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Abstract
We solve two open problems in Coxeter–Catalan com-
binatorics. First, we introduce a family of rational non-
crossing objects for any finite Coxeter group, using the
combinatorics of distinguished subwords. Second, we
give a type-uniform proof that these noncrossing Cata-
lan objects are counted by the rational Coxeter–Catalan
number, using the character theory of the associated
Hecke algebra and the properties of Lusztig’s exotic
Fourier transform. We solve the same problems for
rational noncrossing parking objects.
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1 INTRODUCTION

1.1 Rational𝑾-Catalan numbers and𝑾-nonnesting combinatorics

The Catalan number

Cat𝑛 ∶=
1

𝑛 + 1

(
2𝑛

𝑛

)
=

1

2𝑛 + 1

(
2𝑛 + 1

𝑛

)
famously counts Dyck paths with 2𝑛 steps. More generally, if 𝑝 is a positive integer coprime to
𝑛, then the rational Catalan number Cat𝑛,𝑝 ∶= 1

𝑝+𝑛

(𝑝+𝑛
𝑛

)
counts rational Dyck paths: the lattice

paths in a 𝑝 × 𝑛 rectangle that stay above the diagonal [4, 12]. For instance, Figure 1 shows that
Cat5,3 = 7. Taking 𝑝 = 𝑛 + 1 recovers the classical case: Cat𝑛,𝑛+1 =

1

2𝑛+1

(2𝑛+1
𝑛

)
= Cat𝑛.

Rational Dyck paths admit several generalizations that depend uniformly on an irreducible
finite Weyl group𝑊:

∙ for 𝑝 = ℎ + 1, where ℎ is the Coxeter number of𝑊, one can take antichains in the positive root
poset or dominant regions of the Shi arrangement [66, 74];

∙ for 𝑝 = 𝑘ℎ + 1, one can take certain 𝑘-tuples of roots that encode dominant regions of the 𝑘-Shi
arrangement [6, 7]; and

∙ for any 𝑝 coprime to ℎ, one can take coroots inside a certain 𝑝-fold dilation of the fundamental
alcove [21, 40, 43, 73, 76, 83, 86].

These generalizations are collectively known as nonnesting objects, because when 𝑊 is the
symmetric group 𝔖𝑛 and 𝑝 = 𝑛 + 1, they admit natural bijections to the classical nonnesting
partitions of 𝑛.
Henceforth, all reflection groups are finite, real, and irreducible. Let𝑊 be aWeyl group of rank

𝑟 and Coxeter number ℎ. (If𝑊 = 𝔖𝑛, then 𝑟 = 𝑛 − 1 and ℎ = 𝑛.) For any integer 𝑝 coprime to ℎ,
the rational𝑊-Catalan numbers [40] are given by

Cat𝑝(𝑊) ∶=

𝑟∏
𝑖=1

𝑝 + 𝑒𝑖
𝑑𝑖

,

where the numbers 𝑑𝑖 are integers known as the degrees of 𝑊, and the numbers 𝑒𝑖 = 𝑑𝑖 − 1 are
known as the exponents of 𝑊. If 𝑊 = 𝔖𝑛, then 𝑑𝑖 = 𝑖 + 1 and 𝑒𝑖 = 𝑖, giving Cat𝑝(𝔖𝑛) = Cat𝑛,𝑝.
Together, [40, Theorem 7.4.2] and [83, Lemma 8.2] give a uniform proof that the families of
nonnesting objects above are counted by Cat𝑝(𝑊).
For an arbitrary Coxeter group 𝑊 (in fact, for any well-generated complex reflection group)

with Coxeter number ℎ and 𝑝 coprime to ℎ, [34] extend the definition above to

Cat𝑝(𝑊) ∶=

𝑟∏
𝑖=1

𝑝 + (𝑝𝑒𝑖 modℎ)

𝑑𝑖
. (1.1)

F IGURE 1 The rational Dyck paths counted by Cat5,3.
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If𝑊 is a Weyl group, then multiplication by 𝑝 permutes the residues of the exponents modulo ℎ
by [79, Proposition 4.7] and [82, Proposition 8.1.2], so the new definition of Cat𝑝(𝑊) specializes to
the previous one. In the generality of Coxeter groups, however, a uniform definition of nonnesting
objects has not been found.

1.2 Rational𝑾-noncrossing combinatorics

The Catalan numbers Cat𝑛 count many other objects beyond Dyck paths — in particular, they
also count the noncrossing partitions of 𝑛. If 𝑝 = 𝑘ℎ + 1, then several families of noncrossing
objects counted by Cat𝑝(𝑊) can be defined uniformly for any finite Coxeter group𝑊, including
𝑊-noncrossing partitions [2, 9, 10, 66], generalizations of cluster exchange graphs for finite-type
cluster algebras [20, 30, 32], and Coxeter-sortable elements [61, 82]. The𝑊-noncrossing partitions
can even be defined for well-generated complex reflection groups.
These families are of a very different nature from the nonnesting objects of Section 1.1. They

are defined beyond crystallographic reflection groups, their definition depends on the choice
of a Coxeter element, and they satisfy a recursive property called the Cambrian recurrence.
However:

(1) For any𝑊, the uniform definition of rational noncrossing families for arbitrary 𝑝 coprime to
ℎ has been an open problem for roughly a decade.

(2) For any of the kinds of noncrossing families above, the proof of their uniform enumeration by
Cat𝑝(𝑊) for all𝑊 has been an open problem since their definition.

For further discussion of these problems, see the summary report from the 2012 American Insti-
tute of Mathematics workshop on rational Catalan combinatorics [88, Sections 1.1–1.2], as well
as [82, Chapter 8], [16, Section 7], [14, Section 8], and [4, Section 1].
We resolve both problems. Our first result is the uniform definition of a rational noncross-

ing family for any Coxeter group 𝑊 (Definition 1.1). Our second result is their enumeration
(Theorem 1.4).

1.3 Rational𝑾-noncrossing objects

Let 𝑆 ⊆ 𝑊 be a system of simple reflections, and let 𝐜 = (𝑠1, 𝑠2, … , 𝑠𝑟) be an ordering of 𝑆, which
wewill call aCoxeter word. Let𝑝 be a positive integer coprime to ℎ, and let 𝐜𝑝 be the concatenation
of 𝑝 copies of 𝐜. Thus, 𝐜𝑝 = (𝑠1, 𝑠2, … , 𝑠𝑚), where 𝑠𝑖 = 𝑠𝑖−𝑟 for all 𝑖 > 𝑟, is a word of length𝑚 = 𝑝𝑟.
Given a subword𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) of 𝐜𝑝, meaning𝑢𝑖 ∈ {𝑠𝑖, 𝑒} for every 𝑖 ∈ [𝑚] ∶= {1, 2, … ,𝑚},

we set 𝑢(𝑖) ∶= 𝑢1𝑢2⋯𝑢𝑖 ∈ 𝑊 for each 𝑖. We say that 𝐮 is a 𝑢-subword if 𝑢(𝑚) = 𝑢. We write 𝑒 for
the identity of𝑊, and say that 𝐮 is distinguished [23, 57] if 𝑢(𝑖) ⩽ 𝑢(𝑖−1)𝑠𝑖 in the weak order for all
𝑖 ∈ [𝑚], where we set 𝑢(0) ∶= 𝑒. In other words, the symbol 𝑠𝑖 must be used in 𝐮 if it decreases the
length of 𝑢(𝑖−1). We write e𝐮 for the number of symbols of 𝐜𝑝 skipped in 𝐮: that is, e𝐮 ∶= |{𝑖 ∣ 𝐮𝑖 =

𝑒}|. The following definition is closely related to [36, Definition 9.3]; see also [47].
Definition 1.1. A distinguished subword 𝐮 of 𝐜𝑝 is maximal if e𝐮 = 𝑟. The set of all maximal
distinguished 𝑒-subwords of 𝐜𝑝 is denoted as𝐜𝑝 (𝑊).

See Figure 2 for an example of Definition 1.1. In general, any 𝑒-subword 𝐮 of 𝐜𝑝 satisfies e𝐮 ⩾ 𝑟,
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s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

s1 s2 (14) s4 s1 s2 (25) s4 s1 s2 (34) ¨(45)
s1 s2 (14) s4 (23) s2 s3 (34) s1 (25) s3 s4

s1 s2 (14) (45) s1 s2 (24) s4 s1 s2 (35) s4

s1 (13) s3 s4 s1 s2 (25) s4 (14) s2 s3 (45)
s1 (13) s3 s4 s1 (24) s3 s4 ¨(12) (25) s3 s4

(12) s2 s3 (25) s1 (14) s3 s4 s1 s2 (35) s4

(12) (23) s3 s4 s1 (14) s3 s4 s1 (25) s3 s4

F IGURE 2 For𝑊 = 𝔖5, 𝐜 = (𝑠1, 𝑠2, 𝑠3, 𝑠4), and 𝑝 = 3, each row above depicts one of the seven maximal
𝐜𝑝-Deograms in the set𝐜𝑝 (𝑊) from Definition 1.1. For each 𝐮 ∈ 𝐜𝑝 (𝑊), we have replaced the positions 𝑖
where 𝑢𝑖 = 𝑒 with the corresponding colored inversions from Remark 1.3. Compare with Figure 1.

1 1

2 2

3 3

4 4

5 5

(14) (25) (34) ¨(45)
1 1

2 2

3 3

4 4

5 5

(14) (23) (34) (25)
1 1

2 2

3 3

4 4

5 5

(14) (45) (24) (35)
1 1

2 2

3 3

4 4

5 5

(13) (25) (14) (45)
1 1

2 2

3 3

4 4

5 5

(13) (24) ¨(12) (25)
1 1

2 2

3 3

4 4

5 5

(12) (25) (14) (35)
1 1

2 2

3 3

4 4

5 5

(12) (23) (14) (25)

F IGURE 3 Wiring diagrams for Figure 2, illustrating Remark 1.3.

as we show in Corollary 4.9. Thus, the maximal distinguished 𝑒-subwords of 𝐜𝑝 are precisely the
distinguished 𝑒-subwords of 𝐜𝑝 that use the maximal possible number of symbols.

Remark 1.2. We can interpret maximal distinguished 𝑒-subwords of 𝐜𝑝 as certain closed walks
on the Hasse diagram of the weak Bruhat order of 𝑊, or equivalently, on the directed Cayley
graph of (𝑊, 𝑆). The walk corresponding to an 𝑒-subword 𝐮 of 𝐜𝑝 is the sequence of elements
(𝑒 = 𝑢(0), 𝑢(1), … , 𝑢(𝑚) = 𝑒): that is, the walk starts at 𝑒, and for each letter 𝑠𝑖 , it either follows the
corresponding edge of the Cayley graph or stays in place.
In this model, the distinguished condition on 𝐮 becomes the condition that the walk must fol-

low the edge labeled by 𝑠𝑖 whenever it points downward in weak order. In particular, maximal
distinguished 𝑒-subwords of 𝐜𝑝 correspond to distinguished closed walks starting and ending at 𝑒
with precisely 𝑟 stays.

Remark 1.3. For𝑊 = 𝔖𝑛, we interpret maximal distinguished 𝑒-subwords of 𝐜𝑝 in terms ofwiring
diagrams, as illustrated in Figure 3, and call themmaximal 𝐜𝑝-Deograms. Amaximal 𝐜𝑝-Deogram
consists of 𝑛 − 1 elbows inside the wiring diagram of 𝐜𝑝 with the property that the result-
ing permutation is the identity, that is, the left and the right endpoints of each wire have the
same labels.
In thismodel, the distinguished condition becomes the condition that for each elbow𝐸, the two

participating wires intersect an even number of times to the left (or equivalently, to the right) of 𝐸.
We associate to 𝐸 a colored inversion (Definition 4.3). The inversion (𝑖 𝑗) records the left endpoints
𝑖, 𝑗 ∈ [𝑛] of the two wires participating in 𝐸. Its color, indicated by the number of dots above (𝑖 𝑗),
equals the number of intersection points to the left of 𝐸 between the two wires participating in 𝐸.
See also [36, Figure 5] and Remark 2.12.
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Theorem1.4. For any (irreducible, finite) Coxeter group𝑊 of rank 𝑟 andCoxeter numberℎ, Coxeter
word 𝐜, and (positive) integer 𝑝 coprime to ℎ, we have

||𝐜𝑝 (𝑊)|| = Cat𝑝(𝑊).

See Figures 2 and 3 for an example of Theorem 1.4. The proof occupies Sections 4–6.
Even in the Catalan case 𝑝 = ℎ + 1, all previous results on the enumeration of𝑊-noncrossing

objects relied on the classification of Coxeter groups. In Section 8, we show that the objects in
𝐜𝑝 (𝑊) are truly noncrossing by showing that they are in natural uniformbijectionwith the three
families of𝑊-noncrossing objects mentioned in Section 1.2 [2, 82]. Our work therefore provides
the first uniform proof that each of these 𝑊-noncrossing families is counted by the 𝑊-Catalan
numbers Cat(𝑊) ∶= Catℎ+1(𝑊). In particular, our results give the first uniform proof that the
number of clusters in a finite-type cluster algebra is counted by Cat(𝑊) [33, Theorem 1.9].
We generalize this bijection between𝐜𝑝 (𝑊) and the three families of𝑊-noncrossing objects

to the Fuss–Catalan (𝑝 = 𝑘ℎ + 1) setting. Since the zeta polynomial of the noncrossing parti-
tion lattice counts the Fuss–Catalan noncrossing partitions [19, Proposition 9], taking the leading
coefficient of 𝑘 in

∏𝑟
𝑖=1

𝑘ℎ+𝑑𝑖
𝑑𝑖

immediately gives a new uniform proof of the formula 𝑟!ℎ𝑟|𝑊| for the
number of maximal chains in the noncrossing partition lattice [22, 54, 63].

Remark 1.5. For𝑊 = 𝔖𝑛, Theorem 1.4 is comparable to [36, Proposition 9.5]. This result states that
Cat𝑛,𝑝 counts maximal 𝑓𝑝,𝑛+𝑝-Deograms, where 𝑓𝑝,𝑛+𝑝 is a permutation (rather than a word) in
the larger symmetric group𝔖𝑛+𝑝. It would be interesting to give such an interpretation for other
Weyl groups𝑊, even for classical types. See Open Problem 2.11 and Remark 2.12.

1.4 Rational𝑾-parking functions

Let 𝐚 = (𝑎1, 𝑎2, … , 𝑎𝑛) be a sequence of positive integers and (𝑏1 ⩽ 𝑏2 ⩽ ⋯ ⩽ 𝑏𝑛) its increasing
rearrangement. We say that 𝐚 is a parking function if 𝑏𝑖 ⩽ 𝑖 for all 𝑖. The number of parking
functions of length 𝑛 is well known to be (𝑛 + 1)𝑛−1 [46].

Example 1.6. For 𝑛 = 3, the 16 parking functions are given by

(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2),

(2, 1, 2), (2, 2, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

For a Coxeter group 𝑊 with ℎ, 𝐜, and 𝑝 as above, we can use distinguished subwords to
define rational 𝑊-analogues of parking functions that we call rational noncrossing 𝑊-parking
objects. Recall from Remark 1.2 that each 𝑒-subword 𝐮 of 𝐜𝑝 gives rise to a closed walk (𝑒 =

𝑢(0), 𝑢(1), … , 𝑢(𝑚) = 𝑒) in weak order, starting and ending at 𝑒. To define our parking objects,
we instead consider closed walks starting and ending at arbitrary 𝑣 ∈ 𝑊. More precisely, given
𝑣 ∈ 𝑊, we say that a subword 𝐮 of 𝐜𝑝 is 𝑣-distinguished if we have 𝑣𝑢(𝑖) ⩽ 𝑣𝑢(𝑖−1)𝑠𝑖 for all 𝑖.

Definition 1.7. Given 𝑣 ∈ 𝑊, a 𝑣-distinguished subword 𝐮 of 𝐜𝑝 is maximal if e𝐮 = 𝑟. Let


(𝑣)
𝐜𝑝
(𝑊) be the set of maximal 𝑣-distinguished 𝑒-subwords of 𝐜𝑝, and let

𝐜𝑝 (𝑊) ∶=
⨆
𝑣∈𝑊


(𝑣)
𝐜𝑝
(𝑊).
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v = e = [1, 2, 3]

1 1

2 2

3 3

(12) (23)
1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

3123

1

2

313
2

1

2

323
1

1

2

312 3

1

2

33
2

1

v = s1 = [2, 1, 3]

1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

323
1

1

2

313
2

1

2

3
2

1
3

v = s2 = [1, 3, 2]

1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

(13) ¨(12)
1 1

2 2

3 3

¨(23) ¨(13)

1

2

313 2

1

2

312
3

1

2

3
1

3
2

v = s2s1 = [3, 1, 2]

1 1

2 2

3 3

(23) ¨(13)
1 1

2 2

3 3

¨(12) ¨(23)

1

2

312
3

1

2

3
3

1
2

v = s1s2 = [2, 3, 1]

1 1

2 2

3 3

(12) ¨(23)
1 1

2 2

3 3

¨(13) ¨(12)

1

2

323 1

1

2

3
2

3
1

v = w◦ = [3, 2, 1]

1 1

2 2

3 3

¨(12) ¨(23)

1

2

3
3

2
1

F IGURE 4 The 16 elements of 𝐜𝑝 (𝑊) for𝑊 = 𝔖3, 𝐜 = (𝑠1, 𝑠2), and 𝑝 = 4. For each 𝑣 ∈ 𝔖𝑛, we list the
maximal (𝐜𝑝, 𝑣)-Deograms in the top row of the corresponding table. They are shown together with their
𝑣-twisted colored inversions defined in Sections 2.3 and 8.5. The bottom row of each table illustrates the bijection
from Section 2.3 between the set 𝐜𝑛+1 (𝑊) and the set of labeled noncrossing partitions. Compare with
Example 1.6 and Figure 12.

In the language of Remark 1.2, each element 𝐮 ∈ 𝐜𝑝 (𝑊) gives rise to a distinguished closed
walk (𝑣 = 𝑣𝑢(0), 𝑣𝑢(1), … , 𝑣𝑢(𝑚) = 𝑣)with precisely 𝑟 stays. We note that the same subword 𝐮may
belong to(𝑣)

𝐜𝑝
(𝑊) for several different 𝑣 ∈ 𝑊, inwhich case it gives rise to several different closed

walks. We consider these closed walks to be distinct elements of 𝐜𝑝 (𝑊).

Theorem 1.8. For any Coxeter group 𝑊 of rank 𝑟 and Coxeter number ℎ, Coxeter word 𝐜, and
integer 𝑝 coprime to ℎ, we have

||𝐜𝑝 (𝑊)|| = 𝑝𝑟. (1.2)

For𝑊 = 𝔖𝑛, we again intepret maximal 𝑣-distinguished 𝑒-subwords of 𝐜𝑝 in terms of wiring
diagrams, and call them maximal (𝐜𝑝, 𝑣)-Deograms. For 𝑝 = 𝑛 + 1, the right-hand side of (1.2)
becomes (𝑛 + 1)𝑛−1. See Figures 4 and 12 for examples of Theorem 1.8.

Remark 1.9. It would be desirable to have a 𝑊-action on the set 𝐜𝑝 (𝑊), in the same way that
such actions exist for other constructions of parking objects [3, 67].
In work in preparation, the third and fourth authors will explain how the noncrossing ratio-

nal parking objects of the present paper enumerate the 𝐺(𝔽𝑞)-orbits of the 𝔽𝑞-points of the braid
Steinberg varieties introduced by the third author, where 𝔽𝑞 is a finite field. These varieties admit
a Springer-like 𝑊-action on their 𝐺-equivariant, compactly supported cohomology, but we do
not expect it to descend to an action on 𝔽𝑞-rational orbits of 𝔽𝑞-points. These varieties also have
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 7 of 50

𝐺-equivariant maps to the variety of unipotent elements  ⊆ 𝐺. The number of 𝔽𝑞-points in
the fiber over an element of  (𝔽𝑞) can be described using the 𝑞-Kreweras numbers studied by
Sommers [77] and Reiner–Sommers [71].

1.5 𝒒-Deformations and Hecke algebra traces

We will deduce Theorems 1.4 and 1.8 from stronger statements involving 𝑞-numbers: that is,
polynomials of the form [𝑎]𝑞 ∶= 1 + 𝑞 +⋯ + 𝑞𝑎−1. Let

Cat𝑝(𝑊; 𝑞) ∶=

𝑟∏
𝑖=1

[𝑝 + (𝑝𝑒𝑖 modℎ)]𝑞

[𝑑𝑖]𝑞
, (1.3)

the 𝑞-analog of Cat𝑝(𝑊) from (1.1).
For any word 𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) and 𝑢, 𝑣 ∈ 𝑊, let (𝑣)

𝑢,𝐰 be the set of 𝑣-distinguished 𝑢-
subwords of 𝐰, not necessarily maximal. For any 𝐮 ∈ 

(𝑣)
𝑢,𝐰 , recall from Section 1.3 that e𝐮 ∶=|{𝑖 ∈ [𝑚] ∣ 𝐮𝑖 = 𝑒}|. We set d(𝑣)𝐮 ∶= |{𝑖 ∈ [𝑚] ∣ 𝑣𝑢(𝑖) < 𝑣𝑢(𝑖−1)}| and

𝑅(𝑣)
𝑢,𝐰(𝑞) =

∑
𝐮∈

(𝑣)
𝑢,𝐰

(𝑞 − 1)e𝐮𝑞d
(𝑣)
𝐮 . (1.4)

We abbreviate𝑢,𝐰 = 
(𝑒)
𝑢,𝐰 and 𝑅𝑢,𝐰(𝑞) = 𝑅(𝑒)

𝑢,𝐰(𝑞). The polynomials 𝑅𝑢,𝐰(𝑞) are generalizations
of the celebrated 𝑅-polynomials of Kazhdan–Lusztig [44]. In Section 4, we define 𝑅(𝑣)

𝑢,𝐰(𝑞) by a
recurrence, and then deduce the closed formula above from an analogous recurrence for (𝑣)

𝑢,𝐰 .
The 𝑞-deformations of Theorems 1.4 and 1.8 are as follows:

Theorem 1.10 (Corollaries 6.13 and 6.15). For any Coxeter group𝑊 of rank 𝑟 and Coxeter number
ℎ, Coxeter word 𝐜, and integer 𝑝 coprime to ℎ, we have

(1) 𝑅𝑒,𝐜𝑝 (𝑞) = (𝑞 − 1)𝑟Cat𝑝(𝑊; 𝑞),

(2)
∑
𝑣∈𝑊

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) = (𝑞 − 1)𝑟[𝑝]𝑟𝑞 .

For𝑊 = 𝔖𝑛, the right-hand side of (1) equals (𝑞 − 1)𝑛−1Cat𝑛,𝑝(𝑞), where

Cat𝑛,𝑝(𝑞) ∶=
1

[𝑝 + 𝑛]𝑞

[
𝑝 + 𝑛

𝑛

]
𝑞

,

where
[𝑝+𝑛

𝑛

]
𝑞
∶=

[𝑝+𝑛]𝑞!

[𝑝]𝑞![𝑛]𝑞!
and [𝑚]𝑞! ∶= [1]𝑞[2]𝑞 ⋯ [𝑚]𝑞.

Example 1.11. For𝑊 = 𝔖3 and 𝑝 = 4, we compute (1.4) and compare it with (2):

(𝑞 − 1)−𝑟
∑
𝑣∈𝑊

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) =

𝑣=𝑒
⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞(
1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞6

)
+ 2𝑞

𝑣∈{𝑠1,𝑠2}
⏞⎴⎴⎴⏞⎴⎴⎴⏞(
1 + 𝑞2 + 𝑞4

)
+ 2𝑞2

𝑣∈{𝑠1𝑠2,𝑠2𝑠1}
⏞⎴⏞⎴⏞(
1 + 𝑞2

)
+ 𝑞3

𝑣=𝑠1𝑠2𝑠1
⏞⏞⏞

(1)

= [4]2𝑞.
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8 of 50 GALASHIN et al.

The sets(𝑣)
𝐜𝑝
(𝑊) are shown in Figures 4 and 12. The 𝑣 = 𝑒 piece of the sum recovers the rational

𝑞-Catalan number Cat4(𝔖3; 𝑞) = Cat3,4(𝑞) = 1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞6 of (1).

The proofs given in Sections 4–6 require some background in the representation theory of
Coxeter groups.
In Section 5, we recall that the group ring ℤ[𝑊] can be deformed to a ℤ[𝑞±1]-algebra called

the Hecke algebra𝑊 . Every word𝐰 in the simple reflections of𝑊 gives rise to a corresponding
element𝑇𝐰 of theHecke algebra.Wewill show that𝑅𝑒,𝐰(𝑞) can be expressed in terms of the value
of 𝑇𝐰 under a certainℤ[𝑞±1]-linear trace. For general 𝑢, 𝑣 ∈ 𝑊, a similar result holds for 𝑅(𝑣)

𝑢,𝐰(𝑞).
In Section 6, we compare the trace to the right-hand sides of Theorem 1.10(1–2). The key idea is

to decompose the trace as a linear combination of the characters of the simple𝑊-modules. Using
a theorem of Springer, we deduce that for a Coxeter word 𝐜, the trace of 𝑇𝐜𝑝 can be expressed as a
linear combination of values of the formFeg𝜒(𝑒

2𝜋𝑖
𝑝

ℎ ), where𝜒 runs over the irreducible characters
of𝑊 and Feg𝜒 is a polynomial called the fake degree of 𝜒. On the other hand, using a result from
[85], we show that the right-hand side of (1) can be expressed as a linear combination of values of
the form Deg𝜒(𝑒

2𝜋𝑖
𝑝

ℎ ), where Deg𝜒 is a polynomial called the unipotent or generic degree of 𝜒.
Although fake degrees and generic degrees originated in the work of Deligne and Lusztig on

representations of finite groups of Lie type, they can be defined purely in terms of the structure
of 𝑊 . For the symmetric group𝔖𝑛, we have Feg𝜒 = Deg𝜒 for every 𝜒. But for general Coxeter
groups, these polynomials are related by a nontrivial pairing {−, −}𝑊 on the set of irreducible
characters Irr(𝑊), discovered by Lusztig and known as the (truncated) exotic Fourier transform
(Theorem 6.12). Ultimately, we show that (1) is equivalent to a certain identity (6.16) for Feg𝜒
and Deg𝜒 that follows from symmetry and block-diagonality properties of the exotic Fourier
transform: See parts (2)–(3) of Theorem 6.12.
While these properties have uniform statements for all Coxeter groups, we are only aware of

proofs that are uniform for Weyl groups. Moreover, there is no uniform definition of {−, −}𝑊 for
general Coxeter groups. See Section 6.5 for an extensive discussion of this issue.

Remark 1.12. As we explain in Section 6.5, {−, −}𝑊 arises as the restriction to Irr(𝑊) of a pairing
{−, −} on a superset Udeg(𝑊) ⊇ Irr(𝑊). The pairing is the actual exotic Fourier transform: When
𝑊 is a Weyl group, {−, −} is a precise nonabelian generalization of the usual Fourier transform
on a finite abelian group. The name “truncated” for {−, −}𝑊 comes from the preprint [55], which
appeared while our paper was in preparation.

1.6 Braid Richardson varieties

Our final goal is to introduce algebraic varieties
◦
𝑅(𝑣)
𝑒,𝐰 whose point counts over a finite field of order

𝑞 recover the 𝑞-formulas above. These varieties appear in [23, 57, 89] when𝐰 is a reduced word of
an element 𝑤 ∈ 𝑊, in which case

◦
𝑅𝑢,𝐰 becomes isomorphic to an open Richardson variety

◦
𝑅𝑢,𝑤.

Related constructions appear in [18, 53, 85]. See [85, Appendix B] for further references.
Let 𝔽 be a field. Fix a split, connected reductive algebraic group 𝐺 over 𝔽 with Weyl group𝑊.

Let  be the flag variety of 𝐺, that is, the variety of all Borel subgroups of 𝐺. The group 𝐺 acts on
 by conjugation: If g ∈ 𝐺 and 𝐵 ∈ , then we set g ⋅ 𝐵 ∶= g𝐵g−1.
Fix a pair of opposed 𝔽-split Borel subgroups 𝐵+, 𝐵− ∈ , and set𝐻 ∶= 𝐵+ ∩ 𝐵−. We can iden-

tify𝑊 with 𝑁𝐺(𝐻)∕𝐻. We write 𝑤 ⋅ 𝐵+ ∶= 𝑤̇ ⋅ 𝐵+, where 𝑤̇ ∈ 𝐺 is any lift of 𝑤 ∈ 𝑊 to 𝑁𝐺(𝐻).
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 9 of 50

For any two Borels 𝐵1, 𝐵2 ∈ , there is a unique 𝑤 such that (𝐵1, 𝐵2) = (g ⋅ 𝐵+, g𝑤 ⋅ 𝐵+) for some
g ∈ 𝐺. In this case, we write 𝐵1

𝑤
NN→ 𝐵2 and say that (𝐵1, 𝐵2) are in relative position𝑤. For example,

𝐵+

𝑤◦
NN→ 𝐵−, where 𝑤◦ is the longest element of𝑊, whereas 𝐵1

𝑒
N→ 𝐵2 if and only if 𝐵1 = 𝐵2.

If𝑊 = 𝔖𝑛, then we can take 𝐺 = GL𝑛(𝔽), the general linear group of 𝔽𝑛. In this case,  is the
variety of complete flags

𝑉∙ = (𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑛) ∈ 𝔽𝑛, (1.5)

where dim𝑉𝑖 = 𝑖 for all 𝑖. The relative position of two such flags𝑈∙, 𝑉∙ is the unique permutation
𝑤 ∈ 𝔖𝑛 such that dim(𝑈𝑖 ∩ 𝑉𝑗) = |{1 ⩽ 𝑘 ⩽ 𝑖 ∣ 𝑤−1(𝑘) ⩽ 𝑗}| for all 𝑖, 𝑗.
For any 𝑢 ∈ 𝑊 and any word𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) ∈ 𝑆𝑚, not necessarily reduced, we will define

an algebraic variety
◦
𝑅𝑢,𝐰 over 𝔽. When 𝑢 = 𝑒, it is

◦
𝑅𝑒,𝐰 =

{
(𝐵1, … , 𝐵𝑚) ∈ 𝑚 ∣ 𝐵+

𝑠1
NN→ 𝐵1

𝑠2
NN→ ⋯

𝑠𝑚
NN→ 𝐵𝑚

𝑤◦
←NN 𝐵−

}
. (1.6)

More generally, for 𝑣 ∈ 𝑊, let

◦
𝑅(𝑣)
𝑒,𝐰 =

{
(𝐵1, … , 𝐵𝑚) ∈ 𝑚 ∣ 𝑣 ⋅ 𝐵+

𝑠1
NN→ 𝐵1

𝑠2
NN→ ⋯

𝑠𝑚
NN→ 𝐵𝑚

𝑣𝑤◦
←NNNN 𝐵−

}
. (1.7)

For a specific calculation, see Example 7.3. We show in Section 7 that Theorem 1.10 has the
following geometric interpretation.

Theorem 1.13. Suppose that 𝔽 = 𝔽𝑞 is a finite field with 𝑞 elements, where 𝑞 is a prime power. Then
for any Weyl group𝑊 of rank 𝑟 and Coxeter number ℎ, Coxeter word 𝐜, and integer 𝑝 coprime to ℎ,
we have

||| ◦
𝑅𝑒,𝐜𝑝 (𝔽𝑞)

||| = 𝑅𝑒,𝐜𝑝 (𝑞) = (𝑞 − 1)𝑟Cat𝑝(𝑊; 𝑞),

|||||
⨆
𝑣∈𝑊

◦
𝑅(𝑣)
𝑒,𝐜𝑝

(𝔽𝑞)
||||| =

∑
𝑣∈𝑊

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) = (𝑞 − 1)𝑟[𝑝]𝑟𝑞.

1.7 Future work

A natural problem would be to generalize our work to the (𝑞, 𝑡)-level in the spirit of [36, 85],
where the point count on the left-hand side is replaced by themixed Hodge polynomial of the cor-
responding variety, and the right-hand side is replaced by the rational (𝑊, 𝑞, 𝑡)-analogs of Catalan
numbers and parking functions; see [34].
The dichotomybetween𝑊-nonnesting objects and𝑊-noncrossing objects appears to be related

to a nonabelian Hodge correspondence and a 𝑃 = 𝑊 phenomenon for braid Richardson varieties;
see [84, Section 4.9]. We hope to return to this possibility in the future.
Another natural problem would be to extend the construction of rational noncrossing objects

to well-generated complex reflection groups, which still have a well-defined rational Catalan
number [34].
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10 of 50 GALASHIN et al.

1 1

2 2

3 3

4 4

5 5

w′
◦ c∗

c∗ w′′
◦

F IGURE 5 The decomposition 𝐜𝑛+1 = 𝐰′
◦ ⋅ 𝐜

∗ ⋅𝐰′′
◦ from Section 2.1.

2 TYPE 𝑨 COMBINATORICS

Throughout this section, let𝑊 = 𝔖𝑛. Recall from Remark 1.3 that we use the term maximal 𝐜𝑝-
Deograms for the maximal distinguished 𝑒-subwords of 𝐜𝑝 in type 𝐴. As a warm-up, we discuss
the structure of maximal 𝐜𝑝-Deograms, and give bijections between maximal 𝐜𝑝-Deograms and
well-known Catalan objects. Recall that 𝔖𝑛 has rank 𝑟 = 𝑛 − 1 and Coxeter number ℎ = 𝑛. We
concentrate on the Fuss–Catalan case 𝑝 = ℎ + 1 = 𝑛 + 1 and the Fuss–Dogolon case 𝑝 = ℎ − 1 =

𝑛 − 1. In both cases, the number of maximal 𝐜𝑝-Deograms is given by the classical Catalan
number:

|𝑒,𝐜𝑛+1(𝔖𝑛)| = Cat𝑛 and |𝑒,𝐜𝑛−1(𝔖𝑛)| = Cat𝑛−1,

where Cat𝑛 = 1

𝑛+1

(2𝑛
𝑛

)
and 𝐜 = (𝑠1, 𝑠2, … , 𝑠𝑛−1).

Throughout this section, we omit the proofs, leaving them as exercises for the interested reader.
In Section 8, we will give bijections to known Catalan and parking objects for general Coxeter
groups𝑊 and integers 𝑝 = 𝑘ℎ + 1 with 𝑘 ⩾ 1.

2.1 The case 𝒑 = 𝒏 + 𝟏: binary search trees, noncrossing matchings,
and noncrossing partitions

Up to commutationmoves, the braidword 𝐜𝑛+1 can be decomposed as 𝐜𝑛+1 = 𝐰′
◦ ⋅ 𝐜

∗ ⋅𝐰′′
◦ , where

𝐜∗ = 𝑠𝑛−1⋯ 𝑠2𝑠1, and

𝐰′
◦ ∶= 𝑠1 ⋅ (𝑠2𝑠1)⋯ (𝑠𝑛−1⋯ 𝑠2𝑠1) and 𝐰′′

◦ ∶= (𝑠𝑛−1⋯ 𝑠2𝑠1) ⋅ (𝑠𝑛−1⋯ 𝑠2)⋯ 𝑠𝑛−1

are two reduced words for𝑤◦. In the wiring diagram of 𝐜𝑛+1,𝐰′
◦ forms an upright triangle on the

left, while𝐰′′
◦ forms a downright triangle on the right; see Figure 5.

Following Remark 1.3, we identify elements of 𝑒,𝐜𝑛+1(𝔖𝑛) with ways to insert 𝑛 − 1 elbows
into the wiring diagram of 𝐜𝑛+1. Recall that to each elbow 𝐸, we associate a colored inversion
consisting of a reflection (𝑖 𝑗) and a color 𝑘 ∈ ℤ. Here, 𝑖 < 𝑗 are the labels of the left endpoints of
the two strands participating in 𝐸, and 𝑘 is the number of times these two wires intersect to the
left of 𝐸.

Lemma 2.1. If 𝐜𝑛+1 = 𝐰′
◦ ⋅ 𝐜

∗ ⋅𝐰′′
◦ as above, then in any maximal 𝐜𝑛+1-Deogram 𝐮, none of the

elbows of 𝐮 appears in 𝐜∗. The elbows appearing in𝐰′
◦ all have color 0, and those appearing in𝐰

′′
◦

all have color 2.
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u:

c∗

1 1

2 2

3 3

(12) (23)

c∗

1 1

2 2

3 3

(13) ¨(12)

c∗

1 1

2 2

3 3

(23) ¨(13)

c∗

1 1

2 2

3 3

(12) ¨(23)

c∗

1 1

2 2

3 3

¨(12) ¨(23)

TBST(u):
1

2

3

1

2

3 1

2

3 1

2

3

1

2

3

Π(u):
1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

m(u):
1

2

3 1̄

2̄

3̄

−→

1̄
1

2̄
2

3̄

3 1

2

3 1̄

2̄

3̄

−→

1̄
1

2̄
2

3̄

3 1

2

3 1̄

2̄

3̄

−→

1̄
1

2̄
2

3̄

3 1

2

3 1̄

2̄

3̄

−→

1̄
1

2̄
2

3̄

3 1

2

3 1̄

2̄

3̄

−→

1̄
1

2̄
2

3̄

3

F IGURE 6 The bijections from Section 2.1: maximal 𝐜𝑛+1-Deograms (first row), binary search trees (second
row), noncrossing partitions (third row), and noncrossing matchings (fourth row).

An example is shown in the top row of Figure 6.

2.1.1 Binary search trees

To a maximal 𝐜𝑛+1-Deogram 𝐮, we associate a binary tree 𝑇BST(𝐮) with vertex set [𝑛] as follows:

∙ for every colored inversion (𝑖 𝑗) of 𝐮 of color 0, 𝑖 is a left child of 𝑗 in 𝑇BST(𝐮), and
∙ for every colored inversion ̈(𝑖 𝑗) of 𝐮 of color 2, 𝑗 is a right child of 𝑖 in 𝑇BST(𝐮).

A binary tree 𝑇 with vertex set [𝑛] is a binary search tree if, for any node 𝑖, the nodes in the left
(resp., right) subtree of 𝑖 have labels less than (resp., greater than) 𝑖. Such objects are in bijection
with the binary trees on 𝑛 unlabeled vertices; see [81, Figure 1.3].

Proposition 2.2. For each maximal 𝐜𝑛+1-Deogram 𝐮, the binary tree 𝑇BST(𝐮) is a binary search
tree. The map 𝐮 ↦ 𝑇BST(𝐮) is a bijection between maximal 𝐜𝑛+1-Deograms and binary search trees
with vertex set [𝑛].

This bijection is illustrated in the first two rows of Figure 6.

2.1.2 Noncrossing partitions

Next, given a maximal 𝐜𝑛+1-Deogram 𝐮, let 𝜋(𝐮) ∈ 𝔖𝑛 be the product of the reflections corre-
sponding to the colored inversions of 𝐮 of color 0, and letΠ(𝐮) be the set partition of [𝑛] given by
the cycles of 𝜋(𝐮).

Proposition 2.3. For any maximal 𝐜𝑛+1-Deogram 𝐮, the set partition Π(𝐮) is a noncrossing par-
tition of [𝑛]. The map 𝐮 ↦ Π(𝐮) is a bijection between maximal 𝐜𝑛+1-Deograms and noncrossing
partitions of [𝑛].

An example is illustrated the third row of Figure 6. For a more general statement, see
Theorem 8.8. Noncrossing partitions appear in [81] as item 160.
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12 of 50 GALASHIN et al.

u:
1 1

2 2

3 3

4 4

(12) (13) (14)
1 1

2 2

3 3

4 4

(13) (23) (14)
1 1

2 2

3 3

4 4

(14) (23) (24)
1 1

2 2

3 3

4 4

(12) (14) (34)
1 1

2 2

3 3

4 4

(14) (24) (34)

TNC
alt (u): 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

F IGURE 7 The bijection from Section 2.2: maximal 𝐜𝑛−1-Deograms (top row) versus noncrossing
alternating trees (bottom row).

Remark 2.4. Applying the construction above to the colored inversions of 𝐮 of color 2 instead
yields the Kreweras complement of Π(𝐮).

2.1.3 Noncrossing matchings

Finally, let𝐰′
◦ be the wiring diagram of 𝑤◦ as above. Label the left endpoints of𝐰′

◦ by 1, 2, … , 𝑛

bottom-to-top, and label the right endpoints by 1̄, 2̄, … , 𝑛̄ top-to-bottom. Let [𝑛̄] ∶= {1̄, 2̄, … , 𝑛̄}. We
shall consider noncrossingmatchings (item 61 in [81]) of the set [𝑛] ⊔ [𝑛̄]with respect to the cyclic
ordering (1̄, 1, 2̄, 2, … , 𝑛̄, 𝑛). Given a maximal 𝐜𝑛+1-Deogram 𝐮, let m(𝐮) ∶ [𝑛] → [𝑛̄] be the map
obtained by restricting 𝐮 to the𝐰′

◦-part of 𝐜
𝑛+1.

Proposition 2.5. For every maximal 𝐜𝑛+1-Deogram 𝐮, the map m(𝐮) is a noncrossing matching
of [𝑛] ⊔ [𝑛̄]. The map 𝐮 ↦ m(𝐮) is a bijection between maximal 𝐜𝑛+1-Deograms and noncrossing
matchings of [𝑛] ⊔ [𝑛̄].

See the fourth row of Figure 6.

2.2 The case 𝒑 = 𝒏 − 𝟏: Noncrossing alternating trees

We start with a structural result formaximal 𝐜𝑛−1-Deograms, illustrated in the top row of Figure 7.

Lemma 2.6. In any maximal 𝐜𝑛−1-Deogram 𝐮, each of the 𝑛 − 1 copies of 𝐜 contains exactly one
elbow. All elbows of 𝐮 have color 0.

Given amaximal 𝐜𝑛−1-Deogram 𝐮, let 𝑇NC
alt

(𝐮) be the tree with vertex set [𝑛] containing an edge
{𝑖, 𝑗} for each colored inversion (𝑖 𝑗) of𝐮. A tree𝑇with vertex set [𝑛] is alternating if, upon directing
each edge {𝑖, 𝑗} of 𝑇 from the smaller number 𝑖 to the larger number 𝑗, we find that every vertex
is either a source or a sink. We say that 𝑇 is noncrossing if we can draw 𝑇 in the plane, with the
vertices on a line in increasing order and the edges in the closed half-plane above the line, such
that no two edges cross.

Proposition 2.7. For every maximal 𝐜𝑛−1-Deogram 𝐮, the tree 𝑇NC
alt

(𝐮) is a noncrossing alternat-
ing tree. The map 𝐮 ↦ 𝑇NC

alt
(𝐮) is a bijection between maximal 𝐜𝑛−1-Deograms and noncrossing

alternating trees with vertex set [𝑛].

See Figure 7. Noncrossing alternating trees appear in [81] as item 62.
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 13 of 50

Remark 2.8. Noncrossing alternating trees have already been related to Deograms in [36,
Remark 9.7]. We do not have a direct bijection between these two classes of Deograms; see Open
Problem 2.11(3) below.

2.3 Parking functions

Let Π = {𝐵1, 𝐵2, … , 𝐵𝑘} be a noncrossing partition of [𝑛]. We say that the tuple Π̃ =

{(𝐵1, 𝐿1), (𝐵2, 𝐿2), … , (𝐵𝑘, 𝐿𝑘)} is a labeled noncrossing partition, or equivalently, a noncrossing
parking function, if:

∙ {𝐵1, 𝐵2, … , 𝐵𝑘} is a noncrossing partition of [𝑛],
∙ {𝐿1, 𝐿2, … , 𝐿𝑘} is a set partition of [𝑛], which need not be noncrossing, and
∙ |𝐵𝑖| = |𝐿𝑖| for all 𝑖 = 1, 2, … , 𝑘.

In other words, to each part 𝐵𝑖 of 𝐵, we associate a set 𝐿𝑖 of |𝐵𝑖|-many labels, so that each element
of [𝑛] appears as a label exactly once. Noncrossing parking functions are known to be in bijection
with parking functions; see, for example, [3, 29].
Let 𝑣 ∈ 𝔖𝑛. Consider a maximal (𝐜𝑛+1, 𝑣)-Deogram 𝐮. In Section 8.5, we associate to 𝐮 a set

of 𝑣-twisted colored inversions. This means we again view 𝐮 as a way to insert 𝑛 − 1 elbows into
the wiring diagram of 𝐜𝑛+1, and for each elbow 𝐸, we consider a colored inversion (𝑖 𝑗)with color
𝑘 defined in the same way as above. Note that 𝐸 has a bottom strand and a top strand. Writing
𝑖 (resp., 𝑗) for the left endpoint of the bottom (resp., top) strand, we need no longer have 𝑖 < 𝑗.
However, since 𝐮 is 𝑣-distinguished, wemust have 𝑣(𝑖) < 𝑣(𝑗). We set the 𝑣-twisted color 𝑘′ of (𝑖 𝑗)
to be 𝑘 if 𝑖 < 𝑗 and 𝑘 + 1 if 𝑖 > 𝑗, and refer to the resulting pair ((𝑖 𝑗), 𝑘′) as the 𝑣-twisted colored
inversion of 𝐮. The 𝑣-twisted colored inversions of the 16 Deograms in 𝐜𝑛+1(𝔖𝑛) are shown in
Figure 4.

Lemma 2.9. For anymaximal (𝐜𝑛+1, 𝑣)-Deogram 𝐮, the 𝑣-twisted color of any elbow is either 0 or 2.

Let 𝐮 be a maximal (𝐜𝑛+1, 𝑣)-Deogram. Let 𝜋(𝑣)(𝐮) ∈ 𝔖𝑛 be obtained by multiplying all reflec-
tions (𝑖 𝑗) of 𝑣-twisted color 0, and letΠ(𝑣)(𝐮) = {𝐵1, 𝐵2, … , 𝐵𝑘} be the set partition of [𝑛] given by
the cycles of𝜋(𝑣)(𝐮). To each part𝐵𝑖 ofΠ(𝑣)(𝐮), we associate a set of labels 𝐿𝑖 ∶= {𝑣(𝑗) ∣ 𝑗 ∈ 𝐵𝑖}.We
denote the resulting noncrossing parking function by .

Proposition 2.10. For any 𝑣 ∈ 𝔖𝑛 and maximal (𝐜𝑛+1, 𝑣)-Deogram 𝐮, the tuple is a non-
crossing parking function. The map is a bijection between 𝐜𝑛+1(𝔖𝑛) and the set of
noncrossing parking functions.

See Figure 4 for an example. See Theorem 8.17 for a uniform generalization to Coxeter groups
and parameters of the form 𝑝 = 𝑘ℎ + 1.

2.4 Open problems

We conclude this section with several purely combinatorial bijective problems that do not easily
follow from our results. Many of them are closely related to the problem of finding a bijection
between noncrossing and nonnesting objects; see [88, Problem 1].
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14 of 50 GALASHIN et al.

Let𝑓𝑝,𝑛+𝑝 ∈ 𝔖𝑛+𝑝 be the permutation sending 𝑖 ↦ 𝑖 + 𝑝 for 1 ⩽ 𝑖 ⩽ 𝑛 and 𝑖 ↦ 𝑖 − 𝑛 for 𝑛 + 1 ⩽

𝑖 ⩽ 𝑛 + 𝑝.

Open Problem 2.11. Let 𝑝, 𝑛 be two coprime positive integers.

(1) Find a bijection between𝐜𝑝 (𝔖𝑛) and the set of rational Dyck paths inside a 𝑝 × 𝑛 rectangle.
(2) Find a bijection between𝐜𝑝 (𝔖𝑛) and(𝐜′)𝑛 (𝔖𝑝), where 𝐜 is a Coxeter word in𝔖𝑛 and 𝐜′

is a Coxeter word in𝔖𝑝.
(3) Find a direct bijection between 𝐜𝑝 (𝔖𝑛) and the set of maximal 𝑓𝑝,𝑛+𝑝-Deograms of [36,

Definition 9.3].
(4) Find a bijection between 𝐜𝑝 (𝔖𝑛) and the set of rational parking functions as defined in, for

example, [1].
(5) Find a statistic stat on𝐜𝑝 (𝔖𝑛) and on 𝐜𝑝 (𝔖𝑛) such that

Cat𝑝(𝔖𝑛; 𝑞) =
∑

𝐮∈𝐜𝑝 (𝔖𝑛)

𝑞stat(𝐮) and [𝑝]𝑛−1𝑞 =
∑

𝐮∈𝐜𝑝 (𝔖𝑛)

𝑞stat(𝐮);

cf. Example 1.11. More generally, do this for an arbitrary Coxeter group𝑊.

Remark 2.12. For Open Problem 2.11(3), one can give an indirect recursive bijection between our
maximal 𝐜𝑝-Deograms and the maximal 𝑓𝑝,𝑛+𝑝-Deograms of [36, Definition 9.3] by applying a
sequence of Markov moves. Namely, it is known that the braid word 𝐜𝑝 and the positive braid
lift of 𝑓𝑝,𝑛+𝑝 give rise to the same link called the (𝑝, 𝑛)-torus link. Moreover, these braids can be
related to each other by a sequence of positive Markov moves, that is, braid moves and positive
(de)stabilizations. The associated braid varieties change in a predictable way (cf. [18]), and one
can check that each positive Markov move induces a bijection on the associated sets of maximal
Deograms. The problem of finding a direct, nonrecursive bijection remains open.

Remark 2.13. While maximal 𝐜𝑝-Deograms are in bijection with maximal 𝑓𝑝,𝑛+𝑝-Deograms, max-
imal (𝐜𝑝, 𝑣)-Deograms appear to be counted by other positroid Catalan numbers [37], enumerating
maximal 𝑓𝑣,𝑝,𝑛+𝑝-Deograms for other permutations 𝑓𝑣,𝑝,𝑛+𝑝 ∈ 𝔖𝑛+𝑝. Explicitly, when 𝑛 < 𝑝, the
permutation 𝑓𝑣,𝑝,𝑛+𝑝 corresponds to the bounded affine permutation 𝑓𝑣,𝑝,𝑛+𝑝 ∶= 𝑣𝑓𝑝,𝑛+𝑝𝑣

−1,
where

∙ 𝑓𝑝,𝑛+𝑝 is the bounded affine permutation corresponding to 𝑓𝑝,𝑛+𝑝, and
∙ 𝑣 ∶ ℤ → ℤ is an (𝑛 + 𝑝)-periodic affine permutation lifting 𝑣, sending 𝑖 ↦ 𝑣(𝑖) for 1 ⩽ 𝑖 ⩽ 𝑛 and
𝑖 ↦ 𝑖 for 𝑛 + 1 ⩽ 𝑖 ⩽ 𝑛 + 𝑝.

In particular, when the affine permutation 𝑓𝑣,𝑝,𝑛+𝑝 is not bounded, we conjecture that the set of
(𝐜𝑝, 𝑣)-Deograms is empty.

3 COXETER GROUPS

Let𝑊 be a finite Coxeter group: that is, a finite group for which we can find a subset 𝑆 ⊂ 𝑊 and
a group presentation

𝑊 =
⟨
𝑠 ∈ 𝑆 ∣ (𝑠𝑡)𝑚(𝑠,𝑡) = 1

⟩
(3.1)
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 15 of 50

in which 𝑚(𝑠, 𝑡) ⩾ 1 and 𝑚(𝑠, 𝑠) = 1 for all 𝑠, 𝑡 ∈ 𝑆. We say that 𝑊 is irreducible if and only if it
is not a product of smaller Coxeter groups, yet also not the trivial group. Henceforth, we always
assume that𝑊 is irreducible.
The rank of 𝑊 is the integer 𝑟 ∶= |𝑆|. We refer to elements of 𝑆 as simple reflections. For an

arbitrary element 𝑤 ∈ 𝑊, the length 𝓁(𝑤) of 𝑤 is the smallest integer 𝑚 ⩾ 0 such that 𝑤 can be
expressed as a product of𝑚 simple reflections, possibly with repetition. There is a unique element
of maximal length called the longest element, which we denote by𝑤◦ ∈ 𝑊. For𝑤 ∈ 𝑊 and 𝑠 ∈ 𝑆,
we write𝑤𝑠 < 𝑤 if 𝓁(𝑤𝑠) < 𝓁(𝑤) and𝑤𝑠 > 𝑤 if 𝓁(𝑤𝑠) > 𝓁(𝑤). Theweak order on𝑊 is the partial
order formed by the transitive closure of these relations.
A (standard) Coxeter element of𝑊 with respect to 𝑆 is an element formed by taking the product

over all simple reflections in some ordering. It is known that all Coxeter elements are conjugate.
Their common order is called the Coxeter number of𝑊 and denoted as ℎ.
A (general) reflection is an element of the form 𝑠𝑢 ∶= 𝑢𝑠𝑢−1 for some 𝑠 ∈ 𝑆 and 𝑢 ∈ 𝑊. We

write 𝑇 for the set of all reflections: that is,

𝑇 ∶= {𝑠𝑢 ∣ (𝑠, 𝑢) ∈ 𝑆 ×𝑊}.

The reflection length 𝓁𝑇(𝑤) of 𝑤 is the smallest integer 𝑚 ⩾ 0 such that 𝑤 can be expressed as a
product of𝑚 general reflections.
Every Coxeter group admits a faithful representation on a (finite-dimensional) real vector

space 𝑉, which sends each reflection in 𝑊 to a hyperplane reflection in 𝑉. Such a represen-
tation is called a reflection representation of 𝑊. After possibly passing to a quotient, we can
assume that the only 𝑊-invariant vector is zero: that is, 𝑉𝑊 = 0. In this case, dim(𝑉) = 𝑟, and
by a theorem of Chevalley, the ring of 𝑊-invariant polynomials on 𝑉 is freely generated by 𝑟

homogeneous polynomials.
The degrees of𝑊 are the degrees 𝑑1 ⩽ 𝑑2 ⩽ ⋯ ⩽ 𝑑𝑟 of these polynomials, which do not depend

on the choice of reflection representation. The exponents of𝑊 are the integers 𝑒𝑖 = 𝑑𝑖 − 1. Recall
from (1.1) that for any positive integer 𝑝 coprime to ℎ, we set

Cat𝑝(𝑊) ∶=

𝑟∏
𝑖=1

𝑝 + (𝑝𝑒𝑖 modℎ)

𝑑𝑖
,

where 0 ⩽ (𝑝𝑒𝑖 modℎ) < ℎ is the integer in that range congruent to 𝑝𝑒𝑖 modulo ℎ.

4 WORDS AND SUBWORDS

4.1 Distinguished subwords

A word is any finite sequence𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) of elements of 𝑆, possibly with repetition. If𝑤 =

𝑠1𝑠2⋯ 𝑠𝑚, then we refer to𝐰 as a 𝑤-word, and if𝑚 = 𝓁(𝑤), then we say that it is reduced. We say
that a word 𝐜 is a Coxeter word if it is an ordering of 𝑆.
A subword of 𝐰 is a sequence 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) in which 𝑢𝑖 ∈ {𝑠𝑖, 𝑒} for all 𝑖. For any such

sequence, we set 𝑢(𝑖) = 𝑢1𝑢2⋯𝑢𝑖 ∈ 𝑊. If 𝑢(𝑚) = 𝑢, then we refer to 𝐮 as a 𝑢-subword of𝐰.

Definition 4.1 [23, 57]. Let𝑢 ∈ 𝑊.We say that a𝑢-subword𝐮 of𝐰 is distinguished if𝑢(𝑖) ⩽ 𝑢(𝑖−1)𝑠𝑖
for all 𝑖. We write 𝑢,𝐰(𝑊) (or 𝑢,𝐰 for short) for the set of distinguished 𝑢-subwords of𝐰. For
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16 of 50 GALASHIN et al.

any 𝑢-subword 𝐮 of𝐰, we write

e𝐮 = |{𝑖 ∈ [𝑚] ∣ 𝑢𝑖 = 𝑒}|,
d𝐮 = |{𝑖 ∈ [𝑚] ∣ 𝑢(𝑖) < 𝑢(𝑖−1)}|.

We write 𝑘
𝑢,𝐰 ∶= {𝐮 ∈ 𝑢,𝐰 ∣ e𝐮 = 𝑘}. In the special case where 𝑘 = min𝐮∈𝑢,𝐰

e𝐮, we write
𝑢,𝐰(𝑊) = 𝑢,𝐰 ∶= 𝑘

𝑢,𝐰 . When 𝑢 = 𝑒, the minimal value 𝑘 is given in Proposition 4.8 below;
in this case we write𝐰(𝑊) ∶= 𝑒,𝐰(𝑊).

We give an equivalent characterization of distinguished subwords among the set of all subwords
using reflections. A colored reflection is a pair (𝑡, 𝑘) ∈ 𝑇 × ℤ⩾0, that is, a reflection 𝑡 decorated by a
nonnegative integer 𝑘. Given a subword 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) of a word𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) and an
index 𝑗 ∈ [𝑚], we obtain a colored reflection

𝑡𝑗(𝐮) ∶= (𝑠
𝑢(𝑗)
𝑗

, 𝑘𝑗), where 𝑘𝑗 ∶=
||||{1 ⩽ 𝑖 < 𝑗 ∣ 𝑠

𝑢(𝑖)
𝑖

= 𝑠
𝑢(𝑗)
𝑗

and 𝑢𝑖 ≠ 𝑒
}||||. (4.1)

For brevity in examples, we may also record the color 𝑘 using 𝑘 dots above the reflection. See
Remark 1.3 for an alternative description of colored reflections in type 𝐴.

Example 4.2. For𝑊 = 𝔖2 = {𝑒, 𝑠} and 𝐮 = (𝑠, 𝑠, 𝑠), we have 𝑡1(𝐮) = (𝑠, 0) = 𝑠, 𝑡2(𝐮) = (𝑠, 1) = 𝑠̇,
and 𝑡3(𝐮) = (𝑠, 2) = 𝑠.

Definition 4.3. If𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) is a word and 𝐮 is a subword of𝐰, then we set

inv(𝐮) ∶= (𝑡1(𝐮), 𝑡2(𝐮), … , 𝑡𝑚(𝐮)).

We write inv𝑒(𝐮) for the subsequence of inv(𝐮) obtained by restricting to the indices 𝑗 for which
𝑢𝑗 = 𝑒. We also write inv(𝐮) ∶=

(
𝑠
𝑢(1)
1

, 𝑠
𝑢(2)
2

, … , 𝑠
𝑢(𝑚)
𝑚

)
(resp., inv𝑒(𝐮)) for the sequence obtained

from inv(𝐮) (resp., inv𝑒(𝐮)) by forgetting the colors.

Proposition 4.4. A subword 𝐮 of a word𝐰 is distinguished if and only if each colored reflection in
inv𝑒(𝐮) has even color.

Proof. This follows directly from the definitions. □

Example 4.5. Let𝑊 = 𝔖5, the Weyl group of type 𝐴4, 𝑐 = 𝑠1𝑠2𝑠3𝑠4, and 𝐜 = (𝑠1, 𝑠2, 𝑠3, 𝑠4). Then,||𝐜3
|| = 7, which is a rational𝑊-Catalan number for 𝐴4. The seven elements of 𝐜3 are illus-

trated in Figure 2. Each element 𝐮 gives a decomposition of 𝑐3 as a product of reflections in
inv𝑒(𝐮). For example, the bottom row in Figure 2 decomposes 𝑐3 = (14253) as the product
(12)(23)(14)(25).

Remark 4.6. We explain how to recover a subword 𝐮 ∈ 𝑒,𝐰 from the corresponding sequence
inv𝑒(𝐮) (cf. [59, Remark 3.5]). Read the letters in𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) from left to right. For a given
position 𝑗, tentatively set 𝑢𝑗 = 𝑠𝑗 and compute (𝑠

𝑢(𝑗)
𝑗

, 𝑘), where 𝑘 is defined as in (4.1). If (𝑠
𝑢(𝑗)
𝑗

, 𝑘)

is the next unread colored reflection in inv𝑒(𝐮), then we set 𝑢𝑗 = 𝑒. Otherwise, we keep 𝑢𝑗 = 𝑠𝑗 .
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 17 of 50

Proposition 4.7. Let𝐰 be a 𝑤-word, and let 𝐮 be a 𝑢-subword of𝐰. Then,∏
𝑡∈inv𝑒(𝐮)

𝑡 = 𝑤𝑢−1,

where the product is taken from left to right.

Proof. Indeed, it follows from Definition 4.3 that
(∏

𝑡∈inv𝑒(𝐮)
𝑡
)−1

𝑤 = 𝑢. □

Proposition 4.8. Let𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) be a 𝑤-word. Then,

𝓁𝑇(𝑤) = min
𝐮∈𝑒,𝐰

e𝐮 .

Proof. When 𝐰 is a reduced word for 𝑤, the result follows from [28, Theorem 1.3]; see also [8].
Suppose that theword𝐰 is not reduced. Let 𝓁̃(𝐰) ∶= min𝐮∈𝑒,𝐰

e𝐮. By Corollary 5.2, proved inde-
pendently in the next section, 𝓁̃(𝐰) is invariant under applying braid and commutation moves
to 𝐰. (See the proof of [68, Proposition 7.2] for an explicit bijection.) So, we may assume that
𝐰 = (𝐰1, 𝑠, 𝑠,𝐰2) for some words𝐰1,𝐰2 and 𝑠 ∈ 𝑆.
Let𝐰′ ∶= (𝐰1, 𝑠,𝐰2) and𝐰′′ ∶= (𝐰1,𝐰2). Let 𝑤′, 𝑤′′ ∈ 𝑊 be the corresponding Weyl group

elements. We have 𝑤 = 𝑤′′ and 𝑤′ = 𝑤𝑡 for some reflection 𝑡 ∈ 𝑇. It follows that 𝓁𝑇(𝑤) =
min

(
𝓁𝑇(𝑤

′) + 1,𝓁𝑇(𝑤
′′)
)
. On the other hand, if 𝐮′′ = (𝐮1, 𝐮2) ∈ 𝑒,𝐰′′ , then 𝐮 ∶= (𝐮1, 𝑠, 𝑠, 𝐮2) ∈

𝑒,𝐰 satisfies e𝐮 = e𝐮′′ . Similarly, if 𝐮′ = (𝐮1, 𝑥, 𝐮2) ∈ 𝑒,𝐰′ , where 𝑥 ∈ {𝑒, 𝑠}, then either 𝐮 ∶=

(𝐮1, 𝑥, 𝑒, 𝐮2) or 𝐮 ∶= (𝐮1, 𝑒, 𝑥, 𝐮2) is an element of𝑒,𝐰 satisfying e𝐮 = e𝐮′ +1. This shows 𝓁̃(𝐰) ⩽

min
(
𝓁̃(𝐰′) + 1, 𝓁̃(𝐰′′)

)
. Conversely, any element 𝐮 ∈ 𝐰 must be of the form (𝐮1, 𝑠, 𝑠, 𝐮2),

(𝐮1, 𝑠, 𝑒, 𝐮2), or (𝐮1, 𝑒, 𝑠, 𝐮2), which implies 𝓁̃(𝐰) ⩾ min
(
𝓁̃(𝐰′) + 1, 𝓁̃(𝐰′′)

)
. By induction, we get

𝓁𝑇(𝑤) = 𝓁̃(𝐰). □

Corollary 4.9. If 𝐜 is a Coxeter word and 𝑝 an integer coprime to ℎ, then

𝑟 = min
𝐮∈𝑒,𝐜𝑝

e𝐮 .

Proof. Let 𝑐 ∈ 𝑊 be the Coxeter element corresponding to 𝐜. It is known that 𝓁𝑇(𝑐𝑝) = 𝑟 [70,
Theorem 1.3]. (If𝑊 is aWeyl group, then 𝑐𝑝 is conjugate to 𝑐, but this is not necessarily true when
𝑊 is a Coxeter group that is not a Weyl group.) Applying Proposition 4.8 to 𝑤 = 𝐜𝑝 and 𝑢 = 𝑒

shows that e𝐮 = 𝑟 for all 𝐮 ∈ 𝐜𝑝 . □

Remark 4.10. Proposition 4.7 implies more generally that for a 𝑤-word 𝐰 ∈ 𝑆𝑚 and 𝑢 ∈ 𝑊, we
have 𝓁𝑇(𝑤𝑢−1) ⩽ min𝐮∈𝑢,𝐰

e𝐮. However, the analog of Proposition 4.8 does not hold in this gen-
erality, as mentioned in [36, Remark 9.4]: For 𝑢 = 𝑠2 and 𝐰 = (𝑠1, 𝑠2, 𝑠3, 𝑠2, 𝑠1) in 𝔖4, we have
𝓁𝑇(𝑤𝑢

−1) = 2, butmin𝐮∈𝑢,𝐰
e𝐮 = 4.

4.2 The Deodhar recurrence

Henceforth, given a word 𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) and 𝑠 ∈ 𝑆, we write 𝐰𝐬 ∶= (𝑠1, 𝑠2, … , 𝑠𝑚, 𝑠). The
distinguished subwords of𝐰 obey a certain recurrence due to Deodhar.
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18 of 50 GALASHIN et al.

Proposition 4.11 [23, Lemma 5.2]. Let 𝐰 be a word, let 𝑢 ∈ 𝑊, and let 𝑠 ∈ 𝑆. Then, for all 𝑘, we
have a natural bijection

𝑘
𝑢,𝐰𝐬 ≃

{
𝑘

𝑢𝑠,𝐰 if 𝑢𝑠 < 𝑢,

𝑘
𝑢𝑠,𝐰 ⊔𝑘−1

𝑢,𝐰 if 𝑢𝑠 > 𝑢.

Proof. Let 𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚), 𝑠 ∈ 𝑆, and 𝐰𝐬 ∶= (𝑠1, 𝑠2, … , 𝑠𝑚, 𝑠). Let 𝐮 be a distinguished 𝑢-
subword of𝐰𝐬. If 𝑢𝑠 < 𝑢, then a distinguished subword of𝐰𝐬 cannot satisfy 𝑢(𝑚) = 𝑢(𝑚+1) = 𝑢,
so it must satisfy 𝑢(𝑚) = 𝑢𝑠. This gives a bijection 𝑘

𝑢,𝐰𝐬 ≃ 𝑘
𝑢𝑠,𝐰 . If instead 𝑢𝑠 > 𝑢, then either

𝑢(𝑚) = 𝑢𝑠, in which case 𝑢(𝑚+1) = 𝑢, or else 𝑢(𝑚) = 𝑢, in which case 𝑢(𝑚+1) = 𝑢 as well. This gives
a bijection𝑘

𝑢,𝐰𝐬 ≃ 𝑘
𝑢𝑠,𝐰 ⊔𝑘−1

𝑢,𝐰 . □

In analogy with this Deodhar recurrence on distinguished subwords of 𝐰, we define the 𝑅-
polynomials 𝑅𝑢,𝐰(𝑞) for all 𝑢 ∈ 𝑊 as follows. For the empty word𝐰 =∅∅∅, set

𝑅𝑢,∅∅∅(𝑞) ∶=

{
1 if 𝑢 = 𝑒,

0 if 𝑢 ≠ 𝑒.
(4.2)

Assume that𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚−1) is a word for which the polynomials 𝑅𝑢,𝐰(𝑞) have already been
defined. Let 𝑠 ∈ 𝑆 and𝐰𝐬 ∶= (𝑠1, 𝑠2, … , 𝑠𝑚−1, 𝑠) as before. Set

𝑅𝑢,𝐰𝐬(𝑞) ∶=

{
𝑅𝑢𝑠,𝐰(𝑞) if 𝑢𝑠 < 𝑢,

𝑞𝑅𝑢𝑠,𝐰(𝑞) + (𝑞 − 1)𝑅𝑢,𝐰(𝑞) if 𝑢𝑠 > 𝑢.
(4.3)

For reduced words 𝐰, the polynomials 𝑅𝑢,𝐰(𝑞) were originally defined by Kazhdan–Lusztig
in [44, 45] using the Hecke algebra of𝑊; see Proposition 5.1.

Corollary 4.12. For each word𝐰 and 𝑢 ∈ 𝑊, we have

𝑅𝑢,𝐰(𝑞) =
∑

𝐮∈𝑢,𝐰

(𝑞 − 1)e𝐮𝑞d𝐮 . (4.4)

In particular, we also have

lim
𝑞→1

1

(𝑞 − 1)𝓁𝑇(𝑤)
𝑅𝑒,𝐰(𝑞) =

||𝐰
|| (4.5)

by Corollary 4.9.

Example 4.13. Let𝑊 = 𝔖2 = {𝑒, 𝑠}. Then, (4.3) gives

𝑅𝑒,∅∅∅(𝑞) = 1,

𝑅𝑒,(𝑠)(𝑞) = 𝑞 − 1, 𝑅𝑠,(𝑠) = 1,

𝑅𝑒,(𝑠,𝑠)(𝑞) = 𝑞2 − 𝑞 + 1, 𝑅𝑠,(𝑠,𝑠)(𝑞) = 𝑞 − 1,

𝑅𝑒,(𝑠,𝑠,𝑠)(𝑞) = (𝑞 − 1)(𝑞2 + 1).
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 19 of 50

On the other hand,𝑒,(𝑠,𝑠,𝑠) = {(𝑒, 𝑒, 𝑒), (𝑒, 𝑠, 𝑠), (𝑠, 𝑠, 𝑒)} and

e(𝑒,𝑒,𝑒) = 3, d(𝑒,𝑒,𝑒) = 0,

e(𝑒,𝑠,𝑠) = 1, d(𝑒,𝑠,𝑠) = 1,

e(𝑠,𝑠,𝑒) = 1, d(𝑠,𝑠,𝑒) = 1.

Therefore, ∑
𝐮∈𝑒,(𝑠,𝑠,𝑠)

(𝑞 − 1)e𝐮𝑞d𝐮 = (𝑞 − 1)3 + 2(𝑞 − 1)𝑞 = (𝑞 − 1)(𝑞2 + 1),

verifying the first claim of Corollary 4.12.
Moreover, (𝑠,𝑠,𝑠) = {(𝑒, 𝑠, 𝑠), (𝑠, 𝑠, 𝑒)} and lim𝑞→1

1

𝑞−1
𝑅𝑒,(𝑠,𝑠,𝑠)(𝑞) = 2 = Cat(𝔖2), verifying the

second claim of Corollary 4.12.

4.3 The twisted Deodhar recurrence

For any 𝑣 ∈ 𝑊, there is a generalization of Definition 4.1:

Definition 4.14. We say that a subword 𝐮 of a word 𝐰 is 𝑣-distinguished if 𝑣𝑢(𝑖) ⩽ 𝑣𝑢(𝑖−1)𝑠𝑖 for
each 𝑖 ∈ [𝑚]. Generalizing d𝐮, we write d(𝑣)𝐮 for the number of 𝑖 ∈ [𝑚] such that 𝑣𝑢(𝑖) < 𝑣𝑢(𝑖−1).
Wewrite(𝑣)

𝑢,𝐰 for the set of 𝑣-distinguished𝑢-subwords of𝐰. As before, wewrite(𝑣),𝑘
𝑢,𝐰 ⊆ 

(𝑣)
𝑢,𝐰

for the subset of elements 𝐮 such that e𝐮 = 𝑘. In the special case where 𝑘 = max
𝐮∈

(𝑣)
𝑢,𝐰

e𝐮, we

write(𝑣)
𝑢,𝐰 = 

(𝑣),𝑘
𝑢,𝐰 and(𝑣)

𝐰 ∶= 
(𝑣)
𝑒,𝐰 .

Proposition 4.11 generalizes to a bijection


(𝑣),𝑘
𝑢,𝐰𝐬 ≃

{


(𝑣),𝑘
𝑢𝑠,𝐰 if 𝑣𝑢𝑠 < 𝑣𝑢,


(𝑣),𝑘
𝑢𝑠,𝐰 ⊔

(𝑣),𝑘−1
𝑢,𝐰 if 𝑣𝑢𝑠 > 𝑣𝑢.

As before, we define polynomials 𝑅(𝑣)
𝑢,𝐰(𝑞) by induction. Set 𝑅

(𝑣)
𝑢,∅∅∅

(𝑞) ∶= 𝑅𝑢,∅∅∅(𝑞), and for any word
𝐰 and 𝑠 ∈ 𝑆, set

𝑅(𝑣)
𝑢,𝐰𝐬(𝑞) =

{
𝑅(𝑣)
𝑢𝑠,𝐰(𝑞) if 𝑣𝑢𝑠 < 𝑣𝑢

𝑞𝑅(𝑣)
𝑢𝑠,𝐰(𝑞) + (𝑞 − 1)𝑅(𝑣)

𝑢,𝐰(𝑞) if 𝑣𝑢𝑠 > 𝑣𝑢.
(4.6)

Then, Corollary 4.12 generalizes to the identity

𝑅(𝑣)
𝑢,𝐰(𝑞) =

∑
𝐮∈

(𝑣)
𝑢,𝐰

(𝑞 − 1)e𝐮𝑞d
(𝑣)
𝐮 .
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20 of 50 GALASHIN et al.

5 THE HECKE ALGEBRA

5.1 Preliminaries

As before,𝑊 is an arbitrary finite Coxeter group and 𝑆 ⊆ 𝑊 is a system of simple reflections. Let
𝐴 = ℤ[𝑞±1]. The Hecke algebra of (𝑊, 𝑆) is the 𝐴-algebra𝑊 freely generated by symbols 𝑇𝑤 for
𝑤 ∈ 𝑊, modulo the relations

𝑇𝑤𝑇𝑠 =

{
𝑞𝑇𝑤𝑠 + (𝑞 − 1)𝑇𝑤 if 𝑤𝑠 < 𝑤,

𝑇𝑤𝑠 if 𝑤𝑠 > 𝑤,
(5.1)

for all 𝑤 ∈ 𝑊 and 𝑠 ∈ 𝑆. The goal of this section is to relate the 𝑅-polynomials 𝑅𝑢,𝐰(𝑞) and their
twisted versions𝑅(𝑣)

𝑢,𝐰(𝑞) to the values of appropriate elements of𝑊 under certain𝐴-linear traces.
The Hecke algebra specializes to ℤ[𝑊], in the sense that there is a ring isomorphism𝑊∕(𝑞 −

1)
∼
N→ ℤ[𝑊] that sends 𝑇𝑤 ↦ 𝑤 for all 𝑤. It follows that 𝑊 forms a free 𝐴-module with basis

{𝑇𝑤}𝑤∈𝑊 . Furthermore, there is an involutive ring automorphism 𝐷 ∶ 𝑊 → 𝑊 defined by
𝐷(𝑞) = 𝑞−1 and𝐷(𝑇𝑤) = 𝑇−1

𝑤−1 for all𝑤 ∈ 𝑊, so we find that {𝑇−1
𝑤 }𝑤∈𝑊 forms another free𝐴-basis

of𝑊 . Note that 𝐷 is not itself 𝐴-linear.

5.2 𝑹-polynomials via the Hecke algebra

For any word𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚), we set 𝑇𝐰 ∶= 𝑇𝑠1𝑇𝑠2 ⋯𝑇𝑠𝑚 . Note that if𝐰 is a reduced 𝑤-word,
then 𝑇𝐰 = 𝑇𝑤.

Proposition 5.1. For any word𝐰 and 𝑣 ∈ 𝑊, we have

𝑇𝑣𝐷(𝑇𝐰) = 𝑞𝓁(𝑣)
∑
𝑢∈𝑊

𝑅(𝑣)
𝑢,𝐰(𝑞

−1)𝑞−𝓁(𝑣𝑢)𝑇𝑣𝑢. (5.2)

Proof. We induct on the length of𝐰. The base case𝐰 =∅∅∅ is satisfied by (4.2). Suppose that the
result holds for𝐰 = (𝑠1, … , 𝑠𝑚). To prove it for𝐰𝐬 = (𝑠1, … , 𝑠𝑚, 𝑠), write

𝑇𝑣𝐷(𝑇𝐰𝐬) = 𝑞𝓁(𝑣)
∑
𝑢∈𝑊

𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢)𝑇𝑣𝑢

for some 𝑄(𝑣)
𝑢,𝐰(𝑞) ∈ ℤ[𝑞±1]. Since 𝐷(𝑇𝐰𝐬) = 𝐷(𝑇𝐰)𝐷(𝑇𝑠), we compute using (5.1) that

𝑞−𝓁(𝑣)𝑇𝑣𝐷(𝑇𝐰) = 𝑞−𝓁(𝑣)𝑇𝑣𝐷(𝑇𝐰𝐬)𝐷(𝑇𝑠)
−1

=
∑
𝑢∈𝑊

𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢)𝑇𝑣𝑢𝑇𝑠

=
∑
𝑥∈𝑊

𝑣𝑥𝑠<𝑣𝑥

𝑄(𝑣)
𝑥,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑥)𝑞𝑇𝑣𝑥𝑠 +
∑
𝑥∈𝑊

𝑣𝑥𝑠<𝑣𝑥

𝑄(𝑣)
𝑥,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑥)(𝑞 − 1)𝑇𝑣𝑥
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 21 of 50

+
∑
𝑢∈𝑊

𝑣𝑢𝑠>𝑣𝑢

𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢)𝑇𝑣𝑢𝑠

=
∑
𝑢∈𝑊

𝑣𝑢𝑠<𝑣𝑢

𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢𝑠)𝑇𝑣𝑢𝑠 +
∑
𝑢∈𝑊

𝑣𝑢𝑠>𝑣𝑢

(𝑞 − 1)𝑄(𝑣)
𝑢𝑠,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢𝑠)𝑇𝑣𝑢𝑠

+
∑
𝑢∈𝑊

𝑣𝑢𝑠>𝑣𝑢

𝑞𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1)𝑞−𝓁(𝑣𝑢𝑠)𝑇𝑣𝑢𝑠.

At the same time, by the inductive hypothesis,

𝑞−𝓁(𝑣)𝑇𝑣𝐷(𝑇𝐰) =
∑
𝑢∈𝑊

𝑅(𝑣)
𝑢,𝐰(𝑞

−1)𝑞−𝓁(𝑣𝑢)𝑇𝑣𝑢 =
∑
𝑢∈𝑊

𝑅(𝑣)
𝑢𝑠,𝐰(𝑞

−1)𝑞−𝓁(𝑣𝑢𝑠)𝑇𝑣𝑢𝑠.

Equating coefficients, we find that

(1) If 𝑣𝑢𝑠 < 𝑣𝑢, then 𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1) = 𝑅(𝑣)
𝑢𝑠,𝐰(𝑞

−1).
(2) If 𝑣𝑢𝑠 > 𝑣𝑢, then (𝑞 − 1)𝑄(𝑣)

𝑢𝑠,𝐰𝐬(𝑞
−1) + 𝑞𝑄(𝑣)

𝑢,𝐰𝐬(𝑞
−1) = 𝑅(𝑣)

𝑢𝑠,𝐰(𝑞
−1).

We observe that in case (2), (𝑣𝑢𝑠)𝑠 < 𝑣𝑢𝑠, so by case (1), 𝑄(𝑣)
𝑢𝑠,𝐰𝐬(𝑞

−1) = 𝑅(𝑣)
𝑢,𝐰(𝑞

−1). Therefore, we
can rewrite case (2) as:

(2) If 𝑢𝑠 > 𝑢, then 𝑄(𝑣)
𝑢,𝐰𝐬(𝑞

−1) = 𝑞−1𝑅(𝑣)
𝑢𝑠,𝐰(𝑞

−1) + (𝑞−1 − 1)𝑅(𝑣)
𝑢,𝐰(𝑞

−1).

By (4.6), we deduce that 𝑄(𝑣)
𝑢,𝐰𝐬(𝑞) = 𝑅𝑢,𝐰𝐬(𝑞) for all 𝑢, completing the induction. □

For reduced 𝐰, the following result is usually taken to be the definition of the 𝑅-polynomials
𝑅𝑢,𝐰(𝑞); cf. [44, (2.0.a)].

Corollary 5.2. For any word𝐰 and 𝑢 ∈ 𝑊, we have

𝐷(𝑇𝐰) =
∑
𝑢∈𝑊

𝑅𝑢,𝐰(𝑞
−1)𝑞−𝓁(𝑢)𝑇𝑢.

5.3 Two traces

If𝐴 is any commutative ring and𝐻 is any𝐴-algebra, then a trace on𝐻 is an𝐴-linearmap 𝜏 ∶ 𝐻 →

𝐴 such that 𝜏(𝑎𝑏) = 𝜏(𝑏𝑎) for all 𝑎, 𝑏 ∈ 𝐻. Taking𝐴 = ℤ[𝑞±1] and𝐻 = 𝑊 , let 𝜏+, 𝜏− ∶ 𝑊 → 𝐴

be the traces defined 𝐴-linearly by:

𝜏±(𝑇±1
𝑤 ) ∶=

{
1 𝑤 = 𝑒,

0 𝑤 ≠ 𝑒
for 𝑤 ∈ 𝑊.

We have the following identities [36, (2.10)] for 𝑢, 𝑣 ∈ 𝑊:

𝜏±(𝑇±1
𝑢 𝑇±1

𝑣−1
) =

{
𝑞±𝓁(𝑢) if 𝑢 = 𝑣;
0 if 𝑢 ≠ 𝑣.

(5.3)

So, Proposition 5.1 implies:
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22 of 50 GALASHIN et al.

Corollary 5.3. For any word𝐰 and 𝑢, 𝑣 ∈ 𝑊, we have

𝑅(𝑣)
𝑢,𝐰(𝑞) = 𝑞𝓁(𝑣)𝜏−(𝑇−1

𝑣−1
𝑇𝐰𝑇

−1
𝑣𝑢 ). (5.4)

Proof. Right-multiply both sides of (5.2) by 𝑞−𝓁(𝑣)𝑇(𝑣𝑢)−1 to get

𝑅(𝑣)
𝑢,𝐰(𝑞

−1) = 𝑞−𝓁(𝑣)𝜏+(𝑇𝑣𝐷(𝑇𝐰)𝑇(𝑣𝑢)−1) = 𝑞−𝓁(𝑣)𝜏+(𝐷(𝑇−1
𝑣−1

𝑇𝐰𝑇
−1
𝑣𝑢 )).

Then, observe that 𝜏+◦𝐷 = 𝐷◦𝜏−. □

Corollary 5.4. For any word𝐰 and 𝑢 ∈ 𝑊, we have

𝑅𝑢,𝐰(𝑞) = 𝜏−(𝑇𝐰𝑇
−1
𝑢 ). (5.5)

6 CHARACTERS OF THE HECKE ALGEBRA

6.1 Characters of𝑾

Let 𝑊 be a Coxeter group. The goal of this section is to relate the traces from Section 5 to 𝑞-
deformed rational𝑊-Catalan numbers, by way of character-theoretic arguments inspired by [85].
As a consequence, we will show that Theorem 1.10 follows from the existence and properties of
Lusztig’s exotic Fourier transform.
For the convenience of the reader, CHEVIE [35] code for this section appears at [38]. (Our proofs

do not rely on any code.) In type 𝐴, the objects and formulas below admit explicit interpretations
in the world of symmetric functions, as we review in Section 6.7.1.

Remark 6.1. One can also prove Theorem 1.10 directly from the results in [85] together with results
of Kálmán and Gordon–Griffeth. More precisely, it follows from combining Corollary 5.4, the
𝑊-analog of [42, Proposition 3.1], [85, Corollary 8.6.2], [85, Corollary 11], [85, Corollary 13], and
[34, Section 1.12], in that order. Below, we take a simpler approach that isolates the role of the
exotic Fourier transform to the greatest extent possible.We still rely onGordon–Griffeth, but avoid
relying on Kálmán.

Fix a subfieldℚ𝑊 ⊆ ℂ overwhich every (complex) representation of𝑊 is defined. Let Irr(𝑊) be
the set of irreducible characters of𝑊, and let 𝑅𝑊 be the representation ring of𝑊, or equivalently,
the ring generated by the class functions 𝜒 ∶ 𝑊 → ℚ𝑊 , for 𝜒 ∈ Irr(𝑊), under pointwise addition
and multiplication. We write (−,−)𝑊 ∶ 𝑅𝑊 × 𝑅𝑊 → ℤ for the multiplicity pairing on 𝑅𝑊 , that is,
the symmetric bilinear pairing given by the identity matrix with respect to theℤ-basis {𝜒}𝜒∈Irr(𝑊).
We write 1 and 𝜀 for the trivial and sign characters of𝑊, respectively. Explicitly, 1(𝑤) = 1 and

𝜀(𝑤) = (−1)𝓁(𝑤) for all 𝑤 ∈ 𝑊.
Let 𝑉 be the reflection representation of 𝑊 and 𝜍𝑖 ∶ 𝑊 → ℚ𝑊 be the character of the 𝑖th

symmetric power of 𝑉: that is, 𝜍𝑖(𝑤) = tr(𝑤 ∣ Sym𝑖(𝑉)). Let

[Sym]𝑞 =
∑
𝑖

𝑞𝑖𝜍𝑖 ∈ 𝑅𝑊[[𝑞]].

We assume that dim𝑉 = 𝑟, that is, that 𝑉𝑊 = {0}.
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6.2 Characters of𝑾

Let 𝐾 = ℚ𝑊(𝑞±
1
2 ) ⊇ 𝐴. The 𝐾-algebra

𝐾𝑊 = 𝐾 ⊗𝐴 𝑊

is known to be isomorphic to 𝐾[𝑊], the group algebra of𝑊 over 𝐾; see [39, Theorem 7.4.6]. In
particular, they have the same representation theory: Every 𝐾𝑊-module of finite 𝐾-dimension
is a direct sum of simple 𝐾𝑊-modules, and the simple 𝐾𝑊-modules are in bijection with the
simple𝐾[𝑊]-modules.Moreover, the latter are in bijectionwith the irreducible representations of
𝑊, because by construction, every representation of a finite Coxeter group can be defined over 𝐾.
Recall the definition of trace from Section 5.3. Every 𝐾𝑊-module 𝑀 of finite 𝐾-dimension

defines a trace 𝜒𝑀 ∶ 𝐾𝑊 → 𝐾 called its character: namely,

𝜒𝑀(𝑎) = tr𝐾(𝑎 ∣ 𝑀).

Since 𝐾𝑊 is split semisimple, the character 𝜒𝑀 determines𝑀 up to isomorphism.
We say that a trace 𝜏 ∶ 𝐾𝑊 → 𝐾 is symmetrizing if the 𝐾-bilinear form on 𝐾𝑊 defined by

𝑎 ⊗ 𝑏 ↦ 𝜏(𝑎𝑏) is nondegenerate. In this case, the symmetrizer of 𝜏 is the elementΣ(𝜏) ∈ 𝐾𝑊 ⊗𝐾

𝐾𝑊 defined by

Σ(𝜏) =
∑
𝑖

𝑒𝑖 ⊗ 𝑓𝑖,

for any choice of ordered 𝐾-bases (𝑒𝑖)𝑖 , (𝑓𝑖)𝑖 for 𝐾𝑊 that are dual to one another under the
bilinear form.Wewrite Σ̄(𝜏) ∈ 𝐾𝑊 for the image ofΣ(𝜏)under themultiplicationmap𝐾𝑊 ⊗𝐾

𝐾𝑊 → 𝐾𝑊 . This element is central in 𝐾𝑊 .
We now state a version of Schur orthogonality for 𝐾𝑊 . Let Irr(𝑊) be the set of charac-

ters of simple 𝐾[𝑊]-modules up to isomorphism. Each 𝜒 ∈ Irr(𝑊) restricts to a class function
𝜒 ∶ 𝑊 → ℚ𝑊 . At the same time, via the isomorphism 𝐾𝑊

∼
N→ 𝐾[𝑊], we can pull back 𝜒 to

the character of a simple 𝐾𝑊-module. We denote the resulting character by 𝜒𝑞 ∶ 𝐾𝑊 → 𝐾.
Schur orthogonality for 𝐾𝑊 says that for any symmetrizing trace 𝜏 ∶ 𝐾𝑊 → 𝐾, we have a
decomposition

𝜏 =
∑

𝜒∈Irr(𝑊)

1

𝐬𝜏(𝜒𝑞)
𝜒𝑞, (6.1)

where 𝐬𝜏(𝜒𝑞) ∈ 𝐾 is a scalar characterized by the property that Σ̄(𝜏) acts by 𝜒(𝑒)𝐬𝜏(𝜒𝑞) on any
𝐾𝑊-module with character 𝜒𝑞. We say that 𝐬𝜏(𝜒𝑞) is the Schur element for 𝜒𝑞 with respect to 𝜏.
We can view its defining property as a version of Schur’s lemma for the central element Σ̄(𝜏) ∈
𝐾𝑊 .

6.3 The sign twist

Abusing notation, let 𝜏+, 𝜏− ∶ 𝐾𝑊 → 𝐾 denote the 𝐾-linear extensions of the 𝐴-linear traces
from Section 5. It turns out that both are symmetrizing. Namely, if we set

𝜎𝑤 ∶= 𝑞−
𝓁(𝑤)
2 𝑇𝑤
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for all 𝑤 ∈ 𝑊, then (5.3) becomes equivalent to:

Σ(𝜏±) =
∑
𝑤∈𝑊

𝜎±1𝑤 ⊗ 𝜎±1
𝑤−1 .

Now we can relate the Schur elements of these traces. In what follows, we will write 𝐬±(𝜒𝑞) in
place of 𝐬𝜏±(𝜒𝑞) for clarity. Recall that 𝜀 is the sign character of𝑊.

Proposition 6.2. For all 𝜒 ∈ Irr(𝑊), we have 𝐬+(𝜒𝑞) = 𝐬−((𝜀𝜒)𝑞).

Proof. For all 𝜒, we have

𝐬±(𝜒𝑞) =
1

𝜒(𝑒)

∑
𝑤∈𝑊

𝜒𝑞(𝜎
±1
𝑤 )𝜒𝑞(𝜎

±1
𝑤−1).

Since (𝜀𝜒)(𝑒) = 𝜒(𝑒) and 𝜀2 = 1, it is enough to show that

𝜀(𝑤)𝜒𝑞(𝜎
−1
𝑤−1) = (𝜀𝜒)𝑞(𝜎𝑤)

for all𝑤 ∈ 𝑊 and𝜒 ∈ Irr(𝑊). Indeed, this is [39, Proposition 9.4.1(b)], oncewe observe that the𝐾-
algebra involution they call 𝛾𝐾 is, in our notation, given by 𝛾𝐾(𝜎𝑤) = 𝜀(𝑤)𝜎−1

𝑤−1 for all𝑤 ∈ 𝑊. □

6.4 Periodic elements of𝑾

Recall that𝑤◦ denotes the longest element of𝑊. The definition below is adapted from a standard
definition at the level of the positive braid monoid of𝑊, which we will not need until Section 8.1.

Definition 6.3. For any word𝐰 = (𝑠1, … , 𝑠𝑚), we set 𝜎𝐰 ∶= 𝜎𝑠1𝜎𝑠2 ⋯𝜎𝑠𝑚 = 𝑞−
𝑚
2 𝑇𝐰 . We say that

𝐰 is periodic if 𝜎𝑚𝐰 = 𝜎
2𝑝
𝑤◦
for some 𝑝,𝑚 with𝑚 ≠ 0. In this case, we say that 𝑝

𝑚
is the slope of𝐰.

Example 6.4. If 𝐜 is a Coxeter word, then 𝜎
𝑝
𝐜 is periodic of slope

𝑝

ℎ
for any integer 𝑝.

For all 𝜒 ∈ Irr(𝑊), the fake and generic degrees of 𝜒 are, respectively,

Feg𝜒(𝑞) ∶=
(𝜒, [Sym]𝑞)𝑊

(1, [Sym]𝑞)𝑊
, (6.2)

Deg𝜒(𝑞) ∶=
𝐬+(1𝑞)

𝐬+(𝜒𝑞)
, (6.3)

where in (6.2), we have extended (−,−)𝑊 to a pairing 𝑅𝑊[[𝑞]] × 𝑅𝑊[[𝑞]] → ℤ[[𝑞]] by linearity. It
turns out that Feg𝜒(𝑞) ∈ ℤ[𝑞] and Deg𝜒 ∈ ℚ𝑊[𝑞]. At 𝑞 = 1, both polynomials specialize to the
degree of 𝜒, that is, the ℤ[𝑞±1]-dimension of the underlying𝑊-module:

Feg𝜒(1) = Deg𝜒(1) = 𝜒(1). (6.4)
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For Feg𝜒(1), this follows from the discussion in [79, Section 2.5], and for Deg𝜒(1), see [39,
Section 8.1.8]. In addition, 𝐬+(1𝑞) is the Poincaré polynomial of 𝑊, which, by a formula of
Bott–Solomon [75], can be written as

𝐬+(1𝑞) =
∑
𝑤∈𝑊

𝑞𝓁(𝑤) =

𝑟∏
𝑖=1

1 − 𝑞𝑑𝑖

1 − 𝑞
=

1

(1 − 𝑞)𝑟(1, [Sym]𝑞)𝑊
. (6.5)

We will show that:

(1) The values of fake degrees at roots of unity are related to the values of 𝜏±(𝜎𝐰) for periodic𝐰.
(2) The values of generic degrees at roots of unity are related to 𝑞-deformed rational𝑊-Catalan

numbers.

Recall that 𝑇 ⊂ 𝑊 is the set of reflections. In what follows, let 𝑁 ∶= |𝑇| = 𝓁(𝑤◦) and

c(𝜒) ∶=
1

𝜒(𝑒)

∑
𝑡∈𝑇

𝜒(𝑡). (6.6)

Note that c(1) = 𝑁. More generally, it turns out that c(𝜒) ∈ ℤ.

Remark 6.5. The numbers c(𝜒) are, in fact, integers, as they are both algebraic integers and also
rational numbers (see [13, Corollaire 4.17] or [26, Corollary 4.17]). In [85], the integer c(𝜒) was
called the content of 𝜒, because for 𝑊 = 𝔖𝑛, it is the content of the integer partition of 𝑛 cor-
responding to 𝜒. Explicitly, the content of an integer partition 𝜆 = (𝜆1 ⩾ 𝜆2 ⩾ ⋯ ⩾ 0) is the sum
c(𝜆) ∶=

∑∞
𝑖=1

∑𝜆𝑖
𝑗=1

(𝑗 − 𝑖).

Theorem 6.6 (Springer). If 𝜒 ∈ Irr(𝑊) and𝐰 is a periodic word of slope 𝜈 ∈ ℚ, then

𝜒𝑞(𝜎𝐰) = 𝑞𝜈 c(𝜒)Feg𝜒(𝑒
2𝜋𝑖𝜈). (6.7)

Proof. Combine [85, Corollary 9.2.2] and [79, Theorem 4.2(v)]. □

Corollary 6.7. If𝐰 is a periodic 𝑤-word of slope 𝜈 ∈ ℚ, then

𝜏+(𝜎𝐰) =
1

𝐬+(1𝑞)

∑
𝜒∈Irr(𝑊)

𝑞𝜈 c(𝜒)Feg𝜒(𝑒
2𝜋𝑖𝜈)Deg𝜒(𝑞),

𝜏−(𝜎𝐰) =
𝜀(𝑤)

𝐬+(1𝑞)

∑
𝜒∈Irr(𝑊)

𝑞−𝜈 c(𝜒)Feg𝜒(𝑒
2𝜋𝑖𝜈)Deg𝜒(𝑞).

Proof. The first identity follows from combining (6.1), (6.3), and Theorem 6.6. To get the second
identity from the first, observe that

1

𝐬−(𝜀𝜒𝑞)
(𝜀𝜒)𝑞(𝜎𝐰) =

1

𝐬+(𝜒𝑞)
(𝜀𝜒)𝑞(𝜎𝐰) by Proposition 6.2

=
Deg𝜒(𝑞)

𝐬+(1𝑞)
(𝜀𝜒)𝑞(𝜎𝐰) by (6.3)
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26 of 50 GALASHIN et al.

=
Deg𝜒(𝑞)

𝐬+(1𝑞)
𝑞𝜈 c(𝜀𝜒)Feg𝜀𝜒(𝑒

2𝜋𝑖𝜈) by Theorem 6.6.

We have c(𝜀𝜒) = − c(𝜒) because 𝜀(𝑡) = −1 for all 𝑡 ∈ 𝑇. Moreover, 𝑤 is regular† by [85, Corollary
9.3.6], so

Feg𝜀𝜒(𝑒
2𝜋𝑖𝜈) = (𝜀𝜒)(𝑤) = 𝜀(𝑤)𝜒(𝑤) = 𝜀(𝑤)Feg𝜒(𝑒

2𝜋𝑖𝜈)

by [79, Theorem 4.2]. □

Remark 6.8. When𝑊 is a Weyl group of Coxeter number ℎ, the right-hand sides of the identities
in Corollary 6.7 each simplify to a sum of precisely ℎ nonzero terms, as we now explain. (We thank
Eric Sommers for communicating this argument to us; see also [65, Section 6].) Suppose that 𝐜 is
a 𝑐-word. For any 𝜒 ∈ Irr(𝑊) and 𝑝 coprime to ℎ, we have Feg𝜒(𝑒

2𝜋𝑖𝑝

ℎ ) = 𝜒(𝑐𝑝) by §2.7 and The-
orem 4.2(v) of [79], so it suffices to determine the number of 𝜒 for which 𝜒(𝑐𝑝) is nonzero. Since
𝑊 is aWeyl group, 𝑐𝑝 is conjugate to the Coxeter element 𝑐 by [79, Proposition 4.7], allowing us to
assume 𝑝 = 1. Let 𝐶 and𝑊 ⋅ 𝑐 denote the centralizer and conjugacy class of 𝑐 in𝑊, respectively.
Then, 𝑐 generates 𝐶 by [79, Corollary 4.4], so by Schur orthogonality,

ℎ = |𝐶| = |𝑊||𝑊 ⋅ 𝑐| = ∑
𝜒∈Irr(𝑊)

|𝜒(𝑐)|2.
Since𝑊 is a Weyl group, we have ℚ𝑊 = ℚ, which, in turn, implies that the values of 𝜒(𝑐) in the
last expression are all rational integers. But by direct inspection, we can find at least ℎ irreducible
characters 𝜒 for which 𝜒(𝑐) is nonzero. So, in the last expression above, we must have 𝜒(𝑐) = ±1

for exactly ℎ irreducible characters 𝜒, and 𝜒(𝑐) = 0 for all other 𝜒. (We are, however, unaware of
a uniform proof of this statement.) Altogether, we have shown that when𝑊 is a Weyl group,

{𝜒 ∈ Irr(𝑊) ∶ 𝜒(𝑐) ≠ 0}| = |{𝜒 ∈ Irr(𝑊) ∶ Feg𝜒(𝑒
2𝜋𝑖𝑝

ℎ ) ≠ 0}| = ℎ.

The behavior of the values 𝜒(𝑐) for noncrystallographic Coxeter groups is a little more irregular:

∙ In type 𝐻3, where ℎ = 10, the value of 𝜒(𝑐) is nonzero for 8 of the 10 irreducible characters 𝜒.
∙ In type 𝐻4, where ℎ = 30, it is nonzero for 24 of the 34 irreducible characters.
∙ In types 𝐼2(2𝑚 − 1) and 𝐼2(4𝑚 − 2), it is nonzero for all irreducible characters. In type 𝐼2(4𝑚),
there is a single irreducible character for which it vanishes. (Note that the Coxeter number of
𝐼2(𝑚) is equal to 2𝑚.)

For any 𝜈 ∈ ℚ, let 𝐿𝜈 denote the simple spherical module of the rational Cherednik algebra of
𝑊 of central charge 𝜈. Let [𝐿𝜈]𝑞 ∈ 𝑅𝑊[𝑞] be its graded character, normalized to be a polynomial
in 𝑞 with nonzero constant term. We will not give an exposition of rational Cherednik algebras
here, as we will not need 𝐿𝜈 itself, but only a formula involving [𝐿𝜈]𝑞. In what follows, recall from

†Recall that an element of 𝑊 is called regular if, in the reflection representation 𝑉, it has an eigenvector that is not
contained in any of the reflecting hyperplanes of𝑊 [79].
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 27 of 50

(1.3) that

Cat𝑝(𝑊; 𝑞) ∶=

𝑟∏
𝑖=1

[𝑝 + (𝑝𝑒𝑖 modℎ)]𝑞

[𝑑𝑖]𝑞
,

where [𝑎]𝑞 = 1 + 𝑞 +⋯ + 𝑞𝑎−1.

Theorem 6.9. If 𝑝 is a positive integer coprime to ℎ, then:

(1) [34, Section 1.12] We have

(1, [𝐿𝑝∕ℎ]𝑞)𝑊 = Cat𝑝(𝑊; 𝑞). (6.8)

(2) [85, Corollaries 11 and 13] We have

[𝐿𝑝∕ℎ]𝑞 = 𝑞
𝑟𝑝

2

∑
𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ )𝜒 ⋅ [Sym]𝑞. (6.9)

In particular, 𝑟𝑝
2
−

𝑝

ℎ
c(𝜒) ∈ ℤ for all 𝜒 such that Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ ) ≠ 0.

Proof. We explain how to deduce part (2) from the results of [85]. Observe that 1

2
𝑟ℎ = 𝓁(𝑤◦) = 𝑁.

So, in the notation of [85], the right-hand side of (6.9) is the graded character (𝑞
1
2 )2𝑁

𝑝

ℎ
−𝑟[Ω𝑝∕ℎ]𝑞.

Given the way we normalize [𝐿𝑝∕ℎ]𝑞 to be polynomial with nonzero constant term, [85,
Corollary 13] identifies this character with [𝐿𝑝∕ℎ]𝑞. □

Remark 6.10. In analogy with Remark 6.8, the right-hand side of (6.9) simplifies to a sum of pre-
cisely 𝑟 + 1 nonzero terms, where 𝑟 is the rank of𝑊. If we write Λ𝑘 for the character of the 𝑘th
exterior power of the reflection representation of𝑊, then it turns out that:

Deg𝜒(𝑒
2𝜋𝑖𝑝

ℎ ) =

{
(−1)𝑘, if 𝜒 = Λ𝑘 for some 0 ⩽ 𝑘 ⩽ 𝑟;
0, otherwise.

(6.10)

By direct calculation,

c(Λ𝑘) = 𝑁 − ℎ𝑘 = ℎ
(
1

2
𝑟 − 𝑘

)
, (6.11)

which leads to the formula

[𝐿𝑝∕ℎ]𝑞 =
∑

0⩽𝑘⩽𝑟

(−𝑞𝑝)𝑘Λ𝑘 ⋅ [Sym]𝑞. (6.12)

Note that Gordon–Griffeth themselves cite [15, Proposition 4.2], which relies on (6.12).
We sketch the proof of (6.10), relying freely on background explained in [85, §A.11]. First, by

Theorem 6.6 and Remark 6.9 of [11], the nonprincipal Φℎ-blocks of 𝐾𝑊 all have defect 0. The
principal Φℎ-block of 𝐾𝑊 has defect 1, and its Brauer tree is a line graph in which the vertices
are the charactersΛ𝑘 ordered by 𝑘. (In noncrystallographic types, this result depends on the case-
by-case methods of [58].) Next, [85, Lemma 10.8.2] shows that for 𝜒 in the blocks of defect 0, we
have Deg𝜒(𝑒

2𝜋𝑖
𝑝

ℎ ) = 0, whereas for 𝜒 = Λ𝑘, we have Deg𝜒(𝑒
2𝜋𝑖

𝑝

ℎ ) = (−1)𝑘.

 1460244x, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12643 by U

niversity O
f M

ichigan Library, W
iley O

nline Library on [02/03/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



28 of 50 GALASHIN et al.

Corollary 6.11. If 𝑝 is a positive integer coprime to ℎ, then

(1 − 𝑞)𝑟𝑞−
𝑟𝑝

2 Cat𝑝(𝑊; 𝑞) =
1

𝐬+(1𝑞)

∑
𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Feg𝜒(𝑞)Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ ). (6.13)

Proof. Since𝑊 is a Coxeter group, every character 𝜒 ∈ Irr(𝑊) is defined over the real numbers.
This means (1, 𝜒 ⋅ (−))𝑊 = (𝜒,−)𝑊 . So, combining (6.8) and (6.9) gives

𝑞−
𝑟𝑝

2 Cat𝑝(𝑊; 𝑞) =
∑

𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ )(𝜒, [Sym]𝑞)𝑊.

Multiplying both sides by (1 − 𝑞)𝑟, then invoking (6.2) and (6.5), we get the result. □

6.5 The exotic Fourier transform

The following result is proved for (finite) Weyl groups in [48, Chapter 4], and for all other Coxeter
groups by combining [49, 50, 52].

Theorem 6.12 (Lusztig, Malle). There is a pairing {−, −}𝑊 ∶ Irr(𝑊) × Irr(𝑊) → ℚ𝑊 that satisfies
the following conditions:

(1) For all 𝜒 ∈ Irr(𝑊), we have

Feg𝜒(𝑞) =
∑

𝜙∈Irr(𝑊)

{𝜙, 𝜒}𝑊Deg𝜙(𝑞). (6.14)

(2) For all 𝜙, 𝜒 ∈ Irr(𝑊), we have {𝜙, 𝜒}𝑊 = {𝜒, 𝜙}𝑊 .
(3) For all 𝜙, 𝜒 ∈ Irr(𝑊) such that {𝜙, 𝜒}𝑊 ≠ 0, we have c(𝜙) = c(𝜒).

Let 𝑞1, 𝑞2, 𝑞3 be arbitrary parameters and 𝜈 ∈ ℚ. Then, the identity∑
𝜒∈Irr(𝑊)

𝑞
𝜈 c(𝜒)
1

Feg𝜒(𝑞2)Deg𝜒(𝑞3) =
∑

𝜒∈Irr(𝑊)

𝑞
𝜈 c(𝜒)
1

Feg𝜒(𝑞3)Deg𝜒(𝑞2) (6.15)

follows from Theorem 6.12 via a double-summation argument. We can now prove (1).

Corollary 6.13. Let 𝐜 be a Coxeter word, and let 𝑝 be a positive integer coprime to ℎ. Then we have
𝑅𝑒,𝐜𝑝 (𝑞) = (𝑞 − 1)𝑟Cat𝑝(𝑊; 𝑞).

Proof. We show that the stated identity 𝑅𝑒,𝐜𝑝 (𝑞) = (𝑞 − 1)𝑟Cat𝑝(𝑊; 𝑞) is equivalent to the identity

∑
𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Feg𝜒(𝑒

2𝜋𝑖𝑝

ℎ )Deg𝜒(𝑞) =
∑

𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Feg𝜒(𝑞)Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ ), (6.16)

which is a specialization of (6.15). Suppose that 𝐜 is a 𝑐-word. Then 𝜀(𝑐) = (−1)𝑟, so

𝑅𝑒,𝐜𝑝 (𝑞) = 𝑞
𝑟𝑝

2 𝜏−(𝜎
𝑝
𝐜 ) by Corollary 5.4 (6.17)
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=
(−1)𝑟𝑞

𝑟𝑝

2

𝐬+(1𝑞)

∑
𝜒∈Irr(𝑊)

𝑞−
𝑝

ℎ
c(𝜒)Feg𝜒(𝑒

2𝜋𝑖
𝑝

ℎ )Deg𝜒(𝑞) by Corollary 6.7. (6.18)

So, the result follows from Corollary 6.11. □

6.5.1 Uniformity

Below, we explain why there is a uniform proof of Theorem 6.12 for Weyl groups, but not for
Coxeter groups in general.
For every irreducible finite Coxeter group𝑊, there exist

(I) a finite set Udeg(𝑊),
(II) an embedding Irr(𝑊) ↪ Udeg(𝑊),
(III) an extension of the function 𝜒 ↦ Deg𝜒 on Irr(𝑊) to a function on Udeg(𝑊),
(IV) a pairing {−, −} ∶ Udeg(𝑊) × Udeg(𝑊) → ℚ𝑊 , now called the nonabelian or exotic Fourier

transform, satisfying conditions (1)–(3) of Theorem 6.12.

We take {−, −}𝑊 to be the restriction of {−, −} to Irr(𝑊) × Irr(𝑊).
In [49], Lusztig gives a uniform characterization of (I)–(III) by a list of axioms, and proves

that the axioms always admit a solution. However, beyond Weyl groups, this proof uses case-by-
case arguments. The definition of (IV) beyondWeyl groups also uses case-by-case arguments. For
dihedral types, it is constructed uniformly in [50], and for type𝐻4, it is constructed in [52]. For type
𝐻3, the details are scattered in the literature; see [85, Remark 7.5.4]. We do not know a definition
of the restricted pairing {−, −}𝑊 that is uniform for Coxeter groups.
For Weyl groups, we may define {−, −}𝑊 as follows. Suppose that 𝔽𝑞 is a finite field of order

𝑞, and that 𝐺 is a split, connected reductive algebraic group over 𝔽𝑞 with Weyl group 𝑊.
Here, Udeg(𝑊) is the set of unipotent irreducible characters of 𝐺(𝔽𝑞), whose definition relies
on Deligne–Lusztig varieties [24, Section 7.8]. The embedding Irr(𝑊) ↪ Udeg(𝑊) sends each
character 𝜒 to a corresponding unipotent principal series character 𝜌𝜒 . At the same time, each
irreducible character 𝜒 of 𝑊 gives rise to a virtual character 𝑅𝜒 of 𝐺(𝔽𝑞) called the corre-
sponding almost-character, also defined using Deligne–Lusztig varieties. With this notation, [48,
Theorem 4.23] says that (𝜚, 𝑅𝜒)𝐺(𝔽𝑞) = Δ(𝜚){𝜚, 𝜌𝜒} for all 𝜒 ∈ Irr(𝑊) and 𝜚 ∈ Udeg(𝑊), where
Δ ∶ Udeg(𝑊) → {±1} is given case by case in [48, Section 4.14]. However, Δ(𝜌) = 1 when 𝜌 is
a principal series representation. This means that if we only care about the restricted pairing
{−, −}𝑊 on Irr(𝑊), then we can take

{𝜙, 𝜒}𝑊 ∶= (𝜌𝜙, 𝑅𝜒)𝐺(𝔽𝑞)

as a uniform definition.
In this setting, there are uniform proofs that 𝜌𝜒(1) = Deg𝜒(𝑞) [48, Corollary 8.7] and 𝑅𝜒(1) =

Feg𝜒(𝑞) [17, Theorem 7.5.1] for all 𝑞 ≫ 0, from which we deduce condition (1) of Theorem 6.12.
Moreover, condition (2) has a uniform proof via work of Digne–Michel [25, Ch. III, Corollaire
3.5(iii)]. It remains to show that condition (3) also has a uniform proof.
First, [54, Lemma 1] allows us to rewrite c(𝜒) in terms of 𝜒(1) and numbers 𝑁(𝜒),𝑁(𝜒∗).

By work of Malle–Rouquier [56, Lemma 2.8], the resulting function on Irr(𝑊) is constant
along subsets called Rouquier families. Finally, by work of Rouquier [69, Theorem 1] and
Lusztig [51], Rouquier families coincide with the blocks of the pairing {−, −}𝑊 , also known as
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30 of 50 GALASHIN et al.

Lusztig families. More precisely, Rouquier shows that his families coincide with subsets of Irr(𝑊)

defined via two-sided cells, while Lusztig shows in [51] that these subsets coincide with the blocks
of {−, −}𝑊 when this pairing is defined via Deligne–Lusztig theory. All of the proofs above are
uniform. In particular, [51] replaces case-by-case arguments due to Barbasch–Vogan and Lusztig,
discussed in [48, Chapter 5].

Remark 6.14. Let us similarly address the uniformity of the proofs of the results we need from
[85]. The only place affected in our work is (2), which relies on:

∙ [85, Corollary 11], which, in turn, relies on a Lemma 10.6.1, stating that Deg𝜀𝜒(𝑒
2𝜋𝑖𝜈) =

(−1)2𝑁𝜈Deg𝜒(𝑒
2𝜋𝑖𝜈). The proof of the lemma relies on (1). It seems possible that a proof avoiding

the exotic Fourier transform can be found. Note that in our application, where 𝜈 = 𝑝∕ℎ for 𝑝
coprime to ℎ, the sign on the right-hand side disappears.

∙ [85, Corollary 13], which follows from the results about the Φℎ-block theory of 𝐾𝑊 that we
mentioned in Remark 6.10. The characterization of the principal block in terms of defect is
proved uniformly forWeyl groups in [11, Theorem6.6], but there does not appear to be a uniform
proof for general Coxeter groups.

6.6 The 𝒒-parking count

We now prove (2).

Corollary 6.15. Let 𝐜 be a Coxeter word, and let 𝑝 be a positive integer coprime to ℎ. Then we have∑
𝑣∈𝑊 𝑅(𝑣)

𝑒,𝐜𝑝
(𝑞) = (𝑞 − 1)𝑟[𝑝]𝑟𝑞 .

Proof. Applying Corollary 5.3 and (6.1), we find

∑
𝑣∈𝑊

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) = 𝜏−

(∑
𝑣∈𝑊

𝑞𝓁(𝑣)𝑇−1
𝑣−1

𝑇𝐜𝑝𝑇
−1
𝑣

)
=

∑
𝜒∈Irr(𝑊)

1

𝐬−(𝜒𝑞)

∑
𝑣∈𝑊

𝜒𝑞

(
𝑞𝓁(𝑣)𝑇−1

𝑣−1
𝑇𝐜𝑝𝑇

−1
𝑣

)
.

By (5.3), the bases (𝑇−1
𝑣 )𝑣∈𝑊 and (𝑞𝓁(𝑣)𝑇−1

𝑣−1
)𝑣∈𝑊 are dual to each otherwith respect to 𝜏−. Applying

the second displayed equation on page 226 of [39], we see that the above sum simplifies to∑
𝑣∈𝑊

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) =
∑

𝜒∈Irr(𝑊)

dim(𝜒) ⋅ 𝜒𝑞(𝑇𝐜𝑝 ).

(In the notation of [39], we are taking 𝜙 to be the operator by which 𝑇𝐜𝑝 acts on the𝑊-module
of character 𝜒𝑞.) By (6.7), (6.4), and (6.15),

𝑞
𝑟𝑝

2

∑
𝜒∈Irr(𝑊)

𝑞
𝑝

ℎ
c(𝜒)Deg𝜒(1)Feg𝜒(𝑒

2𝜋𝑖𝑝

ℎ ) = 𝑞
𝑟𝑝

2

∑
𝜒∈Irr(𝑊)

𝑞
𝑝

ℎ
c(𝜒)Deg𝜒(𝑒

2𝜋𝑖𝑝

ℎ )Feg𝜒(1).

By (6.10)–(6.11), (6.4), and the formula dim(Λ𝑘) =
(𝑟
𝑘

)
, this becomes

𝑞
𝑟𝑝

2

∑
0⩽𝑘⩽𝑟

𝑞𝑝(𝑟∕2−𝑘) dim(Λ𝑘)(−1)
𝑘 = 𝑞𝑟𝑝

∑
0⩽𝑘⩽𝑟

(−1)𝑘
(
𝑟

𝑘

)
𝑞−𝑝𝑘 = 𝑞𝑟𝑝(1 − 𝑞−𝑝)𝑟 = (𝑞 − 1)𝑟[𝑝]𝑟𝑞.

□
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 31 of 50

6.7 Explicit computations in type 𝑨

In this subsection, we specialize the results above to𝑊 = 𝔖𝑛.

6.7.1 Symmetric functions

We refer the reader to [80] for background on symmetric functions. Let Λ𝑞 be the ring of
symmetric functions over the field ℚ(𝑞). For 𝑛 ⩾ 0, let Λ𝑛

𝑞 denote the subspace of degree-𝑛
homogeneous polynomials.
It has a basis of Schur functions 𝑠𝜆, indexed by the set Par(𝑛) of partitions 𝜆 ⊢ 𝑛. The set Irr(𝔖𝑛)

can be identified canonically with Par(𝑛). For 𝜆 ⊢ 𝑛, we write 𝜒𝜆 ∈ Irr(𝔖𝑛) to denote the corre-
sponding character. The trivial character 1 corresponds to the single-row partition 𝜆 = (𝑛), while
the sign character 𝜀 corresponds to the single-column partition 𝜆 = (1, 1, … , 1). The scalar prod-
uct (−,−)𝔖𝑛

corresponds to the Hall inner product ⟨−,−⟩ on Λ𝑞. The Schur functions form an
orthonormal basis with respect to ⟨−,−⟩.
First, we claim that the inverses of the Schur elements 𝐬+(𝜒𝜆) can be given in terms of the

principal specializations of the Schur functions 𝑠𝜆:

1

𝐬+(𝜒𝜆)
= (1 − 𝑞)𝑛 ⋅ 𝑠𝜆(1, 𝑞, 𝑞

2, … ). (6.19)

An explicit formula for the right-hand side (the 𝑞-hook length formula) can be found in [80,
Corollary 7.21.3]. Specifically, for a partition 𝜆 = (𝜆1 ⩾ 𝜆2 ⩾ ⋯ ⩾ 0), let

|𝜆| ∶=∑
𝑖

𝜆𝑖 and 𝑏(𝜆) ∶=
∑
𝑖

(𝑖 − 1)𝜆𝑖.

View 𝜆 as a Young diagram in English notation, and let ℎ(𝑢) denote the hook-length of a box 𝑢 ∈ 𝜆.
Then, [80, Corollary 7.21.3] reads

𝑠𝜆(1, 𝑞, 𝑞
2, … ) =

𝑞𝑏(𝜆)

(1 − 𝑞)𝑛
∏

𝑢∈𝜆[ℎ(𝑢)]𝑞
.

The left-hand side of (6.19) is computed in [39, Theorem 10.5.2]. Comparing the two sides gives
the proof of (6.19).
We can now compute the generic degrees Deg𝜒𝜆(𝑞). For the trivial character 𝜒(𝑛) = 1, (6.19)

yields

1

𝐬+(1)
= (1 − 𝑞)𝑛 ⋅ 𝑠(𝑛)(1, 𝑞, 𝑞

2, … ) =
1

[𝑛]𝑞!
, (6.20)

in agreement with (6.5). Applying [80, Corollary 7.21.5], we find that

Deg𝜒𝜆(𝑞) =
𝑞𝑏(𝜆)[𝑛]𝑞!∏
𝑢∈𝜆[ℎ(𝑢)]𝑞

=
∑

𝑇∈SYT(𝜆)

𝑞maj(𝑇).

Here, SYT(𝜆) is the set of standard Young tableaux of shape 𝜆 andmaj(𝑇) is themajor index of 𝑇,
defined as the sumof all 𝑖 such that 𝑖 + 1 appears in a lower row of𝑇 than 𝑖. As expected from (6.4),
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32 of 50 GALASHIN et al.

Deg𝜒𝜆(1) equals the dimension
||SYT(𝜆)|| of the irreducible representation of𝔖𝑛 corresponding to

𝜒𝜆.
Next, we compute the fake degrees. By [80, Exercise 7.73], we have

[Sym]𝑞 =
∑
𝜆⊢𝑛

𝑠𝜆(1, 𝑞, 𝑞
2, … )𝑠𝜆. (6.21)

As an immediate consequence,

(𝜒𝜆, [Sym]𝑞)𝔖𝑛
= 𝑠𝜆(1, 𝑞, 𝑞

2, … ).

This implies that the fake degrees coincide with the generic degrees: Feg𝜒𝜆(𝑞) = Deg𝜒𝜆(𝑞). The
exotic Fourier transform {−, −}𝔖𝑛

therefore coincides with the scalar product (−,−)𝔖𝑛
, that is, for

𝜙, 𝜒 ∈ Irr(𝔖𝑛), we have {𝜙, 𝜒}𝔖𝑛
= 1 if 𝜙 = 𝜒 and {𝜙, 𝜒}𝔖𝑛

= 0 otherwise.

Remark 6.16. Using the Cauchy identity [80, Theorem 7.12.1], one can check that the right-hand
side of (6.21) equals ℎ𝑛[𝑋∕(1 − 𝑞)], where the square brackets denote the plethysm [80, Defin-
tion A.2.6]. More generally, one can show that the operation 𝜒 ↦ 𝜒 ⋅ [Sym]𝑞 on class functions
corresponds to the plethystic substitution 𝑓 ↦ 𝑓[𝑋∕(1 − 𝑞)] on symmetric functions.

Conjecture 6.17. Let𝑊 = 𝔖𝑛. Then, (6.15) gives the following explicit sum:

∑
𝑤∈𝑊

𝑞
𝜈 c(shape(RSK(Foata−1(𝑤)))
1

𝑞
maj(𝑤)
2

𝑞𝓁(𝑤)
3

where c is given explicitly in Remark 6.5,maj is the usual major index in𝔖𝑛, RSK denotes the usual
Robinson-Schensted insertion, and Foata ∶ 𝔖𝑛 → 𝔖𝑛 is Foata’s bijection [31].

6.7.2 A streamlined proof of Theorem 1.10

Below, we reprove Theorem 1.10 in type 𝐴 by direct calculation, avoiding the machinery needed
for the previous proof. Note that the type-𝐴 case of (1) is a specialization of V. Jones’s formula for
the HOMFLYPT polynomial of the (𝑛, 𝑝)-torus knot [41, Theorem 9.7]. Explicitly, in the notation
of [41], Cat𝑝(𝑊; 𝑞) is the 𝑞-coefficient of the smallest power 𝜆 in Jones’s formula.
Let 𝑊 = 𝔖𝑛. Recall that 𝑟 = 𝑛 − 1, that the exponents and degrees of 𝔖𝑛 are given by 𝑒𝑖 =

𝑑𝑖 − 1 = 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛 − 1, that the Coxeter number is ℎ = 𝑑𝑛−1 = 𝑛, and that the irreducible
representations of𝔖𝑛 are indexed by partitions 𝜆 ⊢ 𝑛.
By Remark 6.10, we have Deg𝜒𝜆(𝑒

2𝜋𝑖𝑝

ℎ ) = 0 unless 𝜒𝜆 is the character of an exterior power of
the reflection representation, or equivalently, unless 𝜆 is the hook partition (𝑛 − 𝑘, 1𝑘) for some
𝑘. Following [41], we write Λ𝑘 = 𝜒(𝑛−𝑘,1𝑘), so that dim(Λ𝑘) =

(𝑛−1
𝑘

)
and

FegΛ𝑘
(𝑞) = DegΛ𝑘

(𝑞) = 𝑞(
𝑘+1
2 )
[
𝑛 − 1

𝑘

]
𝑞

. (6.22)
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 33 of 50

Evaluations of 𝑞-binomial coefficients at roots of unity are well known; see, for example, [72] and
references therein. In particular, for 𝑝 coprime to 𝑛 and 𝜁 = 𝑒

2𝜋𝑖𝑝

𝑛 , we get

FegΛ𝑘
(𝜁) = DegΛ𝑘

(𝜁) = 𝜁(
𝑘+1
2 )
[
𝑛 − 1

𝑘

]
𝜁

= (−1)𝑘, (6.23)

in agreement with (6.10).
By (6.11) (or, alternatively, by Remark 6.5), we have

c(Λ𝑘) =

(
𝑛

2

)
− 𝑘𝑛 =

𝑛(𝑛 − 2𝑘 − 1)

2
. (6.24)

We now prove a more explicit version of Theorem 1.10 in type 𝐴.

Theorem 6.18. Let𝑊 = 𝔖𝑛. For 𝑝 coprime to ℎ = 𝑛, we have

𝑅𝑒,𝐜𝑝 (𝑞) = (𝑞 − 1)𝑛−1
1

[𝑛 + 𝑝]𝑞

[
𝑛 + 𝑝

𝑛

]
𝑞

and

∑
𝑣∈𝔖𝑛

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) = (𝑞 − 1)𝑛−1[𝑝]𝑛−1𝑞 .

Proof. Write 𝜁 = 𝑒
2𝜋𝑖𝑝

𝑛 . We compute

𝑅𝑒,𝐜𝑝 (𝑞) =
(−1)𝑟𝑞

𝑟𝑝

2

𝐬+(1𝑞)

∑
𝜒∈Irr(𝔖𝑛)

𝑞−
𝑝

ℎ
c(𝜒)Feg𝜒(𝑞)Deg𝜒(𝜁) by (6.17)–(6.18)

=
(−1)𝑛−1𝑞

(𝑛−1)𝑝

2

[𝑛]𝑞!

𝑛−1∑
𝑘=0

𝑞−
𝑝

𝑛
c(Λ𝑘)FegΛ𝑘

(𝑞)DegΛ𝑘
(𝜁) by (6.10) and (6.20)

=
(−1)𝑛−1𝑞

(𝑛−1)𝑝

2

[𝑛]𝑞!

𝑛−1∑
𝑘=0

𝑞
−𝑝(𝑛−2𝑘−1)

2 𝑞(
𝑘+1
2 )
[
𝑛 − 1

𝑘

]
𝑞

(−1)𝑘 by (6.22)–(6.24)

=
(−1)𝑛−1

[𝑛]𝑞!

𝑛−1∑
𝑘=0

𝑞(
𝑘
2)
[
𝑛 − 1

𝑘

]
𝑞

(−1)𝑘𝑞(𝑝+1)𝑘

=
1

[𝑛]𝑞!

𝑛−1∏
𝑖=1

(𝑞𝑝+𝑖 − 1) = (𝑞 − 1)𝑛−1
1

[𝑛 + 𝑝]

[
𝑛 + 𝑝

𝑛

]
𝑞

by the 𝑞-binomial theorem.

Similarly, we compute:∑
𝑣∈𝔖𝑛

𝑅(𝑣)
𝑒,𝐜𝑝

(𝑞) = 𝑞
𝑟𝑝

2

∑
𝜒∈Irr(𝔖𝑛)

dim(𝜒)𝑞
𝑝

ℎ
c(𝜒)Feg𝜒(𝜁) by Section 6.6

= 𝑞(𝑛−1)𝑝
𝑛−1∑
𝑘=0

(−1)𝑘
(
𝑛 − 1

𝑘

)
𝑞−𝑝𝑘 by (6.24) and (6.23)

= 𝑞(𝑛−1)𝑝(1 − 𝑞−𝑝)𝑛−1 by the binomial theorem

= (𝑞 − 1)𝑛−1[𝑝]𝑛−1𝑞 . □
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34 of 50 GALASHIN et al.

7 BRAID RICHARDSON VARIETIES

Let 𝔽, 𝐺,, 𝐵+, 𝐵−,𝐻 be defined as in Section 1.6. That is:

∙ 𝔽 is a field,
∙ 𝐺 is a split, connected reductive algebraic group over 𝔽 with Weyl group𝑊,
∙  is the flag variety of 𝐺,
∙ 𝐵+ and 𝐵− are opposed 𝔽-split Borels, and
∙ 𝐻 ∶= 𝐵+ ∩ 𝐵−, a split maximal torus of 𝐺.

Recall that for any (𝐵, 𝐵′) ∈ 2, the notation 𝐵
𝑤
NN→ 𝐵′ means (𝐵, 𝐵′) are in relative position𝑤. For

a fixed Borel 𝐵, the set {𝐵′ ∈  ∣ 𝐵
𝑤
NN→ 𝐵′} is isomorphic as an algebraic variety to an affine space

of dimension 𝓁(𝑤). In particular, if 𝐵 is an 𝔽𝑞-point of  (where 𝑞 is a prime power), then this set
contains 𝑞𝓁(𝑤) 𝔽𝑞-points of .

Definition 7.1. Let𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) ∈ 𝑆𝑚 and fix 𝑢 ∈ 𝑊. Define the braid Richardson variety
by

◦
𝑅𝑢,𝐰 =

{
(𝐵+ = 𝐵0

𝑠1
NN→ 𝐵1

𝑠2
NN→ ⋯

𝑠𝑚
NN→ 𝐵𝑚

𝑢𝑤◦
←NNNN 𝐵−) ∣ 𝐵𝑖 ∈  for all 𝑖

}
.

Note that
◦
𝑅𝑢,𝐰 is nonempty whenever𝐰 admits at least one 𝑢-subword.

We now take 𝔽 = 𝔽𝑞, a finite field of 𝑞 elements. The following relation between braid
Richardson varieties and 𝑅-polynomials will be proved after Theorem 7.4.

Proposition 7.2. For all words𝐰 ∈ 𝑆𝑚 and all 𝑢 ∈ 𝑊,

𝑅𝑢,𝐰(𝑞) =
||| ◦
𝑅𝑢,𝐰(𝔽𝑞)

|||.
Example 7.3. We continue Example 4.13. Let 𝐺 = SL2 with 𝑊 = {𝑒, 𝑠}. Then |(𝔽𝑞)| = 𝑞 + 1.

Let us denote the elements of (𝔽𝑞) by (𝔽𝑞) = {𝐵0 = 𝐵+, 𝐵1, 𝐵2, … , 𝐵𝑞 = 𝐵−}. Then 𝐵𝑖

𝑒
N→ 𝐵𝑖 and

𝐵𝑖

𝑠
N→ 𝐵𝑗 for 𝑖 ≠ 𝑗. By analyzing which Borel subgroups are equal to 𝐵−, we compute that

◦

𝑅𝑒,(𝑠,𝑠,𝑠) =

⎧⎪⎪⎨⎪⎪⎩
(𝐵+

𝑠
N→ 𝐵𝑖

𝑠
N→ 𝐵𝑗

𝑠
N→ 𝐵𝑘

𝑠
←N 𝐵−) for 1 ⩽ 𝑖 ⩽ 𝑞 − 1 and 0 ⩽ 𝑗, 𝑘 ⩽ 𝑞 − 1 with 𝑖 ≠ 𝑗 ≠ 𝑘,

(𝐵+

𝑠
N→ 𝐵−

𝑠
N→ 𝐵𝑖

𝑠
N→ 𝐵𝑗

𝑠
←N 𝐵−) for 0 ⩽ 𝑖, 𝑗 ⩽ 𝑞 − 1 with 𝑖 ≠ 𝑗,

(𝐵+

𝑠
N→ 𝐵𝑖

𝑠
N→ 𝐵−

𝑠
N→ 𝐵𝑗

𝑠
←N 𝐵−) for 1 ⩽ 𝑖 ⩽ 𝑞 − 1 and 0 ⩽ 𝑗 ⩽ 𝑞 − 1.

⎫⎪⎪⎬⎪⎪⎭
.

Thus,
◦
𝑅𝑒,(𝑠,𝑠,𝑠)(𝑞) = (𝑞 − 1)3 + 2𝑞(𝑞 − 1) = (𝑞 − 1)(𝑞2 + 1).

The following result appears in [23] (see also [57, 89]) for reduced words𝐰, but the argument
in [23] extends to the case where𝐰 is arbitrary.
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 35 of 50

Theorem 7.4 [23, 57, 89]. Let𝑊 be a Weyl group. For a 𝑢-subword 𝐮 of𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚), let

◦
𝑅𝐮,𝐰 =

{
(𝐵0

𝑠1
NN→ 𝐵1

𝑠2
NN→ ⋯

𝑠𝑚
NN→ 𝐵𝑚

𝑢𝑤◦
←NNNN 𝐵−) ∣ 𝐵−

𝑢(𝑖)𝑤◦
NNNNN→ 𝐵𝑖 for 𝑖 ∈ {0, 1, … ,𝑚}

}
.

Then,

◦
𝑅𝑢,𝐰 =

⨆
𝐮∈𝑢,𝐰

◦
𝑅𝐮,𝐰 with

◦
𝑅𝐮,𝐰(𝔽) ≃ (𝔽∗)e𝐮 × 𝔽d𝐮 . (7.1)

Thus, Proposition 7.2 follows by comparing (7.1) with (4.4). We may therefore interpret Theo-
rem 7.4 as a geometric incarnation of Corollary 4.12. Applying a similar argument to the variety
◦
𝑅(𝑣)
𝑒,𝐜𝑝

defined in (1.7), we find for all 𝑣 ∈ 𝑊 and all integers 𝑝 that

||| ◦
𝑅𝑒,𝐜𝑝 (𝔽𝑞)

||| = 𝑅𝑒,𝐜𝑝 (𝑞) and ||| ◦
𝑅(𝑣)
𝑒,𝐜𝑝

(𝔽𝑞)
||| = 𝑅(𝑣)

𝑒,𝐜𝑝
(𝑞). (7.2)

Theorem 1.13 then follows from Theorem 1.10.

8 NONCROSSING COMBINATORICS

For Weyl groups, the uniformly defined rational nonnesting Coxeter–Catalan objects from Sec-
tion 1.1 are counted by Cat𝑝(𝑊). As reviewed in Section 1.3, it has been an open problem to give
a uniform definition of a rational noncrossing family counted by Cat𝑝(𝑊).
There are three previously defined families of noncrossing Coxeter–Catalan objects, which

are all in uniform bijection with each other. Each of these families has a generalization to the
Fuss–Catalan (𝑝 = 𝑘ℎ + 1) and Fuss–Dogolon (𝑝 = 𝑘ℎ − 1) levels of generality. In this section,
for simplicity, we will only treat the Fuss–Catalan case.
Fix a Coxeter word 𝐜 = (𝑠1, 𝑠2, … , 𝑠𝑟). We will review the three noncrossing families, and

then prove that the elements of 𝐜𝑝 are naturally rational noncrossing objects by giving direct
bijections between𝐜𝑘ℎ+1 and the Coxeter–Fuss–Catalan noncrossing families.

8.1 Noncrossing objects and bijections

A Coxeter group 𝑊 with system of simple generators 𝑆 defines a corresponding positive braid
monoid 𝐁+

𝑊
, equipped with a generating set 𝐒 in bijection with 𝑆. For all 𝑠 ∈ 𝑆, we write 𝐬 ∈ 𝐒 to

denote the corresponding generator. As a monoid, 𝐁+
𝑊
is freely generated by 𝐒 modulo the braid

relations

𝑚(𝑠,𝑡)
⏞⏞⏞
𝐬𝐭𝐬⋯ =

𝑚(𝑠,𝑡)
⏞⏞⏞
𝐭𝐬𝐭⋯

for distinct 𝑠, 𝑡 ∈ 𝑆, for the same integers 𝑚(𝑠, 𝑡) as in (3.1). Thus, there is a surjective homo-
morphism of monoids 𝐁+

𝑊
→ 𝑊 that sends 𝐬 ↦ 𝑠. Note that it factors through a surjective

homomorphism of rings ℤ[𝑞±1][𝐁+
𝑊
] → 𝑊 , where𝑊 is the Hecke algebra from Section 5.
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36 of 50 GALASHIN et al.

F IGURE 8 Let 𝐜 = (𝑠1, 𝑠2). Left: the 12 𝐜-sortable elements in Sort(2)(𝔖3, 𝐜). In each row, we have replaced
the position of the leftmost 𝑠𝑗 (𝑗 = 1, 2) not appearing in𝐰(𝐜) with the corresponding colored reflection in the
skip tuple.Middle: The 12 elements in NC(2)(𝔖3, 𝐜). Right: The 12 elements of Clus

(2)(𝔖3, 𝐜). We have replaced the
positions 𝑖 where 𝑢𝑖 = 𝑒 with the corresponding colored reflection in inv𝑒(𝐮).

For any word 𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) ∈ 𝑆𝑚, we abuse notation by again writing 𝐰 to denote the
product 𝐬1𝐬2⋯ 𝐬𝑚 ∈ 𝐁+

𝑊
. In the case where𝐰 is a reduced𝑤-word for some𝑤 ∈ 𝑊, this product

only depends on 𝑤, not on𝐰.
Theweak order (𝐁+

𝑊
, ⩽𝑅) on 𝐁+

𝑊
is the lattice formed by the transitive closure of the relation⋖𝑅

defined by𝐰 ⋖𝑅 𝐰𝐬 for 𝐬 ∈ 𝐒 and𝐰 ∈ 𝐁+
𝑊
. The map 𝑤 ↦ 𝐰, where𝐰 ∈ 𝐁+

𝑊
is a reduced word

for𝑤, defines a canonical lift from𝑊 onto the weak order interval [𝑒,𝐰◦]𝑅 ⊂ 𝐁+
𝑊
. Here,𝐰◦ is the

lift of the longest element 𝑤◦ ∈ 𝑊, also known as the half-twist.

8.1.1 Sortable elements

The first family of noncrossing objects we review are the Coxeter-sortable elements, introduced
at the Coxeter–Catalan level of generality by Reading [60–62] and extended to the Fuss–Catalan
level by Stump, Thomas, and Williams [82].
Let 𝐜∞ ∈ 𝑆 × 𝑆 ×⋯ be the infinite sequence formed by repeated concatenations of 𝐜. The 𝐜-

sorting word𝐰(𝐜) of𝐰 ∈ 𝐁+
𝑊
is the lexicographically-first subword of 𝐜∞ that is a reduced word

for𝐰. We write𝐰(𝐜, 𝑖) for the word formed by restricting𝐰(𝐜) to the 𝑖th copy of 𝐜 in 𝐜∞.

Definition 8.1 [61, 82]. An element𝐰 ∈ 𝐁+
𝑊
is 𝐜-sortable if𝐰(𝐜, 𝑖 + 1) is a subword of𝐰(𝐜, 𝑖) for

all 𝑖. We write Sort(∞)(𝑊, 𝐜) for the set of all such𝐰. We also write

Sort(𝑚)(𝑊, 𝐜) ∶= {𝐰 ∈ Sort(∞)(𝑊, 𝐜) ∶ 𝐰 ⩽𝑅 𝐰𝑚
◦ }.

Example 8.2. The 12 elements of Sort(2)(𝔖3, (𝑠1, 𝑠2)) are illustrated in Figure 8(left) together
with their skip tuples, defined as follows. For 1 ⩽ 𝑗 ⩽ 𝑛 − 1, let (𝑡𝑗, 𝑘𝑗) be the colored reflection
in inv(𝐰(𝐜)) corresponding to the leftmost simple reflection 𝑠𝑗 that does not appear in𝐰(𝐜). We
define the skip tuple of𝐰 to be the collection skip𝐜(𝐰) of all (𝑡𝑗, 𝑘𝑗), ordered by when they appear
in inv(𝐰(𝐜)).
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e

(12) (23)(13)

(132) (123)

(12)
(13)

(23)

(13)

(23)

(13)

(12)
(12)(23)

F IGURE 9 The Hasse diagram of the absolute order (𝔖3, ⩽𝑇), with edges labeled by reflections.

By [78], the element𝐰◦ is 𝐜-sortable for any 𝐜. For example, for𝔖4, we have

𝐰◦(𝑠1, 𝑠2, 𝑠3) = (𝑠1, 𝑠2, 𝑠3
⏟⎴⏟⎴⏟
𝐰◦(𝐜,1)

, 𝑠1, 𝑠2, ⋅
⏟⏟⏟
𝐰◦(𝐜,2)

, 𝑠1, ⋅, ⋅
⏟⏟⏟
𝐰◦(𝐜,3)

, …)

and 𝐰◦(𝑠2, 𝑠1, 𝑠3) = (𝑠2, 𝑠1, 𝑠3
⏟⎴⏟⎴⏟
𝐰◦(𝐜,1)

, 𝑠2, 𝑠1, 𝑠3
⏟⎴⏟⎴⏟
𝐰◦(𝐜,2)

, ⋅, ⋅, ⋅, …).

8.1.2 Noncrossing partitions

The second noncrossing family we review are the noncrossing partitions, introduced in the
Coxeter–Catalan level of generality by Bessis [9] and extended to the Fuss–Catalan level by
Armstrong [2].
The absolute order ⩽𝑇 is the partial order on 𝑊 induced by 𝓁𝑇 . That is, 𝑢 ⩽𝑇 𝑤 if and only if

𝓁𝑇(𝑢) + 𝓁𝑇(𝑢
−1𝑤) = 𝓁𝑇(𝑤). The covering relations in this poset are therefore of the form 𝑢 ⋖𝑇 𝑤

whenever 𝑢−1𝑤 ∈ 𝑇, andwe label the corresponding edge 𝑢 → 𝑤 of theHasse diagram of (𝑊, ⩽𝑇)

by 𝑡 ∶= 𝑢−1𝑤. See Figure 9.
The (𝑊-)noncrossing partitions are defined to be the elements of the absolute order interval

NC(𝑊, 𝑐) ∶= [𝑒, 𝑐]𝑇 . Observe that each element of 𝑇 appears exactly once as an inversion in the
𝐜-sorting word for𝐰◦. This gives rise to a total order on 𝑇: For two reflections 𝑡1, 𝑡2 ∈ 𝑇, we write
𝑡1 ⩽𝐜 𝑡2 if and only if 𝑡1 appears before 𝑡2 in inv(𝐰◦(𝐜)). The poset NC(𝑊, 𝑐) is known to be EL-
shellablewith respect to the ordering on 𝑇 given by⩽𝐜, which amounts to the following statement.

Proposition 8.3 [82, Proposition 4.1.4]. Every noncrossing partition has a unique ⩽𝐜-increasing
factorization into reflections. In other words, for each 𝜋 ∈ [𝑒, 𝑐]𝑇 , there exists a unique 𝑚-tuple
(𝑡1, 𝑡2, … , 𝑡𝑚) ∈ 𝑇𝑚, where𝑚 = 𝓁𝑇(𝜋), such that 𝜋 = 𝑡1𝑡2 … 𝑡𝑚 and 𝑡1 ⩽𝐜 𝑡2 ⩽𝐜 ⋯ ⩽𝐜 𝑡𝑚.

For instance, choosing 𝐜 = (𝑠1, 𝑠2) in 𝔖3, we have (12) ⩽𝐜 (13) ⩽𝐜 (23). The interval [𝑒, 𝑐]𝑇
consists of all elements of 𝔖3 ⧵ {𝑠2𝑠1}, and each of them indeed has a unique ⩽𝐜-increasing
factorization into reflections, as Figure 9 illustrates.
Generalizing a construction of Edelman in type𝐴 [29], Armstrong [2] defined the Fuss–Catalan

analogue of noncrossing partitions to be 𝑘-multichains 𝜋1 ⩽𝑇 ⋯ ⩽𝑇 𝜋𝑘 in NC(𝑊, 𝑐), recovering
NC(𝑊, 𝑐) for 𝑘 = 1. For 0 ⩽ 𝑖 ⩽ 𝑘, define 𝛿𝑖 ∶= 𝜋−1

𝑖
𝜋𝑖+1, with the convention that 𝜋0 = 𝑒 and

𝜋𝑘+1 = 𝑐. Factoring each 𝛿𝑖 into reflections using ⩽𝐜 as above, it is convenient to think of these
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38 of 50 GALASHIN et al.

multichains as a factorization of 𝑐 into colored reflections (with colors 0, 1, … , 𝑘 corresponding to
the factors 𝛿0, 𝛿1, … , 𝛿𝑘), such that the reflections in any color increase with respect to ⩽𝐜.

Definition 8.4 [2, 82]. Given 𝑘 ∈ ℕ, we write

NC(𝑘)(𝑊, 𝐜) ∶=

⎧⎪⎨⎪⎩((𝑡1, 𝑘1), (𝑡2, 𝑘2), … , (𝑡𝑟, 𝑘𝑟)) ∈ (𝑇 × ℤ)𝑟

||||||||
𝑡1𝑡2⋯ 𝑡𝑟 = 𝑐,

0 ⩽ 𝑘1 ⩽ ⋯ ⩽ 𝑘𝑟 ⩽ 𝑘, and
if 𝑘𝑖 = 𝑘𝑖+1, then 𝑡𝑖 ⩽𝐜 𝑡𝑖+1

⎫⎪⎬⎪⎭.
The 12 elements of NC(2)(𝔖3, (𝑠1, 𝑠2)) are illustrated in Figure 8(middle).

8.1.3 Clusters

The third noncrossing family we review are the clusters, introduced in the Coxeter–Catalan level
of generality by Fomin and Zelevinsky [32] and extended to the Fuss–Catalan level in several
different guises, by several different authors [30, 82, 87].We present a definition using the notation
of Section 4. Let 𝐜𝐰𝑘

◦ (𝐜) be the 𝐜-sorting word of 𝐜𝐰
𝑘
◦ (which is just 𝐜 followed by the 𝐜-sorting

word of𝐰𝑘
◦ ).

Definition 8.5 [20, 30, 82]. We write

Clus(𝑘)(𝑊, 𝐜) ∶= {𝑤𝑘
◦ -subwords 𝐮 of 𝐜𝐰

𝑘
◦ (𝐜) satisfying e𝐮 = 𝑟}.

The 12 elements 𝐮 ∈ Clus(2)(𝔖3, (𝑠1, 𝑠2)) and their sets inv𝑒(𝐮) are illustrated in Figure 8(right).
Since 𝑤◦ is an involution, 𝑤𝑘

◦ must be either 𝑒 or 𝑤◦, depending on the parity of 𝑘. Thus,
Clus(𝑘)(𝑊, 𝐜) contains all𝑤𝑘

◦ -subwords of 𝐜𝐰
𝑘
◦ (𝐜), not necessarily distinguished, that skip exactly

𝑟 letters. These conditions are very similar to the ones inDefinition 1.1, andwemake this similarity
precise in the proof of Theorem 8.8 below.

8.1.4 Bijections and enumeration

Recall that previously, the three families of noncrossing objects defined in Sections 8.1.1–8.1.3 had
been enumerated case by case, using combinatorial models and computer calculations:

Theorem 8.6 [61, 82]. For all 𝑘 ∈ ℕ, non-uniform arguments show that

|||Sort(𝑘)(𝑊, 𝐜)
||| = |||NC(𝑘)(𝑊, 𝐜)

||| = |||Clus(𝑘)(𝑊, 𝐜)
||| = Cat𝑘ℎ+1(𝑊).

Our main result in this section is their uniform enumeration.

Theorem 8.7 [61, 82].We have the following uniform bijections:

∙ 𝐰 ↦ skip𝐜(𝐰) is a bijection Sort(𝑘)(𝑊, 𝐜)
∼
N→ NC(𝑘)(𝑊, 𝐜).

∙ 𝐮 ↦ inv𝑒(𝐮) is a bijection Clus(𝑘)(𝑊, 𝐜)
∼
N→ NC(𝑘)(𝑊, 𝐜).
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Mch+1 NC(1)(W, c)

s1 s2 s1 s2 s1 s2 ¨(12) ¨(23) ˙(12), ˙(23)
)

s1 s2 (23) s2 s1 s2 ¨(13) s2 (23), ˙(13)
)

s1 (13) s1 s2 s1 ¨(12) s1 s2 (13), ˙(12)
)

(12) s2 s1 s2 s1 s2 s1 ¨(23) (12), ˙(23)
)

(12) (23) s1 s2 s1 s2 s1 s2 (12), (23)
)

F IGURE 10 For𝑊 = 𝔖3 and 𝐜 = (𝑠1, 𝑠2), the bijection between𝐜ℎ+1 and NC(1)(𝑊, 𝐜). As usual, we
replace the positions 𝑖 where 𝑢𝑖 = 𝑒 with the corresponding colored reflection in inv𝑒(𝐮).

In particular, arguments uniform for all Coxeter groups𝑊 show that

|||Sort(𝑘)(𝑊, 𝐜)
||| = |||NC(𝑘)(𝑊, 𝐜)

||| = |||Clus(𝑘)(𝑊, 𝐜)
|||.

See Figure 8 for an example.

8.2 Rational noncrossing partitions

Assuming Theorem 8.7, we prove that𝐜𝑘ℎ+1 naturally forms a noncrossing Fuss–Catalan family
by giving a uniform bijection from its elements to noncrossing partitions. This implies that the
more general sets𝐜𝑝 should be considered rational noncrossing families.

Theorem 8.8. Fix 𝑘 ∈ ℕ. Then the map 𝐮 ↦
(
(𝑡, 𝑖) ∶ (𝑡, 2𝑖) ∈ inv𝑒(𝐮)

)
is a uniform bijection

between the sets𝐜𝑘ℎ+1 and NC(𝑘)(𝑊, 𝐜).

Proof. Observe that 𝑤2
◦ = 𝑒 in𝑊 and𝐰2

◦ = 𝐜ℎ in 𝐁+
𝑊
. In particular, the 𝐜-sorting word for 𝐜𝐰2𝑘

◦

is just 𝐜𝐰2𝑘
◦ (𝐜) = 𝐜𝑘ℎ+1. By Definition 8.5, Clus(2𝑘)(𝑊, 𝐜) consists of 𝑒-subwords of 𝐜𝑘ℎ+1 that

skip exactly 𝑟 letters. Therefore, by Proposition 4.4,𝐜𝑘ℎ+1 is exactly the subset of Clus
(2𝑘)(𝑊, 𝐜)

consisting of those subwords 𝐮 such that each colored reflection in inv𝑒(𝐮) has even color.
By Theorem 8.7, the map 𝐮 ↦ inv𝑒(𝐮) is a bijection Clus(2𝑘)(𝑊, 𝐜)

∼
N→ NC(2𝑘)(𝑊, 𝐜). There-

fore, by Definition 8.4, 𝐜𝑘ℎ+1 is in bijection with sequences
(
(𝑡1, 2𝑘1), (𝑡2, 2𝑘2), … , (𝑡𝑟, 2𝑘𝑟)

)
satisfying

∙ 𝑡1𝑡2⋯ 𝑡𝑟 = 𝑐,
∙ 0 ⩽ 𝑘1 ⩽ ⋯ ⩽ 𝑘𝑟 ⩽ 𝑘, and
∙ 𝑡𝑖 ⩽𝐜 𝑡𝑖+1 whenever 𝑘𝑖 = 𝑘𝑖+1.

Such sequences are in bijection withNC(𝑘)(𝑊, 𝐜) by “halving the colors,” that is, by the map that
sends

(
(𝑡1, 2𝑘1), (𝑡2, 2𝑘2), … , (𝑡𝑟, 2𝑘𝑟)

)
↦
(
(𝑡1, 𝑘1), (𝑡2, 𝑘2), … , (𝑡𝑟, 𝑘𝑟)

)
. □

The bijection of Theorem 8.8 is illustrated in Figure 10 for𝑊 = 𝔖3 and 𝑘 = 1. For𝑊 = 𝔖3 and
𝑘 = 2, the 12 elements of𝐜2ℎ+1 are illustrated in Figure 11; compare with Figure 8(right).
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Mc2h+1

s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2
....

(12)
....

(23)
s1 s2 s1 s2 s1 s2 s1 s2 ¨(23) s2 s1 s2

....
(13) s2

s1 s2 s1 s2 s1 s2 s1 ¨(13) s1 s2 s1
....

(12) s1 s2

s1 s2 s1 s2 s1 s2 ¨(12) s2 s1 s2 s1 s2 s1
....

(23)
s1 s2 s1 s2 s1 s2 ¨(12) ¨(23) s1 s2 s1 s2 s1 s2

s1 s2 (23) s2 s1 s2 s1 s2 s1 s2 s1 s2
....

(13) s2

s1 s2 (23) s2 s1 s2 ¨(13) s2 s1 s2 s1 s2 s1 s2

s1 (13) s1 s2 s1 s2 s1 s2 s1 s2 s1
....

(12) s1 s2

s1 (13) s1 s2 s1 ¨(12) s1 s2 s1 s2 s1 s2 s1 s2

(12) s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1
....

(23)
(12) s2 s1 s2 s1 s2 s1 ¨(23) s1 s2 s1 s2 s1 s2

(12) (23) s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

F IGURE 11 For𝑊 = 𝔖3 and 𝐜 = (𝑠1, 𝑠2), the 12 elements of𝐜2ℎ+1 . As usual, we replace the positions 𝑖
where 𝑢𝑖 = 𝑒 with the corresponding colored reflection in inv𝑒(𝐮).

8.3 Cambrian rotation

Recall that 𝐜 = (𝑠1, 𝑠2, … , 𝑠𝑟). Let 𝐜′ = (𝑠2, … , 𝑠𝑟, 𝑠1). The Cambrian rotation is a bijection
Sort(𝑘)(𝑊, 𝐜)

∼
N→ Sort(𝑘)(𝑊, 𝐜′) (equivalently, NC(𝑘)(𝑊, 𝐜)

∼
N→ NC(𝑘)(𝑊, 𝐜′) or Clus(𝑘)(𝑊, 𝐜)

∼
N→

Clus(𝑘)(𝑊, 𝐜′)) satisfying certain properties that enable inductive arguments; see [82] for
background. Cambrian rotation is a distinguishing feature of noncrossing families [5]. The goal
of this subsection is to develop an analogous bijection for maximal 𝐜𝑘ℎ+1-Deograms.

Lemma 8.9. Let 𝐰 = (𝑠1, 𝑠2, … , 𝑠𝑚) be a word and let 𝐰′ ∶= (𝑠2, … , 𝑠𝑚, 𝑠1). Then, there is a
bijection

𝑒,𝐰

∼
N→ 𝑒,𝐰′ , (8.1)

preserving the statistics d(⋅), e(⋅). In particular, it restricts to a bijection𝐰

∼
N→ 𝐰′ .

Proof. We describe the bijection. Choose a word 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) ∈ 𝑒,𝐰 . Let 𝑠 = 𝑠1 and 𝐮′ ∶=

(𝑢2, … , 𝑢𝑚, 𝑢1).
Assume that 𝑢1 = 𝑒. Then, we claim that 𝐮′ is distinguished, that is, that 𝐮′ ∈ 𝑒,𝐰′ . Indeed,

we have 𝑢′
(𝑖)

= 𝑢(𝑖+1) for all 0 ⩽ 𝑖 ⩽ 𝑚 − 1, and moreover 𝑢′
(𝑚−1)

= 𝑢′
(𝑚)

= 𝑒, which implies 𝐮′ ∈

𝑒,𝐰′ .
Now assume that 𝑢1 = 𝑠. We first treat the case where 𝑊 = 𝔖2, where we have 𝑠𝑖 = 𝑠 for all

𝑖 ∈ [𝑚]. Since𝑢1 = 𝑠, we have 𝑢2 = 𝑠 because𝐮 is distinguished. Thus,𝐮 = (𝑠, 𝑠, 𝑢3, … , 𝑢𝑚), which
we send to 𝐮′′ ∶= (𝑢3, … , 𝑢𝑚, 𝑠, 𝑠). The map 𝐮 ↦ 𝐮′′ is the desired bijection (8.1).
Finally, we treat the general case. Let

𝐽(𝐮, 𝑠) ∶= {𝑗 ∈ [𝑚] ∣ 𝑠
𝑢(𝑗)
𝑗

= 𝑠}

and 𝐽(𝐮′, 𝑠) ∶= {𝑗 ∈ [𝑚] ∣ 𝑠
𝑢′
(𝑗)

𝑗
= 𝑠}.
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 41 of 50

For 𝑗 ∈ 𝐽(𝐮, 𝑠), let 𝑘𝑗 be the color of the corresponding reflection in inv(𝐮) defined by (4.1). For
𝑗 ∈ 𝐽(𝐮′, 𝑠), we similarly write 𝑘′

𝑗
for the corresponding color.

Note that 1 ∈ 𝐽(𝐮, 𝑠) and𝑚 ∈ 𝐽(𝐮′, 𝑠). We thus have 𝐽(𝐮, 𝑠) = {1 = 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑚̄}, and we
claim that similarly, 𝐽(𝐮′, 𝑠) = {𝑗′

1
< ⋯ < 𝑗′𝑚̄ = 𝑚}, where 𝑗′

𝑖
= 𝑗𝑖+1 − 1 for 𝑖 ∈ [𝑚̄ − 1]. Indeed,

this holds because the reflections in inv(𝐮′) are obtained from those in inv(𝐮) by conjugation by
𝑠. Under such conjugation, the color changes if and only if the reflection itself was equal to 𝑠, in
which case the color decreases by one. In other words, we have 𝑘′

𝑗𝑖−1
= 𝑘𝑗𝑖 − 1 for 𝑖 ∈ [2, 𝑚̄].

Consider the word 𝐰̄ ∶= (𝑠, 𝑠, … , 𝑠), where 𝑠 occurs 𝑚̄ times, and the subword 𝐮̄ ∶= (𝑢̄1, … , 𝑢̄𝑚̄)

given by 𝑢̄𝑖 = 𝑒 if 𝑢𝑗𝑖 = 𝑒 and 𝑢̄𝑖 = 𝑠 otherwise. Let 𝐮̄′′ ∶= (𝑢̄′′
1
, … , 𝑢̄′′𝑚̄) be the result of applying the

above bijection for𝔖2 to 𝐮̄.
Let 𝐮′′ = (𝑢′′

1
, 𝑢′′

2
, … , 𝑢′′𝑚) be the subword of𝐰 defined as follows. For 𝑗 ∉ 𝐽(𝐮′, 𝑠), set 𝑢′′

𝑗
∶= 𝑢′

𝑗
.

For 𝑗 = 𝑗′
𝑖
∈ 𝐽(𝐮′, 𝑠), let 𝑢′′

𝑗
∶= 𝑒 if 𝑢̄′′

𝑖
= 𝑒 and 𝑢′′

𝑗
∶= 𝑤′

𝑗
otherwise. Once again, one checks that

the map 𝐮 ↦ 𝐮′′ gives the desired bijection. □

Let 𝐜′ ∶= (𝑠2, … , 𝑠𝑟, 𝑠1). Then, the lemma above gives a bijection 𝐜𝑘ℎ+1
∼
N→ (𝐜′)𝑘ℎ+1 . This

bijection has the following property: It sends an element 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) ∈ 𝐜𝑘ℎ+1 to an
element 𝐮′ = (𝑢′

1
, 𝑢′

2
, … , 𝑢′𝑚) ∈ (𝐜′)𝑘ℎ+1 satisfying 𝑢′𝑚 = 𝑢1.

8.4 Cambrian and Deodhar recurrences

Our next goal is to show that the subset of 𝐮 ∈ 𝐜𝑘ℎ+1 satisfying 𝑢1 = 𝑒 is in bijection with
(𝐜′′)𝑘ℎ′′+1 , where 𝐜

′′ = (𝑠2, … , 𝑠𝑟) is a Coxeter word for the parabolic subgroup𝑊⟨𝑠1⟩ of𝑊 gen-
erated by 𝑆 ⧵ {𝑠1}. This will match the Cambrian recurrence on noncrossing families described in
[82, Section 4].
Let 𝑐′′ ∶= 𝑠1𝑐 be the associated Coxeter element of𝑊⟨𝑠1⟩, and let ℎ′′ be the Coxeter number of

𝑊⟨𝑠1⟩. Suppose that 𝐮 ∈ 𝐜𝑘ℎ+1 starts with 𝑢1 = 𝑒. Let
(
(𝑡1, 𝑘1), (𝑡2, 𝑘2), … , (𝑡𝑟, 𝑘𝑟)

)
∈ NC(𝑘)(𝑊, 𝐜)

be the 𝑘-noncrossing partition assigned to 𝐮 under the bijection of Theorem 8.8. Then, we have
(𝑡1, 𝑘1) = (𝑠1, 0). By [82, Proposition 4.3], the subset of NC(𝑘)(𝑊, 𝐜) that satisfies (𝑡1, 𝑘1) = (𝑠1, 0)

is in bijection with the set NC(𝑘)(𝑊⟨𝑠1⟩, 𝐜′′), which is itself in bijection with (𝐜′′)𝑘ℎ′′+1 by
Theorem 8.8.
The Cambrian recurrence on𝐜𝑘ℎ+1 is the modification of the Cambrian recurrence that per-

forms the map from 𝐜𝑘ℎ+1 to (𝐜′)𝑘ℎ+1 from (8.1) when a subword 𝐮 ∈ 𝐜𝑘ℎ+1 does not start
with 𝑢1 = 𝑒, and performs the map above from𝐜𝑘ℎ+1 to(𝐜′′)𝑘ℎ′′+1 when 𝐮 starts with 𝑢1 = 𝑒.

Remark 8.10. To perform the Cambrian recurrence on 𝐰 , we split the set of all 𝐮 ∈ (𝐜)𝑘ℎ+1

into subsets satisfying 𝑢1 = 𝑒 and 𝑢1 = 𝑠1. This same split — without the descent to the parabolic
subgroup made possible by the reflection-factorization properties of a Coxeter element — occurs
in the Deodhar recurrence (Proposition 4.11). Thus, the Deodhar recurrencemay be seen as a gen-
eralization of the Cambrian rotation from collections of Fuss–Catalan objects to the more general
sets𝑘

𝑢,𝐰 .

8.5 Rational noncrossing parking functions

In the first four sections of [29], Edelman proposed a 𝑘-generalization of type 𝐴 noncrossing
partitions,whichwas subsequently generalized to all Coxeter groups byArmstrong [2]. In [29, Sec-
tion 5], Edelman proposed a definition he called “noncrossing 2-partitions.” Inspired by a related
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42 of 50 GALASHIN et al.

construction of nonnesting parking functions, Armstrong, Reiner, and Rhoades independently
proposed a generalized version for all Coxeter groups in [3]. Rhoades gave a Fuss generalization
in [67].
Because of the 𝑣-twisting (cf. Definition 1.7), we find it convenient to pass from our canonical

factorization definition of NC(𝑘)(𝑊, 𝐜) back to 𝑘-multichain language. We refer the reader back
to Section 8.1.2 for a discussion of this equivalence. Given 𝜋 =

(
𝜋1 ⩽𝑇 𝜋2 ⩽𝑇 ⋯ ⩽𝑇 𝜋𝑘

)
with 𝜋𝑖 ∈

NC(𝑊, 𝑐), let𝑊⟨𝜋1⟩ ∶= ⟨𝑡 ∶ 𝑡 ⩽𝑇 𝜋1⟩ be the reflection subgroup of𝑊 generated by the reflections
below 𝜋1 in absolute order. By [27, Corollary 3.4(ii)] (see Lemma 8.12 below), every coset 𝑣𝑊⟨𝜋1⟩
has a unique element 𝑧 of minimal length, characterized by the property that inv(𝑧−1) has no
reflections belonging to𝑊⟨𝜋1⟩. Here, for 𝑢 ∈ 𝑊, we set

inv(𝑢) ∶=
{
𝑠
𝑢(1)
1

, 𝑠
𝑢(2)
2

, … , 𝑠
𝑢(𝑚)
𝑚

}
,

where 𝑚 = 𝓁(𝑢) and 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚) is any reduced word for 𝑢. In other words, inv(𝑢) is
obtained from inv(𝐮) by forgetting the colors and the order of the reflections. We write 𝑊⟨𝜋1⟩
to denote the set of minimal coset representatives of𝑊∕𝑊⟨𝜋1⟩.
Definition 8.11 [3, 67]. The (𝑊, 𝑘)-noncrossing parking functions are

Park(𝑘)(𝑊, 𝑐) ∶=
{
(𝑣, (𝜋1 ⩽𝑇 𝜋2 ⩽𝑇 ⋯ ⩽𝑇 𝜋𝑘))

||| 𝜋𝑖 ∈ NC(𝑊, 𝑐), 𝑣 ∈ 𝑊⟨𝜋1⟩}.
For 𝑊 = 𝔖3, the 16 (𝑊, 1)-noncrossing parking functions (𝑣, 𝜋1) in Park(1)(𝔖3, 𝑠1𝑠2) are

illustrated in the right column of Figure 12.
In the rest of this subsection, we show that the noncrossing parking functions of Definition 8.11

are in uniform bijection with the parking objects of Definition 1.7.

Lemma 8.12 [27, Corollary 3.4(ii)]. Let 𝑣 ∈ 𝑊 and 𝜋 ∈ NC(𝑊, 𝑐). Then 𝑣 ∈ 𝑊⟨𝜋⟩ if and only if we
have 𝑡 ∉ inv(𝑣−1) for all 𝑡 ⩽𝑇 𝜋.

Example 8.13. For 𝑊 = 𝔖4 and 𝜋 = (12)(34), the minimal coset representatives in 𝑊⟨𝜋⟩ are
𝑒, 𝑠2, 𝑠1𝑠2, 𝑠3𝑠2, 𝑠1𝑠3𝑠2, 𝑠2𝑠1𝑠3𝑠2. The inverses of these permutations have inversion sets ∅, {(23)},
{(13), (23)}, {(24), (23)}, {(13), (24), (23)}, {(14), (13), (24), (23)}. The reflections 𝑡 ∈ 𝑇 satisfying
𝑡 ⩽𝑇 𝜋 are (12) and (34), which are precisely the reflections that never appear in the inversion
sets above.

It is natural to use 𝑣 ∈ 𝑊 to twist the color of the colored reflections in inv(𝐮)while preserving
the reflection itself, generalizing Section 2.3. We explain this construction in more detail. Given a
subword 𝐮 = (𝑢1, 𝑢2, … , 𝑢𝑚), recall the colored reflections 𝑡𝑗(𝐮) = (𝑠

𝑢(𝑗)
𝑗

, 𝑘𝑗) for 1 ⩽ 𝑗 ⩽ 𝑚 that we
defined in (4.1). For 1 ⩽ 𝑗 ⩽ 𝑚, set

𝑡(𝑣)
𝑗
(𝐮) ∶= (𝑠

𝑢(𝑗)
𝑗

, 𝑘′𝑗), where 𝑘′𝑗 ∶= 𝑘𝑗 +

{
1 if 𝑠

𝑢(𝑗)
𝑗

∈ inv(𝑣−1),

0 otherwise.

Write inv(𝑣)(𝐮) ∶=
(
𝑡(𝑣)
1
(𝐮), 𝑡(𝑣)

2
(𝐮), … , 𝑡(𝑣)𝑚 (𝐮)

)
and inv(𝑣)𝑒 (𝐮) for the restriction of inv(𝑣)(𝐮) to the

indices 𝑗 for which 𝑢𝑗 = 𝑒.
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RATIONAL NONCROSSING COXETER–CATALAN COMBINATORICS 43 of 50

v s1 s2 s1 s2 s1 s2 s1 s2 π1

e (12) (23) s1 s2 s1 s2 s1 s2 (123)
e s1 (13) s1 s2 s1 ¨(12) s1 s2 (13)
e s1 s2 (23) s2 s1 s2 ¨(13) s2 (23)
e (12) s2 s1 s2 s1 s2 s1 ¨(23) (12)
e s1 s2 s1 s2 s1 s2 ¨(12) ¨(23) (e)

s1 s1 (13) ¨(12) s2 s1 s2 s1 s2 (13)
s1 s1 s2 (23) s2 s1 s2 ¨(13) s2 (23)
s1 s1 s2 s1 ¨(12) s1 s2 s1 ¨(23) e

s2 (12) s2 s1 s2 ¨(23) s2 s1 s2 (12)
s2 s1 (13) s1 s2 s1 ¨(12) s1 s2 (13)
s2 s1 s2 s1 s2 s1 ¨(23) ¨(13) s2 e

s2s1 s1 s2 (23) ¨(13) s1 s2 s1 s2 (23)
s2s1 s1 s2 s1 ¨(12) s1 s2 s1 ¨(23) e

s1s2 (12) s2 s1 s2 ¨(23) s2 s1 s2 (12)
s1s2 s1 s2 s1 s2 ¨(13) ¨(12) s1 s2 e

s1s2s1 s1 s2 s1 ¨(12) ¨(23) s2 s1 s2 e

F IGURE 1 2 The 16 elements of 𝐜𝑝 (𝑊) for𝑊 = 𝔖3 and 𝐜 = (𝑠1, 𝑠2) and 𝑝 = 4, shown together with the
corresponding parking functions of Park(𝑊, 𝑐). For the wiring diagram representations, see Figure 4.

In order to state the bijection between 𝐜𝑘ℎ+1(𝑊) and Park(𝑘)(𝑊, 𝐜), we need to understand the
behavior of the twisted colored reflections of a subword. This will allow us to go between chains of
noncrossing partitions using only even colors, and certain chains of noncrossing partitions using
both even and odd colors.

Lemma 8.14. Fix 𝑣 ∈ 𝑊. Any 𝜋 ∈ NC(𝑊, 𝑐) can be uniquely factored as 𝜋 = 𝜋𝑣 ⋅ 𝜋
𝑣 , such that

∙ 𝜋𝑣, 𝜋
𝑣 ∈ NC(𝑊, 𝑐),

∙ 𝓁𝑇(𝜋𝑣) + 𝓁𝑇(𝜋
𝑣) = 𝓁𝑇(𝜋), and

∙ if 𝑡 ⩽𝑇 𝜋𝑣 , then 𝑡 ∈ inv(𝑣−1), whereas
∙ if 𝑡 ⩽𝑇 𝜋𝑣 , then 𝑡 ∉ inv(𝑣−1).

Proof. First, assume that 𝜋 = 𝑐. We argue using the theory of Reading’s Cambrian lattices [60,
61]. These Cambrian lattices are quotients of the weak order induced by the projections 𝜋𝑐

↓
∶

𝑊 → Sort(𝑊, 𝑐) and 𝜋↑
𝑐 from 𝑊 to the 𝑐-antisortable elements of 𝑊. (Recall that 𝑤 is called 𝑐-

antisortable if 𝑤𝑤◦ is 𝑐−1-sortable.) More precisely, for 𝑣 ∈ 𝑊, we define 𝜋𝑐
↓
(𝑣) is as the largest

𝑐-sortable element less than 𝑣 in weak order, while 𝜋↑
𝑐 (𝑣) is the smallest 𝑐-antisortable element

larger than 𝑣 in weak order.
Then any 𝑣 ∈ 𝑊 is contained in a unique interval [𝜋𝑐

↓
(𝑣), 𝜋↑

𝑐 (𝑣)]. The product of the lower cover
reflections for 𝜋𝑐−1

↓
(𝑣−1) in the order ⩽𝑐 defines a noncrossing partition 𝑐𝑣 ∈ NC(𝑊, 𝑐), while the

product of the upper cover reflections for𝜋↑

𝑐−1
(𝑣) in the order⩽𝑐 defines theKreweras complement

𝑐𝑣 = 𝑐−1𝑣 𝑐. (Note that here,we use the 𝑐−1-Cambrian lattice projections𝜋𝑐−1

↓
and𝜋↑

𝑐−1
instead of the
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44 of 50 GALASHIN et al.

𝑐-Cambrian lattice projections 𝜋𝑐
↓
and 𝜋↑

𝑐 , to ensure that the order of the factors in the product 𝑐 =
𝑐𝑣 ⋅ 𝑐

𝑣 use the lower cover reflections before the upper cover reflections. Using 𝜋𝑐
↓
and 𝜋↑

𝑐 would
instead result in a factorization where the product of the lower cover reflections appears after the
product of the upper cover reflections.) These 𝑐𝑣 and 𝑐𝑣 are the desired factors: Uniqueness follows
fromuniqueness of the interval, and the last two properties follow from the fact that the Cambrian
lattices form stronger partial orders than the noncrossing partition lattices [64, Proposition 8.11].
Now let 𝜋 be a general noncrossing partition with canonical EL-factorization 𝜋 = 𝑡1𝑡2⋯ 𝑡𝑎,

where 𝑡1 <𝑐 𝑡2 <𝑐 ⋯ <𝑐 𝑡𝑎. Consider the parabolic subgroup𝑊⟨𝜋⟩ of𝑊 in which 𝑡1, … , 𝑡𝑎 are the
simple reflections. (We can treat them as simple reflections because they are precisely the lower
cover reflections of some sortable element 𝑤 ∈ 𝑊.) Each element 𝑣 ∈ 𝑊 appears in some coset
of 𝑊⟨𝜋⟩, and each such coset contains a minimal representative in weak order by [39, Propo-
sition 2.1.1]. After translating by this representative, we can identify the coset with the Coxeter
group𝑊⟨𝜋⟩. In this way, we can identify 𝑣 with an element of𝑊⟨𝜋⟩. The inversions for the latter
are obtained from the inversions for 𝑣 by restricting to the reflections in 𝑊⟨𝜋⟩. If we build the
Cambrian lattices on the cosets of𝑊⟨𝜋⟩, using 𝑡1, … , 𝑡𝑎 as the simple reflections and 𝑡1𝑡2⋯ 𝑡𝑎 as
the Coxeter element, then we will have reduced to the previous case. □

Example 8.15. Continuing Example 8.13, take𝑊 = 𝔖4 and 𝑐 = 𝑠1𝑠2𝑠3 = (1234) and 𝜋 = 𝑐. This
is the Coxeter-element case of Lemma 8.14, which requires the full Cambrian lattice.

∙ For each of 𝑣 ∈ {𝑠2𝑠1𝑠3𝑠2, 𝑠1𝑠2, 𝑠1𝑠3𝑠2}, we have

𝜋𝑐−1

↓
(𝑣−1) = 𝑠2𝑠1 with lower cover reflections {(13)}

and 𝜋↑

𝑐−1
(𝑣−1) = 𝑠2𝑠1𝑠3𝑠2 with upper cover reflections {(12), (34)},

giving the factorization (1234) = (13) ⋅ (12)(34).
∙ For 𝑣 ∈ {𝑠3𝑠2, 𝑠2}, we have

𝜋𝑐−1

↓
(𝑣−1) = 𝑠2 with lower cover reflections {(23)}

and 𝜋↑

𝑐−1
(𝑣−1) = 𝑠2𝑠3 with cover reflections {(13), (34)},

giving the factorization (1234) = (23) ⋅ (134).
∙ For 𝑣 = 𝑒, we get the factorization (1234) = 𝑒 ⋅ (1234), since

𝜋𝑐−1

↓
(𝑒) = 𝜋↑

𝑐−1
(𝑒) = 𝑒

with no lower cover reflections and with the upper cover reflections {(12), (23), (34)}.

Example 8.16. Take𝑊 = 𝔖4 and 𝑐 = (1234) and𝜋 = (134), a more generic case of Lemma 8.14.
We have 𝑊⟨𝜋⟩ = ⟨(13), (34)⟩ ≃ 𝔖3. The simple reflections of 𝑊⟨𝜋⟩ are (13) and (34), and the
reflections of𝑊⟨𝜋⟩ are {(13), (14), (34)}.
∙ For 𝑣 ∈ {𝑒, 𝑠2, 𝑠3𝑠2}, we have inv(𝑣−1) ∩𝑊⟨𝜋⟩ = ∅, so

𝜋(143)
↓

(𝑣|𝑊⟨𝜋⟩) = 𝜋↑
(143)

(𝑣|𝑊⟨𝜋⟩) = 𝑒,

giving the factorization (134) = 𝑒 ⋅ (134).
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∙ For 𝑣 ∈ {𝑠1𝑠2, 𝑠1𝑠3𝑠2}, we have inv(𝑣−1) ∩𝑊⟨𝜋⟩ = {(13)}, so

𝜋(143)
↓

(𝑣|𝑊⟨𝜋⟩) = (13) with lower cover reflection (13)

and 𝜋↑
(143)

(𝑣|𝑊⟨𝜋⟩) = (13)(34) with upper cover reflection (34),

giving the factorization (134) = (13) ⋅ (34).
∙ For 𝑣 = 𝑠2𝑠1𝑠3𝑠2, we have inv(𝑣−1) ∩𝑊⟨𝜋⟩ = {(14), (13)}, so again,

𝜋(143)
↓

(𝑣|𝑊⟨𝜋⟩) = (13)

and 𝜋↑
(143)

(𝑣|𝑊⟨𝜋⟩) = (13)(34),

giving the same factorization (134) = (13) ⋅ (34) as in the previous case.

Theorem 8.17. Fix 𝑘 ∈ ℕ. Then there is a uniform bijection between the sets 𝐜𝑘ℎ+1(𝑊) and
Park(𝑘)(𝑊, 𝐜).

Proof. Any element of 𝐜𝑘ℎ+1(𝑊) =
⨆

𝑣∈𝑊 
(𝑣)

𝐜𝑘ℎ+1
belongs to 

(𝑣)

𝐜𝑘ℎ+1
for some 𝑣. Now, (𝑣)

𝐜𝑘ℎ+1

is exactly the subset of Clus(2𝑘)(𝑊, 𝐜) of those subwords 𝐮 for which each colored reflection in
inv(𝑣)𝑒 (𝐮)has even color. Since applying 𝑣 to a colored reflection (𝑡, 𝑘) increases 𝑘 by one if and only
if 𝑡 ∈ inv(𝑣), we deduce that(𝑣)

𝐜𝑘ℎ+1
is in bijection with (2𝑘 + 1)-tuples of noncrossing partitions

𝑒 ⩽𝑇 𝜋0 ⩽𝑇 𝜋1 ⩽𝑇 ⋯ ⩽𝑇 𝜋2𝑘 = 𝑐 such that:

∙ if 𝑡 ⩽𝑇 𝜋−1
𝑖−1

𝜋𝑖 and 𝑖 is odd, then 𝑡 ∈ inv(𝑣−1), whereas
∙ if 𝑡 ⩽𝑇 𝜋−1

𝑖−1
𝜋𝑖 and 𝑖 is even, then 𝑡 ∉ inv(𝑣−1).

We wish to place such tuples in bijection with the noncrossing parking functions of the form(
𝑣,
(
𝜎1 ⩽𝑇 𝜎2 ⩽𝑇 ⋯ ⩽𝑇 𝜎𝑘

))
with 𝑣 ∈ 𝑊⟨𝜎1⟩, by setting

𝜎𝑖 ∶= 𝜋2(𝑖−1) for 1 ⩽ 𝑖 ⩽ 𝑘.

Note that if 𝑡 ⩽𝑇 𝜋0, then 𝑡 ∉ inv(𝑣−1), so 𝑣 is a minimal coset representative of𝑊⟨𝜎1⟩ = 𝑊⟨𝜋0⟩ by
Lemma 8.12. Thus, the map from tuples to noncrossing parking functions is well defined.
To see that themap is a bijection, apply Lemma 8.14 to each factor 𝜎−1

𝑖
𝜎𝑖+1 in succession.Work-

ing on colors 𝑖 = 1, 2, … ,𝑚, we use the reflections 𝑡 ⩽𝑇 𝜎𝑖 that are also in inv(𝑣−1) to split each
noncrossing partition 𝜎−1

𝑖
𝜎𝑖+1 into a noncrossing partition in the odd color 2𝑖 − 3 and one in the

even color 2𝑖 − 2, which become the factors of the element in 
(𝑣)

𝐜𝑘ℎ+1
. By further factoring the

noncrossing partitions 𝑐𝑣 and 𝑐𝑣 uniquely into <𝑐-increasing products of reflections, as in Sec-
tion 8.1.2, we construct the inv𝑣𝑒 sequence for the subword in

(𝑣)

𝐜ℎ+1
with no reflections of color

0. So, the product of the reflections with twisted color 2 is 𝑐 itself. As we have now identified the
colored reflections in inv𝑣𝑒 , we can reconstruct the subword itself using Remark 4.6. □

Example 8.18. Continuing Example 8.15, we illustrate Theorem 8.17 by using Lemma 8.14 to
reconstruct the subwords in

(𝑣)

𝐜ℎ+1
corresponding to the noncrossing parking functions

(
𝑣,
(
𝑒
))
.
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∙ For 𝑣 ∈ {𝑠2𝑠1𝑠3𝑠2, 𝑠1𝑠2, 𝑠1𝑠3𝑠2}, we need to put (13) in color 1, whereas we need to put (12), (34)
in color 2 so that after twisting, all reflections have color 2. Using Remark 4.6, we obtain

(𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2, 𝑠3, 𝑠1,
̇(13), ̈(12), 𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2,

̈(34)).

∙ For 𝑣 ∈ {𝑠3𝑠2, 𝑠2}, we need to put (23) in color 1 and (13), (34) in color 2. We obtain

(𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2,
̇(23), 𝑠1, 𝑠2, 𝑠3,

̈(13), 𝑠2,
̈(34)).

∙ For 𝑣 = 𝑒, we put all reflections (12), (23), and (34) in color 2, so that

(𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠2, 𝑠3,
̈(12), ̈(23), ̈(34)).

Example 8.19. For a larger illustration of Theorem 8.17, take𝑊 = 𝔖6 and 𝑐 = (123456) and𝑚 =

1. Fix 𝑣 = 𝑠5𝑠2𝑠3𝑠4𝑠2𝑠3 ∈∈ 𝑊⟨(136)⟩, and consider the noncrossing parking function (𝑣, ((136))).
First, inv(𝑣−1) = {(34), (24), (35), (25), (45), (36)}. The noncrossing partition (136) corre-

sponds to the factorization into noncrossing partitions 𝑐 = 𝜋0 ⋅ 𝜋1, where 𝜋0 = (136) and 𝜋1 =

(12)(345). To each of 𝜋0 and 𝜋1, we apply Lemma 8.14:

∙ Since 𝑣 is a minimal coset representative of𝑊⟨(136)⟩, we have inv(𝑣−1) ∩𝑊⟨𝜋0⟩ = ∅. Thus, we
put (13), (36) in color 0.

∙ Since inv(𝑣−1) ∩𝑊⟨𝜋1⟩ = {(34), (35), (45)}, we have

𝜋(12)(354)
↓

(𝑣|𝑊⟨𝜋1⟩) = 𝜋↑
(12)(354)

(𝑣|𝑊⟨𝜋1⟩) = (34)(45)(34)

in 𝑊⟨𝜋1⟩, with lower cover reflections (34), (45) and upper cover reflection (12), giving the
factorization (12)(345) = (345) ⋅ (12). Thus, we put (34), (45) in color 1 and (12) in color 2.

We can finally reconstruct the corresponding subword of 𝐜7 using Remark 4.6:

(𝑠1, (13), 𝑠3, 𝑠4, (36),

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5,

𝑠1, 𝑠2, 𝑠3, 𝑠4,
̈(12),

𝑠1,
̇(34), 𝑠3, 𝑠4, 𝑠5,

̇(45), 𝑠2, 𝑠3, 𝑠4, 𝑠5,

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5,

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5).
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