

1 FRONT MATTER

3 Title

4 Full Title:

5 Expanding the Tool Box for Native Structural Biology: ^{19}F Dynamic Nuclear Polarization
6 with Fast Magic Angle Spinning

8 Short title:

9 ^{19}F DNP MAS NMR for in-cell structural biology

10 Authors:

12 Kumar Tekwani Movellan^{1,2}, Wenkai Zhu^{2,3}, Daniel Banks⁴, James Kempf⁴, Brent
13 Runge^{1,2}, Angela M. Gronenborn^{1,2,3,5,6*}, Tatyana Polenova^{1,2,3*}

15 Affiliations

17 ¹University of Delaware, Department of Chemistry and Biochemistry, Newark DE 19716,
18 United States.

19 ²Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of
20 Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh PA 15261,
21 United States.

22 ³Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth
23 Avenue, Pittsburgh PA 15261, United States.

24 ⁴Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts MA 01821,
25 United States

26 ⁵Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh,
27 Pittsburgh PA 15261, United States.

28 ⁶Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh,
29 Pittsburgh PA 15261, United States.

31 Abstract

33 Obtaining atomic-level information on components in the cell is a major focus in structural
34 biology. Elucidating specific structural and dynamic features of proteins and their
35 interactions in the cellular context is crucial for understanding cellular processes. We
36 introduce ^{19}F dynamic nuclear polarization (DNP) combined with fast magic-angle-
37 spinning (MAS) NMR spectroscopy as a powerful technique to study proteins in
38 mammalian cells. We demonstrate our approach on the SARS-CoV-2 5F-Trp- N^{NTD} protein,
39 electroporated into human cells. DNP signal enhancements of 30- to 40-fold were observed,
40 translating into over 1000-fold time-savings in experiment time. High signal-to-noise ratio
41 spectra were acquired on nanomole-quantities of a protein in cells in minutes. 2D ^{19}F - ^{19}F
42 dipolar correlation spectra with remarkable sensitivity and resolution were obtained,
43 exhibiting ^{19}F line widths as narrow as \sim 2 ppm, and ^{19}F - ^{19}F cross-peaks associated with
44 fluorine atoms as far as \sim 10 Å apart. This work paves the way for ^{19}F DNP-enhanced MAS
45 NMR applications in cells for probing protein structure, dynamics and ligand interactions.

46 **Teaser**

47 ¹⁹F DNP-enhanced MAS NMR is a powerful tool for protein structural characterization in
48 cellular environments.

50 **MAIN TEXT**

52 **Introduction**

53 Advancing structural biology today requires the characterization of structure,
54 dynamics and interactions of biomolecules in their native environment, the cell. Up to now,
55 most of our structural knowledge has been garnered *in vitro*, yielding a tremendous number
56 and variety of complex biomolecular structures that advanced our understanding of
57 biological processes and biochemical pathways. The majority of structures up to date have
58 been provided by X-ray crystallography, although cryo-electron microscopy (EM) and
59 nuclear magnetic resonance (NMR) spectroscopy have also contributed (1, 2). A major and
60 unique feature of NMR is its ability to inform on protein conformational changes and
61 dynamics at atomic resolution over a broad range of timescales (3, 4).

62 Solution *in-cell* NMR has opened the way to transfer the unique capabilities of NMR
63 into the cellular context (5), and over the last few years ¹⁹F *in-cell* NMR has gained
64 popularity (6–8), given the beneficial spectroscopic properties and high sensitivity of the
65 ¹⁹F spin, coupled to its virtual absence in biology. Moreover, fluorine can be readily
66 introduced into biological macromolecules (9). Remarkably, ¹⁹F resonances can be detected
67 in the *in-cell* spectra of globular proteins when the commonly used ¹H-¹⁵N HSQC spectra
68 are invisible, with resonances broadened beyond detection due to protein interactions with
69 cellular components (6).

70 Here, we introduce ¹⁹F dynamic nuclear polarization (DNP)-enhanced magic angle
71 spinning (MAS) NMR for investigating proteins in mammalian cells. We present results on
72 the N-terminal domain of SARS-CoV-2 nucleocapsid protein, N^{NTD} (Fig. 1). We observed
73 30- to 40-fold signal enhancements of the ¹⁹F resonance intensities by DNP in cells at fast
74 spinning frequencies of 40 kHz, enabling the detection of low-nanomole quantities of 5F-
75 Trp-N^{NTD} with a signal-to-noise ratio greater than five in spectra recorded in ~20 minutes.
76 Similarly, ¹⁹F-¹⁹F 2D spectra, recorded in ~33 hours, would have required ~4.5 years
77 without DNP, making such an experiment unrealistic. With the homogenous line widths as
78 narrow as 2 ppm, well-resolved cross peaks were observed in 2D ¹⁹F-¹⁹F dipolar correlation
79 spectra. A unique cross peak was unambiguously assigned to the correlation associated with
80 residues W70 and W94 separated by ~10 Å.

81 In addition to improving sensitivity, the approach presented here overcomes other
82 major challenges for *in-cell* ¹⁹F NMR-based cellular structural biology, including
83 safeguarding cell viability and the introduction of radicals for *in-cell* ¹⁹F-DNP, as well as
84 taking advantage of spectral simplification by using specifically introduced ¹⁹F atoms.
85 Taken together, our results demonstrate the promise of ¹⁹F *in-cell* DNP-enhanced fast MAS
86 NMR for structural investigations of proteins in mammalian cells.

87 **Results**

88 **Sensitivity of *in-cell* ¹⁹F DNP-enhanced MAS NMR experiments**

89 N^{NTD} was labeled with 5F-Trp and delivered into human A2780 cells by
90 electroporation. ¹⁹F DNP-enhanced MAS NMR spectra for the samples containing 0.3 and
91 0.8 nanomoles of protein with 13 mM and 6.3 mM AMUPol, respectively, are shown in
92 Fig. 2A, B. Remarkably, signals can be detected in a few scans (Fig. 2A), while no signal
93 was present in the control ‘microwave-off’ experiment after 85 minutes of signal averaging
94 on a sample containing 0.8 nanomoles of protein and 6.3 mM AMUPol (Fig. 2B). We

96 obtained ^{19}F DNP enhancements 30- to 40-fold at the MAS frequency of 40 kHz
97 (Supplementary **fig. S1A**).

98 Detection of ^{19}F signals in the *in-cell* MAS NMR experiments without DNP
99 enhancement requires much longer measurement times and/or more sample. Signal-to-noise
100 ratios (SNR) similar to those in DNP-enhanced MAS experiments at room temperature
101 required 32.7 hours at 11.7 T and 5.3 days at 20.0 T (**Fig. 2C and D**). Note that the sample
102 used for experiments at 11.7 T contained ~1.2-1.5 million cells (~1 nanomole of protein) in
103 a 1.3 mm rotor while the sample used for experiments at 20.0 T contained ~4-5 million cells
104 (~1.9 nanomoles of protein) in a 1.9 mm rotor. In principle, long acquisition times should
105 not affect spectral quality adversely if the sample is maintained at -80 °C or below with
106 appropriate cryoprotectant (10, 11). Unfortunately, in the 11.7 and 20.0 T systems without
107 LT-MAS probes, the lowest attainable temperatures with the 1.3 mm HFX probe at 30 kHz
108 MAS frequency and the 1.9 mm HX probe at 20 kHz MAS frequency are -11 °C and -2 °C,
109 respectively, conditions under which cells are not viable for long times.

110 To systematically evaluate the *in-cell* ^{19}F DNP sensitivity, we examined the
111 dependence of the normalized signal intensities and buildup times on the MAS frequency
112 and AMUPol concentration. It is well known that nitroxide-based biradicals, commonly
113 used for cross-effect DNP, are unstable in the reducing environment of the cell, as
114 demonstrated by the groups of McDermott (12), Frederick (13), and Debelouchina (14).
115 Therefore, we evaluated several procedures for introducing AMUPol into the sample: i)
116 electroporating AMUPol solution together with the protein into the cells; ii) adding the
117 AMUPol solution to the cells after protein electroporation and recovery; and iii) combining
118 i) and ii) by electroporating AMUPol into the cell with the protein, followed by introducing
119 additional AMUPol solution to the cells after recovery. The final concentration of AMUPol
120 in the samples, as measured by EPR, depends critically on the incorporation procedure for
121 the biradical, and the results are summarized in **Table 1** and detailed in Supplementary
122 **Table S3 and Table S4**. The highest sensitivity in the DNP-enhanced experiments resulted
123 from an in-cell concentration of 13 mM AMUPol, which was reached by electroporating 40
124 mM AMUPol solution with the protein into the cells, followed by the addition of 40 mM
125 AMUPol solution to the sample after cell recovery.

126 The ^{19}F DNP signal buildup times for the *in-cell* samples containing <3, 6.3, and 13
127 mM AMUPol are similar at 14.6, 13.3, and 16.2 s, respectively (**Table 1** and **Fig. 2D**).
128 Importantly, the ^1H signal buildup time for the sample containing 13 mM AMUPol is only
129 ~1.7 s, i.e., approximately ten-fold slower (**Table 1**). These ^{19}F DNP signal buildup times
130 are similar to those determined in our prior study on HIV-1 CA assemblies (15) and indicate
131 that polarization transfer occurs directly from electrons to ^{19}F nuclei and is not driven by ^1H
132 spin diffusion.

133 The dependence of the normalized ^{19}F signal intensity on the MAS frequency is
134 provided in **Fig. 2E** and Supplementary **fig. S1C** and shows that increasing the MAS
135 frequency from 20 to 30 kHz results in ~10% signal intensity-gain in all the samples.
136 Interestingly, increasing the spinning frequency from 30 to 40 kHz produced no
137 enhancement in signal intensity for the <3 and 6.3 mM AMUPol-containing samples,
138 whereas the signal intensity increased by about 25% in the sample containing 13 mM
139 AMUPol. Conversely, a ~60% drop in ^{13}C DNP signal enhancements was observed upon
140 increasing the MAS frequency from 20 to 40 kHz, as illustrated for the carbonyl signal
141 intensity in the sample containing 6.3 mM AMUPol (Supplementary **fig. S6**). This finding
142 is in agreement with results from non-DNP-based experiments (16–18) and underscores the
143 benefits of fast spinning frequencies (40 kHz) also for ^{19}F DNP-enhanced MAS NMR.

144 To elucidate the best conditions for the *in-cell* ^{19}F DNP experiments, we calculated
145 SNR_{norm} , the SNR of the most intense peak, per nanomole of protein per square root of

146 experimental time. A maximum of SNR_{norm} of ~ 0.5 was seen in samples in which AMUPol
147 was added extracellularly, while $\text{SNR}_{\text{norm}} > 3$ was observed for samples where AMUPol was
148 introduced into the cell by electroporation as well as those in which AMUPol was
149 electroporated into the cell, followed by the addition of AMUPol solution to the cells after
150 recovery (**Table 2**).

151 Overall, our results suggest that electroporation of the biradical into the cells together
152 with the protein, followed by additional biradical addition to the extracellular buffer, is best
153 for attaining highest AMUPol concentrations. It should be pointed out, however, that it is
154 unclear at present whether the variation in the DNP signal enhancements seen here is
155 representative, since the spectra were recorded at different times, i.e., weeks apart, and may
156 solely reflect the varied performance of the instrument. Further systematic experiments
157 beyond the scope of this manuscript are necessary to fully evaluate and select an optimal
158 procedure. Meanwhile, it is both noteworthy and encouraging that the results presented here
159 demonstrate that AMUPol-mediated DNP-gains are achieved either by introducing this
160 widely used polarizing agent into the cell or the surrounding medium, or a combination of
161 both.

162 **Signal assignments, spectral resolution, and homogeneous line widths**

163 The apparent resolution of the ^{19}F DNP-enhanced *in-cell* MAS NMR spectra of the
164 WT N^{NTD} is high, with the overall spectral envelope spanning over 12 ppm and with
165 multiple partially resolved resonances of $\sim 2\text{-}3$ ppm line width (**Fig. 3A** and **3C**). Resonance
166 assignments of the ^{19}F signals were obtained using three protein variants in which single
167 tryptophan residues were substituted by phenylalanine, referred to as 5F-Trp, U- ^{15}N - N^{NTD}
168 W14F, 5F-Trp, U- ^{15}N - N^{NTD} W70F, and 5F-Trp, U- ^{15}N - N^{NTD} W90F (**Fig. 3B**). In all variants,
169 like for the WT, ^{19}F incorporation was over 95%, as assessed by mass spectrometry
170 (Supplementary **fig. S2**). The structural integrity of the variants was assessed via solution
171 ^1H - ^{15}N HSQC spectroscopy and RNA binding by electrophoretic mobility shift assays. No
172 notable differences were noted in the ^1H - ^{15}N HSQC spectra, compared to the spectrum of
173 the WT N^{NTD} (Supplementary **fig. S3**). Similarly, there are no noteworthy effects on the
174 RNA binding (Supplementary **fig. S4**).

175 Note that only small chemical shift differences are observed between the *in-vitro* and
176 *in-cell* spectra and the overall peak pattern in the MAS spectra is similar. ^{19}F chemical shifts
177 for all samples are summarized in Supplementary **table S5**.

178 To determine the homogeneous ^{19}F line widths in the MAS spectra, a series of ^{19}F
179 DNP-enhanced spectra with selective magnetization inversion pulses were recorded, using
180 “delays alternating with nutation for tailored excitation” (DANTE) sequence (19). The
181 inverted individual peaks are 2-3 ppm broad (**Fig. 3C**), which corresponds to the upper limit
182 of the homogeneous line widths.

183 The above results are very encouraging for future *in-cell* ^{19}F applications. They
184 demonstrate that inhomogeneous line broadening is the main factor determining the line
185 widths and, therefore, further improvements in resolution can be expected with dedicated
186 ^{19}F DNP MAS NMR probes that permit ^1H decoupling, faster spinning frequencies and use
187 at higher magnetic fields.

188 **DNP-enhanced 2D ^{19}F - ^{19}F correlation spectroscopy**

189 Given the high sensitivity of the ^{19}F *in-cell* DNP-enhanced MAS NMR experiments
190 and the narrow homogeneous line widths, we recorded *in-cell* 2D ^{19}F - ^{19}F spin diffusion
191 (SD) spectra on the 5F-Trp, U- ^{15}N - N^{NTD} sample, containing 13 mM AMUPol. The spectrum
192 acquired in 32 hours with a SD mixing time of 2 s is shown in **Fig. 3D**, left panel. Strong
193 cross peaks are present on both sides of the diagonal, corresponding to a correlation between
194 5F-Trp-70 and 5F-Trp-94. In contrast, the control spectrum recorded in 28 hours with no
195 mixing is devoid of cross peaks. The corresponding interfluorine distance between 5F atoms

196 of Trp-70 and Trp-94 is $\sim 9.6 \pm 0.9$ Å, much shorter than those between the 5F atoms of Trp-
197 14 and Trp-70 (14.2 ± 1.2 Å) or those between Trp-14 and Trp-94 (18.4 ± 3.0 Å). Importantly,
198 we employed a SD-based magnetization transfer since the probe does not permit
199 simultaneous use of ^1H and ^{19}F channels, thus limiting the accessible mixing sequences.
200 Moreover, given that ^{19}F isotropic chemical shifts of 5F-Trp-70 and 5F-Trp-94 are less than
201 3 ppm apart, other dipolar-mixing schemes, such as RFDR, are inefficient (20).
202

203 Discussion

204 NMR spectroscopy is currently one of the few non-destructive techniques that can
205 provide atomic details of protein structure, dynamics, and interactions in living cells without
206 the need for potentially perturbing labels. Yet, the low sensitivity and the high cellular
207 background from naturally occurring ^1H , ^{13}C and ^{15}N atoms presents numerous challenges
208 in the application of *in-cell* NMR. These challenges can be overcome by the use of ^{19}F *in-cell*
209 DNP-enhanced fast MAS NMR spectroscopy. The here detailed 30- to 40-fold
210 sensitivity enhancements by DNP, combined with $\sim 2\text{-}3$ ppm homogeneous line widths,
211 observed without ^1H decoupling in 40 kHz MAS spectra, open doors for performing 2D and
212 3D spectroscopy with only ~ 0.3 nanomoles of protein in the MAS NMR rotor, as
213 demonstrated here.

214 Overall, our study established a proof of concept for and will inspire further *in-cell*
215 ^{19}F DNP applications. Indeed, we anticipate rapid improvements, especially with advent of
216 DNP dedicated fluorine probes, capable of ^1H decoupling and ^1H - ^{19}F cross polarization
217 transfers. These added capabilities will further improve sensitivity and resolution, reduce
218 polarization buildup times, and will permit the acquisition of heteronuclear-based
219 correlation experiments. Additional sensitivity and resolution gains are expected to arise
220 from higher magnetic fields and faster MAS frequencies. Coupled to the development of
221 superior radicals for *in-cell* applications as well as expanding ^{19}F labeling strategies will
222 make ^{19}F *in-cell* DNP-enhanced MAS NMR more broadly accessible to non-specialized
223 researchers.

224 Materials and Methods

225 Sample preparation

226 *Expression and purification of SARS-CoV-2 N^{NTD}*

227 All 5F-Trp-N^{NTD} proteins, 5F-Trp, U- ^{13}C , ^{15}N -N^{NTD} wild type (WT) as well as 5F-Trp, U-
228 ^{15}N -N^{NTD} WT and W14F, W70F, and W94F variants were expressed and purified using a
229 similar protocol as previously described for N^{NTD} (21, 22). Briefly, *E. coli* BL21 Rosetta
230 (DE3) cells harboring the recombinant plasmid from GenScript for expressing SARS-CoV-
231 2 N^{NTD} (residues 40-174, current construct residue numbering 2-136) sub-cloned into a
232 pET28a(+) vector fused with an N-terminal hexahistidine tag, followed by a TEV cleavage
233 site, His₆-TEV-N^{NTD}, were used. Cells were grown to an OD₆₀₀ of ~ 1 in ~ 5 mL of Luria
234 Bertani (LB) medium, supplemented with 50 $\mu\text{g}/\text{mL}$ Kanamycin and 30 $\mu\text{g}/\text{mL}$
235 chloramphenicol. 1 mL of LB starting culture was added to ~ 50 mL of M9 media,
236 supplemented with 1 g/L $^{15}\text{NH}_4\text{Cl}$ (U- ^{15}N -N^{NTD}) or 1 g/L $^{15}\text{NH}_4\text{Cl}$ and 2 g/L U- $^{13}\text{C}_6$ -glucose
237 (U- ^{13}C , ^{15}N -N^{NTD}) and grown overnight at 37 °C with shaking at 170 rpm. 1 L of M9
238 medium, supplemented with 1 g/L $^{15}\text{NH}_4\text{Cl}$ (U- ^{15}N -N^{NTD}), or 1 g/L $^{15}\text{NH}_4\text{Cl}$ and 2 g/L U-
239 $^{13}\text{C}_6$ -glucose (U- ^{13}C , ^{15}N -N^{NTD}), was seeded with the M9 starting culture to an OD₆₀₀ of 0.1
240 and grown at 37 °C to OD₆₀₀ of 0.7-0.8. At that time 20-25 mg of 5-fluoroindole (in 70%
241 ethanol) were added, and the temperature was lowered from 37 to 25 °C. After 45 min,
242 protein expression was induced by the addition of 0.5 mM IPTG and the culture was grown
243 for an additional ~ 16 -18 hours at 25 °C. The cells were harvested by centrifugation at 5,000
244 $\times g$ for 10 min at 4 °C, and the cell pellet was resuspended in the lysis buffer (Buffer A: 20
245

246 mM HEPES, 500 mM NaCl, pH 8) and stored at -80 °C until further use. Cells were opened
247 by sonication (Branson, Digital Sonifier 450) at 30% power for ~20 minutes total time (20
248 s pulse on and 40 s pulse off), cells were kept on ice during sonification. The cellular lysate
249 was clarified by centrifugation at 10,000 x g for 30 min at 4 °C. The supernatant was passed
250 over a HisTrap column (Cytiva 5 mL column) pre-equilibrated with buffer A containing 20
251 mM imidazole (buffer B). Protein elution was achieved using a linear gradient from 10% to
252 100% of buffer A containing 500 mM imidazole (buffer C). Protein fractions containing
253 6xHis-5F-Trp,U-¹³C,¹⁵N-N^{NTD} or 6xHis-5F-Trp,U-¹⁵N-N^{NTD} were pooled and TEV
254 protease was added with the protein at a ~1 to 30 molar ration (TEV to fusion protein) to
255 cleave the 6xHis N-terminal. (TEV plasmid was kindly provided by Sharon Rozovsky
256 (University of Delaware); TEV was expressed and purified in house according to (23)). The
257 cleavage was performed while dialyzing the sample against buffer A overnight at 4 °C. The
258 cleaved protein was passed through a HisTrap column (Cytiva 5 mL column) pre-
259 equilibrated with buffer B. 5F-Trp-N^{NTD}-containing flowthrough was collected, diluted 3
260 times (v/v) with 20 mM HEPES buffer, pH 8, and passed over a heparin column (Cytiva 5
261 mL column) pre-equilibrated in 20 mM HEPES, 0 mM NaCl, pH 8 (buffer D). The protein
262 was eluted from the heparin column using a linear gradient (0 to 100 %) of 20 mM HEPES,
263 1 M NaCl, pH 8 (buffer E).

264

265 *Preparation of in-cell samples for solution NMR, MAS NMR, and DNP-enhanced MAS*
266 *NMR*

267 Purified proteins, 5F-Trp,U-¹⁵N-N^{NTD} WT, W14F, W70F, and W94F, were delivered into
268 A2780 mammalian cells following the electroporation protocol developed by Selenko and
269 coworkers (5). Briefly, A2780 cells were seeded in RPMI-1640 medium, supplemented with
270 10% FBS, in a 175 cm³ plate. After reaching 80% confluency, cells were washed with
271 phosphate buffer saline (PBS) followed by trypsin treatment (Gibco, 0.05%), for 5 min at
272 37 °C at 5% CO₂. After trypsinization, cells were pelleted by centrifugation at 150 x g for 5
273 min at room temperature. The supernatant was discarded, and cells were washed twice with
274 10 mL PBS buffer. The number of live and dead cells was determined using Trypan blue
275 (24). Live cells were harvested and washed once with 1 mL of electroporation (EP) buffer
276 without ATP (100 mM sodium phosphate, 5 mM KCl, 15 mM MgCl₂, 15 mM HEPES, 2
277 mM glutathione reductase at pH 7). After the EP wash, the cells were pelleted and mixed
278 with the recombinant protein solution (~25-60 mg/mL, in EP buffer containing 2 mM ATP).
279 The volume for resuspension was calculated to reach ~15 to 20 million cells per cuvette,
280 and the cell/protein suspension was placed into the cuvette and electroporated twice using
281 the B-028 program in a Lonza Amaxa Nucleofactor IIb instrument. After EP, the cells were
282 immediately resuspended in 1 mL warm rich RPMI-1640 medium and transferred to a plate
283 containing warm medium. Cells were allowed to recover for 4 to 6 hours. After recovery,
284 cells were washed three times with PBS and then collected using trypsinization. The number
285 of cells and their viability were accessed using Trypan blue exclusion with a Neubauer
286 hemocytometer.

287 For delivering protein and AMUPol into the cells, the above protocol was used with minor
288 changes. The electroporation buffer containing 20 or 40 mM AMUPol was prepared without
289 glutathione reductase, to avoid radical reduction (final buffer: 100 mM sodium phosphate,
290 5 mM KCl, 15 mM MgCl₂, 15 mM HEPES, 2 mM ATP and 20 or 40 mM AMUPol, pH 7).
291 After electroporation, 1 mL of warm rich RPMI-1640 medium was added to the cuvette and
292 the mixture was transferred to a plate containing warm medium. For this sample a short
293 recovery period was used, with recovery monitored every 10 min and stopped when cells
294 were starting to attach to the plate (~30-60 minutes). After recovery, the cells were packed

296 into the rotor (see below). These resulting samples had final AMUPol concentration of <3
297 mM for $[\text{AMUPol}]_{\text{in/out}}$ and 13 mM AMUPol for $[\text{AMUPol}]_{\text{in/out}}$ in the rotor. An analogous
298 sample was prepared as the one with 13 mM AMUPol for $[\text{AMUPol}]_{\text{in/out}}$, using 30 mM
299 AMUPol electroporated into the cell with the protein, followed by introducing additional
300 30 mM AMUPol solution to the cells after recovery.

301 For *in-cell* MAS NMR, the cells were pelleted by centrifugation at 150 x g for 5 min at
302 room temperature, and the pellet was resuspended in RPMI-1640 medium supplemented
303 with 20% FBS and 10% DMSO. After resuspension, about 3 million cells were transferred
304 into the rotor using a 200 μL pipette tip that was adjusted in size to fit into a 1.5 mL
305 Eppendorf tube. Cells were loaded into the tip and pelleted inside the rotor by centrifugation
306 at 500 x g for 5 min at 4 °C. The latter step was repeated as many times as necessary to fill
307 the rotor.

309 For *in-cell* DNP-enhanced MAS NMR, the cells were pelleted by centrifugation at 150 x g
310 for 5 min at room temperature, and the pellet was resuspended in RPMI-1640 medium,
311 supplemented with 20% FBS and 10% DMSO. After resuspension, for fast packing, about
312 3 million cells were transferred to a 1.5 mL Eppendorf and centrifuged at 150 x g for 5 min
313 at room temperature. The cell pellet was resuspended in 30 μL of cold medium (RPMI-1640
314 medium, supplemented with 20% FBS, 10% DMSO and AMUPol), and this step was
315 repeated twice to ensure complete buffer exchange, see **table S3 and S4** for specific buffer
316 compositions. The AMUPol concentration varied from 20 to 40 mM. To optimize the
317 sample preparation protocol, we tested pre-loading the rotor with 10 μL of cold buffer
318 containing AMUPol, prior to loading 10 μL of cells. Other tests included limiting the
319 amounts of cells to increase the final AMUPol concentration (performed only for W14F,
320 W70F and W94F variant samples, see below). During all steps, cells and buffers were kept
321 on ice and centrifuges were pre-cooled at 4 °C.

323 The rotors were transferred to -80 °C in a Styrofoam box, designed to freeze the cells slowly
324 at ~1 °C/min. The approach was tested with cells and yielded about 90% cell viability.

326 The concentration of AMUPol in each 1.3 rotor was determined by EPR. The measurements
327 were performed on an ESR5000 instrument, sweeping the magnetic field from 300 to 370
328 mT and recording 2000 points at room temperature (~25 °C). Each measurement took
329 approximately 5 minutes, ensuring minimal AMUPol reduction.

332 **Electrophoretic mobility shift assay (ESMA)**

333 All N^{NTD} samples were subjected to EMSA analysis to assess RNA binding of the different
334 protein variants. We used a 32-nt RNA oligo of the 5'UTR of SARS-CoV-2 RNA
335 (Genscript). EMSA were performed mixing a constant RNA amount (0.5 to 1 μM), and
336 protein concentrations up to 62 μM in 20 mM phosphate buffer, 150 mM NaCl, pH 7.4.
337 Mixtures were incubated at 37 °C for 30 min and loaded onto a 1.6 % agarose gel containing
338 GelGreenR Nucleic Acid Stain. The agarose gel was run at 60-70 V for approximately 1.5
339 hours in 0.5X TBE buffer (50 mM Tris base, 50 mM boric acid, 0.4 mM EDTA). The gel
340 was imaged using a FluroChem Q device (Cell Biosciences). RNA binding was qualitatively
341 assessed, based on band intensities, measured by ImageJ (25).

343 **NMR spectroscopy**

344 Solution NMR spectroscopy

345 Protein integrity was checked by solution NMR, for WT, W14F, W70F, and W94F 5F-
346 Trp, U-¹⁵N-N^{NTD}. ¹H-¹⁵N HSQC spectra were recorded at 14.1 T (¹H Larmor frequency of
347 600.13 MHz) on a Bruker NEO spectrometer equipped with 5 mm QCI Bruker CryoProbe.
348 ¹⁹F 1D NMR spectra were acquired at 298 K at 14.1 T (¹H Larmor frequency of 600.32
349 MHz) on a Bruker AVIII spectrometer, outfitted with a 5 mm Bruker Prodigy CryoProbe.
350 The sample volume was 150 μ L, containing ~5 mg/mL N^{NTD} in EP buffer with 10% D₂O.
351 The ¹⁹F chemical shifts are referenced to trifluoracetic acid. Other data acquisition and
352 processing parameters are specified in the **fig. S1, 3 legends and table S6**.

353 *MAS NMR spectroscopy*

354 MAS NMR experiments were performed at 20.0 T (¹H Larmor frequency of 850.17 MHz)
355 on a Bruker AVIII spectrometer equipped with a 1.9 mm HX MAS probe with the ¹H
356 channel tuned to ¹⁹F. MAS NMR spectra were also acquired at 11.7 T (¹H Larmor frequency
357 of 500.13 MHz) on a Bruker AVIII spectrometer equipped with a 1.3 mm HFX MAS probe.
358 For the measurements at 20.0 and 11.7 T, prior to sample insertion, the probes were pre-
359 cooled to the lowest temperature possible using a gas flow of 1500 to 1700 L/h and
360 temperature set to 225 K at the VT control unit, reaching temperatures \leq 20 °C. After the
361 desired sample temperature was reached, the gas flow was quickly reduced to 400 L/min,
362 and the sample was inserted using a pre-chilled Bruker sample extraction/insertion tool, to
363 ensure that the sample remained frozen during the insertion. Once the rotor was inserted,
364 the gas flow was set to the maximum and spinning was started slowly, increasing in 5 kHz
365 steps, until the desired MAS frequency at the desired sample temperature were reached. ¹⁹F
366 chemical shifts were referenced to mefloquine used as a secondary reference (the most
367 shielded peak of mefloquine at 8.8 ppm). The typical 90 pulse lengths were 2.4 μ s (¹⁹F) and
368 2.0 μ s (¹H). All spectra were processed using TopSpin 3.6 or MNova. Other data acquisition
369 and processing parameters are specified in the legend of **Fig. 2C, 2D** and summarized in
370 **table S7**.

371 *DNP-enhanced MAS NMR spectroscopy*

372 Sample insertion was performed as described above, except that both the rotor insert holder
373 and the rotor were pre-chilled on dry ice prior to transferring the rotor to the holder.
374 Following the pre-chilling step, the holder was immediately placed into the magnet, and the
375 sample rotor was inserted. MAS NMR experiments with and without DNP enhancement
376 were performed at 9.4 T (¹H Larmor frequency of 400.56 MHz) on a Bruker Avance NEO
377 spectrometer, equipped with a klystron microwave source operating at 263 GHz electron
378 frequency and <5 W power input to the probe, and a 1.3 mm HCN DNP MAS probe where
379 the ¹H channel was tuned to ¹⁹F. The instrument performance was checked for each run
380 when setting up the magnet for the in-cell experiments. DNP enhancements were
381 ascertained on a standard proline sample, which consistently yields ¹³C DNP signal
382 enhancements of over 200. Adamantane and mefloquine samples were used for ¹³C and ¹⁹F
383 chemical shift reference, respectively. The typical 90 pulse lengths were 1.1 μ s (¹⁹F) and
384 1.1 μ s (¹H). The ¹⁹F and ¹H signal buildup curves were recorded with a pseudo 2D pulse
385 sequence, which was modified to incorporate a three-pulse scheme before signal acquisition
386 to remove ¹⁹F background (26). ¹⁹F chemical shifts were referenced to mefloquine as
387 described above. The buildup curves were recorded for samples containing <3, 6.3, and 13
388 mM AMUPol (**table S3**) with the following delays: 0.05, 0.5, 1.0, 2.0, 3.0, 5.0, 7.5, 10.0,
389 12.5, 15.0, 20.0, 25.0, 30.0 and 60.0 seconds for both, the <3 and the 6.3 mM AMUPol-
390 containing samples and 1.0, 2.0, 3.0, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0,
391 60.0, 70.0, 80.0, 90.0, 105.0, 120.0, 150.0 and 180.0 seconds for the 13 mM AMUPol-
392 containing sample. The ¹⁹F DANTE pulse length was 0.1 μ s. The DANTE interpulse delay
393 was set to one rotor cycle, 25 μ s. A total of 22 DANTE pulses were used for the selective
394 inversion. The ¹H buildup curve was recorded for the sample containing 13 mM AMUPol

395 (table S9) using the following delays: 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 2.00, 3.00,
396 5.00, 10.00 and 15.00 seconds. Other data acquisition and processing parameters are
397 summarized in **table S8 and S9** and **fig. S8** legend.
398

399 **References**

1. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank. *Nucleic Acids Res.* **28**, 235–242 (2000).
2. RCSB Protein Data Bank, <https://www.rcsb.org>.
3. A. G. Palmer, NMR Characterization of the dynamics of biomacromolecules. *Chem. Rev.* **104**, 3623–3640 (2004).
4. T. R. Alderson, L. E. Kay, NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. *Cell* **184**, 577–595 (2021).
5. F.-X. Theillet, A. Binolfi, B. Bekei, A. Martorana, H. M. Rose, M. Stuiver, S. Verzini, D. Lorenz, M. Van Rossum, D. Goldfarb, P. Selenko, Structural disorder of monomeric α -synuclein persists in mammalian cells. *Nature* **530**, 45–50 (2016).
6. W. Zhu, A. J. Guseman, F. Bhinderwala, M. Lu, X. Su, A. M. Gronenborn, Visualizing proteins in mammalian cells by ^{19}F NMR spectroscopy. *Angew. Chem. Int. Ed.* **61**, e202201097 (2022). [*Angewandte Chemie International Edition*]
7. C. Li, G.-F. Wang, Y. Wang, R. Creager-Allen, E. A. Lutz, H. Scronce, K. M. Slade, R. A. S. Ruf, R. A. Mehl, G. J. Pielak, Protein ^{19}F NMR in *Escherichia coli*. *J. Am. Chem. Soc.* **132**, 321–327 (2010).
8. S. S. Stadtmiller, A. H. Gorensek-Benitez, A. J. Guseman, G. J. Pielak, Osmotic shock induced protein destabilization in living cells and its reversal by glycine betaine. *J. Mol. Biol.* **429**, 1155–1161 (2017).
9. A. M. Gronenborn, Small, but powerful and attractive: ^{19}F in biomolecular NMR. *Structure* **30**, 6–14 (2022).
10. R. Ghosh, Y. Xiao, J. Kragelj, K. K. Frederick, In-cell sensitivity-enhanced NMR of intact viable mammalian cells. *J. Am. Chem. Soc.* **143**, 18454–18466 (2021).
11. S. A. Overall, A. B. Barnes, Biomolecular perturbations in in-cell dynamic nuclear polarization experiments. *Front. Mol. Biosci.* **8**, 743829 (2021).
12. K. M. McCoy, R. Rogawski, O. Stovicek, A. E. McDermott, Stability of nitroxide biradical TOTAPOL in biological samples. *J. Magn. Reson.* **303**, 115–120 (2019).
13. R. Ghosh, R. Dumarieh, Y. Xiao, K. K. Frederick, Stability of the nitroxide biradical AMUPol in intact and lysed mammalian cells. *J. Magn. Reson.* **336**, 107150 (2022).
14. B. E. Ackermann, B. J. Lim, N. Elathram, S. Narayanan, G. T. Debelouchina, A comparative study of nitroxide-based biradicals for dynamic nuclear polarization in cellular environments. *ChemBioChem* **23**, e202200577 (2022). [*ChemBioChem*]

432 15. M. Lu, M. Wang, I. V. Sergeyev, C. M. Quinn, J. Struppe, M. Rosay, W. Maas, A. M.
433 Gronenborn, T. Polenova, ^{19}F Dynamic nuclear polarization at fast magic angle spinning
434 for NMR of HIV-1 capsid protein assemblies. *J. Am. Chem. Soc.* **141**, 5681–5691 (2019).

435 16. M. Fritz, J. Kraus, C. M. Quinn, G. P. A. Yap, J. Struppe, I. V. Sergeyev, A. M. Gronenborn,
436 T. Polenova, Measurement of accurate interfluorine distances in crystalline organic solids:
437 A high-frequency magic angle spinning NMR approach. *J. Phys. Chem. B* **123**, 10680–
438 10690 (2019).

439 17. G. Porat-Dahlerbruch, J. Struppe, C. M. Quinn, A. M. Gronenborn, T. Polenova, ^{19}F fast
440 MAS (60–111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules
441 and pharmaceutical formulations. *Solid State Nucl. Magn. Reson.* **122**, 101831 (2022).

442 18. M. Lu, S. Sarkar, M. Wang, J. Kraus, M. Fritz, C. M. Quinn, S. Bai, S. T. Holmes, C.
443 Dybowski, G. P. A. Yap, J. Struppe, I. V. Sergeyev, W. Maas, A. M. Gronenborn, T.
444 Polenova, ^{19}F magic angle spinning NMR spectroscopy and density functional theory
445 calculations of fluorosubstituted tryptophans: Integrating experiment and theory for
446 accurate determination of chemical shift tensors. *J. Phys. Chem. B* **122**, 6148–6155 (2018).

447 19. G. Bodenhausen, R. Freeman, G. A. Morris, A simple pulse sequence for selective
448 excitation in Fourier transform NMR. *J. Magn. Reson.* **23**, 171–175 (1976).

449 20. A. E. Bennett, R. G. Griffin, J. H. Ok, S. Vega, Chemical shift correlation spectroscopy in
450 rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange. *J.*
451 *Chem. Phys.* **96**, 8624–8627 (1992).

452 21. P. B. Crowley, C. Kyne, W. B. Monteith, Simple and inexpensive incorporation of ^{19}F -
453 Tryptophan for protein NMR spectroscopy. *Chem. Commun.* **48**, 10681 (2012).

454 22. S. Sarkar, B. Runge, R. W. Russell, K. T. Movellan, D. Calero, S. Zeinalilathori, C. M.
455 Quinn, M. Lu, G. Calero, A. M. Gronenborn, T. Polenova, Atomic-resolution structure of
456 SARS-CoV-2 nucleocapsid protein N-terminal domain. *J. Am. Chem. Soc.* **144**, 10543–
457 10555 (2022).

458 23. P. G. Blommel, B. G. Fox, A combined approach to improving large-scale production of
459 tobacco etch virus protease. *Protein Expr. Purif.* **55**, 53–68 (2007).

460 24. W. Strober, Trypan Blue Exclusion Test of Cell Viability. *CP in Immunology* **21**, A3.B.1–
461 A3.B.3. (1997).

462 25. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image
463 analysis. *Nat. Methods* **9**, 671–675 (2012).

464 26. F. Wang, S. K. Ramakrishna, P. Sun, R. Fu, Triple-pulse excitation: An efficient way for
465 suppressing background signals and eliminating radio-frequency acoustic ringing in direct
466 polarization NMR experiments. *J. Magn. Reson.* **332**, 107067 (2021).

467 27. E. E. Najbauer, L. B. Andreas, Correcting for magnetic field drift in magic-angle spinning
468 NMR datasets. *J. Magn. Reson.* **305**, 1–4 (2019).

471
472 **Acknowledgments:**

473 Special thanks to Daniel Eduardo Gutierrez Ortegon and Valentina Gomez Osorio for their
474 assistance with protein expression and purification and mammalian cell culture. We also
475 thank Caitlin M. Quinn and Roman Zadorozhnyi for helping with the sample insertion for
476 room temperature experiments.

477
478 **Funding:**

479 This work was supported by the National Science Foundation (NSF Grant CHE-1708773
480 to A. M. G. and T. P.), by the National Institutes of Health (NIH Grant 1U54AI170791 to
481 A. M. G., T. P., NMR Core)

482
483 **Author contributions:**

484 Conceptualization: TP and AMG
485 Methodology: TP, AMG, KTM
486 Resources: TP, DB, KTM, BR (protein expression)
487 Investigation: KTM, TP, DB, WZ
488 Data interpretation: KTM and TP
489 Supervision: TP, AMG, JK
490 Writing—original draft: TP and KTM
491 Writing—review & editing: TP, AMG, KTM, DB, JK
492 Project administration: TP, AMG, JK
493 Funding acquisition: TP and AMG
494 Visualization: TP, AMG, KTM

495
496 **Competing interests:** The authors declare no competing interests.

497
498 **Data and materials availability:** All data discussed in this paper are available in the main
499 text or the supplementary materials.”

500
501 **Supplementary Materials**

502 The Supplementary Materials contain information about the chemicals used and additional
503 figures (figs. S1 to S9) showing ^{19}F *in-cell* DNP spectra with microwave ON and OFF (fig.
504 S1A), ^{19}F solution NMR spectra from 5F-Trp, U- ^{15}N -N^{NTD} (fig. S1B), ^{13}C *in-cell* DNP
505 spectra with microwave ON and OFF (fig. S6), mass spectrometry data for the N^{NTD} mutants
506 (W14F, W70F and W94F, fig. S2), 2D ^1H - ^{15}N HSQC from all the proteins used in this study
507 (fig. S3), electrophoretic mobility shift assays for all the protein constructs used (WT,
508 W14F, W70F and W94F, fig. S4) and the DNP build up times of ^1H and ^{19}F (figs. S7 and
509 S8) as well as protein quantification data using sodium dodecyl sulfate-polyacrylamide gel
510 electrophoresis (fig. S5), and 2D spin diffusion ^{19}F spectrum using 1 second mixing time
511 (fig. S9). In addition, the tables in the Supplementary Materials provide information on
512 protein quantification, ^{19}F chemical shifts, the NMR acquisition parameters and the
513 interfluorine distances for 5F-Trp-N^{NTD}.

514
515 **Figure captions**

516 **Fig. 1. Domain delineation, amino acid sequence and ribbon diagram structure of**
517 **SARS-CoV-2 N^{NTD}. (A)** Top: domain organization of SARS-CoV-2 nucleocapsid
518 (N) protein; N-terminal domain (N^{NTD}), C-terminal domain (N^{CTD}). Bottom: N^{NTD}
519 amino acid sequence with Trp residues shown in magenta. Residue numbering 2-
520 136 in the current N^{NTD} construct corresponds to 40-174 in the full-length N protein.

521
522
523
524
525
(B) Ribbon representation of the lowest-energy conformer of the 10-conformer
MAS NMR structure ensemble (PDB: 7SD4) of N^{NTD}. W14, W70, and W94 side
chains are in stick representation. The fluorine atoms at the 5 positions of the indole
rings are shown by magenta spheres. Interfluorine distances are indicated by dashed
lines.

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
Fig. 2. Sensitivity of *in-cell* ¹⁹F DNP and MAS NMR spectra of SARS-CoV-2 5F-Trp-N^{NTD}. **(A)** *In-cell* DNP-enhanced spectrum of a sample containing ~1.2-1.5 million cells, containing a total of ~0.3 nanomoles of protein and 13 mM AMUPol. The spectrum was recorded with 64 scans and a recycle delay of 15 s in 16 min; the MAS frequency was 40 kHz. **(B)** DNP-enhanced (magenta trace) and control microwave-off (black trace) spectra of a sample containing ~1.2-1.5 million cells containing a total of ~0.8 nanomoles of protein and 6.3 mM AMUPol. The spectra were recorded with 1024 scans and a recycle delay of 5 s in 85 min; the MAS frequency was 30 kHz. **(C)** MAS NMR spectrum of a sample containing ~4-5 million cells, with a total of ~1.9 nanomoles of protein. The spectrum was acquired at 20.0 T (850 MHz ¹H Larmor frequency) and MAS frequency of 20 kHz. **(D)** MAS NMR spectrum of a sample containing ~1.2-1.5 million cells containing a total of ~1 nanomole of protein. The spectrum was acquired at 11.7 T (500 MHz ¹H Larmor frequency) and MAS frequency of 30 kHz. **(E)** DNP signal buildup time constants, T_b, for *in-cell* 5F-Trp-N^{NTD} samples, plotted against AMUPol concentrations, for ¹⁹F (black) and ¹H (red). **(F)** Sensitivity (normalized I/I_{max}) of ¹⁹F *in-cell* DNP-enhanced signals as a function of MAS frequency for a sample containing 6.3 mM AMUPol. For comparison, the dependence of DNP signal enhancement on MAS frequency is shown for ¹³C signals of the carbonyl groups detected in DNP-enhanced ¹³C CPMAS spectrum of the same sample. All DNP data were recorded at 100 K and 9.4 T, with a microwave power of <5 W. The NMR acquisition parameters are detailed in Supplementary **Tables S8** and **S9**.

548
549
550
551
552
553
554
555
556
557
558
559
560
561
Fig. 3. Resonance assignments and interfluorine correlations in *in-cell* ¹⁹F DNP-enhanced MAS spectra of SARS-CoV-2 5F-Trp-N^{NTD}. **(A, B)** ¹⁹F *in-cell* DNP-enhanced MAS NMR and solution NMR spectra of 5F-Trp-N^{NTD} WT and W94F-N^{NTD}, W70F-N^{NTD}, and W14F-N^{NTD} variants. **(C)** ¹⁹F *in-cell* DNP-enhanced MAS NMR spectra of 5F-Trp-N^{NTD} recorded with selective DANTE magnetization inversion pulses, followed by non-selective excitation and signal detection. The frequencies of DANTE inversion pulses are indicated with colored arrows, and the spectra are colored accordingly. **(D)** ¹⁹F-¹⁹F *in-cell* DNP-enhanced spin diffusion spectra of 5F-Trp-N^{NTD} recorded with a mixing time of 2 s (left panel) and with no mixing (control, right panel). The cross peaks between fluorine signal of 5F-Trp-70 and 5F-Trp-94 are labeled. The corresponding 1D traces are shown on the right of each spectrum. Each spectrum was recorded with 256 scans, a recycle delay of 5 seconds, and a total experimental time of 32 and 28 hours for the spectra acquired with and without mixing, respectively. The MAS frequency was 40 kHz.

562 **Table 1.** Summary of MAS frequency dependence and buildup times of ^{19}F and ^1H signals in DNP-enhanced MAS NMR experiments on 5F-Trp, U- ^{15}N (^{13}C)-N^{NTD} delivered in
563 human A2780 cells under different experimental conditions.

564

Sample	5F-Trp, U- ^{13}C , ^{15}N -N ^{NTD}	5F-Trp, U- ^{13}C , ^{15}N -N ^{NTD}	5F-Trp, U- ^{15}N -N ^{NTD}	5F-Trp, U- ^{13}C , ^{15}N -N ^{NTD}
cells/rotor (x10 ⁶)	~1.2-1.5	~1.2-1.5	~1.2-1.5	~1.1
Amount of N ^{NTD} in the NMR sample (nmoles)	0.61	0.83	0.29	0.15
[AMUPol] by EPR (mM)	<3	6.3	13	est. 13**
Buffer	10% DMSO, 10% FBS, 80% RPMI	10% DMSO, 10% FBS, 80% RPMI	10% DMSO-d ₆ , 20% D ₂ O, 20% FBS, 50% RPMI	10% DMSO-d ₆ , 20% D ₂ O, 20% FBS, 50% RPMI
Cell viability (%)	>90	>90	>80	>90
^{19}F T _b (s)	14.6	13.3	16.2	
^1H T _b (s)			1.7	
^{19}F Sensitivity*	ω_r (kHz)	20	0.32	1.52
	ω_r (kHz)	30	0.31	1.42
	ω_r (kHz)	40	0.35	3.17
				3.33

565

566 *Sensitivity is the SNR per nanomole of protein in the rotor per square root of the number of scans, measured with recycle delays corresponding to $\sim 0.3^*T_b$.

567 **The AMUPol concentration was estimated based on the protocol used and the ^{19}F DNP enhancements.

568

569

Table 2. Sensitivity of ¹⁹F MAS NMR and DNP-enhanced MAS NMR experiments on 5F-Trp, U-¹⁵N(¹³C)-N^{NTD} delivered in human A2780 cells.

Sample [AMUPol] (mM)	NTD in rotor (nmol)	NTD in rotor (μ g)	Rotor size (mm)	Field strength (T)	Temperature (K)	Recycle delay (s)	MAS frequency (kHz)	SNR _{norm} ¹
5F-Trp, U- ¹⁵ N-N ^{NTD}	1.86	27.6	1.9	19.97	271 ³	5	20	0.0004 ²
5F-Trp, U- ¹⁵ N-N ^{NTD}	1.02	15.2	1.3	11.7	266 ³	5	30	0.002
5F-Trp, U- ¹⁵ N-N ^{NTD}	1.02	15.2	1.3	11.7	273 ³	5	40	0.002
5F-Trp, U- ¹³ C, ¹⁵ N-N ^{NTD} (<3)	0.61	9.0	1.3	9.4	100	5	20	0.010
							30	0.009
							40	0.011
5F-Trp, U- ¹³ C, ¹⁵ N-N ^{NTD} (6.3)	0.83	12.3	1.3	9.4	100	5	20	0.007
							30	0.007
							40	0.010
5F-Trp, U- ¹⁵ N-N ^{NTD} (13)	0.29	4.4	1.3	9.4	100	5	20	0.046
							30	0.043
							40	0.095
5F-Trp, U- ¹³ C, ¹⁵ N-N ^{NTD} (est. 13 ³)	0.15	2.3	1.3	9.4	100	5	20	0.037
							30	0.038
							40	0.100
5F-Trp, U- ¹⁵ N-N ^{NTD} W14F	0.58	8.7	1.3	9.4	100	5	40	0.011
5F-Trp, U- ¹⁵ N-N ^{NTD} W70F	0.44	6.5	1.3	9.4	100	5	40	0.008
5F-Trp, U- ¹⁵ N-N ^{NTD} W94F	0.49	7.3	1.3	9.4	100	5	40	0.016
5F-Trp, U- ¹⁵ N-N ^{NTD} W70F	0.28	4.1	1.3	9.4	100	5	40	0.008

570

571 ¹SNR_{norm} - the signal-to-noise ratio estimated from the most intense peak, per nanomole of protein in the rotor per square root of experimental time.572 ²The low SNR_{norm} is associated with the 1.9 mm HX probe used in the measurements.573 ³The AMUPol concentration was estimated based on the protocol used and the ¹⁹F DNP enhancements.

574