

30

40

Figure 2: Distribution of categories on PLs.

“Misuse command” and “Remnant conflict” issues in a Spring Boot

project. Despite its infrequent occurrence among the issues ob-

served, the “Remnant conflict” issue was identified in two projects,

one written in Java and the other in C++.

Compared to the study by Lou et al. [9], our study on the symp-

toms of build issues shows that non-contributors still frequently

experience the same symptoms as contributors. However, these are

mostly limited to issues caused by a lack of installation, version

incompatibility errors, and environment variable issues. We also

observed additional symptoms not covered by previous studies that

are related to participants’ actions, such as “Command misuse” and

“remnant conflicts”. As the 39.9% settlement rate shows, participants

found it difficult to mitigate most of these frequent symptoms as

well as identify the root causes of build issues. The strategies for

resolving these build issues tend to be more straightforward due

to the non-contributors’ lack of specific project knowledge and

experience. This limitation can make them more susceptible to

encountering certain build issues.

5 Discussion and Future Work

Although containerization holds promise for addressing certain

build issues, the lack of accessible container environments in non-

contributors’ local systems presented a challenge for many OSS

projects, including most of those in our study. A threat to the

validity of the findings is the subjectivity involved in determining

whether a build issue is trivial. This judgment depends on several

factors, including the individual’s level of knowledge and local

systems. Our future research will involve more participants and

focus on a specific scope to explore the correlation between various

factors and our findings. Additionally, we observed inconsistencies

in reporting, such as misinterpreted test results and misaligned

snapshots. Therefore, incorporating more monitoring measures

into the process could significantly mitigate these potential threats.

6 Conclusion

This paper investigates 303 build issues experienced by 31 non-

contributors. We found that non-contributors often struggle to

resolve issues due to limited symptoms. Our study provides valu-

able insights into build issue resolution from the perspective of

non-contributors, highlighting the importance of understanding

their behavior and challenges. This work lays the foundation for

further research in this area, with the ultimate goal of improving

the experience of non-contributors in dealing build issues.1

1This work is supported in part by NSF 1736209 and 1846467.



Build Issue Resolution from the Perspective of Non-Contributors ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

References
[1] 2017. Difference between downloading bitcoire core from bitcoin.org and compil-

ing from Github. https://bitcoin.stackexchange.com/questions/59875. Accessed:
2024-03-21.

[2] 2018. How to fix docker: Got permission denied issue. stackoverflow.com/
questions/48957195. Accessed: 2024.

[3] Amine Barrak, Ellis E Eghan, Bram Adams, and Foutse Khomh. 2021. Why do
builds fail?—A conceptual replication study. Journal of Systems and Software 177
(2021), 110939.

[4] John Downs, Beryl Plimmer, and John G Hosking. 2012. Ambient awareness of
build status in collocated software teams. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 507–517.

[5] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, Darko Marinov,
et al. 2016. Continuous integration (CI) needs and wishes for developers of
proprietary code. (2016).

[6] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do automated
builds break? an empirical study. In 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 41–50.

[7] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does socio-technical
congruence have an effect on software build success? a study of coordination
in a software project. IEEE Transactions on Software Engineering 37, 3 (2011),
307–324.

[8] Nándor Licker and Andrew Rice. 2019. Detecting incorrect build rules. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
1234–1244.

[9] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-
derstanding build issue resolution in practice: symptoms and fix patterns. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 617–628.

[10] ShaneMcIntosh, BramAdams, ThanhHDNguyen, Yasutaka Kamei, and Ahmed E
Hassan. 2011. An empirical study of build maintenance effort. In Proceedings of
the 33rd international conference on software engineering. 141–150.

[11] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E Hassan. 2015. A large-scale empirical study of the relationship between
build technology and build maintenance. Empirical Software Engineering 20
(2015), 1587–1633.

[12] Stack Overflow. 2024. Stack Overflow: a question-and-answer website for com-
puter programmers. https://stackoverflow.com/

[13] Shaun Phillips, Thomas Zimmermann, and Christian Bird. 2014. Understanding
and improving software build teams. In Proceedings of the 36th international
conference on software engineering. 735–744.

[14] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.
An empirical analysis of build failures in the continuous integration workflows of

java-based open-source software. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 345–355. https://ieeexplore.ieee.
org/abstract/document/7962384/

[15] C.B. Seaman. 1999. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on Software Engineering 25, 4 (July 1999), 557–572.
https://doi.org/10.1109/32.799955

[16] Mini Shridhar, Bram Adams, and Foutse Khomh. 2014. A qualitative analysis
of software build system changes and build ownership styles. In Proceedings of
the 8th ACM/IEEE international symposium on empirical software engineering and
measurement. 1–10.

[17] Matúš Sulír and Jaroslav Porubän. 2016. A quantitative study of Java software
buildability. In Proceedings of the 7th International Workshop on Evaluation and
Usability of Programming Languages and Tools. ACM, Amsterdam Netherlands,
17–25. https://doi.org/10.1145/3001878.3001882

[18] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(April 2017), e1838. https://doi.org/10.1002/smr.1838

[19] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C Gall. 2020.
Every build you break: developer-oriented assistance for build failure resolution.
Empirical Software Engineering 25 (2020), 2218–2257.

[20] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A tale of CI build failures: An open source and a financial organization perspec-
tive. In 2017 IEEE international conference on software maintenance and evolution
(ICSME). IEEE, 183–193. https://ieeexplore.ieee.org/abstract/document/8094420/

[21] YiwenWu, Yang Zhang, TaoWang, and HuaiminWang. 2020. An empirical study
of build failures in the docker context. In Proceedings of the 17th international
conference on mining software repositories. 76–80.

[22] Xin Xia, Xiaozhen Zhou, David Lo, Xiaoqiong Zhao, and Ye Wang. 2014. An
empirical study of bugs in software build system. IEICE TRANSACTIONS on
Information and Systems 97, 7 (2014), 1769–1780.

[23] Xiaoqiong Zhao, Xin Xia, Pavneet Singh Kochhar, David Lo, and Shanping Li.
2014. An empirical study of bugs in build process. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1187–1189.

[24] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhénuc. 2017. Do not trust
build results at face value-an empirical study of 30 million cpan builds. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 312–322.

[25] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhéneuc. 2019. A study
of build inflation in 30 million CPAN builds on 13 Perl versions and 10 operating
systems. Empirical Software Engineering 24, 6 (2019), 3933–3971.


