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Abstract

Fraud detection plays a crucial role in the financial industry, pre-
venting significant financial losses. Traditional rule-based systems
and manual audits often struggle with the evolving nature of fraud
schemes and the vast volume of transactions. Recent advances in
machine learning, particularly graph neural networks (GNNs), have
shown promise in addressing these challenges. However, GNNs
still face limitations in learning intricate patterns, effectively utiliz-
ing edge attributes, and maintaining efficiency on large financial
graphs. To address these limitations, we introduce FraudGT, a
simple, effective, and efficient graph transformer (GT) model specif-
ically designed for fraud detection in financial transaction graphs.
FraudGT leverages edge-based message passing gates and an edge
attribute-based attention bias to enhance its ability to discern im-
portant transactional features and differentiate between normal
and fraudulent transactions. Our model achieves state-of-the-art
performance in detecting fraudulent activities while demonstrating
high throughput and significantly lower latency compared to exist-
ing methods. We validate the effectiveness of FraudGT through
extensive experiments on multiple large-scale synthetic financial
datasets. FraudGT consistently outperforms other models, achiev-
ing 7.8–17.8% higher F1 scores, while delivering an average of 2.4×
greater throughput and reduced latency. Our code and datasets are
available at https://github.com/junhongmit/FraudGT.

CCS Concepts

• Mathematics of computing → Graph algorithms; • Com-

puting methodologies → Neural networks; • Information

systems → Data mining; • Security and privacy → Intru-

sion/anomaly detection and malware mitigation; • Applied
computing → Business process monitoring.
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1 Introduction

Fraud detection is a critical task in the financial industry, encompass-
ing various applications such as anti-money laundering [9, 32, 58],
malicious account/commodity detection (e.g., in online payment
systems [10, 68] and e-commerce systems [7, 8, 42]), and spam
detection [50, 57]. Financial fraud can lead to significant financial
losses, reputation damage, and regulatory penalties for financial in-
stitutions. Traditional fraud detection methods, which rely heavily
on rule-based systems and manual audits [28], are often inadequate
due to the evolving nature of fraud schemes and the sheer volume
of transactions that need to be monitored. Rule-based systems also
suffer from low accuracy.

Recent advances in machine learning, particularly in graph neu-
ral networks (GNNs), have shown promise in enabling effective and
efficient fraud detection. GNNs are well-suited for learning from
graph-structured data and have been successfully applied in various
important domains such as biology [31], chemistry [67], and recom-
mendation systems [59]. Their ability to capture complex structures
in data makes them an ideal choice for financial fraud detection,
where transactional relationships, as shown in Figure 1(a), can be
represented as graphs, as illustrated in Figure 1(b). Here each node
represents a financial account, and each edge represents a financial
transaction between two accounts. Financial transaction graphs are
often directed multigraphs, where edges (or transactions) have a
direction, and there can be multiple edges between two nodes (or
accounts). By using message passing to propagate information be-
tween connected nodes [20], GNNs can learn representations that
capture the graph structure and compute the fraud likelihood for
each transaction or account based on these learned representations.

However, traditional GNNs face the following challenges in ef-
fectively handling the unique characteristics of financial graphs.
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Figure 1: Financial transactions in tabular format (a) can be

modeled as graphs (b), where nodes represent accounts and

edges represent transactions between these accounts. Multi-

ple transactions can exist between accounts, making it a di-

rected multigraph. Two example money laundering patterns,

smurfing (scatter-gather) and round tripping (simple cycle),

are depicted in (b), where red nodes represent fraudsters and

blue nodes represent innocent users. (c) demonstrates addi-

tional possible patterns for financial fraud.

(1) Learning Intricate Fraudulent Patterns. Financial graph
learning involves complicated money laundering patterns such
as smurfing (scatter-gathering), round-tripping (cycles), and bi-
partite subgraphs, which are often found in realistic data [3,
23, 27, 52]. As a concrete example, Figure 1(b) and Figure 1(c)
demonstrate 7 possible money laundering patterns encountered
in practice. However, these patterns are rather generic and also
appear extensively in innocent transactions. As a result, de-
tecting financial crime relies not just on detecting individual
patterns but also on learning relevant combinations of patterns.
Conventional GNNs suffer from issues such as limited expres-
sivity [19, 61], over-smoothing [40, 51], and over-squashing [1],
which can limit their effectiveness in capturing such complex
crime patterns. In particular, it has been shown that most GNNs
fail to detect certain subgraph patterns, such as cycles [13, 14].

(2) Effective Use of Transaction Information Along Graph

Edges. In financial transaction graphs, the majority of the infor-
mation is located in the edge features (transaction information),
as presented in Figure 1(a). However, many common GNNs,
including GCN [38], GAT [56], and GraphSAGE [24], do not
effectively use edge features, especially multi-dimensional edge
features, limiting their performance on financial fraud detection.

(3) Efficiency on Large Financial Graphs. Rapid detection and
processing of suspicious financial transactions are crucial in
avoiding financial losses, especially on platforms that generate
millions of transactions in a short time [48]. Recent studies

[19] have proposed GNN designs that achieve state-of-the-art
detection accuracy but require sampling a large neighborhood,
leading to a high computational complexity, which in turn leads
to low throughput and high latency [5]. Developing a GNN
method that is both effective and computationally efficient for
financial fraud detection remains a challenge.
To address these challenges, we introduce FraudGT, a simple,

effective, and efficient graph-transformer-based model specifically
designed for fraud detection in financial transaction graphs. Graph
transformers (GTs) have been shown to be at least as expressive as
second-order invariant graph networks [37, 44], which are more
expressive than message-passing GNNs [20]. This increased expres-
sivity makes GTs well-suited for learning complex patterns, such
as those found in sophisticated fraud schemes. To effectively utilize
edge information, FraudGT introduces an innovative edge-based
message passing gate, which selectively passes effective messages
to neighboring nodes, allowing them to discern important transac-
tional features indicative of fraudulent activities. By filtering out
less relevant information, the model can focus on the most critical
features. FraudGT incorporates edge attributes-based attention
bias to better differentiate between normal and fraudulent trans-
actions, providing a more nuanced understanding of transactional
relationships. We also incorporate three enhancements—reverse
message passing, port numbering, and ego ID—that improve graph
learning on directed multigraphs. We demonstrate on a collection
of large-scale synthetic financial transaction datasets that the result-
ing FraudGT variants, such as PE-FraudGT (equipped with port
numbering and ego ID) and Multi-FraudGT (equipped with all
three enhancements) can achieve improved fraud detection perfor-
mance over the state-of-the-art gradient-boosting and GNN meth-
ods by 7.8–17.8% in F1 score. Lastly, we observe that FraudGT is
data-efficient and delivers greater throughput and lower latency
compared to existing methods—it achieves remarkable detection
accuracy while requiring a much smaller sampled neighborhood. In
contrast, existing GNNmethods need to sample neighborhoods that
are 4.5× larger on average to achieve their best F1 score, resulting
in lower throughput and higher latency while still not surpassing
FraudGT in terms of F1 score.

In summary, the contributions of this paper are threefold:
• Model.We introduce FraudGT, a simple, effective, and efficient
graph-transformer-based model tailored for financial fraud de-
tection. We demonstrate how edge attributes can be effectively
leveraged to enhance fraud detection performance.

• Evaluation. We conduct extensive evaluations on various pub-
licly available large-scale synthetic financial transaction datasets
demonstrating that FraudGT achieves state-of-the-art perfor-
mance, significantly outperforming existing baselines.

• Reproducibility. We open-source our code at https://github.
com/junhongmit/FraudGT, allowing our experimental results to
be reproduced.

2 Related Work

Fraud Detection. Research in fraud detection follows two main
lines of work. The first line of work leverages graph information
using non-GNN methods, relying on manual inspection and pre-
defined rules to identify fraudulent transactions. These methods
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include event-based models that analyze individual transactions
for anomalies [12, 34] and sequence-based models which detect
fraud by identifying suspicious patterns over time [29, 41]. The
second line of work utilizes GNNs to capture complex relationships
in financial transaction graphs. GNN models have shown to be
effective in many fraudulent scenarios, including anti-money laun-
dering [9, 32, 58], credit card fraud [18, 60, 62], malicious account
detection [17, 42], and fake review manipulation [57].

Graph Neural Networks (GNNs). GNNs have become a corner-
stone in graph-based learning tasks due to their ability to model
complex relationships within graph-structured data. Traditional
GNNs rely on a message-passing mechanism [20], which collects
information from neighbors and combines it with the node’s own
features to update the representation of a node . GNNs are divided
into two categories: spectral GNNs and spatial GNNs.

Spectral GNNs apply graph convolution operations in the spec-
tral domain. ChebNet [16] approximates graph convolution using
polynomial expansion. GCN [38] performs spectral convolutions
on graphs to capture structure and feature information.

Spatial GNNs apply the convolution operation on the graph
structure by leveraging the information of neighborhood nodes.
GraphSAGE [24] proposes a general inductive framework that can
efficiently update the representation of sampled nodes. GAT [56]
leverages a self-attention mechanism to enable distinct treatment
of various neighbors during the embedding update of a node.

Despite their success, common GNNs exhibit several limitations.
GNNs with limited expressivity [1, 40, 51] may struggle to learn
intricate patterns within a graph, which are essential for tasks
like financial fraud detection. Common GNNs also inadequately
utilize or neglect rich information contained in edge attributes [21],
primarily focusing on node features. This limitation hinders their
effectiveness on tasks where edge information is crucial, such as
financial transaction graphs.

Graph Transformers (GTs). GTs [39, 45, 46, 46, 63, 63, 66] ex-
tend the transformative capabilities of conventional transformer
architectures, which have made significant strides in both natural
language processing [35, 55, 66] and computer vision [25, 47, 65].
By using powerful attention mechanisms, transformers overcome
limitations in traditional message-passing GNNs [24, 38], such as
over-smoothing and over-squashing [51]. However, many of these
models overlook the critical role of edge features in financial trans-
action graphs. Our work aims to bridge this gap by introducing
edge-related components to enhance a GT’s ability to discern im-
portant transactional features indicative of fraudulent activities,
addressing the shortcomings of existing GTs in the context of fi-
nancial fraud detection.

3 Proposed Method

In this section, we first present preliminaries on graph represen-
tation of financial transaction networks and graph transformers.
Then, we introduce the architecture and methodology of FraudGT.

3.1 Preliminaries

Graph Representation. A financial transaction network can be
represented as a directed multigraph G = (V, E,𝑿 ,E), whereV is

a set of 𝑛 nodes representing accounts and E ⊆ V×V corresponds
to a set of edges representing transactions between these accounts
and there can be multiple edges between two nodes. If the graph
is node-attributed or edge-attributed, the node attribute matrix
𝑿 ∈ R𝑛×𝑑𝑛 assigns attributes to each node, and the edge attribute
tensor E ∈ R𝑛×𝑛×𝑑𝑒 assigns attributes to each edge. 𝑑𝑛 and 𝑑𝑒 are
the dimensions of node and edge attributes, respectively. We use
E𝑖 𝑗 ∈ R𝑑𝑒 to denote the attribute of the edge that connects node 𝑣𝑖
and 𝑣 𝑗 , and E𝑖 𝑗 = 0 means there is no edge between 𝑣𝑖 and 𝑣 𝑗 .

Graph Transformers. The goal of graph transformers is to learn a
node representation that captures graph structure, based on feature-
based proximities between different positions in the input node
feature matrix. The learned representation is then used in down-
stream tasks, such as computing the fraud likelihood of an account
or transaction. A graph transformer is a stack of 𝐿 layers with blocks
of multi-head attention (MHA) modules and fully connected feed-
forward networks (FFN) in each layer. Let G be a graph with node
feature matrix 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]𝑇 ∈ R𝑛×𝑑𝑛 , where 𝒙𝑖 ∈ R𝑑𝑛
is the node feature of node 𝑣𝑖 . In each layer 𝑙 (𝑙 > 0), given the
hidden feature matrix 𝑯 (𝑙−1) ∈ R𝑛×𝑑𝑛 , where 𝑯 (0) = 𝑿 , the MHA
module first linearly projects the input 𝑯 (𝑙−1) to the query, key,
and value spaces. This is computed using the following equations,
where the projection using weight matrices 𝑾 (ℎ,𝑙 )

𝑄
,𝑾 (ℎ,𝑙 )

𝐾
, and

𝑾 (ℎ,𝑙 )
𝑉

∈ R𝑑𝑛×𝑑ℎ results in the matrices 𝑸 (ℎ,𝑙 ) , 𝑲 (ℎ,𝑙 ) , and 𝑽 (ℎ,𝑙 ) ,
representing the query, key, and value spaces, respectively:

𝑸 (ℎ,𝑙 ) = 𝑯 (𝑙−1)𝑾 (ℎ,𝑙 )
𝑄

, 𝑲 (ℎ,𝑙 ) = 𝑯 (𝑙−1)𝑾 (ℎ,𝑙 )
𝐾

, 𝑽 (ℎ,𝑙 ) = 𝑯 (𝑙−1)𝑾 (ℎ,𝑙 )
𝑉

.

(1)
Then, multiple attention heads are used to compute the scaled dot-
product, as shown in Equation (2), where the softmax function is
applied row-wise,𝑾 (𝑙 )

𝑂𝑛
∈ R𝑑𝑛×𝑑𝑛 is a learnable weight matrix, 𝑑ℎ

denotes the feature dimension of the matrices 𝑸ℎ,𝑙 and 𝑲ℎ,𝑙 , ℎ = 1
to 𝐻 denotes the index of different attention heads, and ∥ denotes
the concatenation operator.

MHA
(
𝑯 (𝑙−1)

)
= ∥
ℎ∈ [1,𝐻 ]

(
softmax

(
𝑸 (ℎ,𝑙 ) (𝑲 (ℎ,𝑙 ) )𝑇√︁

𝑑ℎ

)
𝑽 (ℎ,𝑙 )

)
𝑾 (𝑙 )
𝑂𝑛
.

(2)
The multi-head attention module MHA(𝑯 (𝑙−1) ) concatenates sev-
eral attention heads together. By combining the result with ad-
ditional residual connections and normalization, the transformer
layer updates features 𝑯 (𝑙−1) as follows:

𝑯̂ (𝑙 ) = MHA
(
𝑯 (𝑙−1)

)
+ 𝑯 (𝑙−1) (3)

𝑯 (𝑙 ) = FFN
(
𝑯̂ (𝑙 )

)
+ 𝑯 (𝑙 ) =

[
𝜎

(
𝑯̂ (𝑙 )𝑾 (𝑙 )

1

)
𝑾 (𝑙 )

2

]
+ 𝑯 (𝑙 ) , (4)

where 𝜎 refers to the activation function, and 𝑾 (𝑙 )
1 ∈ R𝑑𝑛×𝑑𝑓

and 𝑾 (𝑙 )
2 ∈ R𝑑𝑓 ×𝑑𝑛 are trainable parameters in the feedforward

network (FFN) layer. The final output 𝑯 (𝐿) ∈ R𝑛×𝑑𝑛 can be used
as the updated node representation for downstream tasks.

3.2 FraudGT

To handle financial transaction graphs, we introduce a novel graph
transformer model, FraudGT, which consists of new components
compared to existing graph transformers, including an edge-based

294



ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Lin et al.

Figure 2: Overall FraudGT architecture. The four components are indicated by dashed outlines in different colors. 𝒙𝑖 and E𝑖 𝑗 denotes the
node attribute of node 𝑣𝑖 and edge attribute of the edge between node 𝑣𝑖 and 𝑣𝑗 , respectively. FFN stands for feed-forward network.

message passing gate and an edge attributes-based attention bias
to effectively utilize the transaction information along graph edges,
and three enhancements to handle the multigraph nature of finan-
cial transaction graphs.

FraudGT, illustrated in Figure 2, consists of four components: (1)
graph attention, (2) edge-basedmessage passing gate, (3) edge-based
attention bias, and (4) directed multigraph enhancements. Given a
financial transaction graph, the workflow of FraudGT begins with
a sampling step, which selectively extracts a subgraph centered
around the target transactions, capturing their local neighborhood.
Subsequently, the node feature matrix 𝑿 = [𝒙1, 𝒙2, . . . , 𝒙𝑛]𝑇 ∈
R𝑛×𝑑𝑛 and edge feature tensor E ∈ R𝑛×𝑛×𝑑𝑒 , where 𝒙𝑖 ∈ R𝑑𝑛 ,
E𝑖 𝑗 ∈ R𝑑𝑒 denote the feature of node 𝑣𝑖 and edge between 𝑣𝑖 and
𝑣 𝑗 in the sampled neighborhood, pass through the FraudGT en-
coder blocks. The updated node representations 𝑯 ∈ R𝑛×𝑑𝑛 and
edge representations E′ ∈ R𝑛×𝑛×𝑑𝑒 , which capture graph structure
information, are then generated and used in the downstream task.

Within the 𝐿 layers FraudGT encoder blocks, as formulated in
Equations (5) and (6), 𝑿 is processed by the (1) graph attention to
calculate scalar importance weight 𝜶 (ℎ,𝑙 )

𝑖 𝑗
(Section 3.2.1) and per-

form weighted message passing between connected nodes 𝑣𝑖 and
𝑣 𝑗 , employing the graph structure to refine the node features. E is
leveraged in (2) the edge-based message passing gate to generate
a gating vector G(ℎ,𝑙 )

𝑖 𝑗
(Section 3.2.2) between 𝑣𝑖 and 𝑣 𝑗 , which al-

lows messages in selective channels passing to neighboring nodes.
To help differentiate between normal and suspicious transactions,
(3) an edge-based attention bias is added to the graph attention
(Section 3.2.3). As financial transaction graphs are commonly di-
rected multigraphs, we apply (4) directed multigraph enhancements
to augment the sampled neighborhood and greatly improve the
effectiveness of FraudGT (Section 3.2.4).

MHA
(
𝒉 (𝑙−1)
𝑖

)
= ∥
ℎ∈ [1,𝐻 ]

(
⊕

∀ 𝑗 ∈N(𝑖 )

(
𝜶 (ℎ,𝑙 )
𝑖 𝑗

(𝒉 (𝑙−1)
𝑗

)𝑇𝑾 (ℎ,𝑙 )
𝑉

⊙ G(ℎ,𝑙 )
𝑖 𝑗

))𝑇
𝑾 (𝑙 )
𝑂𝑛

(5)

MHA
(
E′(𝑙−1)
𝑖 𝑗

)
= ∥
ℎ∈ [1,𝐻 ]

(
𝜶̂ (ℎ,𝑙 )
𝑖 𝑗

)𝑇
𝑾 (𝑙 )
𝑂𝑒
, (6)

where 𝒉(𝑙−1)
𝑖

denotes the feature of node 𝑣𝑖 with 𝒉(0)𝑖
= 𝒙𝑖 , 𝜶̂ (ℎ,𝑙 )

𝑖 𝑗
∈

R𝑑ℎ is defined in Equation (8), and 𝑾 (𝑙 )
𝑂𝑒

∈ R𝑑𝑒×𝑑𝑒 is a learnable

weight matrix. ⊕ denotes element-wise addition, ⊙ denotes the
Hadamard product, and ∥ denotes the concatenation operator.

3.2.1 Graph Attention. The core of FraudGT lies in its attention
mechanism, which allows the model to focus on the most relevant
parts of the graph. Given a node 𝑣𝑖 , FraudGT computes atten-
tion scores over its direct neighbor nodes 𝑣 𝑗 ∈ N (𝑣𝑖 ) using both
node features and edge attributes. This is achieved through a direct
neighbor attention mask, ensuring that the attention is restricted
to immediate neighbors, thereby capturing local transactional pat-
terns effectively. The attention score 𝜶 (ℎ,𝑙 )

𝑖 𝑗
of attention head ℎ in

layer 𝑙 between nodes 𝑣𝑖 and 𝑣 𝑗 is computed as follows:

𝒒 (ℎ,𝑙 )
𝑖

=

(
𝒉 (𝑙−1)
𝑖

)𝑇
𝑾 (ℎ,𝑙 )
𝑄

, 𝒌 (ℎ,𝑙 )
𝑗

=

(
𝒉 (𝑙−1)
𝑗

)𝑇
𝑾 (ℎ,𝑙 )
𝐾

(7)

𝜶̂ (ℎ,𝑙 )
𝑖 𝑗

=
𝒒 (ℎ,𝑙 )
𝑖

⊙ 𝒌 (ℎ,𝑙 )
𝑗

+ 𝒃 (ℎ,𝑙 )
𝑖 𝑗√︁

𝑑𝑘

, 𝜶 (ℎ,𝑙 )
𝑖 𝑗

= softmax
(
𝜶̂ (ℎ,𝑙 )
𝑖 𝑗

)
, (8)

where 𝒉(𝑙−1)
𝑖

denotes the feature of nodes 𝑣𝑖 , and 𝒃 (ℎ,𝑙 )
𝑖 𝑗

is the at-
tention bias that will be introduced in Section 3.2.3.

3.2.2 Edge-Based Message Passing Gate. Inspired by the gat-
ing operation in Bresson and Laurent [6], FraudGT proposes
an edge-based message passing gate to discern important fea-
tures of financial transactions, which is calculated as G(ℎ,𝑙 )

𝑖 𝑗
=

𝜎

(
(E′(𝑙 )
𝑖 𝑗

)𝑇𝑾 (ℎ,𝑙 )
𝐺

)
∈ R𝑑𝑒 , with 𝜎 being the sigmoid function and

𝑾 (ℎ,𝑙 )
𝐺

∈ R𝑑𝑒×𝑑ℎ being a learnable weight matrix. This mechanism
ensures that only the most relevant information is passed to the
neighboring nodes.

The message-gating mechanism is distinct from the attention
mechanism. While the attention score calculates the importance of
each neighbor and performs weighting over the entire message pro-
vided by a particular neighbor, the message passing gate provides
channel-wise weighting for a given neighbor message, focusing on
the important channels. This synergistic effect of neighbor-wise and
channel-wise message weighting makes FraudGT more expressive
and better equipped to capture complex transactional patterns.

3.2.3 Edge-Based Attention Bias. One of the challenges in finan-
cial fraud detection is the detection of rare, suspicious transactions
from a large number of normal transactions. FraudGT addresses
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this issue by incorporating an edge-based attention bias. This bias
helps the model pay more attention to suspicious transactions by
adjusting the attention scores based on edge attributes. The at-

tention bias term 𝒃 (ℎ,𝑙 )
𝑖 𝑗

=

(
E′(𝑙 )
𝑖 𝑗

)𝑇
𝑾 (ℎ,𝑙 )
𝐸

∈ R𝑑ℎ is element-wise
added to the original attention score as shown in Equation (8), with
𝑾 (ℎ,𝑙 )
𝐸

∈ R𝑑𝑒×𝑑ℎ being a learnable weight vector and E′(𝑙 )
𝑖 𝑗

being
the feature of edge between 𝑣𝑖 and 𝑣 𝑗 . This adjustment ensures
that transactions with attributes that are more indicative of fraud
receive higher attention scores.

3.2.4 Directed Multigraph Enhancements. Financial transaction
graphs are often modeled as directed multigraphs since multiple
transactions can exist between accounts. Therefore, components
that are beneficial for directed multigraph learning can potentially
improve fraud detection performance. Egressy et al. [19] presents
a set of enhancements—reverse message passing, port numbering,
and ego ID—that perform feature augmentations to improve the
expressivity of GNNs in directed multigraphs. We incorporate com-
binations of these enhancements into FraudGT to obtain different
variants. Based on our comprehensive experiments, we observe
that some of the variants can improve fraud detection accuracy
while maintaining efficiency. The enhancements are described as
follows:
• Reverse Message Passing (RMP). Standard GNNs only pass
messages in the direction of edges in directed graphs. Nodes
without incoming edges receive no messages from their neigh-
bors and, therefore, cannot leverage the graph structure to refine
their node features. To overcome this issue, bidirectional message
passing is provided to allow communication in both directions.
The message direction is indicated in the edge feature to let the
model distinguish between incoming and outgoing edges, as
illustrated in Figure 2.

• Port Numbering. Multiple transactions can exist between two
accounts. Distinguishing edges from the same neighbor and
edges from different neighbors can help the model detect more
complicated fraudulent patterns. Port numbering [49] serves this
purpose by assigning local IDs to each neighbor at a node (Fig-
ure 2). We assign each directed edge an incoming and outgoing
port number, and edges coming from (or going to) the same node,
receive the same incoming (or outgoing) port number.

• Ego IDs.Although RMP and port numbering help with detecting
more suspicious patterns, they are not sufficient for detecting
directed cycles. Ego IDs [64] were introduced to help detect
cycles in graphs by marking a center node with a distinct (binary)
feature so that it can be recognized when a sequence of messages
cycles back around to it. We adopt this idea in our framework.

3.2.5 Training and Prediction. In this paper, we aim to predict the
anomaly score of each edge (transaction). The final classifier is
comprised of a simple feed-forward network MLP(·) and a sigmoid
function 𝜎 . Let ∥ denote vector concatenation. The prediction 𝑦𝑖 𝑗
for an edge between nodes 𝑣𝑖 and 𝑣 𝑗 is

𝑦𝑖 𝑗 = 𝜎 (MLP(𝒉𝑖 ∥ E′𝑖 𝑗 ∥ 𝒉 𝑗 )) . (9)

FraudGT is trained using a supervised learning approach. The
objective is to minimize the binary cross-entropy loss between the
predicted probabilities and the true labels of the transactions. Let

Table 1: Statistics of datasets used in the experiments.

Dataset # Nodes # Edges Illicit Rate Time Span Split [%]

AML Small-HI 515,088 5,078,345 0.102% 10 days 64/19/17
AML Small-LI 705,907 6,924,049 0.051% 10 days 64/19/17
AML Medium-HI 2,077,023 31,898,238 0.110% 16 days 61/17/22
AML Medium-LI 2,032,095 31,251,483 0.051% 16 days 61/17/22
AML Large-HI 2,116,168 179,702,229 0.124% 97 days 60/20/20
AML Large-LI 2,070,980 176,066,557 0.057% 97 days 60/20/20

𝑦𝑖 𝑗 be the true label of the transaction between nodes 𝑣𝑖 and 𝑣 𝑗 ,
and 𝑦𝑖 𝑗 be the predicted anomaly score of the transaction. The loss
function L is defined as

L = −
∑︁

(𝑖, 𝑗 ) ∈E

[
𝑦𝑖 𝑗 log(𝑦𝑖 𝑗 ) + (1 − 𝑦𝑖 𝑗 ) log(1 − 𝑦𝑖 𝑗 )

]
. (10)

3.2.6 Inference Computational Complexity. For a given batch of
transactions, FraudGT extracts a subgraph from the sampled neigh-
borhood and performs 𝐿 layers attention calculations across all
edges. The edge-based message passing gate and attention bias are
computed for every edge. Therefore, the complexity of attention
computation is linear to the number of edges in the batch, which
we denote as |Ebatch |. Each attention calculation is linear in 𝑑𝑛 and
𝑑𝑒 , the number of hidden dimensions in the node embeddings and
edge embeddings, respectively.

RMP and port numbering are feature augmentations that are only
performed once during preprocessing and have linear time com-
plexity in the total number of edges. Ego ID adds a binary feature to
each node per sampled subgraph and has time complexity linear in
the total number of nodes |Vbatch | in the sampled subgraph. There-
fore, the overall computational complexity of FraudGT on a batch
of transactions is 𝑂 ( |Ebatch |𝐿𝑑 + |Vbatch |), where 𝑑 = max(𝑑𝑛, 𝑑𝑒 ).

4 Experiments

In this section, we present comprehensive experiments evaluating
FraudGT. We show that FraudGTmatches or outperforms all other
methods in fraud detection accuracy, while also being faster.

4.1 Experimental Setup

4.1.1 Datasets. Given the strict privacy regulations around finan-
cial data, real-world datasets are not readily available. While some
commercial datasets exist, they are not publicly available [26, 48, 52].
Individual banks and institutions often only have access to their
own transaction data, missing the broader context of customer
behavior across multiple institutions. Furthermore, these datasets
typically suffer from poor labeling, as many money laundering ac-
tivities go undetected [53, 54], especially when they involve trans-
actions across different banks. As a result, creating ground truth
labels is particularly challenging in this domain. Instead, we use
large-scale simulated money laundering data [3]. The simulator be-
hind these datasets generates realistic financial transaction graphs
by modeling agents (banks, companies, and individuals) in a virtual
world. The generator uses well-established laundering patterns to
add realistic money laundering (illicit) transactions. We use all three
sizes of the synthetic datasets that are publicly available on Kaggle
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Table 2: Benchmark results of F1 scores (%) of various GNN methods. Standard deviations are calculated over 5 runs with

different random seeds. We highlight the first and second best results.

Average Rank AML Small-HI AML Small-LI AML Medium-HI AML Medium-LI AML Large-HI AML Large-LI
MLP 21.2 0.42 ± 0.04 0.13 ± 0.05 0.06 ± 0.12 0.15 ± 0.02 0.66 ± 0.45 0.36 ± 0.03
LightGBM+GFs [5] 11.3 62.86 ± 0.25 20.83 ± 1.50 59.48 ± 0.15 20.85 ± 0.38 58.03 ± 0.19 23.67 ± 0.11
XGBoost+GFs [5] 8.8 63.23 ± 0.17 27.30 ± 0.33 65.70 ± 0.26 28.16 ± 0.14 42.68 ± 12.93 24.23 ± 0.12

no
n-
M
ul
ti-
GN

N
s

GatedGCN [6] 18.0 38.54 ± 2.25 17.18 ± 4.02 41.61 ± 4.57 11.90 ± 3.98 36.96 ± 1.88 8.97 ± 7.61
GAT [56] 21.3 0.28 ± 0.15 0.13 ± 0.01 0.36 ± 0.07 0.12 ± 0.01 0.94 ± 0.15 0.35 ± 0.09
GIN [30, 61] 16.5 40.04 ± 5.40 23.26 ± 3.56 45.40 ± 6.15 12.19 ± 3.01 36.32 ± 2.55 6.06 ± 4.73
GIN+RMP [33] 14.2 45.03 ± 7.02 18.80 ± 2.55 53.26 ± 4.82 11.74 ± 2.00 59.29 ± 3.22 10.88 ± 4.95
GIN+Ports [49] 18.2 54.83 ± 2.08 18.70 ± 1.08 41.96 ± 1.77 11.39 ± 5.11 40.15 ± 1.38 0.20 ± 0.28
GIN+Ego ID [64] 15.2 46.03 ± 4.38 18.21 ± 3.67 52.84 ± 5.94 21.82 ± 2.13 53.31 ± 4.12 5.42 ± 5.58
GIN+EU [4] 15.7 44.97 ± 5.41 23.14 ± 9.90 53.13 ± 7.89 17.96 ± 2.84 41.99 ± 2.24 4.88 ± 3.88
PNA [15] 12.7 61.06 ± 5.65 17.98 ± 3.69 60.17 ± 2.39 31.66 ± 0.79 54.69 ± 6.66 4.10 ± 5.18
PNA+EU 10.8 57.23 ± 5.61 26.43 ± 1.83 61.02 ± 2.02 26.51 ± 3.31 61.98 ± 5.71 3.96 ± 6.68

M
ul
ti-
GN

N
s Multi-GIN [19] 12.5 47.42 ± 2.93 22.31 ± 5.79 54.59 ± 2.25 18.72 ± 4.65 58.43 ± 5.09 17.53 ± 7.44

Multi-GIN+EU [19] 10.8 57.12 ± 2.86 16.23 ± 3.23 62.25 ± 2.05 22.58 ± 2.40 61.50 ± 2.23 25.35 ± 1.43
Multi-PNA [19] 9.2 68.19 ± 2.03 31.33 ± 2.58 67.22 ± 2.65 26.33 ± 2.90 51.85 ± 11.16 6.59 ± 8.60
Multi-PNA+EU [19] 10.7 68.60 ± 3.36 27.79 ± 3.63 63.60 ± 1.58 17.95 ± 5.83 59.02 ± 4.63 4.65 ± 5.80

Pr
op

os
ed

Va
ria

nt
s FraudGT 9.0 69.68 ± 1.58 28.69 ± 2.05 62.38 ± 0.87 24.02 ± 0.52 54.35 ± 1.65 11.02 ± 2.65

+RMP 6.3 64.84 ± 2.00 33.02 ± 3.17 66.37 ± 0.47 27.01 ± 2.61 65.05 ± 1.19 19.17 ± 3.22
+Ports 3.7 74.90 ± 0.55 44.17 ± 1.87 72.12 ± 1.18 38.62 ± 2.85 60.89 ± 2.50 30.40 ± 5.68
+Ego ID 3.8 70.01 ± 3.47 34.22 ± 1.10 71.72 ± 1.29 32.59 ± 1.79 65.48 ± 0.91 27.94 ± 4.77
+Ports+Ego ID

(PE-FraudGT) 1.8 76.41 ± 1.45 45.81 ± 1.14 74.22 ± 1.74 43.53 ± 1.76 68.64 ± 2.31 30.44 ± 2.76

+RMP+Ports+Ego ID
(Multi-FraudGT) 1.2 76.13 ± 0.95 47.01 ± 2.22 75.93 ± 1.92 44.06 ± 5.27 73.34 ± 1.64 37.43 ± 4.94

[2], and for each size, we use one dataset with a higher illicit ratio
(HI) and one with a lower illicit ratio (LI). The dataset sizes, illicit
ratios, and split ratios among the training, validation, and test sets
are provided in Table 1. The datasets are split temporally, i.e., we
split the transactions after ordering them by their timestamps.

4.1.2 Baselines. We compare FraudGT with three categories of
baselines representing the state-of-the-art (SOTA) work in finan-
cial fraud detection. The first category consists of computationally
efficient baselines, including MLP [22], which performs classifica-
tion directly on node and edge features, and LightGBM+GFs and
XGBoost+GFs [5], which are gradient-boosting methods using pre-
calculated graph-based features (GFs) and tree-based classifiers
LightGBM [36] and XGBoost [11] to classify nodes or edges in-
dividually. This approach has produced SOTA results in financial
applications [43, 58].

The second category consists of GNN models with edge features
but without directed multigraphs enhancements, which we term
non-Multi-GNNs. They include GatedGCN [6], GAT [56], GIN [30],
GIN with reverse message passing (+RMP) [33], GIN with ports
numbering (+Ports) [49], GIN with ego ID (+Ego ID) [64], GIN with
edge updates (+EU) [4], PNA [15], and PNA with edge updates
(+EU).

The third class of baselines is the SOTA GNN models tailored
for directed multigraphs [19]: Multi-GINE, Multi-GINE with edge
updates (+EU), Multi-PNA, andMulti-PNAwith edge updates (+EU).

Lastly, in addition to FraudGT alone, we incorporate a com-
bination of the directed multigraph enhancements described in

Section 3.2.4—RMP, port numbering, and ego IDs. We obtain the fol-
lowing variants: FraudGT with RMP (+RMP), FraudGT with port
numbering (+Ports), FraudGT with ego ID (+Ego ID), FraudGT
with port numbering and ego ID (+Ports+Ego ID or PE-FraudGT),
and FraudGT with all three enhancements (+RMP+Ports+Ego ID
orMulti-FraudGT). We use neighborhood sampling [24] for all
GNN-based models.

4.1.3 Evaluation. Since our datasets are very imbalanced, popular
metrics for measuring accuracy are not suitable. Instead, we use
the F1 score, consistent with previous works [3, 19] and aligns well
with what banks and regulators use in real-world scenarios. Test
performance is reported for the learned parameters of the highest
validation performance. We used a POWER9 processor on the IBM
Power System AC922 (8335-GTG) running at 2.3–3.8GHz frequency
with a 10MB L3 cache size to perform graph sampling. We used an
Nvidia V100 GPU with 32GB of memory to perform training and
inference.

4.2 Experimental Results

4.2.1 Classification Results. Table 2 lists the results of each method
across the datasets, with standard deviations calculated over 5 runs
with different random seeds. We make the following observations.
First, the proposed FraudGT and its variants demonstrate leading
performance on all AML datasets, as indicated by their average
rankings. Notably, the vanilla FraudGT is competitive with or
outperforms non-Multi-GNN baselines, such as GatedGCN and
PNA, on AML Small-HI, AML Small-LI, AML Medium-HI, and AML
Large-LI. For example, on the AML Small-HI dataset, FraudGT
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Table 3: Ablation study results of F1 scores (%). Standard deviations are calculated over 5 runs with different random seeds. We

highlight the first and second best results.

AML Small-HI AML Small-LI AML Medium-HI AML Medium-LI AML Large-HI AML Large-LI

FraudGT w/o Edge-based Message Passing 1.67 ± 1.28 0.25 ± 0.30 1.88 ± 0.82 0.15 ± 0.07 7.98 ± 1.2 0.56 ± 0.14
FraudGT w/o Edge-based Attention Bias 68.82 ± 2.55 24.87 ± 4.3 58.39 ± 2.85 11.37 ± 3.88 52.55 ± 1.49 9.74 ± 2.55
FraudGT 69.68 ± 1.58 28.69 ± 2.05 62.38 ± 0.87 24.02 ± 0.52 54.35 ± 1.65 11.02 ± 2.65

achieves an average F1 score of 69.68%, representing a significant
performance improvement of 8.62% over the best-performing non-
Multi-GNN baseline, PNA. Second, incorporating directed multi-
graph enhancements significantly boosts the F1 score of FraudGT.
The combination of these enhancements creates a synergistic ef-
fect. The finalMulti-FraudGT variant consistently outperforms all
existing methods, including the previously best-performing Multi-
GNNs, across all datasets, achieving a 7.8–17.8% improvement. This
demonstrates the effectiveness of these enhancements in improv-
ing model performance. Lastly, the results highlight that models
like MLP, which does not utilize graph structure, and GAT, which
does not effectively leverage multidimensional edge information,
perform poorly. These findings emphasize the critical role of the
effective use of graph structure and edge information in achiev-
ing high accuracy in financial fraud detection. Overall, the results
confirm the efficacy of FraudGT and its variants for addressing
financial fraud challenges.

4.2.2 Inference Throughput and Latency. Figure 3 compares the
inference throughput and latency of FraudGT and its variants and
a subset of the other methods across the datasets. FraudGT and its
variants not only achieve high accuracy but also demonstrate higher
throughput and lower latency than the other methods. For instance,
the variant PE-FraudGT achieves close to the best F1 scores on
all datasets (only outperformed by Multi-FraudGT) while having
approximately 2.4 times higher throughput and lower per-batch
latency on average compared to the SOTA model Multi-PNA. The
primary reason for the computational efficiency of PE-FraudGT is
that it requires a much smaller sampled neighborhood to achieve a
high F1 score. We find that existing methods require a large sampled
neighborhood to achieve their best F1 score, resulting in lower
throughput and higher latency. For example, on the AML Small-HI
dataset, PE-FraudGT samples a subgraph with an average of 18k
nodes and 162k edges. In contrast, Multi-PNA requires sampling a
subgraph with an average of 67k nodes and 729k edges, which is
4.5× larger. Similarly, on the AML Medium-HI dataset, the subgraph
sampled by PE-FraudGT consists of 23k nodes and 252k edges,
while the subgraph sampled by Multi-PNA consists of 93k nodes
and 1092k edges. Therefore, to achieve its best F1 score, Multi-PNA
requires significantly more computation, and it still lags 7.8–17.8%
behind PE-FraudGT in F1 score.

4.2.3 Ablation Study. We perform an ablation study on the com-
ponents introduced in FraudGT, specifically focusing on the edge-
based message passing gate and the edge-based attention bias. Table 3
presents the results of the F1 scores. From the results, we see that
the edge-based message passing gate has a significant impact on the
overall performance. We see that removing the edge-based message

Figure 3: Average throughput and per-batch latency of our

FraudGT variants and GNN baselines, with models ordered

by average rank. The standard deviation over 5 runs with dif-

ferent random seeds is also plotted as an error bar at the end

of each bar. Throughput is defined as the number of transac-

tions processed per second (trans/s), measured by inputting

a batch of 𝑇 target transactions into the model and timing

the average per-batch latency 𝑙 to generate the output. The

average throughput is then calculated as 𝑇 /𝑙 .

passing gate (FraudGTw/o Edge-based Message Passing) leads to a
drastic reduction in F1 scores, highlighting its critical role in discern-
ing important transactional features. Themodel without edge-based
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attention bias (FraudGT w/o Edge-based Attention Bias) performs
better than the model without the edge-based message passing gate,
but still falls short of FraudGT with both components, indicating
that the edge-based attention also contributes significantly to the
model’s performance. These findings demonstrate the importance
of both the edge-based message passing gate and edge-based atten-
tion in achieving state-of-the-art performance in financial fraud
detection.

5 Conclusion

In this paper, we introduced FraudGT, a simple, effective, and
efficient graph transformer model designed for financial fraud de-
tection in transaction graphs. FraudGT addresses several key chal-
lenges inherent in financial transaction graphs, including learning
complex patterns, effective use of edge information, and computa-
tional efficiency. Leveraging the strengths of GTs to capture com-
plex patterns and relationships within financial transaction data,
FraudGT incorporates an edge-based message passing gate and an
edge-based attention bias, allowing the model to focus on critical
transactional features indicative of fraudulent activities. Through
extensive evaluation on various publicly-available large-scale syn-
thetic datasets, we show that FraudGT significantly outperforms
existing baselines and achieves state-of-the-art performance. While
synthetic datasets provide an essential testing ground due to privacy
concerns in real-world financial data, for future work, it would be
valuable to evaluate FraudGT on real-world financial fraud datasets.
This would provide further validation of FraudGT’s applicability
in real-world settings and enhance its potential for deployment in
practical financial fraud detection systems.
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