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Abstract

The emergence of viral variants with altered phenotypes is a public health
challenge underscoring the need for advanced evolutionary forecasting methods.
Given extensive epistatic interactions within viral genomes and known viral evo-
lutionary history, efficient genomic surveillance necessitates early detection of
emerging viral haplotypes rather than commonly targeted single mutations. Hap-
lotype inference, however, is a significantly more challenging problem precluding
the use of traditional approaches.

Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show
that emerging haplotypes with altered transmissibility can be linked to dense
communities in coordinated substitution networks, which become discernible sig-
nificantly earlier than the haplotypes become prevalent. From these insights, we
develop a computational framework for inference of viral variants and validate



it by successful early detection of known SARS-CoV-2 strains. Our methodology
offers greater scalability than phylogenetic lineage tracing and can be applied to
any rapidly evolving pathogen with adequate genomic surveillance data.
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1 Introduction

Understanding the predictability of evolution and the relative impact of random and
deterministic factors in evolutionary processes is a fundamental problem in life sci-
ences. This problem gains an applied significance in the context of viruses and other
pathogens, as even a modest degree of predictability of pathogen evolution can enhance
our ability to forecast and, therein, control the spread of infectious diseases [1-4].

The most evident example of the importance of this problem is the case of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The successive waves of
COVID-19 are driven by the emerging genomic variants of interest (VOISs) or vari-
ants of concern (VOCs) that have been associated with altered phenotypic features,
including transmissibility [5, 6], antibody resistance and immune escape [7-9]. Each
genomic variant is defined as a phylogenetic lineage characterized by a specific com-
bination of single amino acid variants (SAVs) and/or indels acquired over the course
of SARS-CoV-2 evolution. For instance, lineages B.1.1.7 (alpha variant by WHO clas-
sification) and B.1.617.2 (delta variant) are defined by distinct families of 7 SAVs in
the S gene decoding the spike protein, many of which have been linked to enhanced
fitness compared to preceding SARS-CoV-2 lineages [6, 10-13].

Genomic epidemiology has been crucial for monitoring the emergence and spread
of SARS-CoV-2 variants since the start of the COVID-19 pandemic. SARS-CoV-2
genomes sampled around the globe and produced using high-throughput sequencing
technologies have been analyzed by a plethora of phylogenetic, phylodynamic, and epi-
demiological models [14] to detect spreading lineages and measure their reproductive
numbers and other epidemiological characteristics. However, these methods, powerful
and valuable as they are, are primarily applied retrospectively. In other words, they
allow to detect growing lineages and measure their fitness only when these lineages
are already sufficiently prevalent. Moreover, existing phylogenetic and phylodynamic
approaches are computationally expensive. They must use subsampling, simplifying
assumptions, and heuristic algorithms without performance guarantees to handle the
vast amounts of available genomic data (e.g., more than 14 million sequences in the
GISAID database [15] at the time of submission of this paper). These considerations
can impact their power, accuracy, and reliability.

In contrast to retroactive detection, the task of early detection or forecasting
involves the proactive identification of SARS-CoV-2 genomic variants that have the
potential to become prevalent in the future. This problem is more challenging as it is
intertwined with the fundamental question of whether viral evolution can be predicted
or whether one can “replay the tape of life” for the global SARS-CoV-2 evolution,



using the metaphor of S.J. Gould [16]. For viruses, the possibility of evolutionary pre-
dictions remains a topic of debate [17]. Nevertheless, studies attempting to address
the SARS-CoV-2 evolutionary forecasting problem have emerged [3, 4, 18-21]. Most of
these studies have focused on the emergence of individual mutations, with some meth-
ods assuming that mutations accumulate independently or that the effects of their
interactions can be averaged out over their genomic backgrounds [3, 21].

Meanwhile, a number of studies have highlighted the significance of epistasis, i.e.,
the non-additive phenotypic effects of combinations of mutations, for SARS-CoV-
2 [4, 22-27]. Using various methodologies, including phylogenetic analysis [23, 26],
direct coupling analysis [4], and in vitro binding measurements [24, 27|, these studies
suggest the existence of an epistatic network that includes many genomic sites in the
receptor-binding domain of the spike protein that is associated with increased binding
affinity to angiotensin-converting enzyme 2 (ACE2) receptor [9, 28, 29]. Epistasis is
closely linked to the complex structures of viral fitness landscapes [4, 22, 27, 30], which
determine the evolutionary trajectories of SARS-CoV-2 lineages and contribute to
the high non-linearity of its evolution, making forecasting challenging. The emergence
of new Variants of Concern, such as the lineage B.1.1.529 (Omicron variant), is an
example of such non-linear phenomena [27]. Its rapid emergence does not align with
the gradual mutation accumulation hypothesis and is still a topic of debate, with
hypothesized origins including immune-suppressed hosts and reverse zoonosis [27, 31—
33].

Given the role of epistasis, it can be argued that selection often acts on combi-
nations of mutations, or haplotypes, rather than on individual mutations. Therefore,
effective forecasting should focus on viral haplotypes instead of solely on SAVs. How-
ever, predicting haplotypes is a significantly more challenging problem than predicting
individual SAVs — in particular, simply due to the exponential increase in the num-
ber of possible haplotypes with genome length. This complexity precludes the use of
traditional approaches utilized in most mutation-based studies, where a feature vec-
tor of epidemiological, evolutionary, and/or physicochemical parameters is calculated
for each SAV, and a statistical or machine learning model is trained to predict SAV
phenotypic effects. As a result, even studies that account for epistatic effects usually
focus on assessing the phenotypic effects of individual mutations [4].

This paper focuses on predicting haplotypes of SARS-CoV-2 using a novel approach
based on analyzing dense communities of the coordinated substitution networks of the
spike protein, which reflects potential positive epistatic interactions [25, 26, 34]. We
demonstrate that emerging haplotypes with altered phenotypes can be accurately pre-
dicted by leveraging these communities and introduce HELEN (Heralding Emerging
Lineages in Epistatic Networks) - a variant reconstruction framework that integrates
graph theory, statistical inference, and population genetics methods. HELEN was val-
idated by accurately identifying known SARS-CoV-2 VOCs and VOIs up to months
before they reached high prevalences and were designated by the WHO. Importantly,
the majority of predictions were derived from data collected independently from dif-
ferent countries, further supporting their credibility. These results demonstrate that
network density is a more precise, sensitive, and scalable measure than lineage fre-
quency, allowing for reliable early detection or prediction of potential variants of



concern before they become prevalent. Furthermore, the computational complexity of
our method depends on genome length rather than the number of sequences, making
it significantly faster than traditional phylogenetic methods for VOC detection and
enabling it to handle millions of currently available SARS-CoV-2 genomes.

Our approach to the early detection of viral haplotypes utilizes a certain method-
ological similarity with the problem of inference of rare viral haplotypes from noisy
sequencing data, particularly when produced by long-read sequencing technologies like
Oxford Nanopore and PacBio. This problem has gained significant attention in recent
years, with several new tools appearing each year [35-38]. Some of these tools accu-
rately infer rare haplotypes with frequencies comparable to the sequencing noise level.
In particular, several tools developed by the authors of this paper achieve such results
by identifying and clustering statistically linked groups of SNV alleles [36, 39, 40].
Although this approach is not directly transferable to haplotype prediction, it provided
a foundation for this study.

2 Methods

The major goal of this study is to develop and validate a methodology that, given viral
sequences sampled at several time points, infers potentially emerging viral haplotypes
by analyzing dense communities of coordinated substitution networks. To achieve it,
this section is organized as follows. First, we provide a theoretical justification of the
proposed approach by considering an idealized model of an evolving population with
given fitness landscape and epistatic network (Subsection 2.1). As epistatic networks
are not directly observable, Subsection 2.2 outlines the methodology to infer them
from sequencing data. Subsection 2.3 describes our approach to validate the statistical
significance of associations between known VOCs/VOIs and dense communities in
inferred epistatic networks. Finally, Subsection 2.4 presents the algorithmic framework
to de novo infer emerging viral variants.

2.1 Model-based rationale of the proposed approach

The major idea of this study is to predict emerging viral variants as dense commu-
nities in epistatic networks. This idea can be partially substantiated by the following
simple combinatorial population genetics model assuming that the basic mutational
mechanism consists of random point mutations.

Consider a population of haploid genotypes P = {g1, ..., gn} with a fixed length L
and two potential allelic states 0 and 1 at each locus, where 0 stands for the reference
allele and 1 stands for an alternative allele. Each genotype is thus represented as a
binary sequence, and all possible 2” genotypes form a sequence space represented as
L-dimensional hypercube H [42], i.e. a graph whose vertices are 0 — 1 sequences of
length L, and two vertices are adjacent whenever they differ in a single coordinate.

Each genotype g; is assigned the fitness f; — a real number that serves as a quanti-
tative measure of its reproductive capacity [43, 44]. The function mapping genotypes
into the set of their fitness values is referred to as a fitness landscape [43].

In our model, the genotypes are subject to negative epistasis [45, 46]. Following e.g.
[44, 47], it is defined as the statistical effect where the combined effect of mutations at
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Fig. 1 The model of an epistatically-constrained sequence space and fitness landscape. (a) The epistatic
network G. Edges of inclusion-maximal cliques are displayed in blue, green and purple. (b) Genotypes that
are viable under the constraints imposed by the epistatic networks. Stars represent 1-alleles, colors denote
loci. (c) The viable space is depicted alongside the corresponding fitness landscape. For better visualization,
as is customary in the literature [41], the fitness landscape is depicted as a continuous surface. Surface
and vertex colors represent fitness values on a scale from blue (low fitness) to red (high fitness). Sub-
hypercubes corresponding to three maximal cliques of the epistatic network G are highlighted in blue, green,
and purple, respectively, with edges belonging to two sub-hypercubes colored in intermediate shades. The
circled vertices represent local maximums within each sub-hypercube. For example, all minor alleles of
the genotypes g4, g6, 97, 98, 910, g11 and giz are situated at loci 1,2 or 3. These loci form a clique of the
epistatic network, while these genotypes, together with the wild-type genotype go, form a 3-dimensional
sub-hypercube of the sequence space (highlighted in black on the subfig. (c)). The genotype gi2 has the
maximum fitness within this sub-hypercube.

two specific loci leads to a lower fitness than if these mutations occurred independently,
ie. fi1 < fio+ for — foo, where fij, 4,5 = 0,1 are expected fitnesses of genotypes with
allelic states (7,7) at the loci. Similarly, positive epistasis occurs when the combined
effect of multiple mutations results in a higher than expected fitness, i.e. f11 > fi0 +
fo1— foo [44, 47]. In our case, negative epistasis is assumed to render the corresponding
genomes non-viable or evolutionary non-competitive (f1; < 0). Epistatic interactions
can be represented by the coordinated substitution network G (Fig. 1a), where vertices
correspond to loci, and two vertices are adjacent when a 2-haplotype (1,1) at the
respective loci is viable (i.e. the loci are not under negative epistasis).

Epistasis has been proposed to constrain the selective accessibility of genomic vari-
ants and restrict potential evolutionary trajectories of a population [45, 48]. This effect
can be described in graph-theoretical terms as follows. Viable genotypes (i.e. genotypes
with positive fitness values) constitute a subgraph of the hypercube #, referred to as
the viable space. In the model under consideration, a genotype is deemed viable if all
its alternative alleles are pairwise adjacent in the network G i.e., create a clique within
G (Fig. 1b). As a result, each maximal by inclusion clique C of G (i.e. a clique that
is not contained in another clique) generates a complete sub-hypercube H(C) in the
viable space; this sub-hypercube is a projection of genotype vectors onto the subspace



formed by loci from C'. Thus, decomposing the epistatic network into maximal cliques
yields a partition of the viable space into sub-hypercubes. This partition defines a set
of restricted evolutionary trajectories that the population could potentially explore.

More specifically, within each sub-hypercube H(C'), only additive and positive
epistatic fitness effects can be present. Therefore, evolutionary trajectories within
H(C) will eventually accumulate all mutations in C' and converge to the genotype
gc with the maximum fitness within #(C') that contains all alternative alleles of the
clique C (Fig. 1c). Overall, the proposed model indicates that any evolutionary trajec-
tory within the entire viable space will ultimately converge to a genotype determined
by one of the maximal cliques in the epistatic network.

In practical settings, epistatic networks are not directly observable. Therefore, in
accordance with [23, 26, 34], we approximate them using coordinated substitution net-
works, which are statistically inferred from genomic data. Since the inferred networks
may not encompass all true links, we consider dense subgraphs rather than cliques.

2.2 Inference of coordinated substitution networks

Consider a population consisting of N haploid genotypes of length L whose observed
abundances change over time points ¢ = 1,...,T. For a pair of distinct loci w,v €
{1, ..., L} we consider 4 possible 2-haplotypes (i, ) € {(0,0),(0,1),(1,0),(1,1)}, where
0 and 1 are reference and alternative alleles in u and v respectively. Let also ij be
an observed count of 2-haplotypes (4, 7), ¢,7 = 0,1, at a time point ¢ € {1,...,T}.

We define a coordinated substitution network at the time point ¢ as a graph G; with
nodes representing SAVs, and two nodes being adjacent whenever the corresponding
non-reference alleles are simultaneously observed more frequently than expected by
chance. Formally, SAVs at positions u and v are adjacent in G; (or linked), when the
following inequality holds:

01,-1 i N—i
() (Gt (- o) "
i \? Obo - N Ofo - N " ()

where p is a predefined p-value (in this study we used p = 0.05).

In the remaining part of this subsection, we provide a justification for the formula
(1). We suppose that viral evolution is driven by mutation and selection, where (a)
each 2-haplotype (7,7) has fitness f;;; (b) each transition (mutation) from the allele
k to the allele I at the position u (resp. v) happens with probability ¢}, (resp. g},;).
Thus, expected 2-haplotype counts Efj can be described by the quasispecies model
[49] (or mutation-selection balance model in the classical population genetics terms
[50]) in the following form:

Ej; = Z fqugz’lejElil_l (2)
k,le{0,1}
Mutation probabilities per genomic position per year of most viruses have orders of
magnitude between 1072 and 10~ [51]. Thus, we can assume that for time intervals
considered in this study, the non-negative probability of allelic change is smaller than
the probability of no-change, i.e.



0<qj<ai 0<aqy<dqy 1,j€{0,1} i#] 3)
We can use the model (2) to decide whether the 2-haplotype (1,1) is viable
or its observed appearances can be plausibly explained by random mutations. The
corresponding test is based on the following fact:
Theorem 1. Suppose that the 2-haplotype (1,1) is not viable, i.e. fi1 = 0. Then

STE, @

Proof. The proof follows the same lines as the proof in [39]. Given that f1; = 0, we
have

t t u v pt—1 u v pt—1
Ey - E1q = E Tridrotio By E Tuainan By
k,1=0,1 k,1=0,1
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+(a8y960961951 + a809T0a61951) foo for Egg " Egy T+
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and
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It is easy to see that the terms in (5) and (6) except for the last ones are equal.
Thus we have

E31 : Efo - Eéo : Eh =
= (q504t1411 080 + @o0ar 261980 — G60atoata a0 — @oa0a61aty) for froEGy Bl = 1)

9614910 9014910 t—1 pt—1
= (1 - q“q“) (1 T ) 4009119114900 fo1 froEg;  Ely >0,
00911 00911

where the last inequality follows from (3). Thus, the inequality (4) holds. O



Using Theorem 1, we can evaluate the likelihood of the event that a large number
of genomes contain 2-haplotype (1,1) given that this 2-haplotype is not viable. Con-
sidering the density of sampling and the number of SARS-CoV-2 genomes analyzed in
this study, we assume that observed and expected numbers of 2-haplotypes are close
to each other. Let ¢ is the probability of observing a genome containing 2-haplotypes
(1,1) among N genomes given that f1; = 0. Following [36], we model the count of such
genomes, X, with a binomial distribution B(N,q). The probability that X > Ot is:

ot -1

pX 2 Ol =0) =1 - Fx(0h 1N =1- 3 (V)da-07 @

=0

where Fx is the binomial cumulative distribution function. Theorem 1 implies an
()iO'()él
W Therefore

upper bound for ¢: ¢ < p =

p(X > O] fu1 = 0) =1 — Fx (01, — 1IN, q) <1 — Fx (07, — 1IN, p). 9)

We consider SAVs at positions u and v linked when the probability p(X >

O%,|fi1 = 0) is sufficiently low, which is guaranteed when its upper bound in (9) is
sufficiently low, i.e.

p(X > O | fi1 = 0) < 1— Fx (0!, —1|N,p) < L=, (10)

(5)

where p is a chosen significance level, and the denominator (5) is a Bonferroni cor-

2
rection. The latter is used to account for multiple comparisons between (g) pairs of

SAVs being tested for linkage. This leads to the formula (8).

2.3 Estimation of density-based p-values of viral haplotypes

We hypothesize that viral haplotypes corresponding to potential VOCs and VOIs form
dense subgraphs of coordinated substitution networks. Below we describe the method
used to statistically verify this hypothesis.

In what follows, we will use the standard graph-theoretical notation: V(G) and
E(G) are the sets of vertices and edges of the graph G, respectively; Ng(v) is the set
of neighbors of a vertex v in G; the subgraph of G induced by a subset S is denoted
by GI[S].

We use the statistical test (10) to construct coordinated substitution networks G
for different time points ¢ using SARS-CoV-2 sequences sampled before or at the time
t. These networks have the same set of vertices but different sets of edges. A viral
haplotype thus can be associated with a subset of vertices H C V(G;) of a network
G;. The density of a haplotype H is thus defined as the density of the subgraph of G;
induced by H, i.e.

|E(G:[H])]

(11)



We estimate the statistical significance of our hypothesis by producing density-
based p-values of known VOC and VOI haplotypes H. Given the subgraph sample
S* ={51,...,S|s+|}, p-value of a haplotype H in the network G; is defined as

* L
pgt(H) — ‘{S] € ‘S : dglz:s‘(jyj) Z dgf(H)|

A low p-value indicates that the subgraph representing haplotype H is denser
compared to other subgraphs of G;.

The naive way to produce the sample S* is to randomly generate subgraphs of G; of
the size |H|. However, SARS-CoV-2 coordinated substitution networks are relatively
sparse, and thus many sampled subgraphs will be a priori disconnected and, conse-
quently, also sparse. As a result, such a sampling scheme is inherently biased towards
assigning low p-values to haplotypes corresponding to connected subgraphs and sub-
graphs with few connected components. Known VOCs and VOIs at most time points
have these properties, and thus their statistical significance could be overestimated.
This problem can be resolved by sampling only connected subgraphs.

The following numerical example shows why an advanced method for connected
subgraph sampling is essential and a naive approach is ineffective. Consider one of the
coordinated substitution networks generated in this study with 1,273 vertices and 7,329
edges. For a tree (a minimal connected subgraph) with 10 vertices, naive sampling
of 1,000,000 samples yielded 188 subgraphs not less dense than the tree, resulting
in a p-value of 0.000188. In contrast, the p-value from connected subgraph sampling
is 1, as a tree has the minimal density among all connected subgraphs. Moreover,
naive sampling produced only 2 connected subgraphs, making re-normalization with
respect to such a small subsample unreliable. Generating a sufficiently large sample of
connected subgraphs via naive method is thus impractical due to the enormous naive
sample size required.

To sample connected subgraphs, we utilize a more sophisticated randomized
enumeration sampling algorithm that follows the network motif sampling scheme intro-
duced in [52]. The algorithm assumes that vertices of G; are labeled by the unique
integers 1, ..., L, and performs a recursive backtracking. For each vertex v in ascending
numerical order, the algorithm iteratively grows a connected subgraph S by adding
a randomly chosen new vertex w from the set of allowed extensions W. The set W
is then updated to include neighbors of w not in the exclusion set X. The exclusion
set X allows to speed up the calculations and prevent double sampling by excluding
(a) neighbors of vertices already in S to avoid multiple additions of the same vertex
to W and (b) vertices numbered 1 to v to prevent re-sampling subgraphs that should
have been sampled at earlier iterations. The process continues until a subgraph of the
desired size k is formed. Sampling for subgraphs containing the vertex v goes on until
the predetermined sample count is reached. The full procedure is detailed in Algorithm
1, and the proof of the correctness of this scheme can be found in [52].

If, at some point, the subgraph induced by the haplotype H is disconnected,
we replace it with its largest connected component. In this study, for each ana-
lyzed coordinated substitution network G, the sampling was performed until M =
min{3000,7g, (v)} subgraphs for each vertex v are generated, where ng, (v) is the
total number of connected subgraphs containing v. The value of 3000 was selected

(12)



empirically to provide a sufficient number of sampled subgraphs for all analyzed viral
variants.

Algorithm 1 Sampling of connected k-subgraphs without forbidden pairs
1: Input: graph G with V(G) = {1,...,L}, an integer k and the sample size per
vertex M.
: forv=1:Ldo
S« {v}; W+ Ng(v)\{1,...,v}; X + Ng(v)U{l,...,v}
global M, =0
call SampleSubgraph(v,S,W,X)
end for
SampleSubgraph(v,S,W,X)
if |S| = k then
: output S, M, + M, + 1 and return
9: end if
10: while W # () and M, < M do
11 sample a random vertex w € W and set W« W \ {w}
12; S Su{w}; W+ WU (Ng(v)\ X); X' + X UNg(w)
13: call SampleSubgraph(v,S’ W’ X")
14: end while

R A S
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2.4 Inference of viral haplotypes

In this subsection, we describe the method for inference of viral haplotypes as dense
communities in coordinated substitution networks. Community detection is a well-
established field of network science, with numerous algorithmic solutions proposed
over the last two decades [53]. Typically (though not always), the collection of commu-
nities in a network is defined as a partition [54]. However, in the case of viral genomic
variants, there can be overlaps, as observed in known VOCs and VOIs. Additionally,
most existing algorithms are heuristics designed to scale to the sizes of extremely
large networks rather than to produce optimal solutions. Viral coordinated substitu-
tion networks, although containing hundreds of vertices, are typically smaller than
most networks studied in applied network theory. Thus we use our own community
detection approach, which extends our previously developed methodology [36]. This
approach uses exact algorithms rather than heuristics and is tailored to account for
the characteristics of viral data.

Major steps of our computational framework called HELEN (Heralding Emerg-
ing Lineages in Epistatic Networks) are depicted in Fig. 2, and the full algorithmic
workflow is described by Algorithm 2. For a given time point ¢, HELEN starts by con-
structing a coordinated substitution network G;, as described in Subsection 2.2. Then
it generates a pool of candidate dense subgraphs of G; using Integer Linear Program-
ming (ILP). Finally, it combines generated subgraphs into clusters corresponding to
different haplotypes, and infers a haplotype from each cluster.

10



Generation of dense subgraphs. Our approach is based on a Linear Programming
(LP) formulation [55] for finding the densest subgraphs of networks G; at each time
point ¢. This formulation contains variables x; for each vertex i € V(G,), variables y;;
for each edge ij € F(G;), and the following objective function and constraints:

Z Yij — max (13)

ijEE(Gt)
Yij < Xy Yij <xj, ij € E(Gy) (14)
> omi<i (15)
1€V (Ge)

Note that the variables x;, y;; are continuous rather than integer since it can be
shown that the value of the optimal solution of the LP (13)-(16) and the maximum
subgraph density of G; coincide [55]; furthermore, if U C V(G;) is the vertex set of the
densest subgraph, then (z; = ﬁ,i ceU;z; =0,i ¢ Usy;5 = ﬁ,z}j CU;y;; =0,4,5 €
U) is the optimal solution of (13)-(16). Thus, densest subgraphs of the networks G;
can be found in a polynomial time.

The single densest subgraph can, however, provide only a single haplotype per time
point. We need to produce multiple dense communities to infer multiple haplotypes
that could correspond to VOCs and VOIs. So, we generate a pool of candidate dense
subgraphs of G; as follows. We iterate through a given range of fixed subgraph sizes k
from kmax down to kmin); at each iteration, we generate a set S, of up t0 1y densest
subgraphs of size k that are not contained in subgraphs generated in the previous
iterations. Here kmax,kmin and nmax are parameters of the algorithm. However, finding
the densest subgraph of a given size is an NP-hard problem [56, 57]. Therefore, for
each value of k, we use the following Integer Linear Programming formulation:

1
z Z Yi; — max (17)
ijEE(Gt)
Yij < Xy Yij < xj, ij € E(Gy) (18)
1€V (Ge)
kmax
Z z>1, Se U Sp (20)
1€V (Ge)\S k'=k+1
Tiy Yij € {07 1}7 S V(gt)aw € E(gt) (21)

Here the constraint (19) sets the size of a dense subgraph, and the constraints (20)
ensure that for any subgraph S previously generated, the subgraphs produced in the
current iteration must include at least one vertex not in S, meaning they should not
be subsets of S. The problems (13)-(16) and (17)-(21) are solved using Gurobi (Gurobi

11



Optimization, LLC); for the latter, we used an option to continue the search until the
pool of up to nmax optimal solutions is produced.
Inference of haplotypes from dense subgraphs. Now, let S; = Sty 5, 18] be
. . . ’ | .
the set of generated densest subgraphs with sizes ranging from ki, to kmax. This
set does not necessarily have a one-to-one correspondence with the true haplotypes
due to two reasons. First, some haplotypes may consist of more than kp,x SAVs,
so the generated subgraphs only cover parts of these haplotypes. Second, many gen-
erated subgraphs overlap significantly, and thus most likely correspond to the same
haplotypes.

To obtain full-length haplotypes, we employ the algorithmic pipeline described
in detail in steps 3 - 5 of Algorithm 2 and Fig. 2. Initially, we partition the set of
generated dense subgraphs into clusters such that the subgraphs from each cluster
ideally correspond to the same true haplotype. To achieve this, we construct a “graph
of subgraphs” £(3t), whose edges represent pairs of subgraphs with large overlaps,
and split it into clusters using a series of graph clustering techniques. Then, we locate
the haplotype for each cluster of subgraphs by finding the densest core community in
the union of elements of that cluster.

Algorithm 2: HELEN: inference of viral haplotypes using coordinated substitution
networks.

Input: the set P, of aligned viral sequences sampled before or at the time point ¢.
Output: the set of haplotypes H; = {Hy 1, ..., Hy 3, |} designated as potential variants
with altered phenotypes.

1) Construct a coordinated substitution network G; from sequences Py, as described in
Subsection 2.2.

2) Using the Integer Linear Programming formulation (17) - (21), iteratively generate
the set of candidate dense subgraphs S; = {8111, St’\SAtI} of sizes k € {kmax, kmax —

1, ..., Emin }, so that the elements of S’t are not subgraphs of each other.

3) Counstruct an intersection graph E(St), whose vertex set is St, and two vertices S ;
and Sy ; are adjacent, whenever |S; ; N.S; ;| > min{|S; ;|,[S¢,;]} — 1. In other words,
vertices of this “graph of subgraphs” are adjacent whenever they have the largest
possible intersection.

4) Partition the intersection graph L',(St) into clusters Ly 1, ..., L, with each cluster
corresponding to a single haplotype. The partition is carried out in stages as follows:

4.1) Split the graph E(S‘t) into connected components and then subdivide each com-
ponent into (k + 1)-connected components, where x denotes the minimum size of
a vertex cut (vertex connectivity). To achieve this, we use an algorithm proposed
by [58], which computes the vertex connectivity and corresponding vertex cut as
the smallest of (s,t)-cuts between the fixed vertex v of the minimal degree and
its non-neighbors ordered by their distance to v, as well as between non-adjacent
pairs of neighbors of v. The algorithm computes these (s,t)-cuts using network
flow techniques [59].

We further augmented this algorithm by adding an extra step. Consider a pair of
vertices (s,t) for which the minimal vertex cut of size x, has been found, and
P}, ..., Py are the corresponding internal vertex-disjoint (s, t)-paths (which can
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be found using network flows [59] and whose existence is guaranteed by Menger’s
theorem [60]). If a vertex s’ is adjacent to the internal vertices of all of these
paths, then we can exclude the pair (s',t) from further consideration because
kst > kst This step significantly accelerates the connectivity calculation for
graphs with many high-degree vertices, and the connected components of L',(St)
typically exhibit this property.

4.2) Suppose that L1, ..., Ly ,» are the components produced at the previous step.
Further subdivide each component L, ; as follows: first, find an embedding of the
subgraph E(St)[Lt7i} formed by the vertices of L;; into R? using a force-directed
graph drawing algorithm [61]; second, cluster the obtained embedded graph by
a spectral clustering algorithm [62] using the largest Laplacian eigenvalue gap to
estimate the number of clusters.

Each cluster produced at steps 4.1)-4.2) is supposed to contain dense subgraphs
corresponding to a single haplotype.

5) For every cluster L, ;, we examine the induced subgraph G, ; = G, [Ust,jeLt_i St il
which consists of the SAVs covered by the dense subgraphs contained in Ly ;.

5.1) Suppose that D, ; is the sequence of vertex degrees of G; ;. We cluster the elements
of D;; using the k-means algorithm and select the subset of vertices Cy; with
degrees from the cluster with the largest mean value. The goal of this procedure
is to identify the ”core” of G;; consisting of high-degree vertices. To choose the
number of clusters k, we use the gap statistics [63].

5.2) Find the densest subgraph H;; of G, ;[C;] using the LP formulation (13)-(16).
If the subgraph is large enough (by default |H; ;| > 5), then output H;; as an
inferred haplotype.

In addition to the set of haplotypes H;, Algorithm 2 returns a support o(H, ;) for

each inferred haplotype, that is defined as a relative number of elements (i.e. candidate

dense subgraphs) in the cluster Ly ;: o(H;;) = 0y = ZlLI“L’itl T
j i

3

3 Results
3.1 Data

Genomic data and associated metadata analyzed in this study were obtained from
GISAID [15]. Our focus was on analyzing amino acid genomic variants of the SARS-
CoV-2 spike protein, which is used for identifying Variants of Concern (VOC)
Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28.1), Delta (B.1.617.2), Omicron
(B.1.1.529.1) and Variants of Interest (VOI) Lambda (C.37), Mu (B.1.621), Theta
(P.3), Eta (B.1.525), Kappa (B.1.617.1) by standard genomic surveillance tools
adopted by WHO [64]. We extracted the spike protein alignment from the whole
genome multiple sequence alignment, replacing ambiguous characters with gaps, and
focused solely on SAVs while ignoring long indels. In order to better validate the predic-
tive power of our approach, especially with respect to the Omicron lineage, we analyzed
only sequences sampled before December 31, 2021, approximately 1 month after the
designation of Omicron as the Variant of Concern by WHO. For defining VOCs and
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Fig. 2 General scheme of HELEN. Step 1: construction of a coordinated substitution network (CSN) from
aligned sequences. Step 2: generation of candidate dense subgraphs of CSN (highlighted in different colors).
Step 3: construction of an intersection graph of subgraphs. Each colored vertex represents a subgraph of the
same color; two vertices are adjacent whenever the corresponding subgraphs have sufficiently many common
vertices (in this example - two). Step 4: decomposition of the intersection graph into clusters (depicted as
ovals). Each cluster reflects a single haplotype. Step 5: construction of the haplotype for each cluster. The
haplotype is found as a densest community in the union of the CSN subgraphs forming that cluster (e.g.
the haplotype H; is found as the union of the blue and the red subgraphs that form the cluster Cy).

VOIs, we used the notations and lists of SAVs established by WHO [65]: a variant
defined by SAVs at k fixed genomic positions was associated with a k-haplotype with
minor alleles (with respect to the standard Wuhan-Hu-1 (NC_045512.2) reference) at
that positions. Variants epsilon (B.1.427), iota (B.1.526) and zeta (P.2), defined by
3 — 4 SAV, were excluded due to their short lengths.

Some analyzed sequences were labeled as ”under investigation” by GISAID. In par-
ticular, these include some VOC/VOI sequences sampled earlier than the initial cases
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of these strains officially documented by WHO. In addition, we discovered some early-
sampled sequences not marked as "under investigation” by GISAID. Consequently,
our analysis was conducted on three distinct datasets:

(i) Complete set: Incorporates all sequences.
(ii) First truncated set: Excludes sequences labeled ”under investigation”.
(iii) Second truncated set: Excludes both sequences flagged "under investigation” and
early-sampled sequences that weren’t flagged.

The detection of linked pairs of SAVs and dense communities in coordinated sub-
stitution networks is affected by the number of sequences. Thus we focused on data
from countries with the largest sample sizes, while maintaining geographic diversity. To
do this, we selected two countries per continent (excluding Oceania) with the largest
numbers of spike amino acid sequences sampled over the considered time period: the
United Kingdom and Germany for Europe, USA and Canada for North America,
Brazil and Peru for South America, South Africa and Kenya for Africa, and Japan
and India for Asia. Additionally, we included Australia to represent Oceania and 5
extra countries with the largest samples, namely France, Denmark, Sweden, Spain, and
Ttaly. Sequences from the selected countries were identified using GISAID metadata
and analyzed separately. Thus, a total of 656 test cases (16 countries x 41 time points)
have been considered. Fig. 3a shows the analyzed sample sizes, which were not dis-
tributed uniformly, with the USA and United Kingdom accounting for approximately
66% of all sequences.

3.2 The structure of S-gene coordinated substitution networks

We utilized the method outlined in Subsection 2.2 to construct coordinated substitu-
tion networks for 16 countries at 41 uniformly distributed time points between May 1,
2020, and December 31, 2021 (with a 14-day difference between consecutive points).
Initially, we evaluated the basic properties of these networks. We found that the
majority of networks contained a single ”giant” component (i.e. the connected compo-
nent containing a significant fraction of graph vertices) that could include up to 75%
of the vertices. Other connected components were significantly smaller (p < 107190
Kolmogorov-Smirnov test) and made up an average of 0.3% of the network size (Fig.
3b). Most of these smaller components consisted of isolated vertices.

Coordinated substitution networks of the S-gene tend to gradually evolve towards
becoming scale-free, with a right-skewed power-law degree distribution. This type
of network structure is often a result of a preferential attachment process, where a
new vertex joining the network has a higher probability of connecting to an exist-
ing vertex with a higher degree. Indeed, to determine the best distribution fit for the
observed degree distribution of the networks, we fitted negative binomial, beta nega-
tive binomial, Poisson, Yule-Simon, Generalized Pareto, and Pareto distributions, and
compared their goodness of fit using the Bayesian Information Criteria. We found that
the Yule-Simon, generalized Pareto and Pareto distributions, all describing a power-
law, provided the best fit for ~ 55%, ~ 20%, and ~ 12% of networks, respectively.
Additionally, in all countries, the Yule-Simon distribution eventually became the best
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Fig. 3 (a) Numbers of analyzed spike amino acid sequences per country. (b) Relative sizes of the largest
and second largest connected components of coordinated substitution networks over time. Solid and dashed
lines depict median and maximum/minimum values over 16 countries at each time point, respectively. (c)
An example of a giant component of a coordinated substitution network obtained using the complete dataset
for the USA on January 11, 2021. The vertices highlighted in green correspond to SAVs of the Omicron
variant (lineage B.1.1.529.1). Most of these SAVs form a dense community, visualizing the key idea of the
study.

fit for the latest networks, i.e., for all networks sampled after a specific date t* (with
the median date being December 27, 2020).

Finally, SAV links found by our approach generally agree with the links reported
in other studies. In particular, the test (1) applied to the USA dataset recognized
82% of pairs listed in [23] and 79% of non-trivial pairs from [26] (without considering
clusters of consecutive SAVs also reported in [26]). It should be noted that prior studies
identified much fewer linked pairs of SAVs than HELEN.

The aforementioned observations indicate that the networks inferred in this study
have a sufficiently rich community structure [66] that can be analyzed and utilized to
evaluate and forecast the SARS-CoV-2 evolutionary dynamics.

3.3 Dense communities as indicators of variant emergence

We analyzed communities within coordinated substitution networks in search for
evidence in support of the following hypotheses:

(H1) known VOCs/VOIs emerge as dense communities in coordinated substitution
networks;

(H2) conversely, dense communities within coordinated substitution networks correspond
to haplotypes with altered phenotypes;
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(H3) such communities can be detected before the corresponding lineages achieve
significant frequencies.

The theoretical framework for hypotheses (H1)-(H3) is established in Subsection
2.1. However, the primary objective of this research is to verify these hypotheses on
using empirical data. To accomplish this, we employed a dual-faceted approach. First,
we performed a retrospective statistical analysis of densities of known VOCs and
VOIs in coordinated substitution networks. Second, we evaluated the ability to accu-
rately infer haplotypes with altered transmissibilities, both known and unknown, from
collections of candidate dense communities. Our assessment covered several factors:

e precision and recall of VOC/VOI detection, both on an individual country basis and
jointly.

® promptness of detection measured using so-called forecasting depth. This quanti-
tative measure is defined as the time gap between the first variant call and the
occurrence of a specific epidemiological benchmark event b. In this study, we used
two benchmark events: (a) the variant’s designation by WHO (b = des) and (b) the
moment its prevalence reaches 1% or, if that does not occur, when the prevalence
peaks (b = prev, the similar benchmark was used in [3]). The value of FD!(h) can
be positive or negative, thus indicating early or late prediction, respectively.

e cumulative frequencies and prevalences of viral variant at earliest times of detection.

It’s worth noting that the presence of a viral variant as a dense community does not
necessarily indicate its circulation at that time. In the context of this study’s model,
this fact should be rather interpreted as an indication that the corresponding SAVs
are linked densely enough to suggest the variant’s viability. In particular, detecting
the variant as a dense community in a particular country at an early time point does
not necessarily mean that the variant originated there. As demonstrated below, while
there are instances where this is true, more often the variants are detected earlier in
countries with larger sample sizes that provide greater statistical power for inferring
coordinated substitutions.

3.3.1 VOCs/VOIs as communities in coordinated substitution
networks

To validate hypotheses H1) and H3), we estimated density-based p-values of known
VOCs and VOIs for each country and each time point using the algorithm described
in Subsection 2.3. The algorithm produces uniform samples of connected communities
of each epistatic network, and compares their densities with those of the VOCs/VOIs
to calculate p-values. As a result, for each country and each VOC/VOI we obtained
a time series of p-values. The series were adjusted by calculating FDR, and applying
the Benjamini-Hochberg procedure [67]. The resulting time series of adjusted p-values
for the complete and truncated datasets are illustrated in Fig. 4A and Supplemental
Figs. A2-A31.

Our analysis of time series data showed that a significant proportion of cases
exhibited variant expansion either succeeding or concurrent with a decrease in density-
based p-values. To quantify this relationship, we employed sample cross-correlation
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[68] to measure the connection between p-values and variant prevalences throughout
the growth period of the variant. We considered a range of positive and negative lags
for the prevalence series in relation to p-value series and identified the optimal lag [*
with the maximum absolute cross-correlation.

In what follows, we describe the results for the first truncated dataset; the results
for the complete and second truncated datasets are in general comparable and can
be found in the Appendix (Tables A1-A2). In 74% of all test cases, we detected
a non-negative optimal lag and a medium-to-strong statistically significant negative
correlation between p-values and lagged prevalences (mean p: —0.74, 95% CI for p:
[-0.97,—0.36]; mean *: 20.5, 95% CI for I*: [0,168] (in days), Fig. Al). Focusing
solely on VOCs, we observed this effect in 84% of cases (mean p: —0.72, 95% CI for
p: [—0.95,—0.36]; mean [*: 30.9, 95% CI for I*: [0,168] (in days)).

We defined a variant as ”significantly dense” when its adjusted p-value falls below
0.05 and at least 80% of its SAVs belong to the network’s giant component (the 80%
threshold was selected to allow for a single AA mismatch for shortest VOCs/VOIs).
For the first truncated dataset, 64% of VOCs/VOIs, analyzed separately for differ-
ent countries, became significantly dense at some moment of time. This percentage
increased to 93% when only considering VOCs. Moreover, the variants were identified
as significantly dense at low cumulative frequencies (median value y = 4 - 1074, Fig.
4d) and low prevalences (u = 8- 1074, Fig. 4e).

We assessed forecasting depths, FDP™ and FD, with respect to times when
the variants reached significant density. In general, VOCs/VOIs that achieved signifi-
cant density tended to do so early. In particular, such variants were identified before
reaching 1% prevalence in 57% of cases and before WHO designation times in 52% of
cases. For early calls (i.e. given that F'DP™" > 0 or F D > 0), the median forecasting
depths were 60 and 48 days, respectively. It should be noted that forecasting depths
for truncated datasets are lower, going from median F DP™V = 68 and F'DP™ = 66
for the complete dataset to median FDP™V = 60 and FDP™ = 35 for the second
truncated dataset (Table A3).

In genomic surveillance, decisions are typically made based on multitude of signals
from several countries. In this context, it is important to note that all Variants of
Concern (VOCs) and Variants of Interest (VOIs) have positive forecasting depths
FDP™ and FDY in at least one country (Fig. 4). For instance, the Omicron variant
(lineage B.1.1.529.1) becomes significantly dense before its designation time and before
reaching 1% prevalence in 9 countries, with forecasting depths ranging from 4 to 319
days for FD and 15 to 345 days for FDP™". The Delta variant (B.1.617.2) serves as
another example of multiple early predictions, as it becomes significantly dense before
its designation in 13 countries (F D9 € [15,300] and before reaching 1% prevalence -
in 10 countries (F DP™" € [30, 300]).

Sample size seems to significantly impact the haplotype detection. A positive cor-
relation exists between the number of significantly dense VOCs/VOIs and the number
of sequences per country (p = 0.59, p = 0.017). In particular, in the United States,
which has the highest number of sequences, all 10 variants reached significant density.
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Fig. 4 Density-based adjusted p-values of VOCs/VOIs (first truncated dataset). (a) p-values
(blue) and prevalences (red) of 8 VOCs and VOIs in the USA coordinated substitution networks (refer to
the Supplement for plots of all VOCs/VOIs across all countries). Black, green, and magenta lines represent
the times of VOC designation, achieving 1% prevalence, and becoming significantly dense, respectively. (b)
and (c): Forecasting depths (y-axis) in relation to the 1% prevalence time and WHO designation time for
each analyzed VOC/VOI across different countries. (d) and (e): Cumulative frequencies and prevalences for
VOCs/VOIs across various countries at the times when they become significantly dense (in a logarithmic
scale). Dashed lines at the bottom of the plot indicate that the variants reached significant density at
frequencies/prevalences of 0. For similar summaries for the complete and second truncated datasets see
Figs. A32 and A33.

3.3.2 Inference of viral variants as dense network communities

In our analysis, we used f-score as a metric for comparison of inferred dense
communities and known viral variants. In our context, it is defined as follows:

_CinV

i i Pri
Ri; = G N Vi P, =—= i, L

' Vil 7 |Cy| 7 Ri;+ P’
where R;;, P;; and F;; are the recall, precision and f-score for the SAVs of the
variant V; found within the dense community C; at the time ¢. In what follows, we
used a 80% f-score threshold to declare a variant detection as a dense community of
a coordinated substitution network.

The most straightforward way to partially assess the validity of hypotheses H2) and
H3) is to retrieve the densest subnetworks of coordinated substitution networks and
compare them to known viral variants. This task is made easier by the fact that finding
the densest subgraphs, based on our density definition, is a polynomially solvable

Fo;=2 (22)
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Fig. 5 Comparison of the densest subnetworks from coordinated substitution
networks (aggregated over 16 countries) with VOCs illustrated using the first
truncated dataset. Similar visuals for other datasets and individual countries can be found
in Fig. A34-A36. Each bar in the plot represents a specific VOC. For every time point, the
bars display the densest subgraphs of different countries that are most similar to that VOC,
with the height of the bars indicating the corresponding f-scores. Dashed lines highlight the
moments when the WHO designated the VOCs.

problem (see Subsection 2.4). The examination of the densest subnetworks indeed
lends support to the hypotheses. In particular, in all 3 datasets every VOC emerged in
at least one country as a dense community before its official designation (Figs. 5 and
A37-A38). All VOCs were also detected before reaching the 1% prevalence, except for
the Beta variant, that was detected as soon as it reached the 1% mark. The detailed
results of the densest subnetwork analysis are reported in the Appendix (section A.2).

However, more advanced algorithmic approach is essential for a comprehensive
early detection framework, as well as for stronger hypotheses confirmation. Indeed,
generally, only a single densest subnetwork can be constructed per time point, even
though multiple haplotypes with altered phenotypes might coexist at each specific
moment. As a result, for example, no VOI was detected as a densest subnetwork.
Additionally, we observed that, as coordinated substitution networks become denser
over time, the densest subnetworks expand and may ultimately encompass several
haplotypes, leading to decreased variant inference accuracy.

To overcome these problems, we developed HELEN - a more complex algorithm
for inferring viral haplotypes as dense network communities (Subsection 2.4). Briefly,
HELEN generates a pool of distinct dense subnetworks of varied sizes, partitions them
into clusters, and assembles a haplotype from each cluster using graph-theoretical
techniques. For every assembled haplotype, the algorithm also returns its support
defined as the percentage of candidate subnetworks corresponding to that haplotype.

Sensitivity outcomes for the proposed algorithm are illustrated in Fig. 6, Figs. A44-
A45 and Table 1. The numbers below are summary statistics ranges for three analyzed
datasets.

The recall of known VOCs/VOIs can be assessed in two ways:
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® When countries are assessed individually, the summary statistics can be reported as
an aggregated recall R = % S Z;nzl Xi,j- Here n is the number of countries, m
is the number of viral variants, and x;; is a binary indicator, set to 1 if variant j is
identified in country . Under this approach, HELEN exhibits an aggregated recall
rate between 50% and 53% for 3 datasets. This is reasonable, especially given the
varying prevalence of VOIs across countries. Moreover, focusing solely on VOCs,
the aggregated recall increases to 90% - 93%. These numbers represent a 2- to 2.5-
fold improvement over the densest subgraph-based method.

® From a genomic surveillance standpoint, it is also meaningful to assess recall based
on the combined signal from all countries. Under this approach, HELEN detected
8-9 out of 10 examined variants in at least one country, failing to detect the Theta
variant in all datasets and the Mu variant in the complete dataset. It is worth
mentioning that for the latter case, communities with as high as 0.75 identity were
detected several times, narrowly missing our pre-defined threshold. All VOCs were
found in 12-16 of the 16 analyzed countries, whereas detected VOIs ranged from
being present in 1 to 6 countries.

A significant proportion of these detections occured early. Specifically, 44% — 47%
of the earliest VOCs/VOIs detections happened before they reached a 1% prevalence
and 40% —45% were first detected before their WHO designation. Upon first detection,
the median variant frequency lay between 3.37-10~% and 3.99-10~4, while the median
variant prevalence ranged from 1.21-1073 and 1.61-1073. Again, these values signify
3-4-fold improvement over the densest subgraph-based method with respect to the
frequency, and 11-15-fold improvement with respect to the prevalence.

In terms of forecasting depths, 7-9 of the 10 variants exhibited non-negative values
of FDP™ and 8-9 out of 10 had non-negative F.D values in at least one country.
However, the forecasting depths vary among the three datasets. The median depth
FDPev is 60 days for the complete dataset, which is higher than the 45 days for the
truncated datasets. Likewise, F D is 67 days for the complete dataset, decreasing
to 56 for the first truncated dataset and 36 days for the second. Such variation is
expected given the definitions of the datasets.

Regarding specific variants, all VOCs were detected early in all datasets. The
maximum forecasting depths differ noticeably among datasets, but they are generally
reasonably high. For the complete dataset, the maximum FDP™" values span from
120 days (for Beta) to 360 days (for Delta). In contrast, for the second truncated
dataset, these values range from 30 days (Omicron) to 285 days (Delta). Similarly, the
maximum F D values range from 111 days (Beta) to 360 days (Delta) in the complete
dataset, and from 4 days (Omicron) to 285 days (Delta) in the second truncated
dataset (see Figs. 6,A44-A45BC).

The VOIs, while generally showing more decent forecasting depths, had early iden-
tifications for Lambda, Mu, Eta, and Kappa variants. These were detected between
5-124 days before their WHO designation and 0-75 days before they reached a 1%
prevalence, as seen in Figs. 6,A44-A45BC. Notably, some forecasting depths actually
increased for the truncated datasets. Taking the Eta variant as an example, the max-
imum FDP™ rose from 30 days (in the complete dataset) to 60 days (in the second
truncated dataset). Similarly, the maximum F D9 shifted from 5 days to 35 days.
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Complete 1st truncated | 2nd truncated
8/10 9/10 9/10

VOCs/VOIs identified

in at least one country

Number of countries where

VOCs (VOIs) were detected

Aggregated recall for VOCs/VOIs

(VOCs only).

Percentage of earliest VOCs/VOIs detections

13-15 (1-4) 13-16 (2-5) 13-16 (2-6)

50% (90%) | 53% (90%) 55% (93%)

with FDPY > 0 45% 47% 44%
Percentage of earliest VOCs/VOIs detections

with FDdes > 0 45% 42% 40%
Median cumu%atlve frequency 3.99.10—4 3.37.10—4 3.77. 104
at first detection

Median prevalence at first detection 1.48 103 1.21-10°3 1.61-10°3
VOCs/VOIs (VOCs) with FDP™®V >0

in at least one country 7/10 (5/5) 9/10 (5/5) 9/10 (5/5)
VOCs/VOIs (VOCs) with FDI* >0

in at least one country 8/10 (5/5) 9/10 (5/5) 9/10 (5/5)
Median F'DP™V for early calls, days 60 45 45
Median F DI for early calls, days 67 56 36
Correlation (p-value) between the number

of sequences per country and the number 0.33 (0.21) 0.54 (0.031) 0.38 (0.15)

of variants with F DI > (

Correlation (p-value) between the number
of sequences per country and the number 0.72 (0.0016) | 0.70 (0.0025) | 0.73 (0.0013)
of variants with F.DP*V > 0

Table 1 Summary statistics for VOC/VOI recall by HELEN

This phenomenon, together with the detection of the Mu variants only in truncated
datasets, can be associated with the opposite effect observed for the VOCs: without
the dense communities related to VOCs at certain times, the algorithm could detect
VOl-associated communities earlier.

Similar to the case with significantly dense subgraphs, sample sizes and geographic
diversity influence variant detection. A medium-to-strong positive correlation was
observed between the number of sequences per country and the number of variants
with positive forecasting depths (Table 1). Some of the earliest forecasts, although not
all, were made in the countries of origin for specific variants: notably, Beta, Gamma,
and Lambda variants were detected in South Africa, Brazil, and Peru (Fig. A41-A43).
On the other hand, failure to detect Theta variant can be attributed to the fact that
80% of theta cases were observed in Philippines, a country not included in our analysis
due to the smaller sample size. Haplotype size does not significantly affect the accu-
racy of detection, as the correlation between VOC/VOI numbers of SAVs and average
f-values at detection was not statistically significant (p = 0.17, p = 0.65).

To assess the precision of HELEN, it is important to consider that the true positive
network communities identified by the algorithm might not only correspond to known
VOCs/VOIs but also to variants exhibiting increased transmissibility that failed to
become VOC/VOI due to factors such as genetic drift or containment through public
health measures before achieving a high global prevalence. Consequently, we classify
a haplotype v identified by HELEN at a specific time as spreading, if v is a known
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Fig. 6 (a) Summary of comparison between VOCs/VOIs and inferred haplotypes (first truncated
dataset, the results for other datasets are depicted on Figs. A44-A45). Each bar plot depicts the comparison
results for a particular VOC/VOI; at each time point, bars correspond to inferred haplotypes from different
countries closest to that VOC, and the bar heights are equal to the respective f-scores. Colored dashed
lines mark times when the VOCs were designated by WHO. (b) and (c): forecasting depths (y-axis)
with respect to the 1% prevalence time and WHO designation time for each analyzed VOCs/VOIs over
different countries. (d) and (e): cumulative frequencies and prevalences of VOCs/VOIs over different
countries at first variant call times (in logarithmic scale). Dashed lines at the bottom of the plot signify
that the corresponding variants were detected at cumulative frequencies or prevalences 0. (f) Precision
of haplotype inference. Blue box plot: summary statistics of matching similarity at each time point over
different countries. Red: median matching similarity over time.
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VOC/VOI or if the prevalence of variants highly similar to v has increased or will
increase by a factor of 10 in the past or future. Note that a similar fold-based criterion
was employed to define spreading mutations in [3]. A variant v’ is considered highly
similar to v if it contains at least 80% of v’s SAVs; this definition encompasses variants
genetically close to v and their descendants.

We measure precision using the matching similarity metric, denoted as Aj_,g.
This metric evaluates the agreement between inferred haplotypes (I) and spreading
haplotypes (5) by taking into account haplotype support as a proxy for haplotype call
confidence and measuring the extent to which inferred haplotypes, weighted by their
support (o; : ¢ € I), are matched by their nearest spreading haplotypes. Formally, the
matching similarity is the average f-score for inferred haplotypes in relation to their
closest spreading haplotypes:

AI—)S - iezlo—z rilea's},( fz,s (23)
A similar measure, in the reverse form of a matching error, was used, e.g., in [36].

The summary statistics for matching similarity at each time point across different
countries is summarized in Figs. 6A44-A45f. The general trend is the precision growth
over time during the first year of the pandemic followed by the relatively steady
state during the second year. For example, for the first truncated dataset (Fig. 6f)
HELEN initially achieved a median matching similarity above 80% in August, 2020,
and stayed above 85% from December 2020. Initially, there was a considerable variation
in matching accuracy among countries, but it noticeably declined by early 2021. These
observations can be associated with the density dynamics of coordinated substitution
networks in different countries, whereas the precision increases as more epistatically
linked SAVs are identified.

Finally, we compared the accuracy results of HELEN with those based on findings
of [26], that similarly identified clusters of concordantly evolving spike protein sites
in coordinated substitution networks using an alternative approach. The comparison
focused on data aggregated up to September 7, 2021, to match the dataset used in
[26]. As above, to measure recall, we estimated VOC/VOI f-scores in relation to
the closest inferred clusters, while for precision we, conversely, calculated f-scores of
inferred clusters in relation to the nearest VOCs/VOIs. As [26] does not report a
confidence measure to calculate the summary statistics akin to matching similarity,
we focused on HELEN clusters with over 1% support and used violin plots to present
the distribution of cluster f-scores (Fig. 7). The comparison clearly demonstrates that
HELEN achieves higher recall and precision.

3.4 Running time and scalability

The computational methods employed in this study are reasonably efficient and scale
to millions of sequences. For instance, for the US dataset analyzed at the time point
t = 37, that consist of approximately 1.66-10% sequences, constructing the coordinated
substitution network took ~ 1 hour, estimating the p-values of 10 VOCs/VOIs took
~ 1.8 hours, and inferring viral haplotypes took ~ 38.6 hours. These computations
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Fig. 7 Comparison of HELEN with the method from [26]. HELEN-C, HELEN-1
and HELEN-2 denotes the results of HELEN for the complete, first and second truncated
datasets. The study [26] reported the results for the complete dataset.

were carried out on a workstation equipped with a 3GHz Intel Xeon E5 CPU and
64GB of RAM.

4 Discussion.

This study explores the hypothesis that viral variants with higher transmissibility can
be associated with dense communities in coordinated substitution networks. Specifi-
cally, we investigated this idea in the context of SARS-CoV-2 spike protein genomic
variants and found strong support for it. Our results indicate that network density
can serve as a dependable indicator for the timely detection or prediction of emerging
SARS-CoV-2 variants. As a result, we proposed an accurate, interpretable, and scal-
able method that can anticipate emerging SARS-CoV-2 haplotypes several months in
advance, leading to early detection and improved forecasting.

These results were obtained using a synthetic approach that combines meth-
ods from statistics, combinatorial optimization, and population genetics. Firstly, we
employed a sensitive statistical test that relies on a quasispecies population genet-
ics model to identify linked pairs of SAVs that are jointly observed more often than
expected if the corresponding 2-haplotype is inviable. This method allowed us to con-
struct coordinated substitution networks with rich community structures, providing a
foundation for meaningful network-based inference. Secondly, we validated our hypoth-
esis by estimating network density-based p-values of SARS-CoV-2 haplotypes. This
allowed us to identify haplotypes with low p-values as potential variants of concern
and demonstrate that known VOCs achieve low p-values significantly earlier than they
reach frequencies high enough to be detected using conventional methods. Lastly, we
utilized these findings to design an algorithm for the early detection of viral variants
that identifies dense communities of SAV alleles and combines them into haplotypes.
We demonstrate the efficacy of this algorithm by retrospectively identifying known
VOCs and VOIs with high accuracy up to several months before they reached high
prevalence and were designated by the WHO.
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Compared to traditional phylogenetic lineage tracing, the proposed methodology
offers several advantages. In particular, it can detect viral variants as dense communi-
ties at very low frequencies or even when actual variant sequences are not sampled -
the latter is possible when there are sufficiently many well-covered variant’s SAV pairs.
This feature is naturally inherited from our prior methods [36, 39] for reconstructing
intra-host viral populations from noisy NGS data, which have demonstrated the ability
to accurately detect viral haplotypes with frequencies as low as the level of sequencing
noise. Additionally, the computational complexity of most intensive steps of network-
based methods is a function of the genome length rather than the sequence number.
For SARS-CoV-2 data, the number of available sequences in GISAID is up to 4 orders
of magnitude larger than the number of amino acid positions in the SARS-CoV-2 s-
gene (~ 1.5-107 sequences versus 1.27 - 10% amino acid positions). This feature makes
the proposed algorithms considerably more scalable than phylogenetic methods.

It is important to note that there are limitations to this study, as the comprehensive
forecasting of viral evolution is inherently an intractable problem. While the proposed
methods have shown promising early detection results, caution should be exercised
when interpreting them. First of all, our findings by no means suggest that viral
evolution is a deterministic process that can be predicted using mechanistic models.
Instead, they demonstrate how to identify potential evolutionary trajectories among
exponentially many possibilities. These trajectories can guide further investigation and
prioritization of functional screening. Nonetheless, the number of these trajectories
could be substantial. For instance, in the idealized model presented in Subsection 2.1,
the number of predictable high-fitness variants corresponds to the number of maximal
cliques within an epistatic network. Although this is typically much smaller than the
overall number of potential genotypes, in the worst case it may still be exponential
[69].

Moreover, the GISAID data used in our study encompasses sequences obtained
under different conditions by a variety of laboratories worldwide. Consequently, despite
GISAID efforts to maintain consistent quality control, there may still be variations
in the reliability of the sequences and their associated metadata. Specifically, there
are concerns that the complete dataset might be less trustworthy than its truncated
counterparts, potentially containing mislabelled or contaminated data. Nonetheless,
we opted to analyze this dataset to ensure thoroughness and to highlight the sensitivity
of the proposed methodology, irregardless of data specifics. It is imperative, however, to
approach the forecasting depths of this dataset with a degree of skepticism. Primarily,
our results serve as a testament to the methodology’s capacity to detect rare genotypes
with altered phenotypes in a genomic sample, irrespective of provenance of these
genotypes. Exploration of the origins of SARS-CoV-2 VOCs and VOIs is beyond the
scope of this study.

Next, the links between SAVs identified by HELEN represent putative or potential
positive epistatic interactions [23], and their primary purpose is to serve as features
for our prediction model. These links should be viewed as a statistical ensemble rather
than individually, with our findings suggesting that haplotypes with altered pheno-
types exhibit a significantly higher number of potential epistatic pairs compared to
background haplotypes. Consequently, research focused on examining the biological
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mechanisms of specific SARS-CoV-2 epistatic interactions should incorporate more
comprehensive structural data.

The utilized coordinated substitution/epistasis model is another limitation of this
study as it only considers the interactions between SAV pairs, thus reflecting ”pair-
wise” or ”second-order epistasis”. Although combinations of mutations can have more
complex fitness effects involving higher orders of epistasis [70], this model is justifi-
able for several computational reasons. Firstly, it is the minimal model that enables
the detection of multiple overlapping haplotypes, which is an improvement over the
mutation independence assumption used in other studies [3] that, in general, only
allow ranking and prioritization of mutations. Secondly, k-haplotypes with k > 3 may
not have sufficiently high frequencies to be detected, thereby affecting the method’s
predictive power. In contrast, pairs are always covered by more sequences and can be
detected earlier. Lastly, accounting for higher-order combinations of mutations can
increase the computational complexity of the problem while the second-order model
remains computationally tractable.

Finally, our method is based solely on genomic data, and its effectiveness could be
enhanced by incorporating epidemiological and structural biology data and models.
Additionally, our results highlight the significance of robust and diverse sampling
practices, as early detections were predominantly made in countries with larger sample
sizes, and some variants were only detected early in their countries of origin.

We believe that the methodology developed in this study goes beyond SARS-CoV-
2 and can be applicable to a variety of other pathogens. The high sensitivity of our
method, HELEN, positions it as an especially effective tool for detecting and forecast-
ing emerging and circulating strains of pandemic viruses, including HIV, Hepatitis C,
and Influenza. This capability is particularly valuable in the context of seasonal vac-
cine development, where accurate and timely forecasts can play a crucial role in the
selection of strains for vaccine formulation.

We believe that the methodology proposed in this study is not limited to SARS-
CoV-2 and can be extended to other pathogens. The high sensitivity of HELEN
positions it as an effective tool for forecasting emerging and detecting circulating
strains of pandemic viruses, including HIV, Hepatitis C, and Influenza. This capability
is particularly valuable in the context of seasonal vaccine development, where accu-
rate and timely forecasts can play a crucial role in the selection of strains for vaccine
formulation.
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