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2 0f 50 | GALASHIN ET AL.

1 | INTRODUCTION
1.1 | Rational W-Catalan numbers and W-nonnesting combinatorics

The Catalan number

1 2n 1 2n+1
Cat, := =
n+1l\n 2n+1 n
famously counts Dyck paths with 2n steps. More generally, if p is a positive integer coprime to

n, then the rational Catalan number Cat, , := L (* Z") counts rational Dyck paths: the lattice

p+n

paths in a p X n rectangle that stay above the diagonal [4, 12]. For instance, Figure 1 shows that
Cats ; = 7. Taking p = n + 1 recovers the classical case: Cat, ,,; = 2n1+1 (2";1) = Cat,,.

Rational Dyck paths admit several generalizations that depend uniformly on an irreducible

finite Weyl group W:

» for p = h + 1, where h is the Coxeter number of W, one can take antichains in the positive root
poset or dominant regions of the Shi arrangement [66, 74];

» for p = kh + 1, one can take certain k-tuples of roots that encode dominant regions of the k-Shi
arrangement [6, 7]; and

+ for any p coprime to h, one can take coroots inside a certain p-fold dilation of the fundamental
alcove [21, 40, 43, 73, 76, 83, 86].

These generalizations are collectively known as nonnesting objects, because when W is the
symmetric group €, and p = n + 1, they admit natural bijections to the classical nonnesting
partitions of n.

Henceforth, all reflection groups are finite, real, and irreducible. Let W be a Weyl group of rank
r and Coxeter number h. (If W = &,, thenr = n — 1 and h = n.) For any integer p coprime to A,
the rational W-Catalan numbers [40] are given by

r
_YrPte
Catp(W) = H 1

i=1 i

where the numbers d; are integers known as the degrees of W, and the numbers e; = d; — 1 are
known as the exponents of W. If W = @, then d; =i + 1 and ¢; = i, giving Cat,(&,) = Cat,, ,.
Together, [40, Theorem 7.4.2] and [83, Lemma 8.2] give a uniform proof that the families of
nonnesting objects above are counted by Cat,(W).

For an arbitrary Coxeter group W (in fact, for any well-generated complex reflection group)
with Coxeter number & and p coprime to h, [34] extend the definition above to

.
L D + (pe; mod h)
Catp(W) = H d—

i=1 1

il

11)

FIGURE 1 The rational Dyck paths counted by Cat, ;.
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RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 3 of 50

If W is a Weyl group, then multiplication by p permutes the residues of the exponents modulo h
by [79, Proposition 4.7] and [82, Proposition 8.1.2], so the new definition of Cat, (W) specializes to
the previous one. In the generality of Coxeter groups, however, a uniform definition of nonnesting
objects has not been found.

1.2 | Rational W-noncrossing combinatorics

The Catalan numbers Cat,, count many other objects beyond Dyck paths — in particular, they
also count the noncrossing partitions of n. If p = kh + 1, then several families of noncrossing
objects counted by Cat,(W) can be defined uniformly for any finite Coxeter group W, including
W -noncrossing partitions [2, 9, 10, 66], generalizations of cluster exchange graphs for finite-type
cluster algebras [20, 30, 32], and Coxeter-sortable elements [61, 82]. The W-noncrossing partitions
can even be defined for well-generated complex reflection groups.

These families are of a very different nature from the nonnesting objects of Section 1.1. They
are defined beyond crystallographic reflection groups, their definition depends on the choice
of a Coxeter element, and they satisfy a recursive property called the Cambrian recurrence.
However:

(1) For any W, the uniform definition of rational noncrossing families for arbitrary p coprime to
h has been an open problem for roughly a decade.

(2) For any of the kinds of noncrossing families above, the proof of their uniform enumeration by
Cat,(W) for all W has been an open problem since their definition.

For further discussion of these problems, see the summary report from the 2012 American Insti-
tute of Mathematics workshop on rational Catalan combinatorics [88, Sections 1.1-1.2], as well
as [82, Chapter 8], [16, Section 7], [14, Section 8], and [4, Section 1].

We resolve both problems. Our first result is the uniform definition of a rational noncross-
ing family for any Coxeter group W (Definition 1.1). Our second result is their enumeration
(Theorem 1.4).

1.3 | Rational W-noncrossing objects

Let S C W be a system of simple reflections, and let ¢ = (s;, 55, ..., 5,) be an ordering of S, which
we will call a Coxeter word. Let p be a positive integer coprime to h, and let c? be the concatenation
of p copies of c. Thus, c? = (s, S,, ..., S, ), Where s; = 5;_, foralli > r, is a word of length m = pr.

Given asubwordu = (U, u,, ..., u,,) of c?, meaning u; € {s;, e} foreveryi € [m] :={1,2,...,mj},
we set ug;) 1= uju, - u; € W for each i. We say that u is a u-subword if u,,,) = u. We write e for
the identity of W, and say that u is distinguished [23, 57] if u(;y < u(;_y)s; in the weak order for all
i € [m], where we set u;, := e. In other words, the symbol s; must be used in w if it decreases the
length of u;_,). We write e, for the number of symbols of ¢ skipped in u: thatis, e, := |{i | u; =
e}|. The following definition is closely related to [36, Definition 9.3]; see also [47].

Definition 1.1. A distinguished subword u of c? is maximal if e, = r. The set of all maximal
distinguished e-subwords of c? is denoted as M, (W).

See Figure 2 for an example of Definition 1.1. In general, any e-subword u of c” satisfies e, > r,
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4 of 50 GALASHIN ET AL.

51 52 53 54 S1 52 53 54 51 52 53 54
s1 s2 (14) s 51 s2 (25) s 51 sy (34) (45)
$1 so (14)  sq | (23) s s (34)  s1 0 (25)  s3 S4
s1 so (14) (45) s se (24)  sa s1 sa (35)  sa
s1 (13)  s3 S 51 sa (25)  sa  (14)  s2 ss  (45)
s1 (13)  s3 S4 s1 (24)  s3 si | (12) (25)  s3 S4
(12) s ss (25) | s1 0 (14) s S4 S1 sa (35) sy
(12) (23) s S4 s1 0 (14)  s3 S4 s1 (25)  s3 S4

FIGURE 2 ForW =&, ¢ =(sy,5,,53,5,), and p = 3, each row above depicts one of the seven maximal
cP-Deograms in the set M, (W) from Definition 1.1. For each u € M., (W), we have replaced the positions i
where u; = e with the corresponding colored inversions from Remark 1.3. Compare with Figure 1.

5 55 55 55 55 55 55 5
3 33 33 33 33 33 3 3 3
1 11 11 11 11 11 11 1
(14)(25) (34) (45)  (14) (23)(34) (25)  (14) (45) (24) (35)  (13)(25) (14) (45)  (13)(24) (12)(25)  (12)(25) (14)(35)  (12)(23)(14) (25)

FIGURE 3 Wiring diagrams for Figure 2, illustrating Remark 1.3.

as we show in Corollary 4.9. Thus, the maximal distinguished e-subwords of ¢P are precisely the
distinguished e-subwords of c? that use the maximal possible number of symbols.

Remark 1.2. We can interpret maximal distinguished e-subwords of cP as certain closed walks
on the Hasse diagram of the weak Bruhat order of W, or equivalently, on the directed Cayley
graph of (W, S). The walk corresponding to an e-subword u of c? is the sequence of elements
(e= Uy Ur)s s Ugm) = e): that is, the walk starts at e, and for each letter s, it either follows the
corresponding edge of the Cayley graph or stays in place.

In this model, the distinguished condition on u becomes the condition that the walk must fol-
low the edge labeled by s; whenever it points downward in weak order. In particular, maximal
distinguished e-subwords of c? correspond to distinguished closed walks starting and ending at e
with precisely r stays.

Remark 1.3. For W = ©,, we interpret maximal distinguished e-subwords of ¢? in terms of wiring
diagrams, as illustrated in Figure 3, and call them maximal cP-Deograms. A maximal c”-Deogram
consists of n — 1 elbows % inside the wiring diagram of c? with the property that the result-
ing permutation is the identity, that is, the left and the right endpoints of each wire have the
same labels.

In this model, the distinguished condition becomes the condition that for each elbow E, the two
participating wires intersect an even number of times to the left (or equivalently, to the right) of E.
We associate to E a colored inversion (Definition 4.3). The inversion (i j) records the left endpoints
i, j € [n] of the two wires participating in E. Its color, indicated by the number of dots above (i j),
equals the number of intersection points to the left of E between the two wires participating in E.
See also [36, Figure 5] and Remark 2.12.
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RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 50f 50

Theorem 1.4. Forany (irreducible, finite) Coxeter group W of rank r and Coxeter number h, Coxeter
word ¢, and (positive) integer p coprime to h, we have

|Me»(W)| = Cat,(W).

See Figures 2 and 3 for an example of Theorem 1.4. The proof occupies Sections 4—6.

Even in the Catalan case p = h + 1, all previous results on the enumeration of W-noncrossing
objects relied on the classification of Coxeter groups. In Section 8, we show that the objects in
Mp (W) are truly noncrossing by showing that they are in natural uniform bijection with the three
families of W-noncrossing objects mentioned in Section 1.2 [2, 82]. Our work therefore provides
the first uniform proof that each of these W-noncrossing families is counted by the W-Catalan
numbers Cat(W) := Cat;,(W). In particular, our results give the first uniform proof that the
number of clusters in a finite-type cluster algebra is counted by Cat(W) [33, Theorem 1.9].

We generalize this bijection between M,(W) and the three families of W-noncrossing objects
to the Fuss-Catalan (p = kh + 1) setting. Since the zeta polynomial of the noncrossing parti-
tion lattice counts the Fuss—Catalan noncrossing partitions [19, Proposition 9], taking the leading
coefficient of k in [];_, kh;di
number of maximal chainsl in the noncrossing partition lattice [22, 54, 63].

immediately gives a new uniform proof of the formula % for the

Remark1.5. For W = &, Theorem 1.4 is comparable to [36, Proposition 9.5]. This result states that
Cat, , counts maximal f, ,, ,-Deograms, where f, .. , is a permutation (rather than a word) in
the larger symmetric group ©,,, ,. It would be interesting to give such an interpretation for other
Weyl groups W, even for classical types. See Open Problem 2.11 and Remark 2.12.

1.4 | Rational W-parking functions

Let a = (ay,a,, ..., a,) be a sequence of positive integers and (b; < b, < --- < b,)) its increasing
rearrangement. We say that a is a parking function if b; <i for all i. The number of parking
functions of length n is well known to be (n + 1)"*~! [46].

Example 1.6. For n = 3, the 16 parking functions are given by
(1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,1,3), (1,3,1), (3,1,1), (1,2,2),

(2,1,2), (2,2,1), (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

For a Coxeter group W with h, ¢, and p as above, we can use distinguished subwords to
define rational W-analogues of parking functions that we call rational noncrossing W-parking
objects. Recall from Remark 1.2 that each e-subword u of cP gives rise to a closed walk (e =
U0y U(1)s +on s Ugm) = e) in weak order, starting and ending at e. To define our parking objects,
we instead consider closed walks starting and ending at arbitrary v € W. More precisely, given
v € W, we say that a subword u of ¢? is v-distinguished if we have vu;) < vu_yys; for all i.

Definition 1.7. Given v € W, a v-distinguished subword u of c? is maximal if e, = r. Let
MS;)(W) be the set of maximal v-distinguished e-subwords of ¢, and let

Po(W) = | | MU W)
VEW
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6 of 50 | GALASHIN ET AL.

v—e—[123

3 33 3
1 11 . 1
(12)(23)

(13)(12)

2 2 2 2 2

L y y .
2 ‘\ 2
» 3 1393 253 12 303 303
/ 1 1
. .
1 !

1 1 1

1}—51:[213]

v = 3,2]

3 33 3 33 33 3
1 . 11 11 11 1
(13)(12) )(13) ) (13)

2

(12)(23) (13) (12)
. ’N "1 \ I s -, », \
23 A3 ‘ 3 363 13 203 13 203
|/ l'z J.Z 1 l/ l.l
v = 8951 = [3,1,2] U_61827231] =wo = [3,2,1]

33 3 3 3
11 1 1 1

(23) (13) 12) (12)(23) (12) (23)
2 2 2 2 2

. . .
k:s h 203 Iz:z 103 ’ 103 : 103
.3 .3 .2 .’J

1 1 1 1 1

FIGURE 4 Thel6elements of P,(W)for W = &5, ¢ = (s,,5,), and p = 4. For eachv € &, we list the
maximal (c?, v)-Deograms in the top row of the corresponding table. They are shown together with their
v-twisted colored inversions defined in Sections 2.3 and 8.5. The bottom row of each table illustrates the bijection
from Section 2.3 between the set P,... (W) and the set of labeled noncrossing partitions. Compare with
Example 1.6 and Figure 12.

In the language of Remark 1.2, each element u € P_,(W) gives rise to a distinguished closed
walk (v = vu), Vi), - , VU, = 0) with precisely r stays. We note that the same subword u may

belong to ME’;)(W) for several different v € W, in which case it gives rise to several different closed
walks. We consider these closed walks to be distinct elements of P_,(W).

Theorem 1.8. For any Coxeter group W of rank r and Coxeter number h, Coxeter word ¢, and
integer p coprime to h, we have

[Per(W)| = (1.2)

For W = ©,,, we again intepret maximal v-distinguished e-subwords of c? in terms of wiring
diagrams, and call them maximal (cP,v)-Deograms. For p = n + 1, the right-hand side of (1.2)
becomes (n + 1)"*~!. See Figures 4 and 12 for examples of Theorem 1.8.

Remark 1.9. It would be desirable to have a W-action on the set P.,(W), in the same way that
such actions exist for other constructions of parking objects [3, 67].

In work in preparation, the third and fourth authors will explain how the noncrossing ratio-
nal parking objects of the present paper enumerate the G(FF,)-orbits of the F,-points of the braid
Steinberg varieties introduced by the third author, where F, is a finite field. These varieties admit
a Springer-like W-action on their G-equivariant, compactly supported cohomology, but we do
not expect it to descend to an action on [ -rational orbits of F,-points. These varieties also have
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RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 7 of 50

G-equivariant maps to the variety of unipotent elements ¥ C G. The number of [ -points in
the fiber over an element of U'(F,) can be described using the g-Kreweras numbers studied by
Sommers [77] and Reiner-Sommers [71].

1.5 | g-Deformations and Hecke algebra traces

We will deduce Theorems 1.4 and 1.8 from stronger statements involving g-numbers: that is,
polynomials of the form [a], =1+ g+ - + q°!. Let

(1.3)

' [p + (pe; mod )],
Cat,(W;q) = )
Wi = [ —p
i=1 q
the g-analog of Catp(W) from (1.1).
For any word w = (s;, 55, ...,8,,) and u,v € W, let D(”) be the set of v-distinguished u-
subwords of w, not necessarily maximal. For any u € Ds)‘)”,

l{i € [m] | u; = e}|. We set dflv) = {i € [m] | vugy < vu;_p)} and

recall from Section 1.3 that e, :=

(v)
RO@= D (g-1regh. (1.4)
ueDfRN
We abbreviate D, , = D(e) and R, ,(q) = R(e) w(@)- The polynomials R, ,, (q) are generalizations

of the celebrated R -polynomials of Kazhdan-Lusztig [44]. In Section 4, we define R(”) w(@) bya

recurrence, and then deduce the closed formula above from an analogous recurrence for D;”‘),V
The g-deformations of Theorems 1.4 and 1.8 are as follows:

Theorem 1.10 (Corollaries 6.13 and 6.15). For any Coxeter group W of rank r and Coxeter number
h, Coxeter word ¢, and integer p coprime to h, we have

ey R, cr(q) = (g — 1) Cat,,(W; q),

@ ¥ RY.(q)=(@-1Y[pl,
vew
For W = ©,, the right-hand side of (1) equals (g — 1)"‘1Catn’p(q), where

o 1 p+n

[p+n],!
where [p+"]q = [p?qlrn‘]’q! and [m],! := [1]y[2], -+ [m],.

Example 1.11. For W = ©; and p = 4, we compute (1.4) and compare it with (2):

v=e UE{s),S;} VE{s 52,851} V=518,5;
(v) 2 4 2 2 3
(q—l)’ZRecp(q)— 1+ +@+q* +¢°) +2q(1+¢* +q*) +2¢> (1+¢%) +¢° ()

vew

= [41;.

d 'y FTOT “XFHTO9t1

sdyy woyy

sdiy) suonIpUOy) puv suwd | oy 998 “[S70Z/€0/20] U0 A1eaqrT QUIUQ Ao[1 A “AIeIqIT UEBIYOL JO ANSIOAIUN Aq £4OT1SWIA/Z] [ 170 1/10p/wOd Kofia

KopmAl

5501 suOWIWOY) 9ANER1) d]qear]dde Ay Aq POLIGACS BB ST V() 98N JO SN 10} K1eIqIT AUIUQ AO[1A UO (SLONIP



8 of 50 | GALASHIN ET AL.

The sets MSZ,)(W) are shown in Figures 4 and 12. The v = e piece of the sum recovers the rational
g-Catalan number Cat,(©3;q) = Cat;4(q) =1+ ¢* + ¢* + g¢* + ¢® of (D).

The proofs given in Sections 4-6 require some background in the representation theory of
Coxeter groups.

In Section 5, we recall that the group ring Z[W] can be deformed to a Z[q*!]-algebra called
the Hecke algebra Hy,. Every word w in the simple reflections of W gives rise to a corresponding
element T, of the Hecke algebra. We will show that R, \, (q) can be expressed in terms of the value
of T, under a certain Z[g*!]-linear trace. For general u,v € W, a similar result holds for Rffw ().

In Section 6, we compare the trace to the right-hand sides of Theorem 1.10(1-2). The key idea is
to decompose the trace as a linear combination of the characters of the simple Hy;,-modules. Using

a theorem of Springer, we deduce that for a Coxeter word c, the trace of T, can be expressed as a

P . .
linear combination of values of the form FegX(eZ” %), where y runs over the irreducible characters

of W and Feg, is a polynomial called the fake degree of y. On the other hand, using a result from
[85], we show that the right-hand side of (1) can be expressed as a linear combination of values of

the form DegX(eZ” i%), where Deg,, is a polynomial called the unipotent or generic degree of x.

Although fake degrees and generic degrees originated in the work of Deligne and Lusztig on
representations of finite groups of Lie type, they can be defined purely in terms of the structure
of Hy,. For the symmetric group &, we have Feg, = Deg, for every y. But for general Coxeter
groups, these polynomials are related by a nontrivial pairing {—, —};;; on the set of irreducible
characters Irr(W), discovered by Lusztig and known as the (truncated) exotic Fourier transform
(Theorem 6.12). Ultimately, we show that (1) is equivalent to a certain identity (6.16) for Feg,
and Deg, that follows from symmetry and block-diagonality properties of the exotic Fourier
transform: See parts (2)-(3) of Theorem 6.12.

While these properties have uniform statements for all Coxeter groups, we are only aware of
proofs that are uniform for Weyl groups. Moreover, there is no uniform definition of {—, —};, for
general Coxeter groups. See Section 6.5 for an extensive discussion of this issue.

Remark 1.12. As we explain in Section 6.5, {—, —}, arises as the restriction to Irr(W) of a pairing
{—,—} on a superset Udeg(W) 2 Irr(W). The pairing is the actual exotic Fourier transform: When
W is a Weyl group, {—, —} is a precise nonabelian generalization of the usual Fourier transform
on a finite abelian group. The name “truncated” for {—, —};;, comes from the preprint [55], which
appeared while our paper was in preparation.

1.6 | Braid Richardson varieties

Our final goal is to introduce algebraic varieties Révg‘, whose point counts over a finite field of order
q recover the g-formulas above. These varieties appear in [23, 57, 89] when w is a reduced word of
an element w € W, in which case Iiu,w becomes isomorphic to an open Richardson variety Ruw
Related constructions appear in [18, 53, 85]. See [85, Appendix B] for further references.

Let I be a field. Fix a split, connected reductive algebraic group G over F with Weyl group W.
Let BB be the flag variety of G, that is, the variety of all Borel subgroups of G. The group G acts on
B by conjugation: If ¢ € G and B € B, then we set g - B := gBg~L.

Fix a pair of opposed F-split Borel subgroups B, ,B_ € B, and set H := B, N B_. We can iden-
tify W with N;(H)/H. We write w - B, := w - B, where w € G is any lift of w € W to Ng(H).
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RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 9 of 50

For any two Borels B;, B, € B, there is a unique w such that (B;, B,) = (¢ - B,, gw - B,.) for some
w
g € G.In this case, we write B, — B, and say that (B, B,) are in relative position w. For example,

W,
B, — B_, where w, is the longest element of W, whereas B; 5 B, if and only if B, = B,.
If W = ©,,, then we can take G = GL,,(F), the general linear group of F". In this case, B is the
variety of complete flags

V.=WV,cV,c-cCcV,)eF", (1.5)

where dim V; = i for all i. The relative position of two such flags U,, V', is the unique permutation
w € &, such that dim(U; nV;) = {1 <k <i|w (k)< j} foralli,j.

For any u € W and any word w = (s;, S5, ..., S,,,) € S, not necessarily reduced, we will define
an algebraic variety ﬁu’w over F. When u = e, it is

3 s N S w,
Ry = {(Bl,...,Bm) €B"|B, 5B, = .5 B, (_B_}. (1.6)
More generally, for v € W, let
S(V) m S1 $2 Sm LW,
Re,w={(Bl,...,Bm)eB Iv-B+—>B1—>---—>Bm<—B_}. .7)

For a specific calculation, see Example 7.3. We show in Section 7 that Theorem 1.10 has the
following geometric interpretation.

Theorem 1.13. Suppose thatF = F is a finite field with q elements, where q is a prime power. Then
for any Weyl group W of rank r and Coxeter number h, Coxeter word ¢, and integer p coprime to h,
we have

Reerg)| = Reer(q) = (g — 1) Cat, (W3 q),

= Y R @ =@~ 1lpL.
veWw

(V)
|_| Re,cP ([Fq)

vew

1.7 | Future work

A natural problem would be to generalize our work to the (g, t)-level in the spirit of [36, 85],
where the point count on the left-hand side is replaced by the mixed Hodge polynomial of the cor-
responding variety, and the right-hand side is replaced by the rational (W, g, t)-analogs of Catalan
numbers and parking functions; see [34].

The dichotomy between W-nonnesting objects and W-noncrossing objects appears to be related
to a nonabelian Hodge correspondence and a P = W phenomenon for braid Richardson varieties;
see [84, Section 4.9]. We hope to return to this possibility in the future.

Another natural problem would be to extend the construction of rational noncrossing objects
to well-generated complex reflection groups, which still have a well-defined rational Catalan
number [34].
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10 of 50 GALASHIN ET AL.

FIGURE 5 The decomposition ¢"*! = w! - ¢* - w/ from Section 2.1.

2 | TYPE A COMBINATORICS

Throughout this section, let W = &,,. Recall from Remark 1.3 that we use the term maximal cP-
Deograms for the maximal distinguished e-subwords of c? in type A. As a warm-up, we discuss
the structure of maximal cP-Deograms, and give bijections between maximal c”-Deograms and
well-known Catalan objects. Recall that &, has rank r = n — 1 and Coxeter number h = n. We
concentrate on the Fuss—Catalan case p = h + 1 = n + 1 and the Fuss—-Dogoloncasep=h —1 =
n — 1. In both cases, the number of maximal cP-Deograms is given by the classical Catalan
number:

M, cn1(&,)] = Cat, and | M, n1(S,)| = Cat,_;,
where Cat, = n%l(zf) and ¢ = (51,85, - S_1)-

Throughout this section, we omit the proofs, leaving them as exercises for the interested reader.

In Section 8, we will give bijections to known Catalan and parking objects for general Coxeter
groups W and integers p = kh + 1 with k > 1.

2.1 | The case p = n + 1: binary search trees, noncrossing matchings,
and noncrossing partitions

Up to commutation moves, the braid word ¢"*! can be decomposed as ¢"*! = w’ - ¢* - w//, where

c* =5, 1 5,5,and

W= 8 (8581) o (Sp_q o+ 8581)  and W = (s, o 8587) - (S,_p o 85) S
are two reduced words for w, . In the wiring diagram of ¢"*!, w’ forms an upright triangle on the
left, while w// forms a downright triangle on the right; see Figure 5.

Following Remark 1.3, we identify elements of M, .»+1(&,,) with ways to insert n — 1 elbows
into the wiring diagram of ¢"*!. Recall that to each elbow E, we associate a colored inversion
consisting of a reflection (i j) and a color k € Z. Here, i < j are the labels of the left endpoints of
the two strands participating in E, and k is the number of times these two wires intersect to the

left of E.

Lemma 2.1. Ifc"t! = w/ - c* - W/’ as above, then in any maximal ¢"*'-Deogram w, none of the
elbows of w appears in c*. The elbows appearing in w/ all have color 0, and those appearing in w'/
all have color 2.
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c

3~ 3 3~ 3 3 3 3~ 3 3 3
1 11 11 11 X 11 NN 1
(12)(23) (12) (23) (12) (23)

(13)(12) (23)(13)
3 3 1 2. 1
TBsT (u) : z/ 1/ \3 1/ \3 \2
1 \2 2/ \%

A 0 Z\_.{ fz'\/I?*}Q.J 3 f“)\gl(gé 7\.; f’;gl(gé T : 'Kﬁé._/% 3
Hl(u). ?]::—3 1) {’” fmii 1/f.“‘ f 23 1%“ f 23 1>l(“ 1%3\2—3 [N C"‘

FIGURE 6 The bijections from Section 2.1: maximal ¢"*!-Deograms (first row), binary search trees (second
row), noncrossing partitions (third row), and noncrossing matchings (fourth row).

An example is shown in the top row of Figure 6.

2.1.1 | Binary search trees

To a maximal ¢"*!-Deogram u, we associate a binary tree Ty (u) with vertex set [n] as follows:

+ for every colored inversion (i j) of u of color 0, i is a left child of j in Tgr(u), and
» for every colored inversion (i j) of u of color 2, j is a right child of i in Tpgr(u).

A binary tree T with vertex set [n] is a binary search tree if, for any node i, the nodes in the left
(resp., right) subtree of i have labels less than (resp., greater than) i. Such objects are in bijection
with the binary trees on n unlabeled vertices; see [81, Figure 1.3].

Proposition 2.2. For each maximal ¢"*'-Deogram w, the binary tree Tygr() is a binary search
tree. The map u — Tggr(u) is a bijection between maximal ¢**'-Deograms and binary search trees
with vertex set [n].

This bijection is illustrated in the first two rows of Figure 6.

2.1.2 | Noncrossing partitions

Next, given a maximal ¢"*!-Deogram u, let 7(u) € &, be the product of the reflections corre-
sponding to the colored inversions of u of color 0, and let IT(u) be the set partition of [n] given by
the cycles of z(u).

Proposition 2.3. For any maximal ¢**'-Deogram w, the set partition TI(u) is a noncrossing par-
tition of [n]. The map u — TI(u) is a bijection between maximal c"+!-Deograms and noncrossing
partitions of [n].

An example is illustrated the third row of Figure 6. For a more general statement, see
Theorem 8.8. Noncrossing partitions appear in [81] as item 160.
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4 4 4 4 4 4 4 44m4

3%33 33 33 33 3

u 2 22 2 2 2 2 22%2

1-/\—/\/\11 11 11 11 1
(12) (13) (14)

12) (13) (14 (13) (23) (14) (14) (23) (24) (12) (14) (34) (14) (24) (34)

T;i\lltc (u) 14/2\5\4 1@4 1@4 1&4 1/2;5%4

FIGURE 7 The bijection from Section 2.2: maximal ¢"~!-Deograms (top row) versus noncrossing
alternating trees (bottom row).

Remark 2.4. Applying the construction above to the colored inversions of u of color 2 instead
yields the Kreweras complement of TI(u).

2.1.3 | Noncrossing matchings

Finally, let w/ be the wiring diagram of w, as above. Label the left endpoints of w/ by 1,2,...,n
bottom-to-top, and label the right endpoints by 1, 2, ..., 7i top-to-bottom. Let [A] := {1,2, ..., 7i}. We
shall consider noncrossing matchings (item 61 in [81]) of the set [n] LI [72] with respect to the cyclic
ordering (1,1,2,2,...,7,n). Given a maximal ¢"*!-Deogram u, let m(u) : [n] — [7] be the map
obtained by restricting u to the w/-part of ¢ *1.

Proposition 2.5. For every maximal ¢"*'-Deogram u, the map m(u) is a noncrossing matching
of [n] U [7A]. The map u — m(u) is a bijection between maximal ¢"*'-Deograms and noncrossing
matchings of [n] L [72].

See the fourth row of Figure 6.

2.2 | The case p = n — 1: Noncrossing alternating trees

We start with a structural result for maximal ¢"~!-Deograms, illustrated in the top row of Figure 7.

Lemma 2.6. In any maximal ¢"~'-Deogram w, each of the n — 1 copies of ¢ contains exactly one
elbow. All elbows of u have color 0.

Given a maximal ¢"~!-Deogram u, let Tgtc(u) be the tree with vertex set [n] containing an edge
{i, j}for each colored inversion (i j) of u. A tree T with vertex set [n] is alternating if, upon directing
each edge {i, j} of T from the smaller number i to the larger number j, we find that every vertex
is either a source or a sink. We say that T is noncrossing if we can draw T in the plane, with the
vertices on a line in increasing order and the edges in the closed half-plane above the line, such
that no two edges cross.

Proposition 2.7. For every maximal ¢"~'-Deogram u, the tree Titc(u) is a noncrossing alternat-
ing tree. The map u — Tgtc(u) is a bijection between maximal ¢"~'-Deograms and noncrossing
alternating trees with vertex set [n].

See Figure 7. Noncrossing alternating trees appear in [81] as item 62.
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RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 13 of 50

Remark 2.8. Noncrossing alternating trees have already been related to Deograms in [36,
Remark 9.7]. We do not have a direct bijection between these two classes of Deograms; see Open
Problem 2.11(3) below.

2.3 | Parking functions

Let IT={B,B,,..,B;} be a noncrossing partition of [n]. We say that the tuple I1=
{(By,L,),(By,Ly), ..., (By, L)} is a labeled noncrossing partition, or equivalently, a noncrossing
parking function, if:

* {B;,B,,..., B} is a noncrossing partition of [n],
* {L,,L,,...,L;}is a set partition of [n], which need not be noncrossing, and
* |B;)| = |L;| foralli =1,2,...,k.

In other words, to each part B; of B, we associate a set L; of | B;|-many labels, so that each element
of [n] appears as a label exactly once. Noncrossing parking functions are known to be in bijection
with parking functions; see, for example, [3, 29].

Let v € ©,,. Consider a maximal (c*1, v)-Deogram u. In Section 8.5, we associate to u a set
of v-twisted colored inversions. This means we again view u as a way to insert n — 1 elbows into
the wiring diagram of ¢"*!, and for each elbow E, we consider a colored inversion (i j) with color
k defined in the same way as above. Note that E has a bottom strand and a top strand. Writing
i (resp., j) for the left endpoint of the bottom (resp., top) strand, we need no longer have i < j.
However, since u is v-distinguished, we must have v(i) < v(j). We set the v-twisted color k’ of (i j)
tobe k ifi < jand k + 1 ifi > j, and refer to the resulting pair ((i j), k") as the v-twisted colored
inversion of u. The v-twisted colored inversions of the 16 Deograms in P..+1(©,) are shown in
Figure 4.

Lemma 2.9. For any maximal (¢"*!, v)-Deogram u, the v-twisted color of any elbow is either 0 or 2.

Let u be a maximal (c"*!, v)-Deogram. Let 7(")(u) € &, be obtained by multiplying all reflec-
tions (i j) of v-twisted color 0, and let II®V)(u) = {B;, B,, ..., B} be the set partition of [n] given by
the cycles of 7(*)(u). To each part B; of II")(u), we associate a set of labels L; := {v(j) | j € B;}. We
denote the resulting noncrossing parking function by II(u) = {(B;, L), (B,, L,), ... , (B, L)}

Proposition 2.10. For any v € &, and maximal (¢"*!, v)-Deogram u, the tuple TIv)(u) is a non-
crossing parking function. The map u — I®(u) is a bijection between Pn1(S,) and the set of
noncrossing parking functions.

See Figure 4 for an example. See Theorem 8.17 for a uniform generalization to Coxeter groups
and parameters of the form p = kh + 1.
2.4 | Open problems
We conclude this section with several purely combinatorial bijective problems that do not easily

follow from our results. Many of them are closely related to the problem of finding a bijection
between noncrossing and nonnesting objects; see [88, Problem 1].
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14 of 50 | GALASHIN ET AL.

Letf, nrp € ©,p be the permutation sendingi — i + pforl <i<nandiri—nforn+1<
i<n+p.

Open Problem 2.11. Let p, n be two coprime positive integers.

(1) Find abijection between M,(©,,) and the set of rational Dyck paths inside a p X n rectangle.

(2) Find a bijection between M,(©,) and M).(© ), where ¢ is a Coxeter word in &, and ¢’
is a Coxeter word in & ,.

(3) Find a direct bijection between M,(©,,) and the set of maximal f ), ,-Deograms of [36,
Definition 9.3].

(4) Find a bijection between P.,(©,,) and the set of rational parking functions as defined in, for
example, [1].

(5) Find a statistic stat on M»(&,,) and on P, (&,,) such that

Cat,(©,;q) = 2 ¢*# ™ and [p]g—1 = Z gstatw,
ueMcP(@n) uepcp(@n)

cf. Example 1.11. More generally, do this for an arbitrary Coxeter group W.

Remark 2.12. For Open Problem 2.11(3), one can give an indirect recursive bijection between our
maximal cP-Deograms and the maximal f ), ,, ,-Deograms of [36, Definition 9.3] by applying a
sequence of Markov moves. Namely, it is known that the braid word cP and the positive braid
lift of f pn+p give rise to the same link called the (p, n)-torus link. Moreover, these braids can be
related to each other by a sequence of positive Markov moves, that is, braid moves and positive
(de)stabilizations. The associated braid varieties change in a predictable way (cf. [18]), and one
can check that each positive Markov move induces a bijection on the associated sets of maximal
Deograms. The problem of finding a direct, nonrecursive bijection remains open.

Remark 2.13. While maximal c¢”-Deograms are in bijection with maximal f, ,,, ,-Deograms, max-
imal (c?, v)-Deograms appear to be counted by other positroid Catalan numbers [37], enumerating
maximal f, , ., ,-Deograms for other permutations f, , ,,, € &, ,. Explicitly, when n < p, the
permutation f, , ., corresponds to the bounded affine permutation f,, , ., 1= 0f, 4,0 "

where

. f p.n+p 18 the bounded affine permutation corresponding to f, ... ,, and
* U :Z— Zisan(n + p)-periodic affine permutation lifting v, sending i — v(i)for1 <i < nand
imiforn+1<ig<n+p.

In particular, when the affine permutation f, p.n+p 18 DOt bounded, we conjecture that the set of
(cP,v)-Deograms is empty.

3 | COXETER GROUPS

Let W be a finite Coxeter group: that is, a finite group for which we can find a subset S ¢ W and
a group presentation

W = <s €S| (st)"e0 = 1> 31

d 'y FTOT “XFHTO9t1

sdyy woyy

sdiy) suonIpUOy) puv suwd | oy 998 “[S70Z/€0/20] U0 A1eaqrT QUIUQ Ao[1 A “AIeIqIT UEBIYOL JO ANSIOAIUN Aq £4OT1SWIA/Z] [ 170 1/10p/wOd Kofia

KopmAl

P

P!

5501 sUOWIWOY) 9ANEa1) d]qeardde AUy Aq POLIGACS AIE SIIIIT V() 98N JO SN 10} AILIqIT AUIUQ AO[1 UO



RATIONAL NONCROSSING COXETER-CATALAN COMBINATORICS | 15 of 50

in which m(s,t) > 1 and m(s,s) = 1 for all s,t € S. We say that W is irreducible if and only if it
is not a product of smaller Coxeter groups, yet also not the trivial group. Henceforth, we always
assume that W is irreducible.

The rank of W is the integer r := |S|. We refer to elements of S as simple reflections. For an
arbitrary element w € W, the length £(w) of w is the smallest integer m > 0 such that w can be
expressed as a product of m simple reflections, possibly with repetition. There is a unique element
of maximal length called the longest element, which we denote by w, € W.Forw € W and s € S,
we write ws < w if £(ws) < £(w) and ws > w if £(ws) > £(w). The weak order on W is the partial
order formed by the transitive closure of these relations.

A (standard) Coxeter element of W with respect to S is an element formed by taking the product
over all simple reflections in some ordering. It is known that all Coxeter elements are conjugate.
Their common order is called the Coxeter number of W and denoted as h.

A (general) reflection is an element of the form s* := usu~! for some s € S and u € W. We
write T for the set of all reflections: that is,

T :={s*|(s,u) e Sx W}

The reflection length £+(w) of w is the smallest integer m > 0 such that w can be expressed as a
product of m general reflections.

Every Coxeter group admits a faithful representation on a (finite-dimensional) real vector
space V, which sends each reflection in W to a hyperplane reflection in V. Such a represen-
tation is called a reflection representation of W. After possibly passing to a quotient, we can
assume that the only W-invariant vector is zero: that is, VW = 0. In this case, dim(V) = r, and
by a theorem of Chevalley, the ring of W-invariant polynomials on V is freely generated by r
homogeneous polynomials.

The degrees of W are the degrees d; < d, < -+ < d, of these polynomials, which do not depend
on the choice of reflection representation. The exponents of W are the integers e; = d; — 1. Recall
from (1.1) that for any positive integer p coprime to h, we set

.
L p + (pe; mod h)
Catp(W) = H T,

i=1 i

where 0 < (pe; mod h) < h is the integer in that range congruent to pe; modulo A.

4 | WORDS AND SUBWORDS
4.1 | Distinguished subwords

A word is any finite sequence w = (sy, S5, ..., S,,,) of elements of S, possibly with repetition. If w =
518, -+ §,,,, then we refer to w as a w-word, and if m = £(w), then we say that it is reduced. We say
that a word c is a Coxeter word if it is an ordering of S.

A subword of w is a sequence u = (uy, Uy, ..., 4,,) in which u; € {s;, e} for all i. For any such
sequence, we set ug) = uju, - u; € W. If g,y = u, then we refer to u as a u-subword of w.

Definition 4.1[23, 57]. Letu € W. We say thata u-subword u of w is distinguished ifuy < u_q)s;
for all i. We write D,, (W) (or D, , for short) for the set of distinguished u-subwords of w. For
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16 of 50 | GALASHIN ET AL.

any u-subword u of w, we write

ey =i €m]|u; =ejl,

du = |{l (S [m] | Ug < u(i_l)}l.

We write Dﬁ’w :={u€eD,, | e, =k}. In the special case where k = min,.,, e,, we write

u,w

MywW) =M,y = Dﬁ w- When u = e, the minimal value k is given in Proposition 4.8 below;
in this case we write M, (W) := M, (W).

We give an equivalent characterization of distinguished subwords among the set of all subwords
using reflections. A colored reflection is a pair (t,k) € T X Z,, that is, a reflection ¢ decorated by a
nonnegative integer k. Given a subword u = (uy, u,, ..., u,,) of a word w = (sy, s, ..., ,,,) and an
index j € [m], we obtain a colored reflection

) 1= 0k, where o= [{1<i< 150 =50 andu gl @

For brevity in examples, we may also record the color k using k dots above the reflection. See
Remark 1.3 for an alternative description of colored reflections in type A.

Example 4.2. For W = &, = {e,s}and u = (s, 5, 5), we have t;(u) = (5,0) = s, t,(u) = (s,1) = 3,
and t;(u) = (s,2) = 5.

Definition 4.3. If w = (s, $,, ..., §,,) is @a word and u is a subword of w, then we set

inv(uw) := (¢t;(w), t,(0), ..., t,,(w)).

We write inv,(u) for the subsequence of inv(u) obtained by restricting to the indices j for which

u; = e. We also write inv(u) := (sl(”,sz(z), ...,s,,i’")) (resp., inv,(w)) for the sequence obtained

from inv(u) (resp., inv,(u)) by forgetting the colors.

Proposition 4.4. A subword u of a word w is distinguished if and only if each colored reflection in
inv,(u) has even color.

Proof. This follows directly from the definitions. O

Example 4.5. Let W = ©;, the Weyl group of type A,, ¢ = s5,5,838,, and ¢ = (s;, 55, S3, 84). Then,
| M3| = 7, which is a rational W-Catalan number for A,. The seven elements of M, are illus-
trated in Figure 2. Each element u gives a decomposition of ¢* as a product of reflections in
Ee(u). For example, the bottom row in Figure 2 decomposes ¢ = (14253) as the product
(12)(23)(14)(25).

Remark 4.6. We explain how to recover a subword u € D, , from the corresponding sequence
inv,(u) (cf. [59, Remark 3.5]). Read the letters in w = (s;, 55, ..., §,,,) from left to right. For a given
position j, tentatively set u =5 and compute (sj(”, k), where k is defined as in (4.1). If (s?<’>, k)

is the next unread colored reflection in inv,(u), then we set u ; = e. Otherwise, we keep u; = s;.
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Proposition 4.7. Let w be a w-word, and let u be a u-subword of w. Then,

H t =wu 'l

teinv,(u)

where the product is taken from left to right.

-1
Proof. Indeed, it follows from Definition 4.3 that <H ) w=u. O

t€inv, (u) t
Proposition 4.8. Letw = (sy, S5, ..., S,,,) be a w-word. Then,

Z7(w) = min e,.
T()ueD u

Proof. When w is a reduced word for w, the result follows from [28, Theorem 1.3]; see also [8].
Suppose that the word w is not reduced. Let Z(w) := min,ep,  €y. By Corollary 5.2, proved inde-
pendently in the next section, Z(w) is invariant under applying braid and commutation moves
to w. (See the proof of [68, Proposition 7.2] for an explicit bijection.) So, we may assume that
w = (W, §, s, W,) for some words w;, w, and s € S.

Letw’ := (wy,s,w,) and w” := (w;,w,). Let w’,w” € W be the corresponding Weyl group
elements. We have w = w” and w’ = wt for some reflection t € T. It follows that #(w) =
min (£(w’) + 1,£7(w”)). On the other hand, ifu” = (u;,u,) € D, ,», thenu := (u;,s,s,u,) €
D, ., satisfies e, = e,. Similarly, if u’ = (u;,x,u,) € D, ,/, where x € {e, s}, then either u :=
(u;,x,e,u,)oru := (uy,e,x,u,)is an element of D, ,, satisfying e, = e, +1. This shows Z(w) <
min (Z(w') +1,Z(w"")). Conversely, any element u € M., must be of the form (uy,s,s,u,),
(uy,s,e,u,),0r (u, e, s,u,), which implies #(w) > min (£(w’) + 1, Z(w"")). By induction, we get
£r(w) = #(w). 0

Corollary 4.9. If c is a Coxeter word and p an integer coprime to h, then

r= min e,.
ueD

e,cP

Proof. Let c € W be the Coxeter element corresponding to c. It is known that £(cP) = r [70,
Theorem 1.3]. (If W is a Weyl group, then cP is conjugate to c, but this is not necessarily true when
W is a Coxeter group that is not a Weyl group.) Applying Proposition 4.8 to w =cP and u =e
shows thate, = r for allu € M,p. O

Remark 4.10. Proposition 4.7 implies more generally that for a w-word w € S™ and u € W, we
have ¢ (wu™t) < min,ep e, However, the analog of Proposition 4.8 does not hold in this gen-
erality, as mentioned in [36, Remark 9.4]: For u = s, and w = (s,,5,, 53, 5,,5;) in ©,, we have
Cr(wu) =2, but mingep, ey =4

4.2 | The Deodhar recurrence

Henceforth, given a word w = (s, 55, ..., S,,) and s € S, we write wWs := (s}, Sy, ..., S, 5). The
distinguished subwords of w obey a certain recurrence due to Deodhar.
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Proposition 4.11 [23, Lemma 5.2]. Let w be a word, let u € W, and let s € S. Then, for all k, we
have a natural bijection

k .
Koo {Dus,w ifus < u,
u,ws — k k—1
Dus,w u Du’w ifus > u.

Proof. Let w =(81,8;,...,5,,), SE S, and Ws := (81,8,,...,5,,5). Let u be a distinguished u-
subword of ws. If us < u, then a distinguished subword of ws cannot satisty u,,) = t(;,41) = U,
so it must satisfy u,,) = us. This gives a bijection Dk~ Dk  Ifinstead us > u, then either

u,ws us,w*
Uy = us, in which case u,, 1) = u, or else u,,,y = u, in which case u,,.;) = u as well. This gives
Sacti k Pk k—1
abijection D o~ Dy LD . 1

In analogy with this Deodhar recurrence on distinguished subwords of w, we define the R-
polynomials Ry, ,(q) for all u € W as follows. For the empty word w = @, set

1 ifu=e,
R = 4.2
u’g(q) {0 ifu#e. (42)

Assume thatw = (s, $,, ..., 5, ) is a word for which the polynomials R, , (q) have already been
defined. Let s € S and ws := (s;, S5, ..., 5,1, S) as before. Set

Rysw(@) if us < u,
Ru,ws(q) = uswid . (4.3)
qRus,w(q) + (q - 1)Ru,W(Q) if us > u.

For reduced words w, the polynomials R, ,(q) were originally defined by Kazhdan-Lusztig
in [44, 45] using the Hecke algebra of W; see Proposition 5.1.

Corollary 4.12. For each word w and u € W, we have

Ryw(@= D, (q—1)uqh. (4.4)

ueD,

In particular, we also have

}zl_rﬂ mRe,w(Q) = |My| (4.5)

by Corollary 4.9.

Example 4.13. Let W = &, = {e, s}. Then, (4.3) gives

Re,@(q) = 1’
Re,(s)(q) =q-1 Rs,(s) =1,
Re,(s,s)(q) = q2 -q+1, Rs,(s,s)(Q) =q-1,

Re,(s,s,s)(Q) = (q - 1)(612 + 1)-
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On the other hand, D, ;5 = {(e, e, €), (e, 5,5), (s, 5, €)} and

Cleee) = 3, d(e,e,e) =0,
Cless) = 1, d(e,s,s) =1,
C(s,se) = 1, d(s,s,e) =1L

Therefore,

Y, (@-1)g% =(g-1)°+2(q—-1)g = (g—1)g* +1),

uEDe,(s,s,s)

verifying the first claim of Corollary 4.12.
Moreover, M) = {(e,s,5),(s,s,e)} and lim,_, ﬁRe,(s’S,s)(q) = 2 = Cat(©,), verifying the
second claim of Corollary 4.12.

4.3 | The twisted Deodhar recurrence
For any v € W, there is a generalization of Definition 4.1:

Definition 4.14. We say that a subword u of a word w is v-distinguished if vug) < vu(;_q)s; for
each i € [m]. Generalizing d,,, we write dg’) for the number of i € [m] such that vu;) < vu;_y).

We write D\\'), for the set of v-distinguished u-subwords of w. As before, we write D{'a C D'y,

for the subset of elements u such that e, = k. In the special case where k = max __ ) e,, we

write MI(JU‘)N = Dl(f,‘),;,k and MY .= M.g”&,

Proposition 4.11 generalizes to a bijection

)k Dk if vus < vu,
VST DR uDUET ifvus > vu.
)

As before, we define polynomials R
wands € S, set

Uu,w

(q) by induction. Set Rff‘)z(q) =R, »(q), and for any word

(v) .
Rysw(Q) if vus < vu
RS,)‘)Ns(q) = us(,l‘);s)/ W) ] (4.6)
qRw (@ + (@ — DR, () if vus > vu.

Then, Corollary 4.12 generalizes to the identity

()
RO@= Y (g—1rugh.

ue D&U‘)N
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5 | THE HECKE ALGEBRA
5.1 | Preliminaries

As before, W is an arbitrary finite Coxeter group and S C W is a system of simple reflections. Let
A = Z[q*']. The Hecke algebra of (W, S) is the A-algebra Hy;, freely generated by symbols T, for
w € W, modulo the relations
Tps+(@—-1DT, ifws<uw,
T,T, =4 1w (=D, pERsw (5.1)
T ifws > w,

ws

for allw € W and s € S. The goal of this section is to relate the R-polynomials R, ,(q) and their
twisted versions R;f&v(q) to the values of appropriate elements of Hy;, under certain A-linear traces.

The Hecke algebra specializes to Z[W], in the sense that there is a ring isomorphism Hy, /(g —
1) 5 Z[W] that sends T, — w for all w. It follows that H;;, forms a free A-module with basis
{Tw}wew- Furthermore, there is an involutive ring automorphism D : Hy, — Hy, defined by
D(q) = q 'and D(T,) = TL‘UL forallw € W,sowe find that {T '}, .y, forms another free A-basis

of Hy,. Note that D is not itself A-linear.

5.2 | R-polynomials via the Hecke algebra

For any word w = (8, 5, ..., 8,,), We set Ty, =T T

then Ty, =T,

, T . Note that if w is a reduced w-word,

Proposition 5.1. For any word w and v € W, we have

T,D(Ty)=q" Y RO (g g " “WT,,. (5.2)
uew

Proof. We induct on the length of w. The base case w = @ is satisfied by (4.2). Suppose that the
result holds for w = (sy, ..., §,,). To prove it for ws = (51, ..., §,,, §), Write

T,D(Tye) =q" Y Qh(qa Hg~ T,
uew

for some Q(”‘),V(q) € Z[g*']. Since D(Ty,s) = D(T,)D(T,), we compute using (5.1) that

u,
g T, D(T,,) = ¢ " T, D(T,,)D(T,)""

> QW@ g vIT,, T,

uew
= Y QU@ g T+ Y Q@ Ng g - DT,
xew xew

VXS<VLX VXS<VLX
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+ Y QU@ g IT

uew
vus>vu
2 Q@ D o+ 3 (0= DQRs(@ D I T
uew uew
vus<ou vus>ovu
+ Z QQEzzvs(q_l)q_f(UuS)Tuuy
uew
vus>vu

At the same time, by the inductive hypothesis,

g OT,DTy) = Y RO (g g 9T, = 3 R (@ g T,
uew uew

Equating coefficients, we find that

(1) If vus < vu, then Q) (™) = RV (g~D).

u,ws us,w

(2) If vus > vu, then (g — DOV (g1 + gQ“) (g™ = RV (g~ ).

Us,ws u,ws Us,w

We observe that in case (2), (vus)s < vus, so by case (1), QS’S),ws(q‘l) = R,(fzv(q‘l). Therefore, we
can rewrite case (2) as:

(2) fus > u, then Qhs(q™) = ¢ 'R, (g™ + (g7 = DRV, (g7).

By (4.6), we deduce that Q(”) (@) = R, ws(q) for all u, completing the induction. O

u,ws

For reduced w, the following result is usually taken to be the definition of the R-polynomials
R, w(Q); cf. [44, (2.0.2)].

Corollary 5.2. For any word w and u € W, we have
D(Ty) = Y Ryw(qg g ™T,.

uew

5.3 | Two traces

If A is any commutative ring and H is any A-algebra, then a trace on H is an A-linearmapt : H —
Asuch thatz(ab) = t(ba)foralla,b € H.Taking A = Z[g*']and H = Hy,lettt, 7 : Hy, — A
be the traces defined A-linearly by:

1 w=e,
H(TE) = {0 # forw e w.
w#e

We have the following identities [36, (2.10)] for u,v € W:

W) jfy = v
HTETE) = (5.3)
0 ifu #v.

So, Proposition 5.1 implies:
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Corollary 5.3. For any word w and u,v € W, we have
Riw@ = ¢ (T AT L. (54
Proof. Right-multiply both sides of (5.2) by g~ (U)T(Uu)—l to get
Rin(@™) = ¢ Ot (T, DT )T ) = 4 T (DT Ty T
Then, observe that 770D = Dot™. O

Corollary 5.4. For any word w and u € W, we have

Rw(@ =1 (T TH. (5.5)

6 | CHARACTERS OF THE HECKE ALGEBRA
6.1 | Characters of W

Let W be a Coxeter group. The goal of this section is to relate the traces from Section 5 to g-
deformed rational W-Catalan numbers, by way of character-theoretic arguments inspired by [85].
As a consequence, we will show that Theorem 1.10 follows from the existence and properties of
Lusztig’s exotic Fourier transform.

For the convenience of the reader, CHEVIE [35] code for this section appears at [38]. (Our proofs
do not rely on any code.) In type A, the objects and formulas below admit explicit interpretations
in the world of symmetric functions, as we review in Section 6.7.1.

Remark 6.1. One can also prove Theorem 1.10 directly from the results in [85] together with results
of Kalman and Gordon-Griffeth. More precisely, it follows from combining Corollary 5.4, the
W-analog of [42, Proposition 3.1], [85, Corollary 8.6.2], [85, Corollary 11], [85, Corollary 13], and
[34, Section 1.12], in that order. Below, we take a simpler approach that isolates the role of the
exotic Fourier transform to the greatest extent possible. We still rely on Gordon-Griffeth, but avoid
relying on Kalméan.

Fix a subfield Qy, C C over which every (complex) representation of W is defined. Let Irr(W) be
the set of irreducible characters of W, and let Ry, be the representation ring of W, or equivalently,
the ring generated by the class functions y : W — Qy, for y € Irr(W), under pointwise addition
and multiplication. We write (—, =)y, : Ry X Ry, — Z for the multiplicity pairing on Ry, that is,
the symmetric bilinear pairing given by the identity matrix with respect to the Z-basis {x}, cirr(w)-

We write 1 and ¢ for the trivial and sign characters of W, respectively. Explicitly, 1(w) = 1 and
e(w) = (-1)’@ forallw € W.

Let V be the reflection representation of W and ¢; : W — Qy;, be the character of the ith
symmetric power of V: that is, ¢;(w) = tr(w | Sym'(V)). Let

[Sym], = Z q's; € Ry llqll-

We assume that dim V = r, that is, that VW = {0}.
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6.2 | Charactersof H,

LetK = QW(qi%) 2 A. The K-algebra

is known to be isomorphic to K[W], the group algebra of W over K; see [39, Theorem 7.4.6]. In
particular, they have the same representation theory: Every KHy,-module of finite K-dimension
is a direct sum of simple KHy,-modules, and the simple KH;;,-modules are in bijection with the
simple K[W ]-modules. Moreover, the latter are in bijection with the irreducible representations of
W, because by construction, every representation of a finite Coxeter group can be defined over K.

Recall the definition of trace from Section 5.3. Every KHy,-module M of finite K-dimension
defines a trace y,, : KHy, — K called its character: namely,

xm(@) = trg(a | M).

Since K'Hy, is split semisimple, the character y,, determines M up to isomorphism.

We say that a trace 7 : KHy, — K is symmetrizing if the K-bilinear form on KHy, defined by
a ® b — 7(ab)isnondegenerate. In this case, the symmetrizer of 7 is the element X(7) € KHy, Qx
KHy, defined by

(1) = Zei ® fi

for any choice of ordered K-bases (e;);, (f;); for KHy, that are dual to one another under the
bilinear form. We write £(7) € KHy, for the image of &(7) under the multiplication map KHy, Qg
KHy, - KHy,. This element is central in KHy,.

We now state a version of Schur orthogonality for KHy,. Let Irr(W) be the set of charac-
ters of simple K[W]-modules up to isomorphism. Each y € Irr(W) restricts to a class function
X - W — Qp. At the same time, via the isomorphism KHy, 5K [W], we can pull back y to
the character of a simple K’Hy,-module. We denote the resulting character by x, : KHy — K.
Schur orthogonality for KHy, says that for any symmetrizing trace t : KHy, — K, we have a
decomposition

= ) L;(q, (6.1)

X EIrr(W) S: (Xq)

where s_( )(q) € K is a scalar characterized by the property that £(z) acts by y(e)s.( )(q) on any
KHy,-module with character y,. We say that s ( )(q) is the Schur element for y, with respect to .
We can view its defining property as a version of Schur’s lemma for the central element £(7) €
KHy,.

6.3 | The sign twist

Abusing notation, let 7*,7~ : KHy, — K denote the K-linear extensions of the A-linear traces
from Section 5. It turns out that both are symmetrizing. Namely, if we set

_fw)
op i=q 2Ty
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for all w € W, then (5.3) becomes equivalent to:

o(tF) = Z ol ® aill.
wew

Now we can relate the Schur elements of these traces. In what follows, we will write s*( )(q) in
place of s+ (,) for clarity. Recall that ¢ is the sign character of W.

Proposition 6.2. Forall y € Irr(W), we have s*( Xq) =8 ((ex)y)-

Proof. For all y, we have

s*(xg) = > Xg©@EDx(E).

1

X(e) wew

Since (ex)(e) = y(e) and ¢ = 1, it is enough to show that
eWw)xy(o - = (ex)g(oy)

forallw € W and y € Irr(W). Indeed, this is [39, Proposition 9.4.1(b)], once we observe that the K-

algebra involution they call yX is, in our notation, given by y* (op) = E(w)U;L forallw e W. [

6.4 | Periodic elements of H,,

Recall that w, denotes the longest element of W. The definition below is adapted from a standard
definition at the level of the positive braid monoid of W, which we will not need until Section 8.1.

Definition 6.3. For any word w = (s, ..., 5,,,), We set oy, (=0 0y -0y =4 2T,,. Wesay that

w is periodic if o)) = off: for some p, m with m # 0. In this case, we say that % is the slope of w.
Example 6.4. If c is a Coxeter word, then og is periodic of slope % for any integer p.

For all y € Irr(W), the fake and generic degrees of y are, respectively,

(x, [Sym]g)w

Feg (q) 1= Syl Syml, )y (6.2)
1,

Deg, (q) := s+(;(q)’ (6.3)
q

where in (6.2), we have extended (—, —)y, to a pairing Ry, [[q]] X Ry [[q]l = Z[[q]] by linearity. It
turns out that Feg, (q) € Z[q] and Deg, € Qy/[q]. At g = 1, both polynomials specialize to the
degree of y, that is, the Z[q*']-dimension of the underlying Hy,-module:

Feg, (1) = Deg, (1) = x(1). (6.4)
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For Fegx(l), this follows from the discussion in [79, Section 2.5], and for Degx(l), see [39,
Section 8.1.8]. In addition, s*(1,) is the Poincaré polynomial of W, which, by a formula of
Bott-Solomon [75], can be written as

r d
+(1) = rw) _TTL-9" _ 1 ‘ 65
9= 2 ' =115—¢ = e gammn, (63)

We will show that:

(1) The values of fake degrees at roots of unity are related to the values of t*(o, ) for periodic w.
(2) The values of generic degrees at roots of unity are related to g-deformed rational W-Catalan
numbers.

Recall that T C W is the set of reflections. In what follows, let N := |T| = #(w,) and

00 = 2x< ). (6.6)

teT

Note that ¢(1) = N. More generally, it turns out that c(y) € Z.
Remark 6.5. The numbers c(y) are, in fact, integers, as they are both algebraic integers and also
rational numbers (see [13, Corollaire 4.17] or [26, Corollary 4.17]). In [85], the integer c() was

called the content of y, because for W = @, it is the content of the integer partition of n cor-
responding to y. Explicitly, the content of an integer partition 1 = (4; > 1, > .-+ > 0) is the sum

@ = T2, X7,G - D).
Theorem 6.6 (Springer). If y € Irr(W) and w is a periodic word of slope v € Q, then

X4(0w) = q" W Feg, (). 6.7)
Proof. Combine [85, Corollary 9.2.2] and [79, Theorem 4.2(v)]. O

Corollary 6.7. Ifw is a periodic w-word of slope v € Q, then

How) = = > q"“WFeg,(e*)Deg, (q),
s ( q) x€lIrr(W)
o) = =L 3 g rereg (2 )Deg, (o)

+
(1‘1) xXEIrr (W)

Proof. The first identity follows from combining (6.1), (6.3), and Theorem 6.6. To get the second
identity from the first, observe that

——(EX)g(0w) = ——=(ex)q(ow) by Proposition 6.2

( )

Deg, (q)
sT(1,)

s(s)

——(ex)y(ow) by (6.3)
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Deg,(q) .
= qu)qv DFeg, (™) by Theorem 6.6.
We have c(ey) = —c() because £(t) = —1 for all t € T. Moreover, w is regular’ by [85, Corollary
9.3.6], so

Feg,,(e”™) = (ex)(w) = e(w)x(w) = e(w)Feg,, (")

by [79, Theorem 4.2]. U

Remark 6.8. When W is a Weyl group of Coxeter number h, the right-hand sides of the identities
in Corollary 6.7 each simplify to a sum of precisely & nonzero terms, as we now explain. (We thank
Eric Sommers for communicating this argument to us; see also [65, Section 6].) Suppose that ¢ is

a c-word. For any y € Irr(W) and p coprime to h, we have Fegx(ez%) = y(cP) by §2.7 and The-
orem 4.2(v) of [79], so it suffices to determine the number of y for which y(cP) is nonzero. Since
W is a Weyl group, c? is conjugate to the Coxeter element c by [79, Proposition 4.7], allowing us to
assume p = 1. Let C and W - ¢ denote the centralizer and conjugacy class of ¢ in W, respectively.
Then, ¢ generates C by [79, Corollary 4.4], so by Schur orthogonality,

—ic= Lo xR

|W ) C| x€lIrr(W)

Since W is a Weyl group, we have Qy, = Q, which, in turn, implies that the values of y(c) in the
last expression are all rational integers. But by direct inspection, we can find at least & irreducible
characters y for which y(c) is nonzero. So, in the last expression above, we must have y(c) = +1
for exactly h irreducible characters y, and y(c) = 0 for all other y. (We are, however, unaware of
a uniform proof of this statement.) Altogether, we have shown that when W is a Weyl group,

{x € (W) 1 x(c) # O}l = |{x € Irr(W) : Feg (e 1) # 0}| = h.

The behavior of the values y(c) for noncrystallographic Coxeter groups is a little more irregular:

* In type H;, where h = 10, the value of y(c) is nonzero for 8 of the 10 irreducible characters y.

* In type H,, where h = 30, it is nonzero for 24 of the 34 irreducible characters.

* In types I,(2m — 1) and I,(4m — 2), it is nonzero for all irreducible characters. In type I,(4m),
there is a single irreducible character for which it vanishes. (Note that the Coxeter number of
I,(m) is equal to 2m.)

For any v € Q, let L, denote the simple spherical module of the rational Cherednik algebra of
W of central charge v. Let [L, ], € Ry/[q] be its graded character, normalized to be a polynomial
in g with nonzero constant term. We will not give an exposition of rational Cherednik algebras
here, as we will not need L, itself, but only a formula involving [L, ],. In what follows, recall from

fRecall that an element of W is called regular if, in the reflection representation V, it has an eigenvector that is not
contained in any of the reflecting hyperplanes of W [79].
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(1.3) that

= [p + (pe; mod h)],

Cat,(W;q) := H [d] )
i=1 ilq

where [a], =1+ g+ -+ qoL.
Theorem 6.9. If p is a positive integer coprime to h, then:

(1) [34, Section 1.12] We have

(L [Lpulgw = Cat,(W:q). (638)

(2) [85, Corollaries 11 and 13] We have

p _p 2mip
Lonlg=q> Y q "““Deg (e )y - [Sym],. (6.9)
X €EIrr(W)

2mi
In particular, 2 — 2 ¢(x) € Z for all x such that Degx(eTp) #0.

Proof. We explain how to deduce part (2) from the results of [85]. Observe that %rh =7(w,)=N.

1
So, in the notation of [85], the right-hand side of (6.9) is the graded character (qE)ZN %_V[Qp /nlg-
Given the way we normalize [L,/,], to be polynomial with nonzero constant term, [85,
Corollary 13] identifies this character with [L p /h] e O

Remark 6.10. In analogy with Remark 6.8, the right-hand side of (6.9) simplifies to a sum of pre-
cisely r + 1 nonzero terms, where r is the rank of W. If we write A for the character of the kth
exterior power of the reflection representation of W, then it turns out that:

azi —1k, if y = A, f 0<k<r;
DegX(eTp) _ (-1 if y « for some r (6.10)
0, otherwise.
By direct calculation,
1

o(Ay) = N — hk = h(zr—k>, (6.11)

which leads to the formula
[Lpnlg = D, (=q") Ay - [Sym],. (6.12)

o<gkgr

Note that Gordon-Griffeth themselves cite [15, Proposition 4.2], which relies on (6.12).

We sketch the proof of (6.10), relying freely on background explained in [85, §A.11]. First, by
Theorem 6.6 and Remark 6.9 of [11], the nonprincipal ®,-blocks of KHy, all have defect 0. The
principal @, -block of KHy, has defect 1, and its Brauer tree is a line graph in which the vertices
are the characters A, ordered by k. (In noncrystallographic types, this result depends on the case-
by-case methods of [58].) Next, [85, Lemma 10.8.2] shows that for y in the blocks of defect 0, we

have Degx(ezni%) = 0, whereas for y = A;, we have Degx(ezm'%) = (=1)k.
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Corollary 6.11. If p is a positive integer coprime to h, then

_re 1 _p 27ip
(1-grg zCat,(Wig)=—— Y q #“¥Feg (g)Deg, (e ). (6.13)

S+(1q) X EIrr(W)

Proof. Since W is a Coxeter group, every character y € Irr(W) is defined over the real numbers.
This means (1, x - (=) = (¥, —)w- So, combining (6.8) and (6.9) gives

_p _b 2zip
g 2Cat,Wiq)= Y g 5 Wbeg,(e7n )x.[Sym],)-
x€ElIrr(W)

Multiplying both sides by (1 — gq)", then invoking (6.2) and (6.5), we get the result. O

6.5 | The exotic Fourier transform

The following result is proved for (finite) Weyl groups in [48, Chapter 4], and for all other Coxeter
groups by combining [49, 50, 52].

Theorem 6.12 (Lusztig, Malle). There is a pairing {—, =}y, : Irt(W) X Irr(W) — Qy;, that satisfies
the following conditions:

(1) Forall y € Irr(W), we have

Feg, (@)= Y i, xlwDegy(q). (6.14)
pelrr(W)

(2) Forall ¢, y € Irr(W), we have {¢, x}w = {x. Phw-
(3) Forall ¢, y € Irr(W) such that {¢, x}y # 0, we have c(¢) = c(x).

Let q;, g5, q3 be arbitrary parameters and v € Q. Then, the identity

> g/ Feg, (q,)Deg,(q:)= Y. q,¥Feg,(q:)Deg,(q,) (6.15)
X EIrr(W) X EIrr(W)

follows from Theorem 6.12 via a double-summation argument. We can now prove (1).

Corollary 6.13. Let c be a Coxeter word, and let p be a positive integer coprime to h. Then we have
R,er(q) = (g — 1) Cat, (W; q).

Proof. We show that the stated identity R, .»(q) = (¢ — 1)"Cat,(W; q) is equivalent to the identity

_p 27ip _p 2nip
> g WFeg,(e7r )Deg (@)= Y g n“WFeg,(q)Deg,(eh ),  (616)
X EIrr(W) XEIrr(W)

which is a specialization of (6.15). Suppose that c is a c-word. Then (c) = (—1)", so

R, cr(q) = q% T_(of) by Corollary 5.4 (6.17)
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rp
—1Yaz2 i
_ (=g Z q—ﬁ °(X>Fegl(e2”l§)DegX(q) by Corollary 6.7. (6.18)

S+(1q) X EIrr(W)

So, the result follows from Corollary 6.11. O

6.5.1 | Uniformity

Below, we explain why there is a uniform proof of Theorem 6.12 for Weyl groups, but not for
Coxeter groups in general.
For every irreducible finite Coxeter group W, there exist

(I) afinite set Udeg(W),
(IT) an embedding Irr(W) < Udeg(W),
(III) an extension of the function y +— Deg, on Irr(W) to a function on Udeg(W),
(IV) apairing {—, —} : Udeg(W) x Udeg(W) — Qy,, now called the nonabelian or exotic Fourier
transform, satisfying conditions (1)-(3) of Theorem 6.12.

We take {—, —};;; to be the restriction of {—, —} to Irr(W) X Irr(W).

In [49], Lusztig gives a uniform characterization of (I)-(III) by a list of axioms, and proves
that the axioms always admit a solution. However, beyond Weyl groups, this proof uses case-by-
case arguments. The definition of (IV) beyond Weyl groups also uses case-by-case arguments. For
dihedral types, it is constructed uniformly in [50], and for type H,, it is constructed in [52]. For type
H;, the details are scattered in the literature; see [85, Remark 7.5.4]. We do not know a definition
of the restricted pairing {—, —};;, that is uniform for Coxeter groups.

For Weyl groups, we may define {—, —}y, as follows. Suppose that [, is a finite field of order
g, and that G is a split, connected reductive algebraic group over F, with Weyl group W.
Here, Udeg(W) is the set of unipotent irreducible characters of G(F,), whose definition relies
on Deligne-Lusztig varieties [24, Section 7.8]. The embedding Irr(W) < Udeg(W) sends each
character y to a corresponding unipotent principal series character p,. At the same time, each
irreducible character y of W gives rise to a virtual character R, of G(F,) called the corre-
sponding almost-character, also defined using Deligne-Lusztig varieties. With this notation, [48,
Theorem 4.23] says that (Q,RX)G([Fq) = A(e){g, p,} for all y € Irr(W) and ¢ € Udeg(W), where
A : Udeg(W) — {£1} is given case by case in [48, Section 4.14]. However, A(p) = 1 when p is
a principal series representation. This means that if we only care about the restricted pairing
{—, =}y on Irr(W), then we can take

¢ xhw = (o Rydor,

as a uniform definition.

In this setting, there are uniform proofs that p, (1) = Deg, (q) [48, Corollary 8.7] and R, (1) =
Feg,(q) [17, Theorem 7.5.1] for all g > 0, from which we deduce condition (1) of Theorem 6.12.
Moreover, condition (2) has a uniform proof via work of Digne-Michel [25, Ch. III, Corollaire
3.5(iii)]. It remains to show that condition (3) also has a uniform proof.

First, [54, Lemma 1] allows us to rewrite c(y) in terms of y(1) and numbers N(y), N(x*).
By work of Malle-Rouquier [56, Lemma 2.8], the resulting function on Irr(W) is constant
along subsets called Rouquier families. Finally, by work of Rouquier [69, Theorem 1] and
Lusztig [51], Rouquier families coincide with the blocks of the pairing {—, —};;, also known as
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Lusztig families. More precisely, Rouquier shows that his families coincide with subsets of Irr(W)
defined via two-sided cells, while Lusztig shows in [51] that these subsets coincide with the blocks
of {—, —};» when this pairing is defined via Deligne-Lusztig theory. All of the proofs above are
uniform. In particular, [51] replaces case-by-case arguments due to Barbasch-Vogan and Lusztig,
discussed in [48, Chapter 5].

Remark 6.14. Let us similarly address the uniformity of the proofs of the results we need from
[85]. The only place affected in our work is (2), which relies on:

* [85, Corollary 11], which, in turn, relies on a Lemma 10.6.1, stating that DegEX(eZ”“’) =
(=1)*N"Deg, (e>™™). The proof of the lemma relies on (1). It seems possible that a proof avoiding
the exotic Fourier transform can be found. Note that in our application, where v = p/h for p
coprime to h, the sign on the right-hand side disappears.

* [85, Corollary 13], which follows from the results about the ®;,-block theory of KHy, that we
mentioned in Remark 6.10. The characterization of the principal block in terms of defect is
proved uniformly for Weyl groups in [11, Theorem 6.6], but there does not appear to be a uniform
proof for general Coxeter groups.

6.6 | The g-parking count
We now prove (2).

Corollary 6.15. Let c be a Coxeter word, and let p be a positive integer coprime to h. Then we have
Toew R @ = (@ - '[P

Proof. Applying Corollary 5.3 and (6.1), we find

_ _ _ 1 _ _
Stw=r(Zaonnn)e 3 g 3 aleonin)

vew vew vetmon S~ (XSS

By (5.3), the bases (T, 1),y and (q° (”)T;_ll Joew are dual to each other with respect to 7~. Applying
the second displayed equation on page 226 of [39], we see that the above sum simplifies to

Y RO @= Y dim() - xy(Ter).

VEW X EIrr(W)

(In the notation of [39], we are taking ¢ to be the operator by which T, acts on the Hy,-module
of character )(q.) By (6.7), (6.4), and (6.15),

» L mp 3 2nip
q> Y q"““Deg,()Feg (e )=q> Y qi““Deg, (e Feg,(1).
xE€lIrr(W) X EIrr(W)
By (6.10)~(6.11), (6.4), and the formula dim(A;,) = (Ir() this becomes

q% Z qp(r/Z—k) dim(Ak)(—l)k — qrp Z (_1)k (}’;)q—Pk — qrp(l - q—p)r — (q _ 1)r[p];.

ogksr O<ksr
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6.7 | Explicit computations in type A

In this subsection, we specialize the results above to W = &,,.

6.7.1 | Symmetric functions

We refer the reader to [80] for background on symmetric functions. Let A, be the ring of
symmetric functions over the field Q(q). For n > 0, let Ag‘ denote the subspace of degree-n
homogeneous polynomials.

It has a basis of Schur functions s;, indexed by the set Par(n) of partitions A - n. The set Irr(&,))
can be identified canonically with Par(n). For A1 - n, we write y; € Irr(&,,) to denote the corre-
sponding character. The trivial character 1 corresponds to the single-row partition A = (n), while
the sign character € corresponds to the single-column partition 4 = (1, 1, ..., 1). The scalar prod-
uct (—, —)@n corresponds to the Hall inner product (—,—) on A,. The Schur functions form an
orthonormal basis with respect to (—, —).

First, we claim that the inverses of the Schur elements s*(y;) can be given in terms of the
principal specializations of the Schur functions s;:

1
st(x;)

An explicit formula for the right-hand side (the g-hook length formula) can be found in [80,
Corollary 7.21.3]. Specifically, for a partition 1 = (4; > 1, > --- > 0), let

=1-q)"-5;(1,9,¢%...). (6.19)

Al:= ) 4 and b() := ) (i—1i.

View A as a Young diagram in English notation, and let 2(u) denote the hook-length ofaboxu € A.
Then, [80, Corollary 7.21.3] reads

b(2)

q
N (1’ q’ qz’"') = .
* 1 - " [T [h@W)],
The left-hand side of (6.19) is computed in [39, Theorem 10.5.2]. Comparing the two sides gives
the proof of (6.19).
We can now compute the generic degrees Deg, (q). For the trivial character ) = 1, (6.19)
yields

1 n 1
vy =(1-q)" sp»Lq. ¢ ..) = —, (6.20)

[n],!

in agreement with (6.5). Applying [80, Corollary 7.21.5], we find that

" @[n],!

Deg, (@)= =————= Y ¢

_ maj(T)
[Tuea @], TESYT(L)

Here, SYT(X) is the set of standard Young tableaux of shape A and maj(T) is the major index of T,
defined as the sum of all i such thati + 1 appears in a lower row of T than i. As expected from (6.4),
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Degm(l) equals the dimension |SYT(A)| of the irreducible representation of &, corresponding to

Xa-
Next, we compute the fake degrees. By [80, Exercise 7.73], we have

[Sym]q = Z sl(l,q,qz,...)s,l. (6.21)
AFn

As an immediate consequence,

(X/l’ [Sym]q)@n = S/l(la qs q29 )

This implies that the fake degrees coincide with the generic degrees: Feg, (q) = Deg, (q). The
exotic Fourier transform {—, —}@n therefore coincides with the scalar product (—, —)@n , that is, for
¢, x € Irr(&,), we have {§, x}g =1if¢ = y and {$, x}g = O otherwise.

Remark 6.16. Using the Cauchy identity [80, Theorem 7.12.1], one can check that the right-hand
side of (6.21) equals h,[X /(1 — q)], where the square brackets denote the plethysm [80, Defin-
tion A.2.6]. More generally, one can show that the operation y — x - [Sym], on class functions
corresponds to the plethystic substitution f — f[X /(1 — g)] on symmetric functions.

Conjecture 6.17. Let W = &,,. Then, (6.15) gives the following explicit sum:

Z q; c(shape(RSK(Foata=! (w))) q;naj(w)qg(w)
wew

where c is given explicitly in Remark 6.5, maj is the usual major index in ©,,, RSK denotes the usual
Robinson-Schensted insertion, and Foata : &, — &, is Foata’s bijection [31].

6.7.2 | A streamlined proof of Theorem 1.10

Below, we reprove Theorem 1.10 in type A by direct calculation, avoiding the machinery needed
for the previous proof. Note that the type-A case of (1) is a specialization of V. Jones’s formula for
the HOMFLYPT polynomial of the (n, p)-torus knot [41, Theorem 9.7]. Explicitly, in the notation
of [41], Cat,(W;q) is the g-coefficient of the smallest power 4 in Jones’s formula.

Let W = ©,,. Recall that r = n — 1, that the exponents and degrees of &, are given by e¢; =
d; —1=ifor 1<i<n-—1, that the Coxeter number is h = d,_; = n, and that the irreducible
representations of ©,, are indexed by partitions 4 I n.

2mip
By Remark 6.10, we have Deg, (e 7 ) = 0 unless x, is the character of an exterior power of
the reflection representation, or equivalently, unless A is the hook partition (n — k, 1¥) for some

k. Following [41], we write Ay = x(,_j 1k), 80 that dim(A,) = (";1) and

Feg,, (¢) = Degy, () = ¢(2) [” . 1] . 6.22)
q
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Evaluations of g-binomial coefficients at roots of unity are well known; see, for example, [72] and
27ip

references therein. In particular, for p coprime tonand{ = e » , we get
k+1 -1
Feg,, €)= Degy, © =\ 1] = (629
¢

in agreement with (6.10).
By (6.11) (or, alternatively, by Remark 6.5), we have

_(n\ _ _n(n—-2k-1)
c(Ay) = (2> kn = — (6.24)

We now prove a more explicit version of Theorem 1.10 in type A.

Theorem 6.18. Let W = &,,. For p coprime to h = n, we have

R,er(q) = n-1 nrp d
e,cP(q) (CEY) [ +p] [ n ], an
> RY(@=(g- 1" pli
veEG,
Proof. Write { = e27: . We compute
—1)'g>2 P
Recr(q) = % Y q " Wreg, (g)Deg,($) by (6.17)-(6.18)
( q) xeh(&,)
_(=D"'q )pnl—E(A)
e 9 " Fegy, (@Degy () by (6.10)and (6.20)
g’ k=0
( 1)}'1 1 (-Lp n-1 —p(n—2k—1) (k+1) n—1 k
—'Zq—z [ ] (-DF by (6.22)-(6.24)
[n]g! k=0

I Gl Vi nz_‘j ¢® [” . 1] (—1) gDk
q

[nlg! =5
+p o
(@ -1)=(q-1)"! [n ] by the g-binomial theorem.
[n]q H [n + p] n q
Similarly, we compute:
rp . b .
Z Rg’gp (@) =q> 2 dim(y)q" C(7()Feg}((§’) by Section 6.6
VES, XEIr(S,)

n—1 1

- q(n—l)p Z(_l)k <n ; >q_pk by (6.24) and (6.23)
k=0

= qr(1 — g P)"~! by the binomial theorem

=(g-D"'[pl;~" O
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7 | BRAID RICHARDSON VARIETIES

LetF,G, B,B,,B_, H be defined as in Section 1.6. That is:

* Fisafield,

* G is a split, connected reductive algebraic group over F with Weyl group W,
* Bis the flag variety of G,

* B, and B_ are opposed F-split Borels, and

* H := B, nB_, asplit maximal torus of G.

Recall that for any (B, B') € B2, the notation B Z, B means (B, B") are in relative position w. For

a fixed Borel B, the set {B’ € B | B =B }is isomorphic as an algebraic variety to an affine space
of dimension #(w). In particular, if B is an F ,-point of 3 (where g is a prime power), then this set
contains g F -points of .

Definition 7.1. Let w = (51, S, ..., 5,,,) € S and fix u € W. Define the braid Richardson variety
by

N

° 51 5 S uw,
Ryw = {(B+ =By—B,—:+— B, «—B_)|B eroralli}.

Note that ﬁu,w is nonempty whenever w admits at least one u-subword.

We now take F =T, a finite field of g elements. The following relation between braid
Richardson varieties and R-polynomials will be proved after Theorem 7.4.

Proposition 7.2. Forallwordsw € S™ and allu € W,

R, w(@ =

Ry (Fy)|

Example 7.3. We continue Example 4.13. Let G = SL, with W = {e, s}. Then |B(F,)| = q + 1.
Let us denote the elements of B(F,) by B(F,) = {B, = B, By, B,,...,B, = B_}. Then B; 5 B; and

B; > B ; for i # j. By analyzing which Borel subgroups are equal to B_, we compute that

(B+—S>Biﬁ>Bj—S>Bk<iB_) fori1<igg—1land0< j,k<q—1withi# j#k,
Ry(s55)=1(B, > B_—B,— B, «B_) for0<i,j<q—1withi#j,

(B+—S>Bi—s>B_—s>Bj iB_) forlgigg—land0<j<qg-—-1.

Thus, R, (s5.5(q) = (¢ — 1)* +2g(g — 1) = (q — 1)(g> + 1.

The following result appears in [23] (see also [57, 89]) for reduced words w, but the argument
in [23] extends to the case where w is arbitrary.
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Theorem 7.4 [23, 57, 89]. Let W be a Weyl group. For a u-subword u of w = (51, S5, ..., 5,,,), let
o 51 S Sm uw, U Wo
Ryw = {(BO — B, — -— B, «—B_)|B_——B;fori € {0,1,...,m}}.

Then,

Ryw= || Ruw with Ryy(F)=(F)% xF%, (7.1)

ueD,

Thus, Proposition 7.2 follows by comparing (7.1) with (4.4). We may therefore interpret Theo-
rem 7.4 as a geometric incarnation of Corollary 4.12. Applying a similar argument to the variety
Rivc)p defined in (1.7), we find for all v € W and all integers p that

ée,cP(IFq)| = Re,cp(q) and

R, (F| = R, (@)- (7.2)

,C e,cP

Theorem 1.13 then follows from Theorem 1.10.

8 | NONCROSSING COMBINATORICS

For Weyl groups, the uniformly defined rational nonnesting Coxeter-Catalan objects from Sec-
tion 1.1 are counted by Cat,(W). As reviewed in Section 1.3, it has been an open problem to give
a uniform definition of a rational noncrossing family counted by Cat,(W).

There are three previously defined families of noncrossing Coxeter—Catalan objects, which
are all in uniform bijection with each other. Each of these families has a generalization to the
Fuss-Catalan (p = kh + 1) and Fuss-Dogolon (p = kh — 1) levels of generality. In this section,
for simplicity, we will only treat the Fuss—Catalan case.

Fix a Coxeter word ¢ = (51, S,, ..., 5,). We will review the three noncrossing families, and
then prove that the elements of M., are naturally rational noncrossing objects by giving direct
bijections between M in+1 and the Coxeter—Fuss-Catalan noncrossing families.

8.1 | Noncrossing objects and bijections

A Coxeter group W with system of simple generators S defines a corresponding positive braid
monoid B*VE,, equipped with a generating set S in bijection with S. For all s € S, we writes € S to
denote the corresponding generator. As a monoid, B*VE, is freely generated by S modulo the braid
relations

m(s,t) m(s,t)
sts - = tst ---

for distinct s,t € S, for the same integers m(s,t) as in (3.1). Thus, there is a surjective homo-
morphism of monoids B;rV — W that sends s — s. Note that it factors through a surjective
homomorphism of rings Z[g*! ][B;,] — Hy,, where Hy;, is the Hecke algebra from Section 5.
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Sort? (&3, ¢) NC®@ (&3, ¢) Clus® (&3, ¢)
(12) (23) - ((12), (2.3)) (12) (23) &1 s2 51 82 s s
s (13) (12) : ((13), (1“2)) si (13) (12) s2 s1 52 51 5
s1 (13) s : (12) ((13), (1.2)) s1 (13) s1 89 51 (12) s1 s
(12) s2 - (23) : ((12), (2__3)) (12) s2 s1 52 (23) s2 s s
(12)  s2 . 52 - (23) - -1 ((12), (23)) (12) so sy $2. 51 sz 81 (23)
s1 sa (23) (13) - . - 1((23), (1__3)) sios2 (23) (13) s1 sz s s
sios2 (23) sy - (13) - : ((2.3), (1.3)) s1os2 (23) s2 s sy (13) s
s1 s2 st (12) (2.3) : ((1.2), (23)) s1 s2 s1 (12) (2.3) s2 51 82
s1os os1os (13) (12) - ((1.3), (1__2)) sios os1os (13) (12) s s
s1os2 s (12) s - (23) ((1.2), (2__3)) sios2 s (12) s s s (23)
s1 S2 s1 s2 s1 (23) (13) : ((23) (13)) s1 s2 s1 s2 s1 (23) (13) 52
s1 sy os1 sy st s (12) (23)[((12), (23))] s1 sz st os2 s1 sy (12) (23)

FIGURE 8 Letc =(sy,s,). Left: the 12 c-sortable elements in Sort(z)(@3, c). In each row, we have replaced
the position of the leftmost 5; (j = 1, 2) not appearing in w(c) with the corresponding colored reflection in the
skip tuple. Middle: The 12 elements in NC®(&,, c). Right: The 12 elements of Clus‘®(&;, c). We have replaced the
positions i where u; = e with the corresponding colored reflection in inv,(u).

For any word w = (s, S5, ..., 5,,,) € S™, we abuse notation by again writing w to denote the
products;s, -+ s,, € BJ},. In the case where w is a reduced w-word for some w € W, this product
only depends on w, not on w.

The weak order (B;rV, <g)on B;rv is the lattice formed by the transitive closure of the relation <y
defined by w <z wsfors € Sandw &€ B;rv. The map w —» w, where w € B;rv is a reduced word
for w, defines a canonical lift from W onto the weak order interval [e, w, | C B;rV. Here, w, is the
lift of the longest element w, € W, also known as the half-twist.

8.1.1 | Sortable elements

The first family of noncrossing objects we review are the Coxeter-sortable elements, introduced
at the Coxeter—Catalan level of generality by Reading [60-62] and extended to the Fuss—Catalan
level by Stump, Thomas, and Williams [82].

Let c® € S X S X --- be the infinite sequence formed by repeated concatenations of ¢. The c-
sorting word w(c) of w € B;rV is the lexicographically-first subword of ¢* that is a reduced word
for w. We write w(c, i) for the word formed by restricting w(c) to the ith copy of ¢ in ¢®.

Definition 8.1 [61, 82]. An element w € B;LV is c-sortable if w(c, i + 1) is a subword of w(c, i) for
all i. We write Sort(®) (W, ¢) for the set of all such w. We also write

Sort™ (W, ¢) 1= {w € Sort™(W,¢c) : w <g WL

Example 8.2. The 12 elements of Sort(z)(@3,(sl,sz)) are illustrated in Figure 8(left) together
with their skip tuples, defined as follows. For 1 < j < n—1, let (¢ s k j) be the colored reflection
in inv(w(c)) corresponding to the leftmost simple reflection s; that does not appear in w(c). We
define the skip tuple of w to be the collection skip.(w) of all (¢}, k ;), ordered by when they appear
in inv(w(c)).
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FIGURE 9 The Hasse diagram of the absolute order (&5, <), with edges labeled by reflections.

By [78], the element w, is c-sortable for any c. For example, for &,, we have

W, (81,82, 83) = (51,52, 83, 51,82, 81,75 5 o)
——— ——_—— e
wo(c,l) wo(c2) w,(c.3)

and W, (S5,81,83) = (53551, 835525 515 535 %5 *5 *5 eve)-
N—_—— N—_——
w,(cl)  wy(c2)

8.1.2 | Noncrossing partitions

The second noncrossing family we review are the noncrossing partitions, introduced in the
Coxeter—Catalan level of generality by Bessis [9] and extended to the Fuss—Catalan level by
Armstrong [2].

The absolute order <t is the partial order on W induced by ;. That is, u < w if and only if
r(u) + €7(u='w) = £7(w). The covering relations in this poset are therefore of the form u <; w
whenever u~!w € T, and we label the corresponding edge u — w of the Hasse diagram of (W, <)
byt :=u"'w. See Figure 9.

The (W-)noncrossing partitions are defined to be the elements of the absolute order interval
NC(W,c) :=[e,c]r. Observe that each element of T appears exactly once as an inversion in the
c-sorting word for w,. This gives rise to a total order on T: For two reflections ¢, t, € T, we write
t; €. 4, if and only if ¢, appears before ¢, in inv(w,(c)). The poset NC(W, ¢) is known to be EL-
shellable with respect to the ordering on T given by <., which amounts to the following statement.

Proposition 8.3 [82, Proposition 4.1.4]. Every noncrossing partition has a unique <.-increasing
factorization into reflections. In other words, for each w € [e,c]y, there exists a unique m-tuple
(t1,ty, s tyy) € T™, where m = £ (1), such that w = tt, ...t and t; <.ty <¢ - <¢ b

For instance, choosing ¢ = (s;,5,) in &5, we have (12) <. (13) <. (23). The interval [e,c];
consists of all elements of &, \ {s,5,}, and each of them indeed has a unique <.-increasing
factorization into reflections, as Figure 9 illustrates.

Generalizing a construction of Edelman in type A [29], Armstrong [2] defined the Fuss—Catalan
analogue of noncrossing partitions to be k-multichains 7; <; -+ < 1, in NC(W, ¢), recovering
NC(W,c) for k = 1. For 0 <i <k, define &; := 7; 'z, with the convention that 7, = e and
741 = c. Factoring each &; into reflections using <. as above, it is convenient to think of these
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multichains as a factorization of ¢ into colored reflections (with colors 0, 1, ..., k corresponding to
the factors &, d,, ... , §;. ), such that the reflections in any color increase with respect to <.

Definition 8.4 [2, 82]. Given k € N, we write

tltz o tr =,
NCOW,¢) :=L((ty, k), (ty, ky), e, (k) € (T X Z) |0< ky < -+ <k, <k, and
1 r

ifkl = ki+1’ then tl Sc ti+1

The 12 elements of NC(Z)(@3, (81, 8,)) are illustrated in Figure 8(middle).

8.1.3 | Clusters

The third noncrossing family we review are the clusters, introduced in the Coxeter—Catalan level
of generality by Fomin and Zelevinsky [32] and extended to the Fuss—Catalan level in several
different guises, by several different authors [30, 82, 87]. We present a definition using the notation
of Section 4. Let cwk(c) be the c-sorting word of cw* (which is just ¢ followed by the c-sorting
word of wk).

Definition 8.5 [20, 30, 82]. We write
Clus®(W, ¢) := {wk-subwords u of cw¥(c) satisfying e, = r}.

The 12 elementsu € Clus(z)(@3, (81,5,)) and their sets inv,(u) are illustrated in Figure 8(right).
Since w, is an involution, w* must be either e or w,, depending on the parity of k. Thus,

o

Clus® (W, ¢) contains all w’o‘ -subwords of cw’: (c), not necessarily distinguished, that skip exactly
r letters. These conditions are very similar to the ones in Definition 1.1, and we make this similarity
precise in the proof of Theorem 8.8 below.

8.1.4 | Bijections and enumeration

Recall that previously, the three families of noncrossing objects defined in Sections 8.1.1-8.1.3 had
been enumerated case by case, using combinatorial models and computer calculations:

Theorem 8.6 [61, 82]. For all k € N, non-uniform arguments show that
Sort®(w, c)| = |NC(k)(W, c)' - |C1us(k)(W, o)| = caty, ., (W).
Our main result in this section is their uniform enumeration.

Theorem 8.7 [61, 82]. We have the following uniform bijections:

* w > skip.(w) is a bijection Sort (W, ¢) = NCcRWw, c).
* u ~ inv,(u) is a bijection Clus(k)(W, c) — NCOwW, ¢).
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Mch,+l NC(I)(VV, C)
S1 S92 S1 S92 S1 S9 (1“2) (23) '

((12), (23))
s1 s (23) s s s (13) s ((23) (1.3))
s1 (13) st s2 st (12) sy 52 ((13), (1.2))
(12) s s1 S2 S1  S2 s1 (23) ((12) (23))
(12) (23) s s s s2 S sa | ((12), (23))

FIGURE 10 For W = &, and c = (s, 5,), the bijection between M. and NCP(W, ¢). As usual, we
replace the positions i where u; = e with the corresponding colored reflection in inv,(u).

In particular, arguments uniform for all Coxeter groups W show that

Sort®(w, c)| = |NC(k)(W, c)| = |Clus(k)(W, c)|.

See Figure 8 for an example.

8.2 | Rational noncrossing partitions

Assuming Theorem 8.7, we prove that M n+1 naturally forms a noncrossing Fuss—Catalan family
by giving a uniform bijection from its elements to noncrossing partitions. This implies that the
more general sets M., should be considered rational noncrossing families.

Theorem 8.8. Fix k € N. Then the map u — ((t, i):(t,20)e inve(u)) is a uniform bijection
between the sets M kn+1 and NCK(w, c).

Proof. Observe that w? = e in W and w? = ¢” in B}, In particular, the c-sorting word for cw?*

is just ew2¥(c) = ck"*+1, By Definition 8.5, Clus®*)(W, ¢) consists of e-subwords of c"+! that
skip exactly r letters. Therefore, by Proposition 4.4, M kn+1 is exactly the subset of Clus®O (W, ¢)
consisting of those subwords u such that each colored reflection in inv,(u) has even color.
By Theorem 8.7, the map u +~ inv,(u) is a bijection Clus(Zk)(W, c) = NC@)(W, c). There-
fore, by Definition 8.4, M+ is in bijection with sequences ((t1,2k,), (t;,2k,), ..., (t,,2k,))
satisfying

. tltz coe tr =c,
* 0<k <<k, <k,and
* t; <¢ tj4 Whenever k; = k; ;.

Such sequences are in bijection with NC¥)(W, ¢) by “halving the colors,” that is, by the map that
sends ((t1,2k,), (ty,2ky), ..., (1, 2k,)) = ((t1, k), (15, ko), .., (£, K,)). O

The bijection of Theorem 8.8 is illustrated in Figure 10 for W = &; and k = 1. For W = &; and
k = 2, the 12 elements of M_n+1 are illustrated in Figure 11; compare with Figure 8(right).
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M2nia

51 S s1 Sy 81 S92 51 S9 ST Sy 81 89 (fé) (ié)
S1 So S1 Sy 81 S9 S1 S (23) Sy 81 8o (fé) S
$1 So S1 S22 81 S2 s1 (13) s1 S2 S1 (fé) s1 So
$1 So s1 Sy 81 S2 (IQ) So S1 Sy 81 S2 $1 (ié)
51 S9 ST S2 81 89 (i?) (23) $1 Sy S1 89 51 S9
$1 s2 (23) s s1 s $1 So S1 S22 81 So (fé) So
$1 So 2 So ST 89 (IS) So S1 S22 81 S2 s1 So
s1 (13)  s1 s2 s1 S S1 S ST 89 81 (fé) S1 S
s1 (13 s1 Sy S (f?) S1 S S1  S2 81 Sy S1 So
(12) s S1 Sy S, 89 $1 So S1 S22 81 So $1 (ié)

So S1 S2 81 S2 $1 (23) S1 S2 81 S2 s1 So
(12) (23) s1 s2 81 82 51 S9 s1 Sy 81 Sg S1 So

FIGURE 11 ForW = &, and ¢ = (sy, 5,), the 12 elements of M ...:. As usual, we replace the positions i
where u; = e with the corresponding colored reflection in inv,(u).

8.3 | Cambrian rotation

Recall that ¢ = (sq,5,,...,5,). Let ¢/ =(s,,...,8,,8;). The Cambrian rotation is a bijection
Sort® (W, ¢) > Sort)(W,¢’) (equivalently, NCK (W, ¢) = NCOW, ¢ or Clus®(W,c) 5
Clus®(w, ")) satisfying certain properties that enable inductive arguments; see [82] for
background. Cambrian rotation is a distinguishing feature of noncrossing families [5]. The goal
of this subsection is to develop an analogous bijection for maximal c¥"*1-Deograms.

Lemma 8.9. Let w = (s1,S5,,...,5,) be a word and let W' :=(s,,...,S,,,51). Then, there is a
bijection

D,w— D (8.1)

e,w’>
preserving the statistics d(-), e(-). In particular, it restricts to a bijection M., = M.

Proof. We describe the bijection. Choose a word u = (uy, u,, ..., u,,) € D, . Lets = 5, andu’ :=
(Uyy oo s Uy, Uy ).
Assume that u; = e. Then, we claim that u’ is distinguished, that is, that u’ € D, \,s. Indeed,
r : _ ’ — ) s : : ’
we have u(i) = Ug41) for all 0 < i < m — 1, and moreover ”(m71) = u(m) = ¢, which implies u’ €
D, -
Now assume that u; = s. We first treat the case where W = &,, where we have s; = s for all

i € [m].Sinceu, = s, wehaveu, = sbecause uisdistinguished. Thus,u = (s, s, us, ..., 4,,,), which
we send tou” := (us, ..., U,,, 5, 5). The map u — u’’ is the desired bijection (8.1).
Finally, we treat the general case. Let

J(u,s) :={j € [m] | s;‘”) = s}

and J(,s) :={j € [m]| S;(f) =s}.
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For j € J(u,s), let k; be the color of the corresponding reflection in inv(u) defined by (4.1). For
j €J@,s), we similarly write k;. for the corresponding color.

Note that 1 € J(u, s) and m € J(u/, s). We thus have J(u,s) = {1 = j; < j, < - < j,»}, and we
claim that similarly, J(u’,s) = {j| < --- < j. = m}, where j| = j;,; — 1 for i € [ — 1]. Indeed,
this holds because the reflections in inv(u’) are obtained from those in inv(u) by conjugation by
s. Under such conjugation, the color changes if and only if the reflection itself was equal to s, in
which case the color decreases by one. In other words, we have kj.‘_l =k i1 fori € [2,m].

Consider the word w := (s, s, ..., 5), Where s occurs m times, ané the subword ot := (iiy, ..., U,5)
givenby #; = eifu; = eand#; = sotherwise. Let@” := (&}, ..., ;) be the result of applying the
above bijection for &, to .

Letu” = (u;’, ul),...,u)!) be the subword of w defined as follows. For j & J(u', s), set u’i’ = u;..
For j = jlf e J(,s), let u}’ =eif l_ll{, =eand u;.’ = w;. otherwise. Once again, one checks that
the map u —~ u’’ gives the desired bijection. O

Let ¢/ :=(s,,...,5,,5). Then, the lemma above gives a bijection M kn+1 = Meryens. This
bijection has the following property: It sends an element u = (u;,u,, ..., U,,) € Mk to an
elementu’ = (ui,u;, Ul ) € M cryinsa satisfying ul, =u.

8.4 | Cambrian and Deodhar recurrences

Our next goal is to show that the subset of u € M+ satisfying u; = e is in bijection with
M(C,,)kh//+1 , where ¢’ = (s,, ..., 5,) is a Coxeter word for the parabolic subgroup W<s1> of W gen-
erated by S \ {s;}. This will match the Cambrian recurrence on noncrossing families described in
[82, Section 4].

Let ¢’” := s,c be the associated Coxeter element of W s,y and let h'"" be the Coxeter number of
W .- Suppose that u € Men starts withu; = e. Let ((t1,ky), (£, k,), ..., (t,, k,)) € NCOW, ¢)
be the k-noncrossing partition assigned to u under the bijection of Theorem 8.8. Then, we have
(t1,ky) = (51,0). By [82, Proposition 4.3], the subset of NCK (W, ¢) that satisfies (t1,ky) = (51,0)
is in bijection with the set NC®(W g ,,¢”), which is itself in bijection with Mgy 1 by
Theorem 8.8.

The Cambrian recurrence on Mg+ is the modification of the Cambrian recurrence that per-
forms the map from Mini1 to M yn from (8.1) when a subword u € M1 does not start
with u; = e, and performs the map above from M kn+1 to M(c,,)khuﬂ when u starts with u; = e.

Remark 8.10. To perform the Cambrian recurrence on M,,, we split the set of all u € M gykn+
into subsets satisfying u; = e and u; = s,. This same split — without the descent to the parabolic
subgroup made possible by the reflection-factorization properties of a Coxeter element — occurs
in the Deodhar recurrence (Proposition 4.11). Thus, the Deodhar recurrence may be seen as a gen-
eralization of the Cambrian rotation from collections of Fuss—Catalan objects to the more general
sets DX .

8.5 | Rational noncrossing parking functions

In the first four sections of [29], Edelman proposed a k-generalization of type A noncrossing
partitions, which was subsequently generalized to all Coxeter groups by Armstrong [2]. In [29, Sec-
tion 5], Edelman proposed a definition he called “noncrossing 2-partitions.” Inspired by a related
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construction of nonnesting parking functions, Armstrong, Reiner, and Rhoades independently
proposed a generalized version for all Coxeter groups in [3]. Rhoades gave a Fuss generalization
in [67].

Because of the v-twisting (cf. Definition 1.7), we find it convenient to pass from our canonical
factorization definition of NCX)(W, ¢) back to k-multichain language. We refer the reader back
to Section 8.1.2 for a discussion of this equivalence. Given 77 = (7r1 <7 Ty L1+ &7 77.'k) with; €
NC(W,c),let W,y :=(t : t <p ;) be the reflection subgroup of W generated by the reflections
below 7; in absolute order. By [27, Corollary 3.4(ii)] (see Lemma 8.12 below), every coset oW ir )
has a unique element z of minimal length, characterized by the property that inv(z~!) has no
reflections belonging to W, ,. Here, foru € W, we set

; R I C V) Uim)
inv(u) := {s1 P },
where m = £(u) and u = (uy, u,, ..., u,,) is any reduced word for u. In other words, inv(u) is

obtained from inv(u) by forgetting the colors and the order of the reflections. We write W71}
to denote the set of minimal coset representatives of W /W, ,.

Definition 8.11 3, 67]. The (W, k)-noncrossing parking functions are
ParkOW,¢) := { v.(m) < 73 <5+ < 7)) | w1 € NCO, )0 e W .

For W = &,, the 16 (W, 1)-noncrossing parking functions (v,7,) in Park’(&,,s;s,) are
illustrated in the right column of Figure 12.

In the rest of this subsection, we show that the noncrossing parking functions of Definition 8.11
are in uniform bijection with the parking objects of Definition 1.7.

Lemma 8.12 [27, Corollary 3.4(ii)]. Let v € W and m € NC(W, ¢). Thenv € W ™ ifand only if we
have t ¢ inv(v™1) forall t <7 7.

Example 8.13. For W = @, and 7 = (12)(34), the minimal coset representatives in W{™ are
e, S5, 815, 8355, 515355, $,8535,. The inverses of these permutations have inversion sets @, {(23)},
{(13),(23)}, {(24),(23)}, {(13),(24),(23)}, {(14),(13),(24),(23)}. The reflections ¢t € T satisfying
t <p w are (12) and (34), which are precisely the reflections that never appear in the inversion
sets above.

It is natural to use v € W to twist the color of the colored reflections in inv(u) while preserving
the reflection itself, generalizing Section 2.3. We explain this construction in more detail. Given a
subword u = (u;, u,, ..., u,,), recall the colored reflections ¢ j(u) = (S;.l(j), k:)forl < j < mthatwe
defined in (4.1). For 1 < j < m, set

1 ifsj‘j) € inv(v?),

J

(v) . UGy 1.0 .
t'(w) :=(s,”, k"), where k. :=k;, +
J ;o Y 0 otherwise.

Write inv”(u) := (tgv)(u), t;”)(u), s tS,’f)(u)) and invg”)(u) for the restriction of inv((u) to the
indices j for which u; =e.
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v 81 89 s1 S92 s1 S92 81 S92 T
e (12) (23) = So s1 So s1 So (123)
e s1 (13) s S $1 (12) $1 So (13)
e $1 s2 (23) s $1 S2 (13) S2 (23)
e (12)  s9 $1 S $1 S $1 (23) (12)
e S1 S s1 S92 s1 So (12) (23) (e)
s1 s1 (13) (12) s s1 S9 51 S9 (13)
81 $1 s2 (23) s $1 So (13) So (23)
$1 $1 So $1 (12) s1 S $1 (23) e
9 (12)  s9 s1 so | (23)  ss $1 S9 (12)
So s1 (13) s So s1 (12) s1 So (13)
S9 $1 S $1 S $1 (23) (13) S e
$981 $1 s2 | (23) (13) $1 S $1 S (23)
5957 S1 S9 51 12 S1 S S1 (23) e
5159 (12)  s9 51 S9 (23) S9 S S9 (12)
51892 $1 S $1 s2 (13) (12) $1 S e
818281 $1 So $1 (12) (23)  s2 $1 So e

FIGURE 12 The 16 elements of P, (W) for W = &, and ¢ = (s, s,) and p = 4, shown together with the
corresponding parking functions of Park(W, c). For the wiring diagram representations, see Figure 4.

In order to state the bijection between P xn1 (W) and Park(k)(W, ¢), we need to understand the
behavior of the twisted colored reflections of a subword. This will allow us to go between chains of
noncrossing partitions using only even colors, and certain chains of noncrossing partitions using
both even and odd colors.

Lemma 8.14. Fixv € W. Any mr € NC(W, ¢) can be uniquely factored as w = m,, - ©°, such that

* m,, " € NC(W,c),

* Op(my) + Cp(7?) = (), and

e ift <y m,, thent € inv(v™'), whereas
 ift <y 7, thent & inv(v™!).

Proof. First, assume that 7 = c. We argue using the theory of Reading’s Cambrian lattices [60,
61]. These Cambrian lattices are quotients of the weak order induced by the projections ﬂi :
W — Sort(W,c) and 7TCT from W to the c-antisortable elements of W. (Recall that w is called c-
antisortable if ww, is c~'-sortable.) More precisely, for v € W, we define ﬂi(v) is as the largest
c-sortable element less than v in weak order, while ﬂCT(U) is the smallest c-antisortable element
larger than v in weak order.

Then anyv € W is contained in a unique interval [ni(v), nI(v)]. The product of the lower cover

reflections for ﬂi_] (v™!) in the order <, defines a noncrossing partition ¢, € NC(W, ¢), while the
product of the upper cover reflections for 71271 (v)in the order <. defines the Kreweras complement

¢ = cv‘lc. (Note that here, we use the c~!-Cambrian lattice projections ni_l and nCL instead of the
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c-Cambrian lattice projections 7T(i and 7rCT, to ensure that the order of the factors in the product ¢ =
¢, - ¢V use the lower cover reflections before the upper cover reflections. Using ni and 7rcT would
instead result in a factorization where the product of the lower cover reflections appears after the
product of the upper cover reflections.) These c, and c" are the desired factors: Uniqueness follows
from uniqueness of the interval, and the last two properties follow from the fact that the Cambrian
lattices form stronger partial orders than the noncrossing partition lattices [64, Proposition 8.11].

Now let = be a general noncrossing partition with canonical EL-factorization 7 = t;¢, --- t,,
where t; <. t, <, -+ <. t,. Consider the parabolic subgroup W, of W in which ¢, ..., ¢, are the
simple reflections. (We can treat them as simple reflections because they are precisely the lower
cover reflections of some sortable element w € W.) Each element v € W appears in some coset
of W, and each such coset contains a minimal representative in weak order by [39, Propo-
sition 2.1.1]. After translating by this representative, we can identify the coset with the Coxeter
group W . In this way, we can identify v with an element of W . The inversions for the latter
are obtained from the inversions for v by restricting to the reflections in W,,. If we build the
Cambrian lattices on the cosets of W, using ¢, ..., t, as the simple reflections and ¢,t, --- £, as
the Coxeter element, then we will have reduced to the previous case. O

Example 8.15. Continuing Example 8.13, take W = &, and ¢ = s,5,5; = (1234) and 7 = c. This
is the Coxeter-element case of Lemma 8.14, which requires the full Cambrian lattice.

* For each of v € {s,5,555,, 515,, 5, 535,}, we have
nifl(v_l) = §,5; with lower cover reflections {(13)}
and 712_1 (v™1) = s,8, 555, with upper cover reflections {(12), (34)},

giving the factorization (1234) = (13) - (12)(34).
* Forv € {s;5,, 5}, we have

ﬂj_l (v™1) = s, with lower cover reflections {(23)}
and 712_1 H= 5,85 with cover reflections {(13), (34)},

giving the factorization (1234) = (23) - (134).
* For v = e, we get the factorization (1234) = e - (1234), since

-1
(=7 (e)=e
with no lower cover reflections and with the upper cover reflections {(12), (23), (34)}.

Example 8.16. Take W = &, and ¢ = (1234) and 7 = (134), a more generic case of Lemma 8.14.
We have W, = ((13),(34)) = ©;. The simple reflections of W, are (13) and (34), and the
reflections of W are {(13),(14), (34)}.

* For v € {e,s,,835,}, we have inv(v™) N W, =, so

(143) _ 1 —
T[i (U|W<T[>) - n(143)(U|W<7T>) =e,

giving the factorization (134) = e - (134).
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* For v € {s,5,,5,535,}, we have inv(™") N W, = {(13)}, s0

7r§143)(v|W (m) = (13) with lower cover reflection (13)

and ) = (13)(34) with upper cover reflection (34),

1
143 Olwg,

giving the factorization (134) = (13) - (34).
* For v = s5,5,5;5,, we have inv(v=1) n Winy = {(14),(13)}, so again,

' ly,) = 13)

T —
and 7l (0l )= (13)(34)

giving the same factorization (134) = (13) - (34) as in the previous case.

Theorem 8.17. Fix k € N. Then there is a uniform bijection between the sets P+ (W) and
Park(k)(W, c).

belongs to M(l;)hﬂ for some v. Now, M(lgm

Proof. Any element of Py (W) = | |, MY

ckh+1
is exactly the subset of CluS(Zk)(W, ¢) of those subwords u for which each colored reflection in
inv(”)(u) has even color. Since applying v to a colored reflection (¢, k) increases k by one if and only

if t € inv(v), we deduce that M( okt is in bijection with (2k + 1)-tuples of noncrossing partitions
e <7 my <1 7y < -+ 7 Ty, = ¢ such that:

* ift <¢ 7' 7 and i is odd, then ¢ € inv(v™"), whereas
* ift < 7 7, and i is even, then t & inv(v™1).

We wish to place such tuples in bijection with the noncrossing parking functions of the form
(v, (0, <7 05 <7+ < 0y )) with v € W, by setting

Note that if t <; 7, thent & inv(v™!), so v is a minimal coset representative of Wigy = Wig, by
Lemma 8.12. Thus, the map from tuples to noncrossing parking functions is well defined.

To see that the map is a bijection, apply Lemma 8.14 to each factor ai_lai 41 in succession. Work-
ing on colors i = 1,2,..., m, we use the reflections ¢ <; o; that are also in inv(v™!) to split each
noncrossing partition O'i_lol- 41 into a noncrossing partition in the odd color 2i — 3 and one in the
even color 2i — 2, which become the factors of the element in MS,?W. By further factoring the
noncrossing partitions c, and ¢’ uniquely into <_-increasing products of reflections, as in Sec-
tion 8.1.2, we construct the inv; sequence for the subword in M( , with no reflections of color
0. So, the product of the reﬂectlons with twisted color 2 is c itself. As we have now identified the
colored reflections in inv® »» We can reconstruct the subword itself using Remark 4.6. O

Example 8.18. Continuing Example 8.15, we illustrate Theorem 8.17 by using Lemma 8.14 to
reconstruct the subwords in MS;L corresponding to the noncrossing parking functions (v, (e)).
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* For v € {5,5;535,, 5 5,, 51535, }, we need to put (13) in color 1, whereas we need to put (12), (34)
in color 2 so that after twisting, all reflections have color 2. Using Remark 4.6, we obtain

(81552, 83581552, §3, 51, (1'3), (1"2), 51,585,583, 81, 52, (3"4)).
* For v € {s;5,, 5,}, we need to put (23) in color 1 and (13), (34) in color 2. We obtain
(51552, 83581552, S35 51 S35 (2'3), 81583, 83, (1"3),52, (34)).

* For v = e, we put all reflections (12), (23), and (34) in color 2, so that
(51552, S35 515 S35 53, 51, 82, 53, 51, 53, 53, (12), (23), (34)).

Example 8.19. For alarger illustration of Theorem 8.17, take W = @, andc = (123456)and m =
1. FiX U = 555,535,5,5; €€ W{(13%)) and consider the noncrossing parking function (v, ((136))).

First, inv(v™!) = {(34),(24),(35),(25),(45),(36)}. The noncrossing partition (136) corre-
sponds to the factorization into noncrossing partitions ¢ = 7, - 77, where 7, = (136) and 7, =
(12)(345). To each of 7 and 7;, we apply Lemma 8.14:

+ Since v is a minimal coset representative of W{(136)) we have inv(v=') n W,y = 0. Thus, we
put (13),(36) in color 0.
* Since inv(v™!) n W zy = {(34),(35),(45)}, we have

(12)(354) _ 1 _
210y, Y=xl Ol ) = GHESEY

in Wiy with lower cover reflections (34),(45) and upper cover reflection (12), giving the
factorization (12)(345) = (345) - (12). Thus, we put (34), (45) in color 1 and (12) in color 2.

We can finally reconstruct the corresponding subword of ¢’ using Remark 4.6:

(Sl’ (1 3)7 S31 S41 (3 6)7

81, Sy, 83, S4  Ss,

81, S5, 83, Sy, (12),
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