Downloaded via UNIV OF TEXAS SW MEDICAL CTR on January 9, 2025 at 16:31:26 (UTC).

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JJOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Isosteric 3D Bicyclo[1.1.1]Pentane (BCP) Core-Based Lipids for mRNA
Delivery and CRISPR/Cas Gene Editing

Shiying Wu, Yangyang Yang, Xizhen Lian, Fangyu Zhang, Chao Hu, Jet Tsien, Zexiang Chen, Yehui Sun,
Amogh Vaidya, Minjeong Kim, Yun-Chieh Sung, Yufen Xiao, Xiaoyan Bian, Xu Wang, Zeru Tian,
Erick Guerrero, Joshua Robinson, Pratima Basak, Tian Qin,* and Daniel ]J. Siegwart™

I: I Read Online

Article Recommendations |

Cite This: J. Am. Chem. Soc. 2024, 146, 34733-34742

ACCESS |

ABSTRACT: Lipid nanoparticles (LNPs) are an essential
component of messenger RNA (mRNA) vaccines and genome

editing therapeutics. Ionizable amino lipids, which play the most 2 Lol e
crucial role in enabling mRNA to overcome delivery barriers, have,

to date, been restricted to two-dimensional (2D) architectures.
Inspired by improved physicochemical properties resulting from
the incorporation of three-dimensionality (3D) into small-molecule
drugs, we report the creation of 3D ionizable lipid designs through
the introduction of bicyclo[1.1.1]pentane (BCP) core motifs. BCP- {

based lipids enabled efficient in vivo mRNA delivery to the liver )\_'g_’
and spleen with significantly greater performance over 2D benzene-

and cyclohexane-based analogues. Notably, lead BCP-NC2-C12

LNPs mediated ~90% reduction in the PCSK9 serum protein level

via CRISPR/Cas9 gene knockout, outperforming 2D controls and clinically used DLin-MC3-DMA LNPs at the same dose. Here, we
introduce BCP-based designs with superior in vivo activity, thereby expanding the chemical scope of ionizable amino lipids from 2D
to 3D and offering a promising avenue to improve mRNA and gene editing efficiency for the continued development of genetic
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medicines.

B INTRODUCTION

Messenger RNA (mRNA) has emerged as a promising
platform for broad medical applications including vaccines,
protein replacement therapies, cancer immunotherapies, and
genome editing.'~"* The remarkable and life-saving success of
the COVID-19 mRNA vaccines (Comirnaty from Pfizer/
BioNTech and Spikevax from Moderna),"""® which were
enabled through lipid nanoparticle (LNP) delivery, highlights
the essential role that LNPs play in overcoming delivery
barriers. LNPs are typically composed of ionizable amino
lipids, phospholipids, cholesterol, and PEGylated lipids.'®™>°
Among these constituents, ionizable amino lipids are the most
essential, as their unique pH-responsive behavior and
membrane-disruptive properties overcome the key barriers of
mRNA delivery, including mRNA encapsulation, cellular
uptake, and endosomal escape.”'”*” The chemical structures
of ionizable amino lipids have to date been restricted to two-
dimensional (2D) architectures.””*® Meanwhile, in the field of
small-molecule drug development, the incorporation of three-
dimensionality (3D) has recently made a major clinical impact
through improving solubility, structural conformation, and
drug pocket binding of small-molecule drugs.””~* Inspired by
the success and improved physical properties of 3D
architectures, we herein report the creation of 3D ionizable
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lipid designs based on a bicyclo[1.1.1]pentane (BCP) scaffold.
By expanding the chemical scope of ionizable amino lipids
from 2D to 3D, BCP-based lipids offer a new direction for the
continued development of genetic medicines.

The realm of small-molecule drugs is rich in chemical
complexity, which can inspire the design of novel ionizable
amino lipids. Cyclic structures, especially benzene, are
ubiquitous structural motifs for small-molecule drugs owing
to structural rigidity, high bioactivities, and substituent effect
enabling structure—activity relationship (SAR) studies.**™*!
However, benzenes are also frequently associated with poor
drug-like properties including metabolic instability and poor
aqueous solubility.*”~* Recent developments in medicinal
chemistry have demonstrated that substituting benzene rings
with BCP***” can enhance the pharmacokinetic/pharmacody-
namic (PK/PD) performance, improve safety profiles, and
increase the biological activity of small-molecule drugs via
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Figure 1. Modular synthetic routes were employed to synthesize a systematic series of ionizable amino BCP lipids for mRNA delivery. (a) Unique
3D structure of the BCP core, ALs and ELs, and alkyl tail-forming building blocks. (b) Parallel synthetic routes enabling the concise synthesis of AL

and EL containing BCP lipids.

increasing solubility, metabolic stability, and membrane fusion
capabilities.”***>*~*" Furthermore, recent synthetic advan-
ces provided multiple practical approaches to accessing
strained BCP motifs."*™>® Extrapolating from small-molecule
drug development, we hypothesized that introducing the 3D
BCP core into an ionizable lipid design could provide
improved delivery efficiency. Since ionizable amino lipids
reported previously were primarily based on 2D cores, this new
BCP approach greatly expands the chemical space for the
design and application of ionizable lipids in LNPs. Herein, we
designed and synthesized a systematic series of BCP lipids
(Figure 1), containing four parts: (i) a compact and rigid 3D
BCP core in the center; (ii) biodegradable amide linkers (ALs)
or ester linkers (ELs) to connect the core and hydrophobic
domain; (iii) tertiary amine head groups to increase affinity
with nucleic acid and promote the self-assembly of nano-
particles; and (iv) hydrophobic tails to contribute to lipid
bilayer construction, LNP stability, and transfection efficiency.
BCP lipids with ALs preferred to transfect the liver, whereas
BCP lipids with ELs preferred to transfect the spleen following
intravenous (IV) administration of luciferase mRNA LNPs.
Importantly, 3D BCP lipids demonstrated significantly greater
mRNA delivery efficiency in vitro and in vivo than analogous
2D lipids composed of benzene or cyclohexane cores. Notably,
compared to DLin-MC3-DMA (MC3) LNPs, which are used
clinically to treat liver disease,”’ the mRNA transfection
efficiency of BCP-NC2-C12 LNPs in the liver was 25 times
that of the former. Additionally, we employed BCP LNPs to
codeliver Cas9 mRNA and guide RNA for Pcsk9 gene
knockout and achieved over 90% reduction of PCSK9 protein
production in the serum. This result for 3D BCP-NC2-C12
LNPs was around 3-fold greater than 2D-core LNPs and
benchmark MC3 LNPs. Overall, this work demonstrates the
superiority of 3D core integration, opening new avenues for

creative lipid design with improved mRNA and gene editing
efficiency for the continued development of genetic medicines.

B RESULTS AND DISCUSSION
Design and Synthesis of BCP Lipids. BCP has emerged

as the most useful bioisostere of benzene rings for small-
molecule drugs. In 2012, Pfizer researchers improved the y-
secretase inhibitor BMS-708,163 by replacing its benzene ring
with a BCP, enhancing its solubility, permeability, and
stability.*® Similarly, darapladib, an inhibitor of lipoprotein-
associated phospholipase A2 (LpPLA2), uses BCP to achieve
high potency and better physicochemical properties.”” To
introduce the 3D architecture into ionizable amino lipids, we
developed modular synthetic routes using BCP as a core-
forming motif. BCP, as a highly strained polycyclic hydro-
carbon, may contribute to more stable, well-organized LNPs
with improved encapsulation efficiency and delivery efficacy.
Since linker chemistry has been shown to affect the
performance and biodistribution of LNPs in previous
studies,”*”®" we installed biodegradable ALs (NC2, NC3,
and NC4) and ELs (OC2, OC3, and OC4) of varying lengths
to the bridgehead 1,3-positions of BCPs. Additionally, inspired
by previous studies showing the observable impact of alkyl tail
length on the efficacy of LNPs, hydrophobic tails with various
lengths (C9—C12) were linked with terminal amines via
systematic conjugation.””*>*>*> We therefore varied the
hydrophobic tail lengths (C9, C10, C11, and C12) through
systematic conjugation to the tertiary amine. The eventual
design ensured two tertiary amine heads in the BCP lipids for
high affinity with nucleic acid cargoes and a tendency to self-
assemble into nanoparticles (Figure 1a). A modular synthetic
route to access BCP lipids effectively, beginning with the
alkylation of amines followed by subsequent esterification or
deprotection and amide coupling reaction, built up a library
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Figure 2. BCP LNPs were formulated with mRNA and characterized. (a) Luc mRNA LNPs consisting of BCP-based lipids, DOPE, cholesterol,
and DMG-PEG were prepared by using the ethanol dilution method. Heat maps of (b) cell viability and (c) relative light units of IGROV-1 cells

after treatment with BCP LNPs (25 ng mRNA/well, n = 4).

containing 24 BCP lipids for systematic structural—activity
relationship studies (Figure 1b). In the first synthetic step,
amide or ELs reacted with bromoalkanes through SN2 reaction
under basic conditions in ethyl acetate to obtain the
intermediate compounds, with a yield of around 80% after
48 h of reaction time (Schemes S1 and S2). Subsequently, the
intermediate compounds were reacted with BCP acyl chloride
for amide coupling or esterification with triethylamine as the
base in dichloromethane, yielding approximately 75% yield of
desired products (Schemes S3—S13). The final products were
purified by chromatography using silica gel and confirmed by
high-resolution mass spectroscopy, 'H NMR, and *C NMR
(Supporting Information). To compare 3D and 2D lipids
head-to-head, we synthesized analogous 2D-core ionizable
lipids using para-substituted benzene as the core motif via
similar synthetic routes, as well as their saturated analogues
containing cis-cyclohexane (cis-H) and trans-cyclohexane
(trans-H) core scaffolds (Schemes S$3—S13). Through the
above-described synthetic routes, BCP lipids and 2D-core
lipids were synthesized in scalable reactions, which are
essential for LNP manufacturing,

BCP LNPs Effectively Encapsulated and Delivered
MRNA. Following the designed synthetic route, all BCP lipids
were successfully obtained (Figure S1). LNPs were formulated
using a four-lipid mixture containing BCP lipids, 1,2-dioleoyl-
snglycero-3-phosphoethanolamine (DOPE), cholesterol, and
1,2-dimyristoyl-rac-glycerol-methoxy(poly(ethylene glycol))
(DMG-PEG) with a molar percentage of 23.8/23.8/47.6/4.8
to mirror a previous study that optimized LNP formulations
for mRNA.%" Established protocols for LNP self-assembly with
firefly luciferase (Luc) mRNA and characterization were
followed, as previously reported (Figure 2a).°* BCP lipids
are named according to the core-forming motif (BCP,

benzene, cis-H, trans-H), the linker (NC2—NC4, OC2—
OC4), and the tail (C9—C12). In all comparison studies, all
LNP components and ratios remained constant except for the
ionizable amino lipid. The hydrodynamic diameter, poly-
dispersity index (PDI), and mRNA encapsulation efficiency of
resulting BCP LNPs were determined using dynamic light
scattering and the RiboGreen assay following standardized
protocols.”* The hydrodynamic diameter of all BCP LNPs fell
in the range of 120—180 nm, similar to previous studies, and
exhibited a PDI below 0.17 (Figure $2a).***% All BCP LNPs
effectively encapsulated mRNA with efficiency values ranging
from 80 to 98% (Figure S2b). We next evaluated the in vitro
mRNA delivery efficiency and cytotoxicity of BCP LNPs in a
cell culture. Luc mRNA was encapsulated in BCP LNPs and
delivered to IGROV-1 cells. Minimal cytotoxicity was
measured, with the majority of BCP LNPs demonstrating
>90% viability after 24 h of incubation at the tested dose
(Figure 2b). Regarding trends related to the linker length and
chemistry, NC2, NC4, OC3, and OC4 linker-containing BCP
LNPs most effectively delivered mRNA with the relative
luminescence intensity ranging from 10° to 10’ photons/s
(Figure 2c). To further examine the potential compatibility of
BCP lipids, we examined alternative phospholipids (DOPC,
POPC, and POPE) and molar ratio compositions associated
with the delivery of small or large RNAs (Figure S12). The
activity was preserved across the formulations, highlighting the
modularity of BCP lipids. High cell viability was also quantified
in comparison to commercial LNP formulations, indicating
favorable safety profiles (Figure S13). With these promising in
vitro results of BCP LNPs, we next investigated their
performance in vivo.

BCP LNPs Enabled Highly Effective mRNA Delivery In
Vivo. We dosed C57BL6 mice with 0.1 mg/kg Luc mRNA
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Figure 3. BCP LNPs effectively delivered mRNA in vivo. (a) Luciferase activity in CS7BL/6 mice 6 h after IV injection of Luc mRNA LNPs (0.1
mg/kg, n = 3). Major organs from the top to the bottom: heart, lung, liver kidneys, and spleen. (b) Quantification of in vivo total luminescence in
the liver and spleen of mice administered with AL and EL BCP LNPs (P/S, photons per second). (c) Percentage of luciferase expression in the liver
and spleen. AL LNPs exhibited liver tropism, while EL LNPs displayed spleen tropism. (d) TNS assay curves for determining the apparent pK, of
LNPs based on NC4 linkers and OC4 linkers. Apparent pK, was defined as the point at which 50% of the TNS fluorescence was achieved.

encapsulated in BCP LNPs IV, and whole-body biolumines- demonstrated a higher total luciferase activity (sum of liver and
cence images were recorded 6 h post injection. Based on the spleen signals) than ester linker (EL) BCP lipids (Figure 3a).
whole-body images (Figure $3), amide linker (AL) BCP lipids Interestingly, the linker length of the ionizable lipids affected
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Figure 4. 3D BCP lipids outperformed analogous control lipids based on 2D
for benzene and cyclohexane. To compare 3D and 2D analogues, a series

benzene and cyclohexane cores. (a) BCP is a bioisosteric replacement
of 3D BCP, 2D benzene, 2D cis-cyclohexane (cis-H), and 2D trans-

cyclohexane (trans-H) core-based ionizable amino lipids were synthesized with NC2, NC4, and OC4 linkers as well as C11 and C12 hydrophobic
tails. (b) Luciferase activity 6 h after IV administration of 3D and 2D-core LNPs formulated with AL BCP lipids (BCP-NC2-C12 and BCP-NC4-
C12) and EL BCP lipids (BCP-OC4-C11 and BCP-OC4-C12) as well as their control lipids (2D benzene core and cyclohexane core-based lipids)
at a dose of 0.1 mg/kg Luc mRNA. (c) Comparison of the total luciferase activity (P/S, photons per second). Statistical significance was analyzed

by the f test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

the mRNA delivery efficiencies (Figure 3b). For AL BCP
lipids, 2-carbon (NC2) and 4-carbon (NC4) linkers showed a
much higher transfection efficiency than 3-carbon (NC3)
linkers, whereas for EL BCP lipids, 3-carbon (OC3) and 4-
carbon (OC4) linkers resulted in better mRNA delivery than
2-carbon (OC2) linkers. The relationship between linker
chemistry and mRNA transfection efficacy was consistent with
the in vitro results. Meanwhile, BCP lipids containing ALSs
showed better delivery efficiency in vivo than ELs, which also
matches the in vitro results (Figure 2c). Additionally, longer
hydrophobic tails demonstrated greater transfection efficiency
for AL BCP lipids. However, the optimized hydrophobic tails
for EL BCP lipids were 10-carbon or 11-carbon, which showed
higher protein activity. Overall, linker length and chemistry, as
well as hydrophobic tail length, both played critical roles in
determining the efficacy of ionizable lipids in LNPs. These
factors may influence the polarity, solubility, and interaction of
lipids with nucleic acids and cellular membranes, thereby
affecting the delivery performance. Linker chemistry-depend-
ent in vivo tropism preference was also observed. AL BCP
LNPs exhibited mRNA-mediated Luc protein activity mainly
in the liver, whereas EL BCP LNPs showed a spleen preference
for mRNA transfection. Previous studies have indicated that
mRNA delivery tropism correlates with apparent pK,.°® Liver
delivery is associated with a pK, between 6 and 7, while pK,
lower than 6 favors spleen delivery.”” Therefore, we
hypothesized that the tropism preference between AL BCP
lipids and EL BCP lipids may be due to the different pK, values
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of LNPs affected by the ALs and ELs. To test this, we tested
the pK, values of LNPs formulated with BCP llplds us1ng the
6-p-toluidinylnaphthalene-2-sulfonate (TNS) assay.’” Indeed,
NC4-based BCP LNPs possessed pK, values from 6 to 8, while
OC4-based BCP LNPs had pK, values around 4—5 (Figure
3d). This finding agrees with the established precedent for
organ tropism. The differing pK, between AL and EL lipids
may be related to their differing electron-withdrawing and
hydrogen-bonding properties. Among all BCP lipids, BCP-
NC2-C12 and BCP-OC4-C11 lipids demonstrated the highest
mRNA delivery efficacy in their respective AL and EL lipid
groups. BCP-NC2-C12 LNPs delivered mRNA 25-fold more
effectively to the liver in vivo than benchmark DLin-MC3-
DMA LNPs at the same dose (Figure S4). Since DLin-MC3-
DMA LNPs are used clinically for liver therapy, these results
suggest promise for BCP LNPs.

3D BCP LNPs Are More Efficacious than 2D Benzene
and Cyclohexane Analogues. In small-molecule drugs,
BCP serves as a valuable bioisostere for benzene. To examine
whether the 3D nature of BCP lipids would improve mRNA
delivery over the 2D benzene equivalents, we designed and
synthesized a series of control lipids. In addition to benzene,
we also explored cis- and trans-cyclohexane to further examine
the potential effects of aromaticity and stereochemistry. We
synthetically replaced the BCP cores of BCP-NC2-C12, BCP-
NC4-C12, BCP-OC4-C11, and BCP-OC4-C12 with the 2D
cores of benzene, cis-cyclohexane (cis-H), and trans-cyclo-
hexane (trans-H) (Figures SS and 4a). The synthetic routes
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Figure 5. BCP-NC2-C12 LNPs more effectively codelivered Cas9 mRNA and sgPCSK9 to C57BL/6 mice than BCP-NC2-C12, benzene-NC2-
C12, HC-NC2-C12, and MC3 reference LNPs. (a) CS7BL/6 mice were treated with three IV injections (days 0, 4, 8) (n = 3, biologically
independent animals). On day 14, liver and serum samples were collected for analysis. (b) Comparison of Sanger sequencing among PBS, MC3, cis-
H-NC2-C12, benzene-NC2-C12, and BCP-NC2-C12 groups. The cut is expected to occur upstream of the protospacer adjacent motif, 5" to 3’ of
sgPCSK9: CGG. (c) Pcsk9 locus of liver tissue quantified using TIDE analysis. (d) BCP-NC2-C12 LNPs resulted in ~90% PCSK9 protein
reduction in the serum (ELISA). A t test was used to determine the significance of the comparisons of data indicated in ¢ and d (*P < 0.0S5; **P <

0.01; ***P < 0.001; ****P < 0.0001).

remained the same as those of BCP lipids (Scheme S14). The
purified lipids were self-assembled into LNPs containing Luc
mRNA with all other variables being kept constant other than
the ionizable amino lipid (ionizable amino lipid/DOPE/
cholesterol/PEG2k-DMG = 23.8/23.8/47.6/4.8, molar per-
centages %). The resulting LNPs demonstrated similar
hydrodynamic diameters and PDIs (Figure S6). Control 2D-
core LNPs were less efficient at delivering mRNA in vitro
compared to BCP LNPs (Figure S7a). We then compared in
vivo mRNA delivery efficacy with that of BCP counterparts.
Both AL and EL BCP LNPs exhibited significantly higher
luciferase expression than those formulated with analogous 2D-
core benzene, cis-cyclohexane, and trans-cyclohexane lipids
(Figure 4b,c). These results highlight the unique 3D structured
BCP nature that boosts mRNA delivery. Encouragingly, the
same liver and spleen tropism profiles were observed for the
control lipids as for the BCP lipids (Figure S7b). This result
suggests that the control analogues are suitable comparators
and establish differences in delivery potency corresponding to
3D and 2D architectures. Next, cryo-electron microscopy
(EM) was used to analyze the structure of BCP-NC2-C12,
benzene-NC2-C12, and Cis-H-NC2-C12 LNPs (Figure S14).
All three LNPs adopted a bilayer structure. BCP-NC2-C12-
based LNPs appear to display a morphology resembling the
bicontinuous cubic phase (QID).°® Future investigations will be
required to more definitively connect the irregular nanostruc-
ture surface to the potential improvement of the LNP-
endosome membrane fusion.
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BCP LNPs Mediate Efficient Pcsk9 Knockout in the
Liver. To evaluate the suitability of BCP LNPs for therapeutic
applications, we employed CRISPR/Cas gene editing technol-
ogy to disrupt the Psck9 gene in a proof-of-concept study.
Pcsk9 is an attractive therapeutic target in the treatment of
familial hypercholesterolemia and atherosclerotic cardiovascu-
lar disease.”*”’" We codelivered Cas9 encoding mRNA and a
single guide RNA targeting the Pcsk9 gene using BCP LNPs,
control LNPs, and a benchmark LNP (Figure Sa). BCP-NC2-
C12 LNPs were selected based on their superior performance
in Luc mRNA delivery. We investigated gene knockout and
phenotypic changes in CS7BL/6 mice. Cas9 mRNA and
sgPCSK9 were copackaged in BCP-NC2-C12, benzene-NC2-
C12, ciss-H-NC2-C12, and DLin-MC3-DMA LNPs. All LNPs
were uniform in size (~80 nm) with a low PDI and high RNA
encapsulation efficiencies (Figure S9). CS7BL/6 mice were
administered IV with different LNP formulations containing
the same dosage of total RNA (2.5 mg/kg) on days 0, 4, and 8
(Figure Sa). On day 14, liver tissue and serum samples were
collected from mice for analysis. LNPs formulated with 3D
BCP lipid (BCP-NC2-C12) induced significant insertions and
deletions (indels) at the Pcsk9 locus (~36% confirmed using
TIDE, Figure Sb,c), leading to a ~90% reduction in the
PCSK9 protein level in the blood (Figure 5d) and in the liver
(Figure S10). In contrast, LNPs containing control lipids
(MC3, benzene-NC2-C12, and cis-H-NC2-C12) enabled only
5—8% indels at the Pcsk9 locus, resulting in a low reduction in
PCSKO9 protein levels. We next performed histology to examine
liver tissues from the various treatment groups with
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hematoxylin-eosin (H&E) staining (Figure S11). No differ-
ences were observed between the PBS and LNP-treated
animals, indicating that all of the tested LNPs showed a
favorable safety profile. Overall, these findings highlight that
BCP-NC2-C12 LNPs outperformed all controls and bench-
mark MC3, indicating that 3D core BCP-NC2-C12 BCP LNPs
hold promise for therapeutic mRNA and genome editing
applications.

B CONCLUSIONS

Inspired by the success of highly strained bioisosteres in small-
molecule drug design, we incorporated a 3D BCP structure
into an ionizable amino lipid design. Through modular
synthesis, we created a library of BCP lipids and thoroughly
studied SARs for mRNA delivery in vitro and in vivo. 3D BCP
lipids significantly outperformed their 2D-core counterparts
across all assays, indicating the unique efficacy of 3D designs.
The highly strained BCP structure resulted in 25-fold superior
mRNA delivery efficacy compared to a clinically used MC3
LNP benchmark in the liver. In vivo, tissue tropism was
controlled through the modulation of ALs and ELs. Lead 3D
BCP LNPs demonstrated highly efficient CRISPR/Cas gene
editing in vivo, outperforming MC3 LNPs 7.2-fold. BCP-NC2-
C12 LNPs were well-tolerated, highlighting their potential
clinical applicability. We envision that this work can open new
avenues for ionizable lipid design and enable enhanced
efficiency for broad medical applications.
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