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Incomplete and Asymmetric Information in
General Lotto Games
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Abstract—In this paper, we consider incomplete and
asymmetric information formulations of the General Lotto
game, which describes two opposing players that strategi-
cally allocate limited resources over multiple contests. In
particular, we consider scenarios where one of the player’s
resource budget is common knowledge while the other
player’s is private. Our main contribution provides com-
plete equilibrium characterizations in the scenario where
the private resource budget is drawn from a Bernoulli
distribution. We then leverage these characterizations to
analyze a resource assighment problem where a comman-
der must decide how to assign resources to sub-colonels
that compete against opponents in separate General Lotto
games. While optimal deterministic policies have previ-
ously been characterized in the literature, we broaden the
context by deriving optimal randomized policies, which in-
duce asymmetric information General Lotto games. Lever-
aging our equilibrium characterizations, we demonstrate
that randomization can offer a four-fold improvement in the
commander’s performance over the optimal deterministic
assignments.

[. INTRODUCTION

Obtaining informational advantages is a high priority for
competitors engaging in adversarial environments. It is crucial
for ensuring the security of many engineered and socio-
technical systems, such as cyber-physical systems, cyber net-
works, and critical infrastructures. More informed adversaries
are able to exploit system vulnerabilities, and likewise, a
system operator can implement more effective security mea-
sures by knowing the adversaries’ capabilities. The impact of
asymmetric information in strategic interactions is a topic of
broad interest, and has been studied extensively in the control
theory literature in the context of dynamic games, repeated
games, and controlled Markov processes [12], [20], [22], [33].
In these works, effective decision-making policies are derived
and computed.

This paper focuses on how information asymmetry impacts
a competitor’s performance in interactions that concern the
strategic allocation of resources. In particular, we consider
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incomplete and asymmetric information formulations of the
General Lotto game [11], [18], a popular variant of the
famous Colonel Blotto game. Two opposing players, .4 and
B, strategically allocate limited resources over a number of
valuable contests (or battlefields) [2], [7], [8], [16], [18], [27].
The objective for both players is to accumulate as much value
as possible by securing contests of interest. In order to secure
an individual contest, one must send a higher amount of
resources to that contest than the other player.

In our formulations, we consider a General Lotto game
where player A’s resource budget is a Bernoulli random
variable, and player  is uninformed about the true realization.
In other words, player A holds private information about its
true strength, while player B’s strength is common knowledge.
The primary contribution of this paper is the full derivation
of equilibrium payoffs and strategies to the Bayesian game
(Theorem 3.1). To do so, we exploit the equilibrium solutions
from all-pay auctions with incomplete and one-sided informa-
tion [30]. To the best of our knowledge, General Lotto games
with one-sided budget uncertainty have not been considered
in the existing literature.

A practical motivation for this study is the possibility
that player A’s randomized resource budget is determined
by an exogenous decision-maker. For example, .4’s endowed
budget comes from a higher-level authority (e.g. a government
or budget-deciding entity) that must decide how to assign
resources to multiple agents. An important application is
ensuring security at an airport. Resources (TSA agents and
security equipment) need to be assigned to multiple terminals,
and the resources are deployed by local decision-makers.
Incorporating randomization in the assignment policy is an es-
sential strategic feature that maintains unpredictability against
potential adversaries. This is strongly supported by research on
practical implementations for airport security, border security,
and the protection of wildlife [26], [31], [34].

Consequently, we also study a hierarchical resource as-
signment problem in which a high-level commander assigns
limited or costly resources to two sub-colonels [15]. The sub-
colonels then use their assigned resources to compete in a
General Lotto game against their respective opponents. Note
that in order to analyze such decision problems, it is necessary
to have equilibrium characterizations of the underlying Gen-
eral Lotto games. Indeed, the commander’s assignment policy
determines the informational environment of the underlying
General Lotto games. In particular, a deterministic assignment
policy induces complete information games, wherein the op-
ponents are informed of the sub-colonels’ assigned resources
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Fig. 1. (Left) In the Bernoulli Lotto game, one player’s resource budget
is drawn at random from a Bernoulli distribution and becomes private in-
formation. The other player’s budget is common knowledge. The primary
contribution of this paper provides full equilibrium characterizations of
this scenario (Theorem 3.1) (Right) A commander assigns resource
budgets to two sub-colonels, who subsequently engage in a Lotto game
with its respective opponent. Here, the goal of the commander is assign
resource so as to maximize the cumulative gains from the two sub-
colonels contests. We demonstrate that randomized assignment policies
can provide up to a four-fold improvement over the optimal deterministic
policies (Theorem 4.1).

(budgets). This is the setting analyzed in originating work by
Kovenock [15] as well as several subsequent studies [3], [4],
[9], [10].

On the other hand, a randomized assignment policy induces
one-sided incomplete and asymmetric information about the
sub-colonels’ budgets. Thus, our equilibrium characterizations
of asymmetric information Lotto games enable us to study the
performance of a class of randomized assignment policies in
the context of this resource assignment problem. The second
main contribution of this paper demonstrates that optimal
randomized policies can offer a four-fold performance im-
provement over optimal deterministic policies (Theorem 4.1).
A graphical summary of our main contributions in this paper
is given in Figure 1.

Related works: The primary literature on Colonel Blotto
and General Lotto games, which spans over 100 years, fo-
cuses on deriving equilibria under the assumption of complete
information. That is, all parameters — player budgets and
battlefield valuations — are common knowledge [2], [8], [18],
[19], [21], [27]-[29], [32]. Few contributions in the Blotto and
Lotto literature have shifted the focus away from complete
information settings [1], [6], [13], [24].

The first main result of this manuscript contributes to a
growing literature on Blotto and Lotto games with incomplete
information. Similar to our budget uncertainty setting, the
works [1] and [13] study settings where players have incom-
plete information about each other’s resource endowments.
The model studied in [1] considers the players to be equally
uninformed (no information asymmetry) about the budget
parameters, and hence symmetric Bayes-Nash equilibria are
identified. Incomplete information about battlefield valuations
has also been featured recently in the literature, with some
works considering uncertainty that is symmetric across players
[6], [14], and more recently, one-sided uncertainty [23], [24].

The second main result of this manuscript builds upon
a well-studied three-stage resource assignment problem [4],

[9], [10], [15]. The original formulation is due to Kovenock
and Roberson [15], where they derived optimal determinis-
tic assignment policies against two opponents. This paper
broadens the solutions to randomized assignment policies,
where we identify the improvement that randomization offers.
Several follow-up studies based on this framework have since
appeared, which have demonstrated the benefit of publicly
announcing resource transfers between allies [9], [10]. More
generally, [5] studies the dynamics of a multi-player network
of conflicts.

[I. MODEL: GENERAL LOTTO GAMES

We first introduce the classic General Lotto game with
complete information. We then formulate our model of one-
sided incomplete and asymmetric information on resource
budgets, which we term “Bernoulli General Lotto” games.

A. Classic General Lotto games

A (complete information) General Lotto game consists of
two players, A and 5. Each player is tasked with allocating
their resource budgets A, B > 0 across a set of n battlefields.
Each battlefield has an associated value v; > 0, j € [n] :=
{1,2,...,n}. Without loss of generality, their sum total is
normalized to one, .1, v; = 1. An allocation for A is any
vector ¢ 4 € RY, and similarly for B. An admissible strategy
for A is a randomization F4 over allocations such that the
expended resources do not exceed the budget A in expectation.
Specifically, F 4 is an n-variate (cumulative) distribution that
belongs to the family

F(A) £ (F :Bagunr | za;| <Ap. (1)

Jj=1

and similarly, Fg € F(B). Given a strategy profile (F4, Fg),
the utility of player A is

n

ua(Fa, Fp) Bainra D oMoy >as}| @
es~Fs |

where 1{-} is 1 if the statement in the bracket is true, and 0
otherwise!. It follows that the utility of player B is

ug(Fa,Fg) £1—ua(Fu, Fg) 3)

The unique equilibrium payoffs in General Lotto games are
well-established in the literature [11], [18]:
A .
wSJ(A,B)é{zB’ , 1hss o)
1-5%, ifA>B
and the equilibrium payoff of player B is simply 7§/ (A4, B) =
1—-7G (A, B). Note that the equilibrium payoffs do not depend
on the particular battlefield values vy, vs,...,v,. They only
depend on the total value Zi v; = 1, which is a common
feature in General Lotto games [11], [18]. We write GL(A, B)
to denote an instance of the complete information General
Lotto game.

'An arbitrary tie-breaking rule may be selected, without changing our
results. This is generally true in General Lotto games [18]. For simplicity,
we will assume ties are awarded to player B.



B. Bernoulli General Lotto games

Before play, the budget of player A is drawn according to
a Bernoulli distribution. With probability p € [0, 1], player A
is endowed with a high budget A" > 0, and with probability
1—p, it is endowed with a low budget A® > 0, where A* < A",
We denote this Bernoulli distribution as P4 = (A", A* p).
The realized budget is private information to player A. An
admissible action is thus a pair of strategies F W= {F" F"} ¢
F(AM) x F(A"), where F" or F* is implemented conditional
on which budget is realized. Player B does not observe the true
realization, but has knowledge about its distribution p. It thus
selects a single strategy F € F(B) to implement regardless
of which of A’s budget is realized. Given a strategy profile
(F4, Fig), the ex-ante expected utility to A and B are:

Ua(Fa, F) 2 p-ua(Fh, Fp) + (1
Us(Fa, Fg) 21— Ua(Fa, Fg)

— . e
p) - ua(Fy, Fp) 5)

We will refer to the simultaneous-move game with the above
expected utilities as a Bernoulli General Lotto game, and
denote an instance with BL(IP4, B). This is a Bayesian game
extension of the classic Lotto game. In the case that the
support of P 4 is a singleton, it becomes a game of complete
information, i.e. reduces to the classic General Lotto game
GL(A, B). A strategy profile (ﬁLFg) is an equilibrium of
BL(P, B) if

UA(F%, Ff) > Ua(Fa, Ff;) and Ug(F%, Ff;) > Ug(F, Fi)
(6)
for any 4 € F(A") x F(AY) and F € F(B).

[1l. EQUILIBRIUM PAYOFFS IN BERNOULLI LOTTO GAMES

The following Theorem is the main contribution of the pa-
per, which fully characterizes the players’ equilibrium payoffs
in the Bernoulli Lotto game. Recall that in the BL game, player
B is the information-disadvantaged player. These payoffs thus
quantify the degradation in performance for player B as a
result from not having full knowledge about the strength of
player A (see Figure 2). Analogously, from the perspective of
player A, the equilibrium payoff reflects its improvement in
performance due to information asymmetry.

Theorem 3.1. The equilibrium payoff to player A in the game
BL(P 4, B) is

mA(Pg, B) =
2AB’ (Ah7A€) € Rl
1-— % (Ah,Ae) € Ry
P+ (1 ) ( %) (AthZ) € R3 (7)
p+(1-p)a, (A", A%) € Ry
A(A— h
p+ (1 - p)4r + YAGEED
B(+/(1-p)At+VA ?
- ( 2(;?4}1)2 ) ) (Ah7A€) S Rf)
where A = pA" + (1 — p)A*, and the Ry, (k=1,...,5) are

disjoint subsets of R = {(A", A") e R% : A" > A"} defined

gws%

08 [ %10%
0 2 4 6 -
061 B _,1——‘
0.4r e 7
/) B
0.2} ,/, (Theorem 3.1)
o/ Rs Ry — Rs— R
0 1 2 3 4 5
Budget B

Fig. 2. The equilibrium payoff to player B in the Bernoulli Lotto game
is shown as the solid red line (Theorem 3.1). The dashed black line
indicates the equilibrium payoff to player B when it has full knowledge
about player A’s budget type (10). The inset plot shows the percent
improvement in payoff that pIayer B experiences as a result of obtaining
full knowledge, i.e. 100 X ("’5 1). In this example, A* = 5, A¢ = 1,

p = 0.5. In this example tﬁere is up to a 23% payoff improvement,
approximately occurring at B = 2. The improvement degrades as
player B becomes stronger.
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with the function H(a) defined as
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The equilibrium payoff to player B is given by mg(P4, B) =
1- 71-.A(]P).Aa B)

We devote Section V to the proof of Theorem 3.1, which
details the players’ equilibrium strategies and contains a dia-
gram of the five regions (8). The equilibrium payoffs depend
on the total value of all battlefields and not on any of them
individually, which is a common feature in General Lotto
games. The result simply generalizes to ||v||; - m.4 when the
total value of all battlefields is not normalized to 1, where
||lv]]1 is the ¢; norm of the vector v.

The characterization in Theorem 3.1 allows us to assess
the potential performance improvement that player B can
experience as a result from obtaining full information about



player A’s budget. Indeed, we highlight the impact of infor-
mation asymmetry by comparing the equilibrium payoffs in
BL(P 4, B) to the scenario where player B is fully informed
about the realization of player A’s budget, i.e. the budget type
is public. In the latter scenario, the equilibrium payoff to player
B will simply be:

g 2 p-mg (A", B)+ (1—p)-7g(A",B)  (10)

where ﬂ'gl was defined in (4). It immediately follows that
my > mg, since in this scenario, player B would have type-
dependent strategies (5), and thus can only benefit from the
public information.

Figure 2 illustrates player B’s equilibrium payoff in the BL
game as compared to its payoff under public budget types (10).
The benefit that information provides player B is shown in the
inset figure — the benefit that information provides degrades as
B becomes stronger, and it is highest when B is weak relative
to player A. Indeed, we see that the payoffs 75 (7) and 7%
(10) coincide when B = 0 and when B > A" (occuring in
R, region). Player B benefits most from information for a
budget value B between these two extremes, as we observe a
peak at B =~ 2 in this example. A comparison of the form of
Figure 2 allows one to weigh the trade-offs between the costs
and performance benefits from acquiring information about an
opponent’s strength.

V. COMMANDER ASSIGNMENT PROBLEM: THE VALUE OF
RANDOMIZED POLICIES

In this section, we apply our equilibrium solutions of BL
games to study a resource assignment problem in which a
central commander assigns resources to two sub-colonels in
order to compete against respective opponents. The primary
goal here is to quantify the performance improvement that
randomized assignment policies can yield over deterministic
assignment policies for the commander.

A. Commander assignment problem

In the following, we define a general model referred to
as the “commander assignment problem”, which incorporates
both per-unit costs for investment as well as a fixed budget
limit. Such setups are commonly considered in the literature
on Colonel Blotto games [19]. We note, however, that our main
analytical results in this section pertain only to two specific
formulations of this general setup, wherein the players either
have no budget limits (but non-zero costs), or they have zero
costs but are budget-limited.

Recall the scenario depicted in Figure 1 (Right) where
a commander is responsible for assigning resources to two
sub-colonels A;, .42 engaged in separate competitions against
respective opponents By, Bs. In this setup, there are limited re-
source budgets A, By, By, as well as per-unit resource costs
¢,c1,ce2 > 0 for the commander and opponents, respectively.
The interaction unfolds in the following three-stage extensive-
form game, which is also illustrated in Figure 3.

Stage 1: The commander chooses an assignment policy P,
which is a distribution on the sub-colonels’ resource as-
signments (A, A2) € R%,. The strategy becomes common

Stage 1 Stage 2 Stage 3
select assignment P Lotto games played
]P)] ]PQ ]P)] PQ
000 000|000 000
v
value ¢ value ¢q

[ ] ([ ]

-] ]

By B

select investments

Fig. 3. The three-stage commander assignment problem. In stage 1,

the commander decides how to assign resources to two sub-colonels.
The assignment policy P is either randomized or deterministic. Each
sub-colonel ¢ € {1,2} will use its assigned resources to compete
over a set of battlefields of value ¢;. In Stage 2, the two opponents
observe the assignment policy P, but not the actual realizations (if
randomized). The opponents invest in resource budgets B;1, B2, for
which they pay a cost ¢; B;. In Stage 3, two Bernoulli Lotto games are
played between each sub-colonel and opponent using their endowed
resources determined in Stages 1 and 2. The commander’s payoff is
the sum of sub-colonels’ equilibrium payoffs in their respective games
minus the expected cost to assign the resources from Stage 1 (12).

knowledge to the sub-colonels and the opponents. We say that
P is a randomized policy if its support is not a singleton, and
that it is deterministic otherwise.

We will consider distributions P such that each marginal
distribution P; on resource assignments to sub-colonel 4; has
at most two values in its support’>. The marginal P; is thus
associated with a Bernoulli distribution P; = (A, A% p;).
Furthermore, we will consider assignment strategies that sat-
isfy the commander’s budget in expectation:

>

(A1,A2)€Esupp(P)

Ep[A; + Ag] = P(A;1, As) - (A1 + A2) < Ac.

1D

Let us denote P(A¢) as the set of feasible policies P where

both of its marginals are Bernoulli and it satisfies the above
condition.

Stage 2: After observing the assignment policy P from Stage
1, each opponent individually decides an amount of resources
to invest in, By < B; and By < Bs.

Stage 3: Two independent Bernoulli Lotto games are played
simultaneously: G; = BL(P;, B1;¢1) between sub-colonel
Go = A; and opponent By, and BL(PP3, By; ¢2) between
sub-colonel A5 and opponent Bs. Here, ¢; > 0 indicates
the total value of the set of battlefields contested in G;, and
P, are the marginal distributions of the assignment policy.
The final payoff that the commander obtains is given by the
sub-colonels’ cumulative equilibrium payoffs from G; and G
minus the costs of resource expenditure:

W(P,By,By) £ Y ¢ - ma(Pi, Bi) — cEp[A; + Ag] (12)
i=1,2

2We focus on this class of randomized assignment strategies since our
results on BL games applies to two-type budget uncertainty. It is of interest
to extend these results to more than two randomized budget levels. We note
there are analytical challenges associated with these extensions, as outlined
in Section V.



The final payoff that opponent 5; obtains is

Ui(P, B, c;) £ ¢; - m(Pi, B;) — ¢; B;. (13)

The above extensive-form game will be referred to as
CAP(Ac, ¢, {Bi,ci,¢i}i=1.2). In order to elicit the benefit
from utilizing randomized policies P, we draw attention to
comparisons of the commander’s performance in CAP to
the scenario in which the commander only has access to
deterministic assignment policies. These are the set of all
P € P(Ac) such that both marginals IP; are singletons. With
this restriction, we refer CAP4(Ac, ¢, {B;, i, i }i=1.2) as the
extensive-form game where the commander is restricted to
deterministic policies. In addition, we focus on the following
two particular settings on the cost parameters.

o The fixed budget setting. Here, there are zero costs asso-
ciated with using resources, i.e. ¢ = ¢; = 0, and Ac,
B; < oo. The commander assignment problem CAP,
under this setting was first featured in [15], where optimal
deterministic assignments are provided.

o The per-unit cost setting. Here, c,cq1,co > 0 and there are
no resource budget limits, i.e. Ac, B; = oo. Formulations of
Colonel Blotto games are commonly analyzed under similar
linear cost models [13], [16], [17], [19], but have not been
considered in the commander assignment problem.

To the best of our knowledge, the commander assignment

problem with randomized policies (in either setting) is novel to

the literature. The sub-game perfect equilibrium (SPE) can be
derived via backwards induction by leveraging the fact that the
final payoffs in Stage 3 are computed directly from Theorem

3.1, and the opponents seek to maximize (13) in Stage 2 given

any fixed policy P € P(A¢). If there are multiple maximizers

of (13), we will assume B; chooses the smallest investment
level among them.

B. Results: the value of randomization

We present our results concerning the comparison of the
commander’s performance in CAP and CAPy4. Denote W* as
the SPE payoff to the commander from CAP (randomized
assignments) and W as its SPE payoff from CAPy (deter-
ministic assignments).

Theorem 4.1. The following statements hold.

o Under the fixed budget setting, i.e. c = ¢; = 0 and A, B; <
0o, it holds that W* = W}.

o Under the per-unit cost setting, i.e. c,c; > 0 and Ac, B; =
00, it holds that

0< Wy <W"<4-Wy. (14)

The equality W* = 4 - W} holds if and only if ¢ >

max{3 11+ cada), (1 + V3/2)}, where j =
arg min g; and k = arg max c;.
i=1,2 ‘ i=1,2

The proof is provided in Appendices A and B. The first
statement in Theorem 4.1 asserts that, surprisingly, any ran-
domized resource assignment can do no better than the optimal
deterministic assignment under the fixed budget setting. A
characterization of the optimal deterministic assignment is

Performance Improvement factor W*/W;

—W*, per-unit cost —Per-unit cost
— -W;, per-unit cost
PN —W*, general setting 3
So — =W, general setting

——General setting

Commander cost ¢ Commander cost ¢

Fig. 4. (Left) Comparison of commander payoffs from randomized and
deterministic assignments. The red lines depict performance under a
general parameter setting, where equilibrium is computed numerically
using the characterizations from Appendices A and B. The blue lines
depict performance under the per-unit cost setting, which are ana-
lytically characterized. (Right) The improvement factor, W*/Wd*. In
any setting, the commander can attain up to a four-fold improvement,
which is possible when the cost of resources for the commander are
sufficiently high. The parameters for the general setting in this example
are: Ac =1,B; = 04,c1 =c2=1,¢1 = 1, ¢p2 = 2.

available from [15]. Thus, the commander cannot profitably
exploit informational asymmetries in this scenario.

The second statement of Theorem 4.1 asserts that the
commander can attain up to a four-fold performance im-
provement over deterministic assignments when there are non-
zero marginal costs involved. The four-fold improvement is
attainable in a regime where the commander’s per-unit cost is
sufficiently high, i.e. when it is expensive to assign resources
to the sub-colonels.

In general parameter settings, there can be both positive
costs and finite resource budgets, i.e. ¢,c; > 0 and A, B; < oo.
While we do not provide full solutions in the most generality,
we note that their solutions can still coincide with those from
the per-unit cost setting or from the fixed budget setting. In
particular, the solution will coincide with the per-unit cost
setting if the cost c is sufficiently high because the commander
will not utilize all of its available resources Ac. The solution
will coincide with the fixed budget setting if all costs are
sufficiently low, such that all available resources AC, B; are
expended.

Figure 4 shows performance levels in an example setup of
this general context. Since the commander in this example
has a budget limit of Ac = 1, it performs worse for lower
costs ¢ in comparison to the per-unit cost setting in which
it has unlimited budget. We also show a comparison of the
improvement factors in the general setting and in the per-unit
cost setting. We observe that the performance improvement
factor is also upper-bounded by 4 in the general setting. This
can only be attained (in both models) for sufficiently high costs
c associated with the commander’s resources.

V. PROOF OF THEOREM 3.1

This section is devoted to the proof of Theorem 3.1 —
the characterization of equilibrium payoffs in the Bernoulli
General Lotto game. First it is important to note that the
seminal results for (complete information) Blotto and Lotto
games first recognized connections to all-pay auctions [18],
[27]. It leveraged known equilibria of all-pay auctions to derive
the equilibria to Blotto and Lotto games. In our formulation,
we leverage equilibrium strategies of incomplete information



all-pay auctions [30] to set up first-order conditions for the
BL game (subsections V-A, V-B, V-C). This forms a system
of non-linear equations associated with the players’ expected
budget constraints (1). The equations can be completely solved
to verify that they constitute equilibria to the BL game
(Proposition 5.1), but only for a subset of game parameters
(region R5). We complete the proof by identifying equilibria
to the remaining regions R;, ¢ = 1,...,4. These details
are given in subsection V-D. The uniqueness of equilibrium
payoffs follows from the BL game being constant-sum in ex-
ante utilities.

A. The connection to all-pay auctions

Consider a game instance BL(P 4, B). Player A’s ex-interim
constrained optimization, given type t € {h, ¢} is realized, can
be written as

Z/ [iFpj(ra;) = Nwag] dF ; + XA
0

J€[n]

max
{F.i\,j}je["]

15)
where A! is the multiplier on player A’s expected budget
constraint for type t € {h,¢} (1). Here, dF,tA,j refers to the
differential ff47 j (z)dx where fil, ; 1s the corresponding density
function. Player B’s constrained optimization is written as

max
{FB,j}jem

JE[n] t=h,t

(16)
where we denote p* = p and p = 1 — p, and Ap is the
multiplier on player B’s budget constraint. We observe that the
above are separable in the elements of the decision variables,
e.g. Fly; for each j € [n], and thus may be treated as n
independent optimization problems. For 4’s problem, a best-
response is any x 4 ; that maximizes v;Fp ;(z.4,;) — M@ a ;.
In an equilibrium, player A’s strategy Ff;" ; places support on
all such x4 ;. Similar conditions must simultaneously hold
for player B’s problem and strategy Fj ;. Consequently, the
necessary first-order conditions for equilibrium are

d ’Uj
din, [ﬁFB(xA,j) - xA,J} =0, t=h
a7
d t( Yt
dxp; Z p <)\BFA7j(xBJ) - xB,j) =0

t=h,¢

for each j € [n], where we denote p" = p and p* = 1 —
p. The conditions (17) are analogous to the conditions stated
for complete information Lotto games in [18]. However, the
difference in our condition is that player 4 has two distinct
types, thus requiring optimization for each type t.

Here, we have divided by the associated (positive) multiplier
in each condition, since this will not change the optimal
choices. The above conditions now coincide with the necessary
first-order conditions for equilibrium for n independent two-
player first-price all-pay auctions with incomplete and asym-
metric information for which player .A’s valuation for the item

in auction j in type t € {h, ¢} is %, and player B’s valuation

for the item is j\’—; The equilibrium strategies for each of the
n all-pay auctions can be characterized using results from the
economics literature [30]. These equilibria are detailed in the

next subsection.

B. Equilibrium strategies of all-pay auctions

We summarize the equilibrium strategies to a two-player
all-pay auction with incomplete and asymmetric information.
These results are derived from [30]. Define

1, ipr—Ezl
A

E2Q2, ifpl +(1-p)2 >landp <1 (18)
A A A
3, ifp¥s +(1-p)¥s <1

wi A
where w!y > 0 is player A’s valuation of the item given type
t € {h, ¢}, which satisfies w > w?. Player B’s valuation of

the item is wg. Also, define

Lhé{w@ itk =1
pwg, if k€ {2,3}

0, if%:l (19
L2 dul (1-pp), if k=2

(1 - p)wg, itk=3
L&+ 1"

Z Z p% [Uj F vtél,j (zB.j) — ABTB,;j ] dFpj+ABB.  The Lt are interval lengths where the equilibrium strategies

have support. Below, we provide explicit expressions for the
equilibrium strategies.

Lemma 5.1 ( [30]). The equilibrium mixed strategies for a
two-player first-price all-pay auction with two-type asymmet-
ric information are given as follows>:

Ifk=1:
Lh Lh
Fh=(1———)80+—Unif(0,L"), Fy{=26
A ( pr) * pus if(0, L%, Fa ° 0
Fp = Unif(0, L")
Ifk=2:
F = Unif(L*, L)
Lt Lt
Ff=(1- ———) 8y + ————Unif(0, L*
A ( (1—p)w5> O T s O LD )
Lt Lh
Fg = —Unif(0, L*) + —-Unif(L", L)
Wy Wy
Ifk=3:
F% = Unif(L*, L), F4 = Unif(0, L")
Lt Lt
Fg=|1- — | 80 + —~Unif(0, L")+
t;éwil wﬁl (22)

Ih
+ —-Unif(L*, L)
Wa
3To simplify exposition and notation where convenient, we sometimes
explicitly write CDFs as a mixture of uniform and point mass distributions.
We write Unif(a,b) = 1(z > a) min{;*_, 1} to represent the CDF of the
uniform distribution on (a, b) and 8o := 1(z > 0) for the CDF of a point
mass centered at zero.



In summary, the equilibrium strategies for player A are
a pair of univariate distributions on bids (F%, F), where
the shifted support of F fi indicates higher effort. Player B’s
equilibrium strategy is a single univariate distributions on bids
Fp, which is piecewise uniform.

C. Equilibria in the Rs region

We now propose a collection of strategies as a candidate
equilibrium for the Bernoulli Lotto game. Recall from (17) that
the item valuations in all-pay auction j are given by w! =
vj/A" > 0 for player A and wp = v;/Ag > 0 for player
B, in type t € {h,¢}. From Lemma 5.1, we have equilibrium
marginal distributions for each auction j. We naturally impose
the ranking A" < Af, which ensures that w”y > w%. Since the
multipliers A = (A%, A", \g) are variables, it is unknown a
priori which of the three cases in Lemma 5.1 to use. For now,
given a set of multipliers A = (A, A", \g), let us denote the
resulting distributions from Lemma 5.1 as F;‘A and Fé‘ for
each j € [n] and ¢ € {h,¢}. In the Bernoulli Lotto game, the
expected budget constraints must be met (1):

Z ExA’jNFZ,E [x‘A)]] = At7 t= h7 /

JEln]

Z EmB,jNFg [xBJ] =B (23)
JEln]

such that 0 < \* < A

This yields a system of three equations that we may use to
solve for the multipliers A. The value of k is not known a
priori, as it now depends on A. The values it can take, ke
{1,2,3}, correspond to transformed multipliers o = (0", *),
with ¢t := % > 0 for t € {h,¢}, lying in three disjoint
regions of Ri. These regions result directly from (18), and
are given below.

k=1,if po>1
k=2, if po'<landpo"+(1—p)o*>1 (24
k=3,if po"+(1-p)ot <1

The constructed strategies can take one of three different forms
described in Lemma 5.1, contingent on the value of k. Thus,
there are three distinct forms that the system of equations (23)
can take, which are given in (x) (top of next page).

Observe that the individual battlefield values v; do not
appear in these equations. In fact, one would arrive to the
system (%) when considering Lotto games with any number
n > 1 of battlefields whose total value is normalized to
one. The individual battlefield values do not play a role
in the analysis — only their total value. This is a common
feature in the analysis of General Lotto games, given the
independence of the strategies’ marginal distributions [16],
[18]. For simplified exposition, we will henceforth consider
players’ strategies as allocations to a single battlefield of value
one (F 4 and Fp with no 5 dependence).

Below, we detail the complete solutions to (x), and prove
their associated strategies (from (20)) constitute equilibria to
the BL game only in the R5 parameter region (Figure 5).

AAZ
Ro
AL — AP
Al = 1*FAh RS
2-p
B L
A=RB Ry
Al — pB?
Rs (1—p)(A* —2B)
B(1-p)t
Ri | o s —pp2
4 (1=p)(2B — 4F)
B B(2-p) Be+ ) An

T—p

Fig. 5. The five distinct parameter regions (8) that constitute equilibrium
characterizations of Bayesian Lotto games BL(P 4, B). In this diagram,
B and p are fixed.

Proposition 5.1. Each solution (", ', \g) to the system (%)

corresponds to a particular game instance BL(P 4, B), with

eqmllbrmm strategies and payoffs given as follows. Define
at & A = for t € {h,(}.

Case 1 1 The solution to (%) is given by \" = 2B’ A = g’g;,

and \* > —B in Case 1. The equilibrium strategies for a" <
1 and a* =0 are

F = (1 —a")do + a"Unif(0,2B), F4 = o,

: (25)
Fp = Unif(0,2B)
and the (ex-ante) equilibrium payoffs are
a” ah
ma=te, me=pl-T)+(1-p) (26

Case 2: The unique solution to (x) is given by o =

Al /((1—p) At B—(1—p)o‘ A’
(1_*) %, oh = %, and \p =

1—p)AL++/pAr+(1—p)AL
(\/( i 2?1/:;)2 = ) in Case 2. The equilibrium
strategies for a* < H (ah), where H is defined in (9), are
Fl =Unif (L, L),
1 —poh 1—poh .
Fi=(1-——"— )08+ ———Unif(0,L°) (27
e L P

Fi = (1 — po™)Unif (0, L*) + po"Unif (L*, L)

where LM = ﬁ and Lt = 1= p”

are

. The equilibrium payoffs

oh
ma =p(l—po") (1 - ) +AsB
U

8 = AgB — L' 4+ (1 —p)

(28)

Case3 A solution to (x) is of the form o €
h
2+r—Af) 5 (2+125) ;
1-~-1 p ’
AB
1

B—po" Al
(pyar> and

P )T
=3 Ah in Case 3. The equilibrium strategies for Ah =
rﬁ and2—p< £ <2—|——are
Fl = Unif(L L), FY = Unif (O,Lz)
Fg(z) = (1 —po" + (1 - p)o*)do
+ (1 — p)o‘Unif (0, L*) + po"Unif (L*, L)

(29)



Case 1: k = Case 2: k =2 Case 3: k=3
. 1 p , 1—po" h P h
— = )gAh = = AgA Srl-p=2xgA
® p(oh)2 B L B g tl-pr=2s
1 —poh)? 1—
(i) 0= A’ (o) At 1TP Al
2(1 = p)(a*)? 2 (*)
(i) po"A" =B pol A" + (1 — p)otA’ =B poAM 4 (1 - p)otA = B
such that such that such that
iv) po >1 po” < 1 and po” + (1 fp)oe >1 pol 4+ (1 7p)oj <1
(V) ol < ot o < ot o < ot
where L" = £ and L' = 1)\;51’ = 2A". The equilibrium in the expression for o/, we obtaln a!(1-p) (2—a") > —p.
payoffs are given by Hence, the positivity constralnt " > 0 is equivalent to
7TA:17>\BB, WB:ABB. (30)
Proqf. We divide this proof into two parts. In the first part, we ah <2, ora" > 2 and o’ < p . ) (33)
detail the steps used in each Case to calculate the algebraic (1-p)(a"—2)

solution to (x) and the set of game instances for which
it is valid. In the second part, we provide a proof that
the corresponding strategies recovered from (20) do in fact
constitute an equilibrium to the BL game.
Part 1: We will rely on shorthand notations a;
convenient.
Case 1 ] The solutlon to (%) can directly be found to be
M= A= 232, and any \¢ > 2B (to satisfy (v)). Such
a solution must also satisfy (iv), pol =1 / a” > 1. Combined
with (ii), the set of valid game parameters is " < 1 and

! = 0: player A’s budget in type h is smaller than player
B’s budget, and has a budget of zero in type ¢. Since A’
does not appear in the algebraic equations of (x) (only in the
constraints), this is essentially unique. Plugging these values
into (20), we obtain the resulting strategies.
Case 2: To solve for A, we have 1 — pol =
V/2(1 = p)A202 A% from (ii). Substituting into (i), we obtaln a
quadratlc equation in /Ag > 0. Its (positive) solution yields
the expression for Ag.

Multiplying (ii) by Az, the RHS of equations (i) and (ii)
become equivalent. From (iv) of (%), we use the substitution
1—po" = 1—(a") " +(1—p)o’ % to obtain o’ = [1—(a") ! |

‘/%. The condition (iv) requires po” < 1. Using

i
the substitution 0" = 1_(1;% from (iii), we deduce that
alh > 1:

= A;/B when

h _
po’ =

111 — el — (a1 | @/ (= p)a)
(a ) <1 (1 p) |]- ( ) | p+(1_p)ae/ah>
hy—1 (1 —p)at/ah
—1=(a")""| p+ (1 —p)aljar
> -1 (")
(3D

We can also deduce from (iii) and a™ > af that a® < 1. The
condition (iv) also requires poh +(1- p)aé > 1. From this,
we obtain

= (") <1

=1-(a"7? |=d" >1

1 —
at < Jah‘

2-p
Furthermore, the positivity of o is trivially satisfied. However,
positivity of o" requires that 1 — (1 — p)o‘a’ > 0. Plugging

(32)

Lastly, the constraint (v) requires o < o*. Plugging in the
expression for ¢, we deduce that a* (1 — (a" — 1)2) < (a"—
1)2a" 125 The term in parentheses on the LHS is positive
when ah < 2, and negative otherwise. Hence, we obtain

(ah—1)?
2—_ah )

%
< I-p
a@ >
=0,

The intersection of conditions (34),(32), and (33) on the budget
parameters A" and A’ derived directly from (iv) and (v),
yields at < H (ah), where H was defined in (9). This
establishes the set of games for which the system (x) has a
solution in Case 2.

ifl<a®<2

L (34)
if a” > 2

Case 3: We can directly obtain A\g =
1=p o well, from which we obtain A¢ =

2A° o
¢ _ B—pA'a
we have o° = T—p)Ar -

2Ah Note that \g =
172 A" From (iii),

Substituting this in the condition (iv),
(ah) 1(2+7_ah) .
P 2) . Sim-

< of, yields o" <

poh 4 (1—p)ot < 1, we obtain 0" >

1—11
(") (2+125)

A feasible o” elxists within these constraints if and only if

14 2=P

ab > 1 + %_%711%
than lower bound), and a" < 2 + 72 (lower bound must
be positive). Subsequently, (20) recovers the strategies (29).
The union of characterized parameter sets in all three cases

constitutes the R region in Theorem 3.1.

ilarly, constraint (v), o”

= 2 — p (upper bound must be larger

Part 2: We now verify the profile (F 4, Fg) recovered from
(20) is an equilibrium. We can immediately deduce the strate-
gies in Case 1 are equilibria to the BL game by observing that
player A has zero budget in type ¢, and (F;, Fjg) forms the
unique equilibrium to the complete information General Lotto
game [11] with a single battlefield of value p. We will focus
here on the strategies produced from Case 2, as the proof for
Case 3 follows analogous arguments.

We first calculate the (ex-interim) payoffs from the strategies



27).

o0
UA(Fh, Fy) = /O Fi(x) dFY

L ose 6] A
:/ [L,\ +,\"(fo)}—de
Lt p

= (1—po™) <1dh>+,\ Al

¢ < ¢ L\ .
UA(FA,FB):/O FB(:c)dFA:/O xﬁdm:)\ A

(35)

where recall L = L*+ L". The expected payoff (first equation
of (5)) to player A is then 74 = p(1 — pa™) (1 - —) +AgB
(using (iii)). The payoff to player B is 75 = 1 —74. We need
to show Fy is a best-response to Fp, and vice versa.

For any F'{' € L(A"), the payoff in type h is

LZ
Ua(F}, Fp) = /0 NoxdF'P+

I - (36)
+ / [LX + Mz — LY)] dFf + / dF’y
Lt L
. . e L 1h h [/Z
Using the identities [,, zdF’} = - fy =z
fLooa:dFXL and fLLg dF = fo fL dF’h, we
obtain
L* Lt
=\ =M / xdF;{L—Lf/ dF}
0 0
L L
+ A" (L/ dFZL—/ xdF;{l>
Lt Lt
+ A AR  LE(AE = A
)\h
<M AR L LA = Ny = A Al (1 - )0 - poh).
(37

The 1nequa11ty follows from two applications of Markov’s
1nequa11ty s :chj‘ < L'ff "dF!?, and — — [fxar) <

—L f e dFXL Hence the payoff in type h is upper- bounded
by A" A"+ (1—27)(1—po™), which can be attained whenever
supp(F'?') C [L*, L] (for which the Markov inequalities hold
with equality).

Analogous calculations for any F/{ € L(A") yields
Ua(F’{,Fz) < MA’. This upper bound can be attained
whenever supp(Ff) C [0, L%]. The strategy Fl4 = (Ft, F4)
satisfies these properties, and hence is a best-response to Fj.

For any Fj; € L(B), player B’s expected payoff (5) is

- A

Us(Fg, Fa) =p [/ =5

o0
(x — LY dFf + / dFg

Lt P L

Lt ¢ [es)
AL A
+(1p)|:/ (118 +1_6>dFl/3+/ dFp
0 § 24

oo
:ABB—ABLM(l—p)JFAB(L/ dF[g—/ xdF,g)
L

L

<AsB = AsL’+ (1 -p)
(38)
Player B’s upper bound on expected payoff can be attained
for any strategy with supp(Fy) C [0, L]. Because Fp is one
such strategy, it is a best-response to ﬁA. ]

D. Equilibria in regions Ry - R4

Here, we prove Theorem 3.1 for the remaining parameter
regions R;, ¢ = 1,...,4, which are also depicted in Figure 5.
We begin with the R3 region.

Lemma 5.2 (Region Rg3). Suppose the game instance
BL(P 4, B) belongs to the region

1—
R3:{ah22+1p and1§a4§2pah}- (39)
- -p

Then the following profile is an equilibrium

Fh = Unif (24%,2(A" — AY),  FY = Unif (0,24")
(40)
Fg=(1—(a")"")80 + (a*)~"Unif (0,24)

The equilibrium payoff is given by w4 = p+(1—p) (1 — 57 ).

2a’

In the R3 region, the high budget A" is disproportionately
higher than the low budget A*. In the equilibrium given above,
player B does not compete with the high budget at all, thus
giving a payoff of p to A outright.

Proof. First, we show ﬁA is a best-response to Fp. For any
{Ft € L(A"Y)},_,, ,» player A’s expected payoff is

240 NSRRI h * h

1—(a")" F’ F'

/0 ( (@)™ + A7 x)dA+/2Asz
2A% (aé)*l %)

—I—(l—p)/ 1—(a®)" '+ T dijJr/ dF’
0 24¢ 24

(1@
e p)<1 i ) (1)

The inequality follows by selecting any Fff such that
supp(F"f) C [2A4%, 00), which awards player A the payoff p
from state 1 outright. This is possible because a” > 2+ >
2, from the assumption. It holds with equality if and only
if supp(F’{) C [0,2A"]. We have thus established an upper
bound on A’s payoff to Fjz that is achieved by F A-
Now we show Fj is a best-response to F4. Let K =

p

A
2 (1-
p)— ahpiéaz > 0, which is non-negative due to the assumption
at < 1_—§ah. For any F}; € L(B), player B’s payoff is

204h-4% gyt 00
T dFy dF
P /QAZ Q(Ah —QAE) B+/2(Ah_AZ) B

24! x , 0o ,
T (1—p / 2 ar, +/ dF,
( ) . oqardfst [ d4FB

4 h £
L—p [24 ) » /2(A —ah
= — F _ F
oAl J, BT oo —oan . B
’ 2(Ah — A%) o
pA / /
- -1 - dF) dFj
(Ah—2A£ ( p))/er B+/2(A’L7A3) B
. 42)
Applying the identity fo o dF =B — [, 2" dFl’3 -



f;(oA,_ ¢y € dF, we then obtain

1 paah-al) ) pah-af
=K|——— dF; dF;
( ZAZAAZ o B+/2Aé B)
(a)~* /°° / 1*p/°° /
+(1—-p)—F—+ dFg — — z dFj
( ) 2 2(Ah—A£) B QAZ 2(Ah—AZ) B
£\—1 h 00
S(l—p)(a; +<p+(1—p) (2—(14»/ dFg
a Q(Ah,AZ)

N—1
S(lfp)(az)

(43)
The first 1ne%1uahty results from applying Markov’s inequality

to 225"? “*) 2 dF} and f2 an_ a0y T dFg. The second in-
equality follows from non- p051t1V1ty of term in parentheses
(from assumption of the Lemma). This inequality holds with
equality if and only if supp(Fj) C [0,2A°]. We have thus
established an upper bound on player B’s payoff to F4 that
is achieved by Fp. |

Lemma 5.3 (Region R,). Suppose the game instance
BL(P 4, B) belongs to the region

p
(1= p)(a”

Then the following profile is an equilibrium:

Ry = {a > 2+ and

5 <a' < 1}.
(44)

1_

F% = Unif (2B,2(A" — B))
F4 = (1 —a")d + a*Unif (0,2B)
Fp = Unif (0,2B)

(45)

D . . . £
The equilibrium payoff is given by T4 =p+ (1 —p)%-.

A similar intuition to the Rg region holds for the R4 region.
In the equilibrium given above, player B does not compete
with the high budget at all, thus giving a payoff of p to player
A outright. The proof follows similar calculations to Lemma
5.2, and hence is omitted.

Regions R, and R:

Consider the set of (a”,a’) € Ry U Ry that have a fixed

average budget a. Define the pair of budgets

(@/p,0) € R, ifa<p

a2 (2-p/a,H2-p/a)) €R, ifp<a<l (46)
((2—-p)a, (1 —p)a) € R, ifl<a

where H is defined in (9) and R = {(a”,a’) : a" > a’}. The

points a® specified above for @ < 1 are on the border of R,
whose equilibria are given in Proposition 5.1. The points for
1 < @ are on the upper border of R3, where an equilibrium
is given in Lemma 5.2. Define

given by (25) at a®, ifa <p
764 2 given by (27) at @™, ifp<a <1 (47)
given by (29) at a™, ifl<a
Here, Fﬂd is an equilibrium strategy for player A4 at the

boundary point a™. Let us also define (Fa,F) as the

equilibrium at (@,a) € R, which is simply the equilibrium
in the corresponding complete information game. That is,

Pyl (1 —a)dp + aUnif([0,2B]), ifa<1
Unif([0, 24]), ifa>1
(48)
7 o JUnif([0,2B)), ifa<1
BTN —a s + atunif([0,24]), ifa>1
Lemma 5.4. Suppose the game instance BL(IP 4, B) belongs

to R1URa. Let a € [0,1] be the unique scaling that gives
aat® + (1 —a) - (a,a) = (a",a’). Then the profile
(aFy

+ (1 —a)Fy, Fp) (49)

is an equilibrium profile, with equilibrium payoff TG (A, B).

Player A’s equilibrium strategy in (49) is a convex com-
bination between an equilibrium strategy on the border* of
Rs5 and equilibrium in its corresponding benchmark complete
information game GL(A, B). As a result, the equilibrium pay-
off coincides with the equilibrium payoff of the corresponding
complete information game.

Proof. Since we know that (F4, Fig) is an equilibrium, it will
suffice to show that (FE{’, Fp) is also an equilibrium for all
a. One can verify that the payoffs from (F9%, Fjp) indeed
coincide with the payoffs from (FA, Fp).

For a < p, the equilibrium at a" is given by Case 1 (25),
where player B’s strategy is precisely Fig. For p < a < 1, the
equilibrium at a®™ is given by Case 2 (27), where it is also
true that player B’s strategy is F'g (on these border points,
o = 0%. For 1 < a < -1, the equilibrium at a™ is given
by Case 3 (29). We note that although player B’s equilibrium
strategy here is not unique, Fz is one such strategy.

L a, (ﬁi‘i,ﬁg) is an equilibrium at a",

Lastly, for e <

where F‘:'Z‘d is player A’s equilibrium strategy at the border
of R3 (40). This strategy is also identical to the monotonic
equilibrium strategy from Case 3 (29). Hence, the proof that
(F%, Fp) is an equilibrium follows from the analysis in
Proposition 5.1. Note that player B’s R3 equilibrium strategy
written in (40) is not Fg. Indeed, Fz in general is not an
equilibrium strategy in the interior of R3. At the border
however, we know of at least two equilibria (giving the same
payoffs), one of them being (F%, F). [ |

We have established equilibrium strategies and payoffs for
each of the five regions, which completes the proof of Theorem
3.1

VI. CONCLUSION

This paper considers a class of asymmetric information
General Lotto games, where one of the player’s resource
budget is assigned randomly according to a Bernoulli distribu-
tion, while the opponent’s endowment is common knowledge.
We fully characterize equilibrium strategies and payoffs in

4Since equilibria on the border are not necessarily unique, i.e. Case 3
parameters of Proposition 5.1, the equilibria in the regions R 1 and R2 are not
unique. However, all equilibria in one game instance yield identical payoffs,
since it is a constant sum game (in ex-ante payoffs).



this class of Bayesian games. Furthermore, these equilibrium
characterizations allow us to determine how a high-level
commander could benefit from randomly assigning resources
to two sub-colonels that engage with two respective opponents
in separate General Lotto games. Interestingly, randomized
assignments can improve the commander’s payoff four-fold in
comparison to the optimal deterministic assignment, in settings
with a per-unit cost for deployment. In settings with fixed
resource budgets, randomized assignments do not offer any
strict improvement over deterministic ones.

There are several interesting directions for future research.
One can consider extensions in which players are making
resource allocation decisions in an online fashion without
knowing the opponent’s budget, which would necessitate using
tools from reinforcement learning and dynamic programming.
It would also be of interest to extend the assignment problems
to account for more than two sub-colonels, and scenarios
where the players enter and leave the contests in a stochastic
fashion.
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APPENDIX

A. Optimal randomized assignments — per-unit cost
setting

We proceed to derive the solution of CAP under the per-unit
cost setting by first solving the optimal opponent investment
decision in Stage 2. Recall that by the beginning of Stage 2, the
commander has chosen a feasible assignment policy P € P.
The marginal distribution P; is thus represented by a Bernoulli
distribution (A”, A% p;). The Stage 2 decision problem for
opponent B; is therefore

max {¢i - m3(Ps, B;) — ¢;B;} (50)

where 7 is given in Theorem 3.1.
Lemma A.l1. Consider the Stage 2 decision problem for

4
opponent B; in CAP (50). If A > ;:pi, then the optimal

Al pi
investment for B; is given by

[ diAi o Pi
B*(]P)l) = ZCi ’ lf‘cl < 27A—1

T .
0, otherwise

(G



— £
where A; .= p; Al + (1 — py) AL If 2;; < é Z‘ then
\/ Agiqula ifci € [07>‘1)
« —oAle. . Y
Bi (P;) = @ 1’21,6);41451, if ¢; € [\, ¢! pz)a»,) (52)
0, if e > G5

(VI = pi) AL + VA)2

Proof. The optimal investment is the maximizer of the opti-
mization problem (50). For simpler exposition, we will drop
the subscript ¢ on all variables in this proof since identical
analysis applies to both opponents.

Flrst suppose F > 5 1= p . From (7), we have n3(P4, B) =

75 (A, B) for all B’ > () and therefore B* is given by (51).
A* 1—

Now, suppose 47 < 2_5 . Leveraging the characteriztion
from Theorem 3.1, we can write m3(P4, B) as

where we have defined \; = SCAFYE

(1-p)shae, if B< A’

(1—@(1—% , if A< B<Y?
- T(A—pAF

(1—p)(1— 4 - YA | g ifylcB<yh

p(1-45)+0-p(1- g‘;) it Y < B

(53)

whereh w? have written Y! £ \/ﬁf:ﬁ?ﬁ, and Y £
ﬁ%. The entries in the expression above corre-

-p

spond to payoffs in regions R3, R4, Rs5, and R;, respec-
tively (Theorem 3.1). The values for B* result from solving
2 (m5(Pa, B) — ¢B) = 0. Note that the first and third entries
provide linear returns on investment B. Therefore, there are
multiple maximizers when the per-unit cost coincides with
these slopes. In particular, when ¢ = X or ¢ = %, the
payoff m5(P4, B) — ¢ - B is constant for all B € [Y*¢ Y"]
or B € [0, A?], respectively. Since player B prefers the lowest
investment level, we thus obtain (52). |

Now that we have established the optimal decision in Stage
2, we can now consider the optimal commander’s assignment
decision problem in Stage 1, which can be stated as:

w £ %163‘73({% 4Py, BY (P1)) 4 ¢2 - ma(P2, B;(P2))

—C- E[{D[Al + AQ}}
(54
Before addressing (54) fully, we first consider an interme-
diate step where the commander has a fixed budget A > 0
and zero cost ¢ = 0. The intermediate decision problem is:

Wi £ maX {051 mA(Py, BT (P1)) + ¢2 - ma(P2, B3 (P2))}

PeP
(55)
where B is given in Lemma A.1, and P(A) denotes the set of
all randomized assignment policies with Bernoulli marginals
that meets the expenditure budget A in expectation. Note that
any feasible P € P(A) induces expected endowments A; =
pi Al + (1 — p;) A? for each sub-colonel, where A; + Ay = A

is satisfied. The optimization (55) can thus be re-written as:

Am%i Z max ¢i - ma(Py, Bf (P;))
(A1, A2): i=1,2 P;:(Ai ’Ai’pg')’ _
A+ A=A piAl (12 p) Al= A,

(56)

The following Lemma provides the optimal Bernoulli dis-

tribution for sub-colonel 7 given a fixed expected endowment
A;, i.e. the solution of each inner maximization above.

Lemma A.2. Given a fixed expected endowment A; > 0 for
sub-colonel 1,

I1; (Aj; ¢5) £ max
Po=(A}ALpo):

piAl+(1—pi) AL=A4;
A i bi

_ ) V2eaidi ifee 0, 37)

d)iv ifci > 242.

The optimal Bernoulli distribution that achieves the above

¢i - ma(Pi, B (P;))

(57)

payoff is
S (I e
‘ l (Aqua X) lfci > 2(%1'
(58)

From (57), we see that the optimal Bernoulli assignment can
double sub-colonel i’s payoff compared to the deterministic
assignment A;.

Proof. We will again drop the subscript ¢ € {1,2} on all
variables since identical analysis applies to both contests. Let
us define TI(P) £ ¢ - m4(P, B*(P)) as the objective of (57)
and use f = ﬁ—i € [0,1] as a change of variable. Note that a
choice of p and f determines A’ and A" through the constraint

A = pA" + (1 — p)A*. Using Lemma A.1, if f < é%z, we
can write
cgd if ¢ € [0, )
H(B) = § po+ /084 ipe ey, Oope) (59
o, if ¢ € [0 o0)

where A= ¢%(\/(1 —p)f+p+ (1 —p)f)>If

f> 1 , then
cpA . 9
T1(P) = 5, fe<gz (60)
o, else

We first characterize the solution of finding the optimal f €
[0,1] given a fixed p € [0, 1] and expected endowment A:

II*(p) £ max II(P) (61)

felo)
under the parameterization A" m and then optimize
IT*(p) over p. Such an approach yields the optimal value of
(57) because as we will show, each of the values II*(p) are
well-defined and are attained for some f* € [0,1], and the
maximum of IT*(p) is attained for some p* € [0, 1].



When p = 0 or p = 1, the setting becomes a complete
information game where the budget is deterministic, so that
Ah = At = A, or equivalently, f = 1. Hence, the optimal
payoff IT*(p) is given by (60).

When p € (0,1), we observe that A(f) is strictly increasing
in f, taking the value for f = 0. From (59), we then have

H(P) = /5

IT*(p) = for ¢ < %2}. When ¢ > 23’5, we observe f
can be set to 1, making (60) active, and ensuring the maximum
payoff of ¢.
2
For ¢ € [%, %), we claim the value f* that satisfies
A(f*) = c characterizes the solution A"*, A** to (61). Such a
value must exist and is unique, since A(f) is strictly increasing
in f with A(1) > 2%1. One can solve this equation for
f* as follows: make the substitution y = p + (1 — p)f to
obtain y(/y —p + /¥)*> = 2cA/¢, which has the solution
:M.We then get f* = 2c4/¢ .
2+/2cA/dp—p & f (1*P)(2\7/20A/¢'*P) I=p
and subsequent endowments A" = ¢p2V2A/O7P ang Al —
L <A _ po2y2eA/d7p) ) Denoting P* = (A"* A% p),

2c
1-p 2c
from the second entry of (59) (since ¢ = \) we have II(P*) =

Do+ /c¢(1;p)A[* _ %4» cpA

5. The second equality follows
2
¢
due to ¢ > ’"27.

We verify that II(P*) > TI(P) for any other P =
(AR, A* p) satisfying the expected endowment constraint. Let
f=AYJA" For any f > f*, A(f) > A(f*). Since c is fixed,
we thus obtain

for all c < % regardless of f. Therefore,

chA
2

A
I(P) = % < II(P*) (62)
For any f < f*, we must have A* < A% (and A" > A"*). We

cp(1—p)A* ch(1—p) AL*
then have II(IP) :pd)+\/@<p¢+\/@:

TI(P*). We thus obtain

()= Y24 /oot g2e <cc o (63)
i @
¢, lfﬁ<

and the optimal randomization is
(Ah*7A€*) —
2\/2cA/p—p 1 — pp(24/2cA/p —
QS ) A—
2c 1—p 2c

m))

(64)
We can now readily obtain the optimal value of (57) by finding
the maximum value of IT*(p) (63). We observe sub-colonel
i obtains the maximum payoff ¢ for high costs ¢ >
irrespective of p. So, suppose ¢ < A
we may write

9
2A°
is fixed. From (63),

,V/2cA/9]
if p € (\/2cA/,1]

X By (LA ifpe (0
II*(p) = i ,

2

The expression % + 4/ %A is strictly increasing on p €
(0,1/2cA/¢]. Hence IT* is maximized at p* = \/2cA/¢. This
gives the payoff \/2cpA =2 - 7. [ ]

With the optimal marginal distributions established with
the above Lemma, we are now ready to derive the solution
of (55): the commander’s optimal assignment given a fixed
budget A > 0 and zero cost ¢ = 0. Below, we provide the
optimal assignment P € P(A) and the resulting payoff W}.

Lemma A.3. Suppose c = 0, A < oo. The optimal assignment
P* that solves (55) is given in the following cases below.

Case 1: Suppose A < min;—; 2 % Let A7 =
c1p1A capa A AR
Cl¢11+162¢2 * Cl¢21+262¢2’ pl - 201A:{/¢1’ and

o \/QCQA*/Q/)Q Then P*(0,0) = (1 — p})(1 — p3),
* A3 * Al * *
P 0,\/%?) = (1-pi)ps P ( o 70) =pi(1-p3),
P* \/ﬁf1 A/ Ai?) = pips. The resulting performance is

DN ¥

Wi = v/2A(c1¢1 + c292).
Case 2: Suppose min;— o M <A< 2‘111 + ;;22 Let
k = arg max ¢;, A} = 2% Aik =A- i—" and p*
i=1,2
\/2c_A*, /d_i. Then
A P
Pi(AD) =1 and P, = < ’m,o,p*k> (69
2C_k
The resulting performance is W3} = o +

oo (4- £2).

Case 3: Suppose A > 2‘% + 2% Then any P* that satisfies

* * *\ * ) @ *
P*(A}, A3) = 1 for some A} € [32-,A — 32] and A5 =
A — AY is an optimal assignment. The resulting performance

is Wi = o1+ ¢

The proof was reported in [25]. The result below gives the
solution to the optimal Stage 1 assignment problem (54) and
corresponding final payoff W* for the commander in the per-
unit costs setting.

Lemma A.4. The commander’s optimal Stage 1 assignment
P* and corresponding final payoff W* in the extensive-form
game CAP under the per-unit cost setting is given as follows.
Let k = arg max c¢;.

i=1,2
o If ¢ < cy, then W* = (1 — 35-)¢1 + (1 — 55 )2 and
P* (21, 22) = 1. The resource expenditure is A* = o + 22

2cy1 7 2¢o . 2cy 2co "
o lfc_i <c<cg, then W* = ¢, and

* (bk * ¢7k C—k
Py =1 d P, =—,0,—|. 66
(2ck) a —k 2c c (66)
The expected resource expenditure is A* = == 55)2 B4 2’1 T

o If ¢ > cy, then W* = 2015282 gpg P*(0,0) = (1 —
e1/e)(1-c2/e), P* (0,22 ) = (1=c1/e)-(ca/e), P* (£2,0) =
(e1/e) (1-cafe), P (2, 2)

c1p1tca ¢2
2c?

= A2, The expected resource

expenditure is A* =



Proof. The solution of (54) under per-unit costs follows from
solving the optimization problem

max{Wi —c- A 67
Azo{ A } (67)
where we denote W} as the performance from Lemma A.3.
It is a concave objective, and the critical point A* lies in
(0, min;—; o M)’ [min_; c1p1+Cody ﬂ+2%), or at

20? 20? ? 2¢1
* _ 61 o P2 ; o
A = 2y + 52 dependlng on whether.c > max; ¢, ¢ €
(min; ¢;, max; ¢;), or ¢ < min; ¢;, respectively. [ |

We note in the result above that the optimal assignment is
completely deterministic when the commander’s cost is low
(¢ < c_g), and is randomized on both marginals if the cost is
sufficiently high (¢ > c).

B. Optimal deterministic assignment — per-unit cost
setting

The solution of CAP4 under the per-unit cost setting, i.e.
Ac = By = By = oo with ¢,¢q,¢o > 0 is derived in a
similar manner to Lemma A.3. Recall that by the beginning of
Stage 2, the commander has chosen a deterministic assignment
(A1, As). The Stage 2 decision problem for opponent B; is
therefore

1
g}zgé {d)z t T (Bza Az) - Csz} (68)
where 7! is defined in (4). Here, a complete information
General Lotto game is played at Stage 3 since the opponents
have observed the deterministic assignment (A, As).

Lemma B.1. Consider the Stage 2 decision for opponent B;
in CAP; (68). The optimal investment for B; is given by
[$idi  ip . o Di
Bi(a) =V Ve e (69)
0, otherwise

Recall we are using the assumption that B; chooses the
smallest investment among multiple maximizers of (68). In
Lemma B.1, this only arises if ¢; = ;X.

Now that we have established the optimal investment in
Stage 2, we can address the commander’s assignment decision
problem in Stage 1. As an intermediate step, we first consider
the optimal assignment problem when the commander has a
fixed budget A > 0 and zero cost ¢ = 0:

{6174, (A1, BY) + ¢ 73, (A~ Ay, B} (70)

Below, we give the optimal assignment of (70).

Lemma B.2. The optimal deterministic assignment to (70) is

. . cipi(A— ;i:i,
given by the following cases. Define Q; = \| ————
fori=1,2.

Case 1: A < minj—2{55}. Then A} = 22— A and

W; — /A(Cl¢12+02¢2).

Case 2: minizl,g{ d)i} < A< maxi:LQ{ i } Letj =

2¢; 2¢;
argmin {g=}. If A > % then At = 2i
i€{1,2} B i

2c;

and

Wi =¢;+ Qs If A< ©2t2ds gep
J

J vy ) e
a4 if g4+ Qy </ Aladutead)
A +

Wa(AT) = max {¢j +Q_, (0141712@452)}

(71
Case 3: max;—12{5-} <A< 2‘% + 2% Then

A* = A—;Liﬁ’ fo_j+Q;>¢;i+Q_;

J 2¢TJJ7 ifd)fj + Qj < (bj + Q—j 72)

and W) = max {oi +Q—i}

Case 4: 2+ + 22 < A Then A} € (-, A— £2) and W} =
Ca

* 2c 2co 2cy?
¢1 + Po.
Proof. We omit a proof since it follows similar techniques to
Lemma A.3, and was reported in [25]. |

The next result completely characterizes the commander’s
optimal Stage 1 assignment in CAPy under the per-unit cost
setting.

Lemma B.3. Consider the deterministic commander assign-
ment problem CAP,;. Denote j = arg min ;’c and k =
i€{1,2} ‘
arg max c¢;. We define the intervals Iy := c_j-[1— ?, 1—|—§]
i€1,2
and I, :=c¢p - [1 — @, 1+ @] Enumerate the following four
statements.

(i) For ¢ ¢ I, U1, we have Wj = <1é1tcadz Ar = Céj;j,

and the expenditure is A* = %.

(ii) For ¢ € I\Ip and j = k, or ¢ € I,\I, and j # k,
we have W = C‘jgif‘j +(1- i)qﬁj A7 = —’] and

® _ C—jP—; 2

A = =52 + 50
(iii) For ¢ € I)\I, qndj =k orce L\L andj £ k,
we have W = ”éfj +(1- #ﬁj)(ﬁj, A = Lgfgj, and

(iv) For c € 1,01, we have Wi = (1—5=)d1+(1—55) ¢,
A;f:ﬂ and A* = 21 4 92

QCj 4 2cy 2¢co "

Denote s = % ;—;(01% + coo) and sy =

W% Then the optimal commander assignment
CjP—j—C—jP;

is given as follows.
e Suppose ¢ < 5. Then Wj = (1 —
At =25 gnd A* = 2L 4 22

J

2¢c;’ 2cy 2co

o Suppose %7 < ¢ < min{sy, $2}. Then the solution follows
from whether the condition of (iii) or (iv) holds.

o Suppose min{sy, so} < ¢ < max{si, sa}. If s1 < so, then
the solution follows from whether the condition of (i), (iii),
or (iv) holds. If s1 > so, then the solution follows from
whether the condition of (i), (ii), or (iv) holds.

o Suppose max{sy, sa} < c. Then the solution follows from
whether the condition of (i), (ii), (iii), or (iv) holds.

2e )01 + (1 — 35) 92,



Proof. The commander’s optimal assignment in CAPy under
the per-unit cost setting follows from solving the optimization
problem

max{Wq(4) — cA} (73)
where we denote W (A) as the commander’s optimal payoff
given a fixed use-it-or-lose-it budget A, characterized from
Lemma B.2. In general, the objective above is not concave
and there are at most three points of discontinuity. There may
exist up to four critical points in A € [0, c0), depending on the
value of c. These points are indicated by A* in the enumerated
list (i) - (iv) from the statement. A critical point exists on the

interval A € (07mini:1’2{2¢;}) if ¢ > %, /;—’J'_(clqﬁl + cadpa),
bi b - e Cib_s
2—47 26711_) if c > =2 7Cj¢7éicij¢j, and

on the interval A € [;;’j_ ; 2‘% + 2%) if ¢ > $. A critical
—J

on the interval A € |

point always exists at A = D1y 2%, as 0 is always contained

201
in the sub-differential. The largest critical point is determined
by the conditions listed as (i) to (iv) in the statement. [ |

We note that the most amount of resources the commander

will invest is 2‘% + 2%, which occurs for low costs ¢ < %

Indeed, the quantity 5= is the amount of resources needed to
win competition ¢ outright. We can now combine the Lemmas
to ascertain the result of Theorem 4.1.

Proof of Theorem 4.1, second part. By comparing the char-
acterizations from Lemmas B.3 and A .4, we identify the four-
fold improvement in the regime specified in the statement (first
case in Lemma B.3, last case in Lemma A.4). Outside of this
regime, the improvement factor is less than four. |
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