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Abstract—The connectivity enabled by modern com-
puter networking technologies introduces vulnerabilities
to adversarial attacks. Although it is ideal to be able to
prevent all possible cyber attacks, this is not possible or
feasible in practice and society must accept that attacks
are inevitable. While many works study optimal security
policies to minimize the chance of successful attacks, there
are many unexplored territories. In this letter, we formulate
and investigate a new problem, namely the tradeoff between
the effort or resource that should be spent on preventing
attacks (i.e., preventive defense) and the effort or resource
that should be spent on recovering from attacks (i.e., re-
active defense). We formulate the problem as a resource
allocation game between the defender and the attacker,
where they decide how to allocate resources to defend and
attack a set nodes (e.g., computers), respectively. The game
unfolds in two phases. (i) Allocate preventive resources
to reduce the probabilities that the nodes are successfully
compromised by the attacker. (ii) The compromised nodes
undergo a recovery process, which can be sped up with the
allocation of more reactive defense resources. Our results
completely characterize the Nash equilibria of this game,
revealing the defender’s optimal allocation of preventive
versus reactive resources.

Index Terms— Game theory, Optimization, Agents-based
systems, Stochastic systems

. INTRODUCTION

HE scale and connectivity of modern networked infras-

tructures introduces vulnerabilities that can be exploited
by malicious entities. In particular, the security of computer
networks is a persistent concern, despite tremendous advance-
ments in cybersecurity mechanisms such as cryptosystems,
intrusion detection systems, and firewalls. Indeed, cyber at-
tacks cannot be completely prevented for reasons that include
undecidability (e.g., there is no universal method or tool that
can determine whether any piece of code is malicious or not)
[1] and human factors [2].

In principle, it would be ideal to prevent as many attacks
from succeeding as possible by employing preventive defense
mechanisms, such as access control and firewalls. However,
this can incur prohibitively high costs to an infrastructure’s
operator and inconveniences to users (e.g., every Internet
access is thoroughly vetted). A complementary approach is to
employ reactive defenses, in addition to preventive defenses,
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to recover systems from compromised states to secure states.
The intuition is that some attacks are too costly to prevent from
happening in the first place, and it may be more cost-effective
to tolerate their occurrence and deal with their compromises
afterwards. This naturally leads to a tradeoff between the
amount of effort that should be spent on preventive defense
and the effort that should be spent on reactive defense. Un-
derstanding this tradeoff is currently under-developed, as there
have been numerous calls to incorporate these two security
aspects in a single decision-making paradigm [3]-[9].

In this letter, we investigate preventive-reactive defense
tradeoffs by appealing to contest theory, which studies compet-
itive resource allocation with a variety of model formulations
[10], [11]. In its basic form, players compete over a set of
valuable items by allocating their limited resources to them.
Some of these variations, such as the well-known Colonel
Blotto game and Tullock contest, have recently been applied
to numerous problems relating to cybersecurity [12]-[14],
wireless communications [15], and network security [16]-[22].
These works leverage this flexible framework to generate spe-
cific insights regarding optimal resource allocation decisions
for defenders. However, they primarily focus on strategies that
maximize prevention, and neglect to consider how resources
should be employed to improve reactive mechanisms in the
event that an attack successfully bypasses the preventive
measures.

We formulate a resource allocation contest between a de-
fender and an attacker. The main question we seek to address
is: what amount of the total resource budget should the de-
fender devote to preventive versus reactive security? To draw
insights into this question, we consider two distinct temporal
phases. In phase 1, the attacker wages attacks against the
defender’s nodes (e.g., computers), where the attack success
on each node is probabilistic and depends on the defender’s
allocation of preventive resources. In phase 2, the compro-
mised nodes undergo a recovery process, which can be sped up
with the allocation of more reactive resources. The defender’s
objective is to choose a policy for allocating preventive and
reactive resources so as to minimize the total expected time the
nodes spend in compromised states; the attacker’s objective is
to maximize it.

To the best of our knowledge, the inclusion of a reactive
phase is novel to the theoretic formulation of contests. The
main contribution of this letter is the characterization of the
optimal amount of resources that the defender invests in
preventive and reactive phases. In doing so, we also provide
the optimal (i.e., equilibrium) resource allocations among the
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Fig. 1: The two-phase resource allocation contest model. (Left) In phase 1, the defender allocates two types of resources to nodes —
preventive defense (represented as blue arrows) and reactive defense (represented as green bars). Simultaneously, the attacker allocates its
limited resources. The allocation of preventive resources diminishes the probability each node becomes compromised. (Center) The attack
event results in a subset of nodes becoming compromised. (Right) In phase 2, the compromised nodes undergo a recovery process. The time
T; it takes node ¢ to recover is stochastically determined and can be reduced with the allocation of more reactive defense resources. The
cost to the defender is a weighted sum of recovery times, where the weight v; can be interpreted as the value of node i.

nodes in both phases. These results contribute to understanding
the tradeoffs between robustness and resilience properties
under a more holistic approach to decision-making for security.

In Section II, we formulate our two-phase contest model.
Section III presents our main result (Theorem 3.1), which
determines the defender’s optimal investments in reactive and
preventive resources. Section IV contains all technical details
and proofs necessary to establish the main result. Section V
gives concluding remarks.

I[l. MODEL

We formalize the problem as a two-player game between a
defender D and attacker A. The defender has a limited budget
X > 0 of resources to invest into both preventive and reactive
defense. The defender D is tasked with allocating resources
among a set of nodes N’ = {1,...,n}. A feasible strategy
for D is a pair of vectors (z(1) = (x(ll),...,zg)),m(z) =
(x§2), .., z$?)) that satisfies x(l), x?) >0 for all ¢ € A and
x) + 23 ¢ A(X), where

A(X) = {zeR'M:zizOVieNand ZziSX}.

ieN
(1)
We will denote A?(X) as the set of all such feasible pairs
xz = (M, 2®). We will refer to (") as the protection

vector and x(®) as the recovery vector. Given any feasible
pair (z(,2?)) € A%(X), X, := Ziele(.l) and Xy =
DN a:§2) are the amount of resources devoted to preventive
and reactive defenses, respectively. The attacker A has a
resource budget Y > 0 that it invests for launching attacks
on the nodes. A feasible strategy for A is any vector y €
A(Y'). Given resource allocations (1), (?)) and y from both
players, the following sequence of events occurs in two phases.

Phase 1: The decisions ") and y influence the probabilities
that a node becomes compromised. We consider the proba-
bility that node i € N becomes compromised is given by a
ratio-form contest success function (CSF) [23], [24], which is
commonly used to model breach probabilities in cybersecurity

applications [14], [25]:

1)

(@D V) = B 2
p(z yz) (1)+x() ()
This is also referred to in the literature as the Tullock CSF. The
probability that node ¢ remains secure (i.e. not compromised)
from the attack is 1 —p;. From (2), the outcomes for each node
are independent of each other — a common assumption in the
contests literature [23]. Consequently, the probability that the

set of nodes C C N become compromised is precisely

(1)
i Z;
ge(z,y) = <| [ ’ (1)) (II (1)> SC)
iec ¥i + T; igc Yi T %

Regarding the informational capability of D, we make the
following assumption.

Assumption 1. The defender cannot observe the set of nodes
C that become compromised.

Hence, D cannot base its decision x(*) on knowing the
compromised nodes, and the selection of the recovery vector
x(?) effectively occurs at the same time as the selection of
(M), This is reasonable in cybersecurity scenarios, as many
studies on the competitive control over computer networks
assume a defender does not know the infection status of its
nodes [26].

Phase 2: Given node ¢ is compromised, it takes a random time
T; (xz@)) > 0 for the compromise to be detected and recover
i to a secure state. We model 7; as an exponential random
variable with a rate parameter r;(x; (2 )) that increases in J;(2).
We note that the exponential dlstrlbutlon is a common ch01ce
to model recovery times (e.g. in compartmental contagion
dynamics like SIS or SIR [27]).

In particular, T;(x (-2)) ~ Exp(ri(a:§2))) with rate parameter
ri(z\?) defined by

(2
2 X + 5 1
7’1(%( )) = (2)2 - ) 4)
;' + 0; + €
where §; > 0 indicates any existing reactive defense resources
that node 4 is equipped with and ¢; > 0 is an environmental
parameter that determines how effective the reactive defense



Percent resources for recovery
100% 50

80% 40
60% 30

40% 20

100 x (X3/X)

20% 10

™ Optimal X3

0% 0
"0 1 2 3 4 5 0 1

Attacker strength YV

(a)

Defender cost

Attacker strength Y

(b) ()

Breach probability

08 Xo=0

06 Optimal X5
0.4
02

3 4 5 0 1 2 3 4 5
Attacker strength YV

Fig. 2: Tllustrations of the main result, Theorem 3.1, with X = 1, v = [1,2,3], € = [0.5,0.3,0.8], and § = [0.02,0.05,0.6]. (a) The
percentage of resources the defender devotes to reactive defense in equilibrium as the adversary’s budget Y increases. (b) Expected costs
to the defender when it uses equilibrium strategy (solid blue), invests all resources into reactive defense (dashed red), invests no resources
into reactive defense (solid red), and has no resources at all (dashed black). (c) The probability that at least one of the nodes becomes
compromised when the defender uses its equilibrium strategy (solid blue), or invests no resources into reactive defense (solid red).

@) .. f reduci d :
resources r, - are in terms of reducing expected recovery time.

The recovery rate has a unit upper bound r; < 1 across all
nodes; note that this is without loss of generality because any
heterogeneity may be absorbed in the importance parameters
v;. The cost experienced by the defender is given by

Jp = v Ti(?),
ieC

&)

where v; > 0 indicates node 7’s importance (e.g.) to the
service of a network. Intuitively, the cost is the sum total of
the amount of time each node spends in the compromised
state weighted by its importance. The cost to the attacker is
the negative, J4 = —Jp. A diagram of the complete model
setup is shown in Figure 1. The defender seeks to minimize
its ex-ante expected total cost,

Ip(@,y) = By ) [Z ~Em<x£2>>1] . ©
ieC
and the attacker seeks to maximize the defender’s cost. Be-
cause each node becomes compromised with an independent
probability p; and the expected recovery time for i € N does
not depend on the compromised set C, the expected total cost
can be expressed as

(1)
_ Y, €;
Jo(z,y) = - —a villt—m ) D
Db B R e

This defines a two-player strategic-form game that we denote
by G(A%(X),A(Y),T), where I' = {v;, d;, €; }icnr is the tuple
of environmental parameters. An equilibrium of the game is
any pair (z*,y*) that satisfies
for every = € A?(X) and y € A(Y).

®)

[1l. MAIN RESULTS

Before presenting the main Theorem, we will follow (with-
out loss of generality) a re-ordering of the indices of A
according to

)

oap S ag <<,

where «; := \/‘?T We also define parameters V' := > .\ v;,
€5;V4
and for k = 1,...,n, E = Zj>k %j], Dy, = ngkéj,

- 2 S
Sk = (ngk 1/Gj’l)j) N and Ck '.— V+kE';€'
Our main result below establishes the amount of resources
the defender devotes to reactive defenses in its equilibrium
strategy.

Theorem 3.1. The game G(A%(X), A(Y),T') admits a unique

equilibrium, where the defender’s optimal amount of resources

X3 to invest into reactive defense is given as follows.

1) If Y < f1(0) or Y =0, then X3 = 0.

2) If Y > fi(X), then X5 = X, where { is the unique index
satisfying

{=argmax{k=1,...,n:g9(ax) < X} (10)
and function g : Ry — R is defined as
g(t) =Y max {t\/ev; — 6;,0}. (11)

ieN
3) If fr(glar)) <Y < fu(g(any)) for k € {1,... L}, then

X3 =\/CF + (D + X +Y) — (Ci+ Dy). (12)

The optimal amount of resources to invest into preventive
defense is X{ = X — X3. Here, we define

V4 Ep+ Sp/(X2 + Dy)
fk(XQ) T Sk/(X2 I Dk)Q

for k=1,2,...,n.

- (X —X3) (13)

Section IV contains the full proof of this result. The first
item of the Theorem indicates that no resources should be
invested in reactive defense if the adversary is sufficiently
weak, meaning that the attacker cannot succeed and thus re-
covery is not necessary. The threshold for defining “sufficiently
weak” depends on the system’s parameters. We note that this
threshold can be negative, in which case the inequality is
never satisfied. In this case the defender will always invest
some resources in reactive defense because the attacker has a
chance to succeed even if all defensive efforts are allocated to
prevention. The second item indicates that the defender should
invest all of its resources into reactive defense if the adversary



is sufficiently strong. In this case, the defender should not
waste any resources on preventive defense. The third item
specifies, in all other cases, how the defender should split its
investments between prevention defense and reactive defense.

Figure 2 illustrates these results on a three-node example
case study. When Y = 0, the defender is indifferent to any
amount X, € [0, X] because no attack occurs. However, an
interesting observation in Figure 2(a) is that for small Y > 0,
the optimal percent investment starts increasing immediately
from ~25%. One might have expected the percentage to be 0,
since it is much easier to prevent breaches when the attacker
has negligible strength. In Figure 2(c), the probability that at
least one of the nodes become compromised is shown. By
using the optimal investment X3, we observe the tradeoff that
the defender makes, namely sacrificing preventive security in
order to minimize the overall cost.

IV. ANALYSIS

This section provides a sequence of technical Lemmas that
are necessary to establish the proof of Theorem 3.1. Our
approach is as follows: we first show that G(A2(X), A(Y),T)
is a zero-sum game with convex-concave structure (Lemma
4.1), allowing us to cast the problem of finding the equilibrium
as a min-max optimization. We then proceed to explicitly
solve the optimization problem (Lemmas 4.3 and 4.4) by first
appealing to known results in the literature (Lemma 4.2). The
final proof of Theorem 3.1 is provided at the end of the section.

Lemma 4.1. The cost function Jp(x,y) : A%(X) x A(Y) —
R is continuous, convex in x for any fixed y, and concave in
y for any fixed x.

Proof. We focus on the proof for fixed y € A(Y") as the proof
for fixed - is similar. The Hessian matrix of Jp with respect
to x is the following 2n X 2n symmetric matrix represented
in block form:

DW | M
Hy = [ 7 TDC (14)
Each of the blocks are n x n diagonal matrices
with  non-negative entries. We have D) =
diag( ng) on <1+ <)>} >, D@ =
(wirka e ste? ) fien
diag <{ ( — i it } >, and M =
Y (k) 1EN
diag <{( +z(1))2 o jm(zz)) . The eigenvalues of

H, are real-valued and are the solutions s € R to

det(sls, — Hg) = 0. (15)
Note that s/, — H, is also a block matrix,
[s,-DW| —M

Using the determinant identity det(sls, — Hy) = det((sl,, —
DW)(sI, — D@) — M?) = 0, we observe that the latter

matrix is diagonal with entries that are quadratic in s:
hi(s) =52 — (DY + DPs + (DM DP — M2), i e N.
a7
The constant term is non-negative since matrix D(1) D(2) — \f2
is diagonal with non-negative entries,
(91)2 67,"07?

o 4+3L(2) >0.  (18)
(i + V)4 (0 + V)3 0 + z;

We conclude that each of the h,(-) satisfies h;(0) > 0 and
h}(0) < 0. Therefore, s < 0 cannot be a solution to any
hl(S)ZO,ZEN |

Consequently, the Minimax Theorem asserts that the game
G(A?%(X),A(Y),T) admits a unique equilibrium cost; i.e., in
any Nash equilibrium, the cost to the defender is given by

min (19)

J
ncin e Ip(z,y).

) YEAN(Y)

Equation (19) provides a min-max optimization problem
whose solution will yield the equilibrium payoff and strategy
for the defender.

In order to solve (19), we first consider a simpler game
in which the attacker and defender’s strategy is respectively
a vector of allocations * € A(X) and y € A(Y), and
w; > 0 denotes the cost to the defender if node ¢ becomes
compromised. The cost function to the defender is

>,
(2]
ien Vi +

and the attacker’s cost is the negation. Let us denote this game
by GY(A(X), A(Y), {w; }ienr)- In other words, Gy is the game

consisting of only phase 1 of G. The following well-known
result describes its equilibrium.

(20)

Lemma 4.2 ( [24]). The game QO(A(
admits a unique Nash equilibrium (x*,y

)a A( ) {wz}ze./\f)

) € A(X) x A(Y),
where
w; w;
F = X and yi = =——Y 21
' deN W ' Zje./\/ W

for all i € N. The equilibrium cost to the defender is given

by
Y—|—X D> wi

We observe that our formulation G(A2(X), A(Y),T') re-
sembles GY with the difference that in our formulation, the
defender has an opportunity to influence the values of the w;’s
through its allocation of recovery resources x(2). Namely, the
weights are given by

0 (X w) (22)

(23)

The next Lemma leverages this observation to refine optimiza-
tion problem (19).

Lemma 4.3. The equilibrium cost to the defender in



G(AY(X),A(Y),T) is
Y Zw7(z£2))

min min B ———
X2€[0,X] 2@ eA(X,) Y + X — X Y.

Proof. From (19), the equilibrium cost of G(A?(X), A(Y),T)
is

(24)

min max Jp(x
LNy e, o (@ y)

= min min [ min max Jp(z, y)}
X2€[0,X] 2 EA(X3) |2 EA(X—Xs) yEAN (Y)

= _mi in_ JR(X — Xo; {wi(al?)}s
o i b 25 {wi(z;”) bien)
(25)
where J% is given in (22). |
In addition to finding the equilibrium cost of
G(A%(X),A(Y),T), solving the optimization problem

(24) also reveals the optimal amount of resources to invest
into reactive defense X3 as well as the allocation of the X3
resources over the nodes. Thus, we first focus on solving
inner minimization problem of (24). That is, for a fixed Xo,
find the allocation of reactive defense resources that solves

Y Z wl(a:@)).

i —_— 26
wgﬁmY+X—X%M. (26)
Its solution is characterized below.

Lemma 4.4. Suppose Xo € [0, X] is fixed. The solution to
(26) is given by

@ _ 72_7%()(2 + 5 05) = 8i, fori <k

' 0, fori>k
(27)
fori=1,... ,n, where k € {1,2,...,n} is the unique index

for which g(ay) < Xo < g(agy1) with apqq = o0, and g(-)
is defined in (11). The optimal value of (26) is

Y Sk
— |V+E 28
Y+X—X2< * k+X2+Dk> 28)
Proof. The optimal choice is also a solution to the problem
€;V; (29)

min ,
@ EA(X2) 5 Ti + i
which is obtained by removing additive constants and common
factors. This is a convex problem since the objective and
constraint set A(X5) are convex. Slater’s condition also holds.
Thus, the Karush-Kuhn-Tucker (KKT) conditions are neces-
sary and sufficient for optimality. In addition to the constraint

2) € A(X5), we need Vi € N,

€iVj

where A\; > 0 is the multiplier associated with the non-
negativity constraint —x; < 0 and A > 0 is the multiplier
associated with the budget constraint Zie nTi — X2 < 0.
The complementary slackness conditions must also hold, i.e.,
Air; = 0 for all i € N and A(} ;. 2 — X2) = 0. From
condition (30), we observe two cases are possible

1) If A < <5, then we have A} =0 and z} = /“* — §;.

—Ai+A=0 (30)

2) If)\>E§§,thenwehaveac =0and \; > 0.

Consequently, we also observe that A # 0, for otherwise the
budget constraint would be violated. Thus, it must hold that
Zie/\/ x; = Xo, i.e., all of the budget is used. Therefore, the
budget constraint must be satisfied with equality:

) = Z max{t\/eivi — (5270} = X27

1EN

3D

where the variable ¢ := 1/v/\. The function g(t) is piece-wise
linear and strictly increasing at any point ¢ such that g(¢) > 0.
It is also unbounded from above and continuous. Thus, there
exists a unique solution to the above equation.

For easier exposition, we will assume that the arrangement
of indices (9) is ordered strictly, i.e. oy < g < - < @, L.
These are the values of ¢ at which the piecewise-linear parts
t\/€;v; — 0; become active in g(t). The function g can then be
written in the form
0, ifte€0,a1)
ngktm_dj’ if t € [og, Qt1)s

k=1,...,

if t > ay,.

g(t) = (32)

n—1
ZjeN t\/€U; — 0;

There exists an index k* € {1,...,n} for which g(ay+) <
Xo < g(ag+41), where we define an+1 := oo. From (31), we

o Xotdli g+ ; * __
can recover the value t* = DY This implies A} = 0
foralli =1,...,k*, giving I o (X220 05) =i
and z7 =0 for all ¢ = k* + 1 ,n. Substituting these into

the objectlve of (26) yields expression (28). |

With the value of the inner problem established by (28), we
complete the solution of (24) to establish Theorem 3.1.

Proof of Theorem 3.1. We leverage Lemma 4.4 to express
problem (24) as
L(X.
Bl LOR)
where L : [0, X] — R is defined as

L(X2) = L(X2) for g(ay) < X < glagt1), k=1,...,¢

(34)
with Lj,(X2) = g (V + By + %) and £ being
defined in (10). In words, L(X32) is the minimum cost the
defender can ensure when spending X, resources on reac-
tive defense. We claim that function L(X3) is convex and
continuously differentiable on (0, X') because each Ly (X3) is
convex, Li(g(ans1)) = Lis1(9(ans1))s and L (glani1)) =
Li.11(g(ak11)). Therefore, L attains its minimum value for a
unique X3 € [0, X]. Its derivative is

S
Y <V+Ek+x2+kpk Sk )

(33)

L'(Xs) =

Y+ X - X Y+X-Xo  (X+Dy)?
(35)

The condition L’(0) > 0 implies that L(X2) is strictly

increasing, and therefore X5 = 0. This condition corre-

sponds to item 1) in Theorem 3.1. The condition L'(X) <

IThis is without loss of generality as identical arguments in the proof still
apply to non-strict orderings.



0 implies that L(X52) is strictly decreasing on [0, X], and
therefore X5 = X. This condition corresponds to item 2)
in Theorem 3.1. If neither of these conditions hold, then it
must be true that L) (X5) = 0 for some k € {1,...,¢}
and X5 € [g(ag),g(ak+1)). This implies that the condition
L (g(ax)) < 0 and Li(g(ak+1)) > 0 must hold, which
correspond to item 3) in Theorem 3.1. In this case, X5 is
calculated by solving

s
Y+X—-X, (X2 + Dy)?
Using a change of variable Z := Xy + Dy, we multiply the

above equation by the positive factor Z?(Z — (D + X +Y))
to obtain a quadratic equation

0. (36)

7?4 2C,7Z — Cr(Dp + X +Y) =0, (37)
where we denote C), = Vki’CEk. The roots are
Z=-Cit \JCP+CiDe + X +Y),  (8)

of which only the ‘4’ root is positive. We therefore obtain

(39)
]

X3 =1/C2 +Cu(Dy + X +Y) — (Ci + Dy).

This concludes the proof of the main result, Theorem 3.1.

V. CONCLUSION

We have examined fundamental tradeoffs between invest-
ing in preventive versus reactive defense. We formulated a
resource allocation contest game between a defender and an
attacker with two distinct temporal phases. In phase 1, the
defender’s preventive resources reduces the probability that
nodes can become compromised by the attacker. In phase
2, the compromised nodes undergo a recovery process that
can be sped up with more reactive resources. Our analysis
characterizes the Nash equilibrium strategies, which reveal the
defender’s optimal investment in preventive versus reactive de-
fense efforts given limited resources. An interesting extension
to this letter is to consider resources that may regenerate over
time. This highlights the dynamic nature of making resource
allocation decisions.
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