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Abstract— When multiple agents are engaged in a network
of conflict, some can advance their competitive positions by
forming alliances with each other. However, the costs associ-
ated with establishing an alliance may outweigh the potential
benefits. This study investigates costly alliance formation in the
framework of coalitional Blotto games, in which two players
compete separately against a common adversary and are able
to collude by exchanging resources with one another. Previous
work has shown that both players in the alliance can mutually
benefit if one player unilaterally donates, or transfers, a portion
of their budget to the other. In this letter, we consider a variation
where the transfer of resources is inherently inefficient, meaning
that the recipient of the transfer only receives a fraction of
the donation. Our findings reveal that even in the presence
of inefficiencies, mutually beneficial transfers are still possible.
More formally, our main result provides necessary and suf-
ficient conditions for the existence of such transfers, offering
insights into the robustness of alliance formation in competitive
environments with resource constraints.

I. INTRODUCTION

In adversarial settings with multiple competitors, agents
can often improve their performance by forming an alliance.
Businesses ally to outperform rival products [1], [2], [3], en-
ergy providers collaborate to succeed in markets [4], [5], and
nations join forces to confront mutual adversaries [6]. A fun-
damental underlying mechanism for each of these alliances is
an exchange of resources, whether they be financial capital,
electrical power, or military assets. By exchanging resources,
agents can fortify weaknesses, complement strengths, and
even intimidate adversaries.

However, when resources are lost in the process of an
exchange, deciding whether to form an alliance becomes a
more challenging problem. Moreover, inefficient exchanges
are ubiquitous: international trades are limited by regulations
and tariffs [7], [8], energy transmissions suffer from lossy
power lines [9], and sharing defense assets often incurs
myriad losses [10], [11]. In the presence of such limitations,
a critical question emerges: At what point do the costs of
forming an alliance outweigh its potential benefits?

Game theory offers a useful set of tools to study the value
of alliances in a variety of adversarial contexts [12], [10],
[13], [14]. This work focuses on competitive resource allo-
cation settings like the ones mentioned above, where agents
vie for prizes by strategically distributing their resources. The
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Fig. 1. A cartoon depiction of a coalitional Colonel Blotto game between
Players 1 and 2 and a common adversary. Player 1, Player 2, and the
adversary are equipped with budgets 0.5, 1.5, and 1, respectively. Player
1 and the adversary compete on the left set of contests with cumulative
value 1, and Player 2 and the adversary compete on the right set of contests
with cumulative value 1.2.

Colonel Blotto game [15], [16], [17] is a popular model of
competitive resource allocation in which two agents compete
by allocating their limited resources towards valued contests.
An agent wins a contest’s valuation if they allocate a greater
level of resources to it than their opponent, and each agent
plays with the goal of maximizing their accrued valuations.

To analyze opportunities for collaboration, we utilize the
model of the coalitional Colonel Blotto game, which has
been studied extensively in the context of alliance formation
[18], [19], [20], [21], [22]. In the coalitional Blotto game
(Figure 1), two players compete in separate standard Blotto
games against a common adversary. Previous work on these
games reveals a surprising opportunity for collaboration
between the two players: In certain games, if one player
donates, or transfers, a portion of their budget to the other,
then both players win more contest valuation in their separate
competitions than they would have had no transfer occurred
[18]. That is, one player becomes ‘weaker’, the other be-
comes ‘stronger’, but they both do better because of the
transfer. Transferring resources causes the adversary to alter
their allocation strategy, so the players can perform a transfer
that manipulates the adversary to their advantage.

However, if resources are lost in the process of an ex-
change, it is unclear whether this strategy remains viable. In
fact, it is known that in the extreme case where transfers are
lost entirely (i.e., one player simply disposes of some portion
of their budget without the other player receiving anything),
it is impossible for both players to improve simultaneously
[21]. In this work, we probe the granularity of this result to
better understand the limiting effects of costly exchange. In



particular, we study the case in which one player donates a
portion of their budget, but the other player receives only a
fraction of the sent amount. We interpret this as a model of
inefficient alliance formation, where the amount that is lost
in the transfer represents the inefficiencies associated with
forming the alliance. Within this context, we seek to under-
stand how losses affect the feasibility of budget transfers as
a means of mutually beneficial alliance formation, meaning
that the transfer improves the equilibrium payoff associated
with both players.

In our first contribution, summarized in Theorem 1, we
demonstrate that so long as the recipient receives a positive
fraction of the transfer, there exists a mutually beneficial
budget transfer in a nontrivial subset of games. In particular,
we provide necessary and sufficient conditions for when
forming an alliance is mutually beneficial. Then, we
abandon the requirement that transfers must benefit each
player individually, and instead study the more general
setting where the players seek to maximize their combined
performance. In the absence of inefficiencies, it is known that
the alliance can almost always improve its joint payoff by
performing a transfer [18]. Our second result asserts that this
conclusion no longer holds in the presence of inefficiencies.
Specifically, Theorem 2 asserts that inefficiencies eliminate
opportunities for the alliance to improve its outcome in a
nontrivial subset of games. Together, these results highlight
fundamental limitations and possibilities for alliance forma-
tion in competitive settings.

II. MODEL

A. Colonel Blotto Game

We begin our technical discussion with the classical
Colonel Blotto game, where two agents (say, Player 1 and the
adversary) simultaneously compete across a set of n contests
with valuations v1, . . . ,vn ≥ 0. Player 1 and the adversary
are endowed with budgets X1 ∈ R and XA ∈ R, respectively,
which they must simultaneously allocate across the contests.
Each agent knows the contest valuations and every agent’s
budget, but they do not know how their opponent will
allocate their budget. We denote a valid allocation decision
for Player 1 (and similarly for the adversary) by the tuple
d1 = (d1

1 , . . . ,d
n
1), where dk

1 ≥ 0 and ∑
n
k=1 dk

1 ≤ X1. Player 1’s
payoff for a given pair (d1,dA) is of the form

U1(d1,dA) =
n

∑
k=1

vk · I{dk
1 ≥ dk

A}, (1)

where I{·} is the usual indicator function, and the adversary’s
payoff is UA(d1,dA) = φ −U1(d1,dA), where φ = ∑

n
k=1 vk is

the cumulative valuation of all of the contests in the game.
Despite the apparent simplicity of the model, character-

izing Nash equilibrium allocation decisions in the classical
Colonel Blotto game is a historically challenging endeavor
that remains an open problem. Thus, in this work, we
focus instead on the General Lotto formulation1, a popular

1Although the game uses the General Lotto payoffs, we use the termi-
nology ‘coalitional Colonel Blotto game’ for consistency with the existing
literature [18], [19], [20], [22].

variant of the Colonel Blotto game that admits more tractable
solutions by requiring agents’ allocation decisions to be less
than their actual budgets only in expectation. The agents’
equilibrium payoffs2 for General Lotto games have been
characterized in [17] and are given by

UNE
1 (X1,XA,φ) =

φ

(
X1

2XA

)
X1 ≤ XA

φ

(
1− XA

2X1

)
X1 > XA

(2)

and UNE
A (X1,XA,φ) = φ −UNE

1 (X1,XA,φ) (3)

for Player 1 and the adversary, respectively.

B. Inefficient Coalitional Colonel Blotto Game
We now examine the coalitional Colonel Blotto game,

where two self-interested players compete against a common
adversary in disjoint Blotto games (Figure 2). Our goal is to
determine whether alliances can improve both players’ per-
formance, where an alliance is formed through the unilateral
transfer of budgetary resources from one player to another.
This analysis specifically focuses on the inefficiencies asso-
ciated with alliance formation, meaning that these transfers
are accompanied with certain losses. The coalitional Colonel
Blotto game proceeds in stages3 as follows.

Stage 0: Initial Game: The game is initialized (Figure 2,
left). Players 1 and 2 participate in standard Colonel Blotto
games 1 and 2, respectively, against a common adversary
who competes in both games. Player i ∈ {1,2} uses their
budget Xi to compete in Blotto game i for valued contests
with total valuation φi. The adversary is equipped with a nor-
malized budget XA = 1, so that a coalitional Colonel Blotto
game G is fully parameterized by G = (φ1,φ2,X1,X2) ∈ G =
R4
>0. At this stage, every agent has complete knowledge of

the tuple G and the subsequent order of play.
Stage 1: Alliance Formation: The players consider the

formation of an alliance which allows for the transfer of
budget from one player to the other. We denote a transfer by
τ ∈ (−X2,X1), which represents the net amount of budget
sent from Player 1 to Player 2. Here, a negative value
indicates that the transfer goes in the opposite direction.
A transfer effectively impacts the state of the game. More
specifically, for a transfer τ , the post-transfer budgets asso-
ciated with each player are given by

X1 ≜

{
X1 −|τ| τ > 0
X1 +β |τ| τ ≤ 0,

X2 ≜

{
X2 +β |τ| τ > 0
X2 −|τ| τ ≤ 0,

where β ∈ (0,1] is a parameter known to the agents before
the transfer occurs that captures the inefficiencies associated
with transferring resources; the case β = 1 is the fully
efficient setting considered in [18]. We say that a transfer τ

induces a new game G = (φ1,φ2,X1,X2), which every agent
has complete knowledge of after the transfer is complete.

2Here, we present results purely regarding the equilibrium payoffs and
direct the reader to [17] for more details regarding the equilibrium strategies.

3The coalitional Colonel Blotto game can be modeled as a sequential
(i.e., Stackelberg) game between the players and the adversary, where the
players solve a maxmin problem. However, for simplicity and consistency
with [18], we adopt the stage-based model described in the text.



Fig. 2. The stages of the coalitional Blotto game. (Stage 0) The game is initialized; each Player i ∈ {1,2} is endowed with a budget Xi and competes
across a set of contests with cumulative valuation φi. The adversary is endowed with budget XA = 1 and competes across both sets of contests. (Stage 1)
One player transfers a portion of their budget, τ , and the other player receives a fraction of the transfer, βτ , resulting in a new game G = (φ1,φ2,X1,X2).
(Stage 2) The adversary optimally divides their budget between the two games into XA,1 and XA,2. (Stage 3) The two disjoint Blotto games are played,
and Player 1, Player 2, and the adversary receive their equilibrium payoffs UNE

1 (τ;G), UNE
2 (τ;G), and UNE

A (τ;G), respectively.

Stage 2: Adversarial Response: After having observed
any transfer, the adversary decides how to divide their
budget between the two standard Blotto games (Figure 2,
center right). Depending on G, the adversary can optimize
their performance by strategically diverting more resources
towards one of the Blotto games. In particular, they can solve

argmax
XA,1,XA,2≥0

XA,1+XA,2≤XA

UNE
A (X1,XA,1,φ1)+UNE

A (X2,XA,2,φ2) (4)

to maximize their equilibrium payoff. The optimal solutions
to this problem, denoted by XA,1 and XA,2, are derived in
[18] and summarized in the forthcoming Table I.

Stage 3: Final Payoffs: In the third and final stage,
the two separate Colonel Blotto games are played and the
agents’ equilibrium payoffs are realized (Figure 2, right). In
Blotto game i, Player i allocates their post-transfer budget
X i and the adversary allocates XA,i. Each agent then receives
their equilibrium payoff as defined in (2) and (3), i.e., the
payoffs to Players 1 and 2 are given by UNE

1 (X1,XA,1,φ1) and
UNE

2 (X2,XA,2,φ2), respectively, while the adversary’s payoff
is given by UNE

A (X1,XA,1,φ1)+UNE
A (X2,XA,2,φ2).

C. Mutually Beneficial Alliances

The focus of this work is on identifying whether there
are mutually beneficial alliances in inefficient coalitional
Colonel Blotto games. Observe that the only decision for
the players to make in the above game is that of the transfer
τ . Hence, we express the equilibrium payoffs to Player i and
the adversary as UNE

i (τ;G) and UNE
A (τ;G) respectively to

specifically highlight this dependence. We say that a game
G has a mutually beneficial transfer if there exists a transfer
τ ′ such that

UNE
1 (τ ′;G)>UNE

1 (0;G) and UNE
2 (τ ′;G)>UNE

2 (0;G),

meaning that both players are better off after the transfer.
Figure 3 provides an illustrative example demonstrating that
in certain games, both the donor and the recipient of a
transfer can benefit. In the following sections, we generalize
this example and identify all such games where mutually
beneficial alliances exist in the presence of inefficiencies.

Fig. 3. The change in payoff ∆UNE
i (τ;G1)≜UNE

i (τ;G1)−UNE
i (0;G1) of

Player i∈ {1,2} as a function of τ for the game G1 ≜ (1,1.2,0.5,1.5) shown
in Figure 1. The blue and green bars above each plot indicate increases
in the payoffs of Players 1 and 2, respectively. When β = 1 (top), there
exist transfers for which both players’ payoffs increase, but when β = 0.5
(bottom), there is no transfer for which Player 2’s payoff increases.

III. MUTUALLY BENEFICIAL INEFFICIENT TRANSFERS

In this section, we present our first result, which is a com-
plete characterization of the set of games for which mutually
beneficial budgetary transfers exist for every inefficiency β .

Theorem 1. Let G = (φ1,φ2,X1,X2) be a coalitional Blotto
game with inefficiency parameter β ∈ (0,1].

(a) If there exists a mutually beneficial transfer τ ′ < 0 (τ ′ >
0), then X1

φ1
≤ X2

φ2

(
X1
φ1

≥ X2
φ2

)
.

(b) Without loss of generality, suppose that X1
φ1

≤ X2
φ2

. There



TABLE I
THE ADVERSARY’S OPTIMAL BUDGET ALLOCATION WHEN X1

φ1
≤ X2

φ2

Case Condition XA,1

1 X1
φ1

̸= X2
φ2

and φ2
φ1

≤ X1X2 1

2 0 < 1−
(

φ1X1X2
φ2

) 1
2 ≤ X2

(
φ1X1X2

φ2

) 1
2

3 1−
(

φ1X1X2
φ2

) 1
2
> X2

(φ1X1)
1
2

(φ1X1)
1
2 +(φ2X2)

1
2

4 X1
φ1

= X2
φ2

and 1 ≤ X1 +X2 XA,i ≤ X i, i ∈ {1,2}

exists a mutually beneficial transfer τ ′ if and only if

φ2

φ1
< X1X2 and (5)

β > min

((
4φ2X1

φ1X3
2

) 1
2
− X1

X2
,

(
4φ2X1

φ1X2

) 1
2
+

X1

X2

)
. (6)

The first part of Theorem 1 asserts that mutually beneficial
transfers must always go from the relatively stronger to the
relatively weaker player, where the measure of fitness of
Player i is given by Xi

φi
. The second part establishes that

budget transfers are viable for a nontrivial subset of games
so long as the inefficiency parameter β is positive; the case
where X1

φ1
≥ X2

φ2
follows trivially by swapping indices. This is

perhaps surprising, as one might expect that beyond a certain
point, inefficiencies would unequivocally prohibit alliance
formation, but this is not the case as shown in Figure 5.
Furthermore, from an implementation perspective, Theorem
1 offers a straightforward tool for players to evaluate op-
portunities for alliance formation: First, to determine which
player may be able to donate their budget, they can check
whether φ2

φ1
≤ X2

X1
. Then, they can simply verify (5) and (6)

to determine whether a transfer is in fact viable.

Proof. The proof proceeds by analyzing the change in each
player’s equilibrium payoff (2) as a function of the transfer τ .
Recall that Player i’s payoff depends on the adversary’s opti-
mal allocation XA,i toward their standard Blotto game, which
is derived in [18] and can be comprehensively described by
the four cases described in Table I and depicted in Figure
4. Note that when they play optimally, the adversary always
uses the entirety of their budget (i.e., XA,1 +XA,2 = 1).

To simplify our discussion, we define the subsets

Ci ≜

{
G ∈ G

∣∣∣∣∣ X1

φ1
≤ X2

φ2
and G belongs to Case i

}
for i ∈ {1,2,3,4}. When we write that G = (φ1,φ2,X1,X2) ∈
Ci, the reader should read this as ‘the parameters
(φ1,φ2,X1,X2) satisfy the conditions for Case i in Table I’
with X1 and X2 in place of X1 and X2, respectively.

Case 1: Consider any game G∈C1. In this case, XA,1 = 1,
meaning that the adversary does not allocate any budget to
game 2. Thus, Player 2 wins all of their contests to begin
with, so there is no transfer that can improve their payoff.

Fig. 4. Graphical illustration of the cases described in Table I for fixed
φ1 = 1 and φ2 = 1.2 when X1

φ1
≤ X2

φ2
. In Case 1, the adversary allocates the

entirety of their budget towards Player 1. In Case 2, the adversary reaches a
point of diminishing returns in game 1 and begins allocating budget towards
game 2. In Case 3, the adversary has a greater budget than both players
combined, so they equate their marginal payoffs in each game. In Case 4,
the marginal payoff is equal in each game and the adversary is indifferent.

Case 2: First, consider transfers going from Player 1 to
Player 2, i.e., positive transfers. If τ > 0, then the induced
G = (φ1,φ2,X1,X2) belongs to C2, so Player 1’s payoff

is given by UNE
1 (τ;G) = 1

2

(
φ1φ2(X1−τ)

X2+βτ

) 1
2
. Since φ1 and φ2

are strictly positive by assumption, and since β and τ are
appropriately restricted so that X1−βτ and X2+τ are strictly
positive, d

dτ
UNE

1 is strictly negative. This implies that for any
positive transfer, Player 1’s payoff decreases, meaning that
Player 1 can never benefit from transferring their budget.

Now, consider the case where τ < 0. A sufficiently large
transfer may induce G ∈ C3, or may result in X1

φ1
≥ X2

φ2
,

but in either scenario, Player 2 would be worse off since
their budget would decrease while the adversary’s allocation
towards their game would increase. Thus, we can limit our
attention to transfers that induce G ∈ C2, for which we have

UNE
1 (τ;G) =

1
2

(
φ1φ2(X1 −βτ)

X2 + τ

) 1
2
,

UNE
2 (τ;G) = φ2

(
1− 1

2(X2 + τ)

)
+

1
2

(
φ1φ2(X1 −βτ)

X2 + τ

) 1
2
.

Since d
dτ

UNE
1 < 0 (i.e., Player 1’s payoff increases), Player

1 will always accept a transfer from Player 2. Furthermore,
if d

dτ
UNE

2

∣∣
τ→0− < 0, then Player 2 would benefit from trans-

ferring a sufficiently small amount of budget to Player 1. By
simple calculus and algebraic manipulation, one can verify

that d
dτ

UNE
2

∣∣
τ→0− < 0 ⇐⇒ β >

(
4φ2X1
φ1X3

2

) 1
2 − X1

X2
.

Case 3: When τ > 0, the induced G may belong to
C2 or C3. If G ∈ C3, then Player 1’s payoff is given
by UNE

1 (τ;G) = 1
2 φ1(X1 − τ)+ 1

2 (φ1φ2(X1 − τ)(X2 +βτ))
1
2 .

It is straightforward to show that d
dτ

UNE
1

∣∣
τ→0+ < 0 ⇐⇒

2
(

φ1X1X2
φ2

) 1
2
< βX1−X2, but this condition is not satisfied by

any game where X1
φ1

≤ X2
φ2

. Furthermore, given that positive
transfers are not mutually beneficial in Case 2, it follows that
there is no mutually beneficial transfer such that G ∈ C2.



Fig. 5. Subsets of the parameter space where mutually beneficial and nonzero alliance optimal transfers exist for fixed φ1 = 1 and φ2 = 1.2. Only games
where X1

φ1
≤ X2

φ2
(dashed black line) are depicted to avoid redundancy. The shading illustrates a hierarchical relationship between the subsets, i.e., darker

inner subsets are fully contained in lighter outer subsets. (Left) Subsets of the X1-X2 space where mutually beneficial budget transfers exist for various
values of β . (Center) Subsets of the X1-X2 space where nonzero alliance optimal transfers exist for various values of β . The shades correspond to the same
values of β labeled in the left panel. (Right) The subset of the β -X2 space where mutually beneficial transfers exist (dark orange) and the subset where
nonzero alliance optimal transfers exist (light and dark orange) for fixed X1 = 0.5. The former subset is fully contained in the latter. In the light orange
region, alliance improvement comes at one player’s expense; that is, one player benefits while the other does worse, but their combined payoff increases.

When τ < 0, the induced G may belong to either C3 or
C2. In the former case, we have

UNE
1 (τ;G) =

1
2

φ1(X1 −βτ)+
1
2
(φ1φ2(X1 −βτ)(X2 + τ))

1
2 ,

UNE
2 (τ;G) =

1
2

φ2(X2 + τ)+
1
2
(φ1φ2(X1 −βτ)(X2 + τ))

1
2 .

It is straightforward to show that if d
dτ

UNE
2

∣∣
τ→0− ≥ 0, then it

will remain nonnegative for all τ ≤ 0. Furthermore, since
d

dτ
UNE

2 ≥ d
dτ

UNE
1 , both players will strictly benefit from

a net positive transfer when d
dτ

UNE
2

∣∣
τ→0− < 0 ⇐⇒ β >(

4φ2X1
φ1X2

) 1
2
+ X1

X2
. This is also a necessary condition for the

existence of a mutually beneficial transfer such that G ∈ C2,
since the set of induced games that satisfy the Case 2
existence condition can be reached through a transfer only
from nominal games satisfying this condition.

Case 4: For any game G ∈ C4, we show in Theorem 2
that the sum of the players’ payoffs is maximized, so there
is no mutually beneficial transfer.

IV. ALLIANCE OPTIMAL INEFFICIENT TRANSFERS

The previous section demonstrates that in spite of ineffi-
ciencies, players can still form mutually beneficial alliances
in many cases. In this section, we study how inefficiencies
impact opportunities to form alliances that are not necessarily
mutually beneficial, but rather jointly optimal. Mathemati-
cally speaking, we study transfers that solve

argmax
τ

UNE
1,2 (τ;G),

where UNE
1,2 (τ;G) ≜ UNE

1 (τ;G) +UNE
2 (τ;G) is the alliance

payoff. We call a transfer τ∗ that maximizes this sum alliance
optimal. Note that if a transfer is mutually beneficial, then it
must also improve the alliance payoff, but the converse need
not be true. This is formalized in the following Theorem.

Theorem 2. Let G = (φ1,φ2,X1,X2) be a coalitional Blotto
game with inefficiency parameter β ∈ (0,1].
(a) If there exists a nonzero alliance optimal transfer τ∗ < 0

(τ∗ > 0), then X1
φ1

≤ X2
φ2

(
X1
φ1

≥ X2
φ2

)
.

(b) Without loss of generality, suppose that X1
φ1

≤ X2
φ2

. There
exists a strictly negative alliance optimal transfer τ∗ if
and only if G ∈ G\G∗(β ), where

G∗(β )≜

{
G ∈ C2

∣∣∣∣∣ X1 +βX2 ≤
(

φ2X1

φ1X2

) 1
2
}

∪ C4 ∪{
G ∈ C3

∣∣∣∣∣ βφ1 −φ2 ≤
(

φ1φ2

X1X2

) 1
2
(X1 −βX2)

}
.

Theorem 2 effectively characterizes the gap between mu-
tually beneficial and alliance optimal transfers as illustrated
in Figure 5. However, there is an interesting technical dis-
tinction regarding these regions and their dependence on
the inefficiency parameter β : Although the players cannot
always mutually improve even in efficient environments,
the alliance can almost always improve only in efficient
environments. That is, the set of games in which mutually
beneficial transfers do not exist has positive measure for all
values of β , but the set of games in which alliance optimal
transfers are zero has positive measure only when β < 1;
when β = 1, one can easily verify that G∗(1) is the measure-
zero subset of G where φ2

φ1
= X2

X1
. In this measure-theoretic

sense, inefficiencies have a more pronounced impact on the
outcome of the alliance than they do on the individual.

Proof. The proof proceeds by analyzing the alliance payoff
in each of the four cases and computing its derivative.

Case 1: In this case, since the adversary allocates all of
their budget towards Player 1, the players can improve the
sum of their payoffs by transferring τ < 0 from Player 2 to
Player 1 until the induced G satisfies either Case 2 (in which
case they proceed according to Case 2 below) or Case 4.

Case 2: When τ > 0, the alliance payoff is given by

UNE
1,2 (τ;G) = φ2

(
1− 1

2(X2 +βτ)

)
+

1
2

(
φ1φ2(X1 − τ)

X2 +βτ

) 1
2
,

and its derivative d
dτ

UNE
1,2 is positive when

X1 +
1
β

X2 <

(
φ2(X1 − τ)

φ1(X2 +βτ)

) 1
2
.



However, it is relatively straightforward to show that this
condition is not satisfied for any game C2, so it follows that
any positive transfer cannot cause an increase in UNE

1,2 (τ;G).
When τ < 0, the alliance payoff is given by

UNE
1,2 (τ;G) = φ2

(
1− 1

2(X2 + τ)

)
+

1
2

(
φ1φ2(X1 −βτ)

X2 + τ

) 1
2
.

The derivative d
dτ

UNE
1,2 remains negative so long as

X1 +βX2 >

(
φ2X1

φ1X2

) 1
2

.

Thus, in any game where d
dτ

UNE
1,2

∣∣
τ→0− < 0, Player 2 should

transfer budget to Player 1 until either G∈C1 (in which case
they proceed according to Case 1 above) or G ∈ C4, or until

X1 +βX2 =
(

φ2X1
φ1X2

) 1
2
. In the latter case, the alliance payoff

is maximized, and τ∗ is the unique transfer that satisfies this
condition. Otherwise, if d

dτ
UNE

1,2

∣∣
τ→0− > 0, then the payoff to

the alliance is already maximized and τ∗ = 0.
Case 3: Following a similar procedure as above, it is

straightforward to show that when τ > 0, d
dτ

UNE
1,2 < 0 for all

games in C3; thus, any positive transfer cannot improve the
alliance payoff. When τ < 0, UNE

1,2 (τ;G) is given by

UNE
1,2 (τ;G) =

1
2

φ1(X1 −βτ)+
1
2

φ2(X2 + τ)

+(φ1φ2(X1 −βτ)(X2 + τ))
1
2 .

The derivative d
dτ

UNE
1,2 remains negative so long as

βφ1 −φ2 >

(
φ1φ2

X1X2

) 1
2
(X1 −βX2).

Thus, in any game where d
dτ

UNE
1,2

∣∣
τ→0− < 0, Player 2 should

transfer budget to Player 1 until G ∈ C2 (in which case they
proceed according to Case 2 above), or until βφ1 − φ2 =(

φ1φ2
X1X2

) 1
2
(X1 −βX2), at which point the alliance payoff is

maximized. Otherwise, if d
dτ

UNE
1,2

∣∣
τ→0− > 0, then the payoff

to the alliance is already maximized and τ∗ = 0.
Case 4: In Cases 1 and 2, the alliance payoff increases

when Player 2 transfers budget to Player 1 until reaching
a maximum, or until reaching Case 4. The symmetrical
statement is true for all games where φ2

φ1
≥ X2

X1
, meaning

that every transfer that improves the alliance payoff moves
towards the curve X2

φ1
= X2

φ2
. Since UNE

1,2 is continuous, we can
conclude that if G ∈ C4, then UNE

1,2 is already at a maximum,
and τ∗ = 0; similarly, if G ∈ C4, then UNE

1,2 is also at a
maximum, and τ∗ is the transfer that induces G.

V. CONCLUSION

In this work, we examine a multi-stage coalitional Colonel
Blotto game in which two players compete against a common
adversary by allocating their limited budgets towards valued
contests. We first show that under certain conditions, players
can form mutually beneficial alliances by transferring their

budgets even in the presence of inefficiencies. Then, we study
the alliance’s optimal performance, and we demonstrate that
inefficiencies limit opportunities for mutual improvement in a
nontrivial subset of games. These results lend novel insight
into the effects of inefficiencies on alliance formation and
prompt further investigation using practical examples.
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