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A B S T R A C T

The integration of viral genomic data into public health surveillance has revolutionized our
ability to track and forecast infectious disease dynamics. This review addresses two critical as-
pects of infectious disease forecasting and monitoring: the methodological workflow for epidemic
forecasting and the transformative role of molecular surveillance. We first present a detailed
approach for validating epidemic models, emphasizing an iterative workflow that utilizes ordi-
nary differential equation (ODE)-based models to investigate and forecast disease dynamics. We
recommend a more structured approach to model validation, systematically addressing key stages
such as model calibration, assessment of structural and practical parameter identifiability, and
effective uncertainty propagation in forecasts. Furthermore, we underscore the importance of
incorporating multiple data streams by applying both simulated and real epidemiological data
from the COVID-19 pandemic to produce more reliable forecasts with quantified uncertainty.
Additionally, we emphasize the pivotal role of viral genomic data in tracking transmission dy-
namics and pathogen evolution. By leveraging advanced computational tools such as Bayesian
phylogenetics and phylodynamics, researchers can more accurately estimate transmission clusters
and reconstruct outbreak histories, thereby improving data-driven modeling and forecasting and
informing targeted public health interventions. Finally, we discuss the transformative potential of
integrating molecular epidemiology with mathematical modeling to complement and enhance
epidemic forecasting and optimize public health strategies.
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1. Introduction

The COVID-19 pandemic has underscored the critical role of mathematical and statistical methods in understanding, forecasting,
and mitigating the spread of infectious diseases. Mathematical modeling offers essential tools for public health agencies and re-
searchers worldwide, providing a framework to predict future outbreaks, evaluate intervention strategies, and inform decision-making
[1]. These models rely on epidemiological and molecular surveillance data to investigate and track disease transmission dynamics and
assess the effectiveness of control measures [2,3]. One specific family of mathematical models based on ordinary differential equations
(ODEs) has become central to epidemic analysis [4–6].

For example, epidemic forecasting models have demonstrated their potential to enhance public health responses to various in-
fectious disease outbreaks. They can assist in resource allocation, shape vaccination strategies, and inform policy decisions. During the
COVID-19 pandemic, these models provided critical insights into case surges, enabling timely interventions (e.g., [7–10]. The US
CDC’s FluSight Challenge used models to optimize influenza vaccine distribution [11]. In theWest African and Democratic Republic of
Congo (DRC) Ebola outbreaks (e.g., [12–14], models predicted disease spread and assessed the effectiveness of interventions. More
recently, models have been applied to forecast the spread of mpox, further highlighting their continued importance in epidemic
management (e.g., [15–18].

A critical challenge in epidemic modeling is the accurate estimation of parameters, that govern disease transmission and pro-
gression in order to generate reliable short-term forecasts of the epidemic’s trajectory. Parameters such as transmission rates, inter-
vention effects, and reporting levels are often not directly observable. For this reason, researchers rely onmathematical models, such as
ODE-based models (Ordinary Differential Equations), to infer these parameters from available data. Accurate parameter estimation is
crucial for the predictive power of these models, as even minor uncertainties in parameter values can lead to significant discrepancies
in forecasts.

However, accurate parameter estimation critically depends on both the structural and practical identifiability of the model pa-
rameters [19,20]. Indeed, structural and practical identifiability analyses are essential to ensure that model parameters can be
uniquely determined and estimated with adequate precision [21]. Structural identifiability guarantees that model parameters can
theoretically be identified from perfect data,. whereas practical identifiability examines whether this is achievable with real-world
data, which are often noisy or incomplete. Failing to ensure identifiability can lead to unreliable model predictions, undermining
the quality of public health decisions. Despite their importance, these analyses are not widely employed in epidemic modeling,
underscoring the need for increased attention to these methods in public health modeling efforts. As demonstrated in Fig. 1, there has
been a notable increase in epidemic modeling publications that utilize parameter estimation as well as those that mention “identifi-
ability” after 2018, with a sharp rise during the COVID-19 pandemic. However, the proportion of publications that include

Fig. 1. Trends in publications related to epidemic modeling and estimation and the subset, including identifiability (2004–2023). The blue line
shows the number of publications per year, including epidemic modeling and parameter estimation. At the same time, the red line represents the
subset of these publications that also include structural or practical identifiability analysis. The y-axis on the left corresponds to the number of
epidemic modeling publications. In contrast, the y-axis on the right tracks the number of publications focusing on both estimation and identifi-
ability. The data reveal a notable increase in both categories after 2018, with a sharp rise in publications during the COVID-19 pandemic. However,
the proportion of publications that include identifiability is still low, hovering around 5 % during the last few years. Data for this figure was obtained
from Web of Science.
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identifiability remains low, hovering around 5 % in recent years.
The integration of molecular surveillance into epidemiological monitoring has revolutionized the ability to track and forecast

infectious disease dynamics. Traditional methods, such as contact tracing and exposure data collection, while valuable, are labor-
intensive and subject to biases. Advances in genomic epidemiology, powered by high-throughput sequencing technologies, now
provide a complementary and more precise approach. By analyzing viral genomes in real time, researchers can infer transmission
routes, detect emerging variants, and forecast the spread of pathogens with unprecedented accuracy. These methods were instrumental
during the SARS-CoV-2 pandemic, enabling the rapid identification of Variants of Concern (VOCs) and improving the reliability of
epidemiological forecasts. However, genomic surveillance presents new challenges, including the complexity of genomic data and the
need for advanced computational models to process and interpret this information. Despite these hurdles, integrating genomic
methods with traditional epidemiological tools offers significant opportunities to enhance the understanding and control of infectious
diseases.

This review addresses two critical aspects of infectious disease modeling and monitoring: the methodological workflow for
epidemic forecasting and the transformative role of molecular surveillance. First, we examine the iterative methodological workflow
necessary for reliably fitting and forecasting epidemic models, encompassing real-time data integration and model formulation or
refinement to the generation and evaluation of model-based predictions. In particular, we recommend a structured approach to model
validation, systematically addressing key stages such as model calibration, assessment of structural and practical parameter identi-
fiability, and the propagation of uncertainty in forecasts. This structured approach ensures that models are robust, reliable, and
capable of supporting evidence-based public health decisions. Practical examples illustrate this workflow using both simulated and
real data from the COVID-19 pandemic in Spain. In addition, we explore how the integration of molecular surveillance, particularly
genomic epidemiology, has revolutionized infectious disease monitoring, enabling real-time tracking and more precise forecasting of
pathogen spread. While this approach presents computational challenges, it significantly enhances traditional methods and offers new
opportunities for improved epidemic control.

2. Overview of the workflow for fitting and forecasting with epidemic models

The process of fitting and forecasting epidemic models is an interactive cycle that involves several critical steps. This workflow aims
to ensure that the models fit the data well and provide accurate predictions that can be used for decision-making during an epidemic.
The schematic in Fig. 2 illustrates the key stages of this iterative process. Initially, real-time data are integrated to continuously refine
the model. This step ensures that new information is captured and utilized to update model predictions. The model is then formulated
or updated based on the most recent data and understanding of the epidemic. Following the model’s formulation, initial conditions and
known parameters are determined. Next, the structural identifiability of unknown parameters is assessed. Additional data or model
adjustments are required if the parameters are not structurally identifiable. The model is fitted to the data when the unknown pa-
rameters are structurally identifiable. Once the model is fitted, the quality of the fit is evaluated. If the fit is unsatisfactory, the
workflow loops back to integrating new data or making necessary model adjustments. If the fit is acceptable, the next step is to check
the practical identifiability of the estimated parameters. If the parameters are not practically identifiable, the process again requires
additional data or model modification. The model is accepted when both the fit quality and the parameters’ practical identifiability are
confirmed. At this stage, the model is used to generate predictions, and these predictions are evaluated for accuracy and reliability. The
iterative nature of this process ensures continuous refinement and improved accuracy over time. The following sections delve into the
methods and approaches applicable to each workflow phase. We also illustrate the workflow using simple, practical examples to
demonstrate how these methods are applied in real-world scenarios.

2.1. Real-time data integration

The first phase of the workflow is real-time data integration, which plays a crucial role in ensuring that epidemic models stay
current and responsive as new information becomes available or the epidemic situation evolves. In infectious disease outbreaks, the
situation can rapidly evolve, with new data on cases, hospitalizations, recoveries, and deaths reported frequently [22]. By integrating
this real-time data into the models, public health officials and policymakers can access up-to-date insights vital for making informed
decisions [23,24].

Data for real-time integration typically comes from various sources, such as public health surveillance systems, hospital records,
diagnostic testing facilities, and even mobile tracking of population movements or infection spread. Incorporating this diverse set of
data streams helps ensure a more comprehensive understanding of the epidemic’s trajectory [25]. However, these updates must occur
rapidly, allowing the model to be adjusted in near real-time to reflect current conditions and enhance situational awareness. This
enables the model to remain accurate and responsive to changes in the spread or control of the disease.

One challenge of real-time data integration is ensuring the quality and reliability of incoming data. Data often contain in-
consistencies, missing values, or errors that need to be addressed before they can be used [26]. This may involve preprocessing steps
such as data cleaning and employing statistical methods or machine learning techniques to fill in gaps or correct anomalies. Ensuring
that high-quality data is fed into the model is essential for maintaining the accuracy of forecasts and predictions.

Additionally, automated systems play a critical role in real-time data integration, as they can gather, process, and input data
directly into the modeling pipeline, reducing delays and minimizing human error. Through this continuous process of updating,
validating, and refining the model with real-time data, predicitons remain relevant and can provide a stronger foundation for
responsive public health actions.
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2.2. Formulating the model based on ODEs

The next step in this workflow involves formulating or updating the model in response to real-time data. By continuously refining
the model, researchers can better capture the evolving dynamics of the epidemic, enabling more accurate predictions and more
effective public health interventions [27]. Epidemic models often take the form of ordinary differential equations, such as the
well-known SEIR (susceptible-exposed-infectious-recovered) model [28], which are essential for studying infectious disease trans-
mission dynamics [29]. By describing the rates of change between compartments within a population, these models allow researchers
to explore how diseases spread over time. In mathematical epidemiology, such models are critical in assessing intervention strategies,
evaluating vaccination effects, estimating key transmission parameters (including the basic reproduction number, R0 [30,31]), and
generating forecasts of the epidemic’s trajectory with quantified uncertainty.

ODE models can vary significantly in complexity depending on the number of state variables and parameters. These models are
generally categorized into two types: phenomenological models and mechanistic models [32]. Phenomenological models adopt an
empirical approach, focusing on reproducing observed trends rather than explaining the underlying biological mechanisms. They are
particularly useful for predicting the short-term trajectory of an epidemic, especially during its early stages, when there is considerable
uncertainty surrounding the epidemiological characteristics of pathogens [33–35] These models provide a pragmatic solution when
detailed biological data are scarce or unavailable allowing for rapid forecasting of potential epidemic growth [36].

In contrast, mechanistic models aim to capture the key transmission as well as behavioral and intervention processes driving the
spread of the disease. These models are typically more detailed and complex because they incorporate in-depth information about the
interactions between different compartments in the population [37–39]. For instance, the widelyused SEIR model divides the pop-
ulation based on disease status into compartments. More elaborate models, which include compartments for asymptomatic or hos-
pitalized individuals or incorporate vaccination dynamics, offer a more nuanced representation of disease progression. The transitions
between these compartments are governed by rates such as the transmission rate (how quickly susceptible individuals become
infected), the latent period (the time before exposed individuals become infectious), and the recovery rate (how rapidly infected
individuals recover or die).

While phenomenological models focus on fitting observed data, their parameters can sometimes be directly connected to the
mechanistic parameters of SIR-type models [40,41]. For instance, in many infectious disease models, including SIR-type models, the
growth dynamics often exhibit logistic behavior or closely resemble the logistic model. In these cases, parameters such as the logistic
model’s growth rate and carrying capacity can be interpreted as key disease transmission parameters like the basic reproduction
number (R0) and recovery rates. This connection arises because the logistic model effectively captures an epidemic’s early exponential
growth phase, followed by a slowdown as the susceptible population is depleted, which is a common characteristic of epidemic curves.
Similarly, the SIS model results in a logistic-like equation that describes the number of infectious individuals over time [42].

An ODE model comprising a system of h ordinary-differential equations is given by:

x1
⋅

(t) = g1(x1, x2, …..xh, Θ)

x2
⋅

(t) = g2(x1, x2, …..xh, Θ)

xh
⋅

(t) = gh(x1, x2, …..xh, Θ).

Above, xi
⋅
denotes the rate of change of the system state xi where i = 1,2,…,h and Θ = (θ1,θ2,…,θm) is the set of model parameters.

Let f(t, Θ) denote the expected temporal trajectory of the observed state of the system.
In the context of epidemics, the state variables may include observable quantities such as the number of reported cases, deaths, or

hospitalizations. These are observed states, while latent states represent variables that are not directly measured but inferred from the
mathematical model [43,44]. For example, the number of exposed individuals in a population is often a latent state that can only be
indirectly estimated through model fitting.

2.2.1. Phenomenological growth models
Phenomenological growth models are simple yet powerful tools designed to generate real-time short-term forecasts with quantified

uncertainty for various growth processes, including epidemic outbreaks. These models focus on empirical data patterns rather than
mechanistic explanations, making them particularly useful for characterizing the early stages of growth in both natural and social
phenomena. The models discussed here are adept at capturing key epidemic dynamics, such as growth rates, scaling of growth,

Fig. 2. Iterative workflow for parameter estimation and forecasting using ODE models. This flow diagram illustrates the critical stages involved in
developing and refining epidemic models, emphasizing the iterative nature of the process. The workflow begins with real-time data integration,
followed by formulating or updating the model. Initial conditions and known parameters, often derived from early outbreak data, are determined
next. The structural identifiability of unknown parameters is then assessed. Additional data or model adjustments are required if parameters are not
structurally identifiable. The model is fitted to the observed data if they are structurally identifiable. The next step evaluates the quality of the model
fit; if the fit is unsatisfactory, more data or modifications are needed. Once an acceptable fit is achieved, the practical identifiability of the estimated
parameters is examined. If parameters are not practically identifiable, further data or adjustments are necessary. The model is accepted only after
successfully passing these steps, at which point it can generate and evaluate predictions. This process is essential for real-time epidemic manage-
ment, ensuring that the model remains accurate and relevant as more data becomes available.
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doubling times, reproduction numbers, and turning points. They are also effective in predicting critical values, such as the final size of
an epidemic at different time horizons, with quantified uncertainty, which makes them highly applicable in real-time decision-making
during outbreaks [8,45–51].

These phenomenological models have been frequently used in near real-time to forecast epidemic trajectories, offering practical
insights into the evolution of disease outbreaks. Estimating quantities such as the basic reproduction number (R0) and doubling time
provides valuable information that enables public health authorities to better understand and respond to emerging health crises. Their
simplicity and ease of implementation make them an attractive option for rapid forecasting and monitoring, particularly in the early
phases of an epidemic.

Phenomenological growth models offer flexible tools for capturing the early dynamics of infectious disease outbreaks. Unlike
traditional models that typically assume exponential growth, the Generalized-Growth Model (GGM) and Generalized Logistic Growth
Model (GLM) incorporate parameters that allow for sub-exponential growth, providing a more accurate representation of varying
transmission dynamics across different diseases. This adaptability makes these models particularly useful for forecasting outbreaks
with diverse growth patterns. Both the GGM and GLM have been successfully applied to predict the trajectory of epidemics, including
Zika, Ebola, and COVID-19 [8,33,47–53].

2.2.2. Generalized-growth model (GGM)
Models commonly used to study the growth pattern of infectious disease outbreaks often assume exponential growth in the absence

of control interventions (e.g., compartmental models); however, growth patterns may be slower than exponential for some diseases,
depending on the transmission mode and population structure. For instance, diseases like Ebola, which spread via close contact, are
expected to exhibit sub-exponential growth patterns due to the constrained nature of population contact structures [54]. The GGM
[33] includes a “deceleration of growth” or "scaling of growth" parameter, p (range: [0, 1]), that relaxes the assumption of exponential
growth. A value of p = 0 represents constant (linear) growth, while a value of p = 1 indicates exponential growth. If 0 < p < 1, the
growth pattern is characterized as sub-exponential or polynomial.

The GGM is as follows:

dC(t)
dt

= Cʹ(t) = rC(t)p,

where the derivative Cʹ(t) describes the incidence curve over time t . The positive parameter r is the growth rate parameter (r > 0), and
p is the scaling of the growth parameter. For this model, we estimate Θ = (r,p).

2.2.3. Generalized logistic growth model (GLM)
The GLM extends the GGM by incorporating a final epidemic size parameter and is given by:

dC(t)
dt

= Cʹ(t) = rC(t)p
(

1−
C(t)
K0

)

.

The growth scaling parameter, p, is also used in the GLM to model a range of early epidemic growth profiles ranging from constant
incidence (p= 0), polynomial (0 < p < 1), and exponential growth dynamics (p = 1). When p = 1, this model reduces to the logistic
growth model. The remaining model parameters are as follows: r is the growth rate, and K0 is the final cumulative epidemic size
(carrying capacity). For this model, Θ = (r, p,K0). The GLM has been employed to generate short-term forecasts of Zika, Ebola, and
COVID-19 epidemics [2,8,47,51,53].

2.2.4. Mechanistic models
SEIR-type models are widely used compartmental models in epidemic modeling [5,29,55]. They divide the population into

compartments representing different epidemiological states of the disease, such as susceptible, exposed, infectious, and recovered.
These models capture the natural history of infectious diseases, allowing researchers to simulate transmission dynamics and assess the
impact of various interventions. Their flexibility makes them ideal for deriving explicit expressions of the basic reproduction number
(R0) and studying a wide range of infectious diseases [56].

The simplest and most popular mechanistic ODE compartmental model for describing the spread of an infectious agent in a well-
mixed population is the well-known SEIR (susceptible-exposed-infectious-removed) model [57]. This model requires four parameters
(transmission rate β, the latent period 1/κ, the average infectious period 1/γ, and the population size N) and four state variables that
keep track of the number of susceptible, exposed, infectious, and removed individuals over time. Additionally, the models often
include an additional state variable to keep track of the number of new infectious individuals over time, frequently used to link the
model to time-series data. This model assumes no births or natural deaths in the population. In this model, the infection rate or force of
infection is often defined as the product of three quantities: a constant transmission rate (β), the number of susceptible individuals in

the population (S(t)), and the probability that a susceptible individual encounters an infectious individual
(
I(t)
N

)

. Here, I(t) represents

the number of infectious individuals in the population at time t, andN is the population size. Exposed individuals (E) become infectious
(I) after an average latent period given by 1

κ . Infectious individuals become recovered (R) after an average infectious period given by
1
γ.

The model is based on a system of ODEs that keep track of the temporal progression in the number of susceptible (S), exposed (E),
infectious (I), and recovered (R) individuals as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −βS(t)
I(t)
N

Ė = βS(t)
I(t)
N

− κE(t)

İ = κE(t) − γI(t)

Ṙ = γI(t)

Ċ = κE(t)

In the above system, the auxiliary variable C(t) keeps track of the cumulative number of infectious individuals, and Ċ(t) keeps track
of the curve of new cases (incidence), which is often used to link the model to time series data. If f(t,Θ) denotes the temporal trajectory
of the observed state of the system, then f(t, Θ) will correspond to Ċ(t) in the SEIR model above.

In a completely susceptible population, e.g., S(0) ≈ N, the number of infectious individuals grows following an exponential
function during the early epidemic growth phase, e.g., I(t) ≈ I0e(β−γ)t. Moreover, the basic reproduction number (R0) quantifies the
average number of secondary cases generated per primary case during the initial transmission phase. This parameter is a function of
several parameters of the epidemic model, including the transmission rates and infectious periods that contribute to new infections. R0
often serves as a threshold parameter for the SEIR-type compartmental models. If R0 > 1 then an epidemic is expected to occur whereas
values of R0 < 1 cannot sustain disease transmission. For this simple SEIR model, R0 is simply given by the product of the mean
transmission rate (β) and the mean infectious period (1γ) as follows: R0 =

β
γ.

2.2.5. SEIR model with reported and unreported cases
This extended SEIRmodel incorporates a reporting proportion parameter (ρ) to account for underreporting, distinguishing between

reported (Ir) and unreported (Iu) infectious individuals. The model also includes an equation to track the cumulative number of re-
ported cases over time, C(t), which provides insight into the total number of individuals detected and reported as infectious. This
model is particularly useful for understanding the full dynamics of both observed and unobserved cases in an epidemic. This model is
governed by the following system of differential equations:

dS
dt

= −β
S (Ir + Iu)

N
dE
dt

= β
S (Ir + Iu)

N
− κ E

dIr
dt

= ρ κ E − γ Ir

dIu
dt

= (1 − ρ) κ E − γ Iu

dR
dt

= γ (Ir + Iu)

dC
dt

= ρ κ E

2.3. Determining initial conditions and known parameters

Once the model is formulated, the initial conditions for each compartment and any known parameters must be specified. Initial
conditions represent the system’s state at the epidemic’s beginning (e.g., the number of infected and susceptible individuals). Known
parameters, such as population size and other well-established epidemiological parameters, can be obtained from previous studies or
early outbreak investigations. Accurate specification of these conditions is crucial because they influence the model’s behavior and
ability to capture the epidemic dynamics [58]. For instance, some models focus on the initial phase of an outbreak, where the pop-
ulation is assumed to be large, and the depletion of susceptible individuals is negligible. In this phase, each infected individual typically
produces a new generation of secondary infections. This is crucial for calculating early epidemic dynamics, including R0 [2,57].

Whether the initial conditions are known or unknown has significant implications for the structural identifiability of other pa-
rameters in the model, as discussed in the next section. If the initial conditions are known, the process of parameter identifiability is
simplified because the model has fewer degrees of uncertainty. This allows for a more straightforward estimation of other model
parameters, as the starting state of the epidemic is fixed. Conversely, when the initial conditions are unknown, they become part of the
parameter estimation problem, increasing the model’s complexity and making it more challenging to uniquely identify the remaining
parameters. To address this challenge, using prior knowledge from earlier outbreaks can help refine initial condition estimates during
calibration. In such cases, the structural identifiability analysis must account for the joint uncertainty of both the initial conditions and
the parameters of interest.

G. Chowell and P. Skums Physics of Life Reviews 51 (2024) 294–327 

300 



2.4. Structural identifiability of parameters

Before calibrating the model with real data, it is crucial to determine whether the unknown parameters are structurally identifiable
[59–62]. This step in the workflow involves assessing whether the model’s structure allows for the unique estimation of parameters
based on the available data. If parameters are not identifiable, multiple combinations of parameter values could explain the data
equally well, introducing uncertainty into the model’s predictions and potentially compromising decision-making [63]. A lack of
identifiability often leads to ambiguous interpretations of model outputs, since different parameter sets may yield the same outcomes,
which can mask the true dynamics of the epidemic [20]. This undermines the ability to derive clear insights, for instance, about
transmission rates or intervention efficacy, and can lead to poor policy recommendations.

Structural identifiability problems frequently arise from high correlations among parameters and redundant parameters [42]. As
the number of parameters in the model increases, the information from the data is distributed across the parameters, increasing the
likelihood of encountering structural identifiability issues. This creates a situation where the model becomes overparameterized
relative to the available data, diluting the informative value of each parameter and leading to non-unique or unstable parameter
estimates.

In the context of epidemic models, a structurally identifiable model ensures that key parameters—such as transmission rates,
recovery rates, and other epidemiological factors—can be uniquely estimated from available data, such as case counts or mortality
reports.

The structural identifiability problem mathematically determines whether the model parameters can be uniquely recovered from
the model’s outputs y(t). A model is structurally identifiable if the parameters (p) to y(t) mapping is injective. This means that different
parameter values must produce distinct outputs Formally, this requires showing that:

y(t, p1) = y(t, p2) implies p1 = p2.

If the model fails this condition, it is structurally non-identifiable, implying that multiple combinations of parameters can produce
the same output data, thereby leading to parameter uncertainty and ambiguity in model predictions. This issue is especially prob-
lematic in real-time epidemic modeling, where decision-makers rely on clear parameter estimates to shape interventions, such as
determining the intensity of social distancing or vaccination campaigns.

Several methods have been developed for structural identifiability analysis, each offering distinct advantages depending on the
complexity of the model. These methods include approaches that expand the model’s equations using series expansions, such as the
Taylor series method [64], which analyzes the identifiability through the series expansion of the model’s equations. Other methods are
the generating series method [65], which uses formal power series for systematic analysis, the similarity transformation approach
[66], which transforms the system to new coordinates, the direct test method [67], which tests the model output equations through
differentiation, and the differential algebra method [68,69], which uses symbolic manipulations to assess identifiability.

Several software tools, such as DAISY (Differential Algebra for Identifiability of Systems) [68], AMIGO [70], COMBOS (Combi-
natorial Approach to Structural Identifiability) [71], SIAN (Structural Identifiability Analysis via Numerical methods) [72] and
structuralidentifiability.jl [73] are available for investigating the structural identifiability of model parameters. One of the most widely
used techniques is the Differential Algebra Method, which expresses the model’s equations in terms of observable variables and pa-
rameters, helping to identify parameter correlations that could hinder identifiability [68]. Tools like DAISY automate much of this
analysis using the computer [74]. In addition to these traditional tools, new. computational tools such as structuralidentifiability.jl
have emerged to provide more efficient and scalable solutions [73]. This Julia-based package leverages symbolic computations to
perform structural identifiability analysis and tends to work well with more complex models.

When structural identifiability analysis reveals non-identifiable parameters, several approaches can be employed to resolve these
issues. One significant consequence of working with non-identifiable parameters is that it can lead to unstable or unreliable forecasts,
and hinder the ability to attribute changes in epidemic dynamics to specific interventions, as different parameter combinations may
explain the same trends. One common solution to identifiability issues is to re-parameterize the model [42]. In cases where two pa-
rameters are indistinguishable, re-parameterizing allows the model to express the same relationship between parameters more easily.
Another effective method is fixing parameters, where known values for certain parameters, such as population size, are used to resolve
correlations and make the remaining parameters identifiable [75,76]. This strategy is especially useful when some parameters are
already well understood, allowing the focus to shift to estimating more uncertain variables. Incorporating additional observed states is
another approach that can enhance identifiability. For example, collecting additional data on other states of the model can help
identify all relevant parameters. In this case, additional information from different epidemic stages—such as hospitalization or re-
covery data—can help resolve parameter correlations. Additionally, using prior knowledge to fix correlated parameters is a key
strategy for managing non-identifiability issues [77]. Finally, simplifying model structure by reducing the number of compartments
can sometimes resolve identifiability problems by making the model less complex and more manageable. These strategies are crucial
for ensuring that parameters in epidemic models are uniquely and accurately estimated from the observed states. However, this
simplification must be done carefully to avoid losing critical epidemiological detail.

It is important to note that structural identifiability is a theoretical property of the model based on the assumption of perfect, noise-
free data. However, data are often noisy, sparse, and incomplete in practice. Therefore, even if a model is structurally identifiable, its
parameters may not be practically identifiable. The inability to practically estimate parameters in real-world contexts can result in
misleading confidence in the model’s outputs, further complicating intervention planning. Practical identifiability, which is discussed
in the next section, considers real-world factors such as data quantity, measurement noise, and sampling frequency. These factors can
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significantly affect the precision with which parameters can be estimated in real-world scenarios.
Modelers need tools that precisely calibrate ODE models using time series data to perform practical identifiability analyses. The

following section discusses the available tools for both frequentist and Bayesian inference frameworks, which are essential for fitting
models to real-world data.

2.5. Fitting the model to data and evaluating the goodness of fit

The next step in the workflow involves fitting the model to observed data, such as case counts, hospitalizations, or deaths, to
evaluate how well the model captures observed trends and simultaneously assess the practical identifiability of its parameters. This
process requires estimating unknown parameters using either frequentist methods, such as maximum likelihood estimation, or
Bayesian inference. The primary objective is to find parameter values that minimize the discrepancy between the model’s predictions
and the actual data, ensuring a robust fit. The quality of the fit is evaluated using goodness-of-fit measures, such as the Akaike In-
formation Criterion (AIC) or the Bayesian Information Criterion (BIC), as well as performance metrics like mean absolute error (MAE),
mean squared error (MSE), coverage of the 95 % prediction interval, and the weighted interval score (WIS). This section reviews
contemporary tools that facilitate model fitting, assess fit quality, evaluate practical identifiability, and generate forecasts with
quantified uncertainty.

One of the simplest approaches to fitting models to data involves minimizing the distance between observed data and model
predictions, often through techniques like nonlinear least squares [78–80].While effective for capturing the average trajectory that fits
the data, this method assumes a constant variance in the errors,which may not yield optimal parameter estimates when the variance is
not uniform (heteroscedasticity). In such scenarios, maximum likelihood estimation provides a more flexible approach by allowing for
error structures that reflect realistic uncertainty around the model fit, enabling well-calibrated prediction intervals [81]. Following this
paradigm, nonlinear optimization algorithms are utilized to maximize the likelihood function, which expresses how well the model fits
the data.

In the broader landscape of tools available for fitting models to data, both the fitode package [81] and QuantDiffForecast toolbox
[82] offer parameter estimation and model fitting capabilities for ordinary differential equation (ODE) models, but they cater to
different user needs. fitode, an R-based package, is optimized for simplicity and user accessibility, allowing researchers to fit ODE
models using Maximum Likelihood Estimation (MLE). It offers flexibility by supporting various error structures, such as normal and
negative binomial distributions. This makes fitode well-suited for applications that require rapid model fitting and basic uncertainty
assessment without significant computational overhead.

In contrast, QuantDiffForecast is a MATLAB-based toolbox designed to facilitate parameter estimation and short-term forecasting
with a strong emphasis on quantified uncertainty. It uses parametric bootstrapping to characterize probabilistic predictions and
construct confidence prediction intervals. Additionally, it supports the use of multiple initial seeds (e.g., the Multistart approach) to
enhance the likelihood of the optimization algorithm converging to a global optimum rather than getting trapped in a local one. Its
user-friendly interface and detailed tutorials make it accessible to both students and professionals working with dynamic systems. The
toolbox streamlines key processes such as parameter estimation, model fitting, and uncertainty quantification. In addition to sup-
porting error structures like Poisson and negative binomial, QuantDiffForecast provides calibration and forecasting performance
metrics such as MAE and WIS [83], making it highly suitable for real-time forecasting and policy evaluation. QuantDiffForecast’s
flexibility is enhanced through the inclusion of options files, which allow users to customize model settings, run batch simulations, and
replicate configurations easily, streamlining complex modeling workflows. It supports the definition of ODE models, accommodating
both phenomenological and mechanistic models, and offers flexibility in parameter estimation through nonlinear least squares (NLS)
and MLE. Notably, the toolbox addresses real-world data complexities by supporting various error structures, such as Poisson and
negative binomial distributions, making it well-suited for handling complex datasets [84]. Moreover, the toolbox is equipped to
provide short-term forecasts with quantified uncertainty, offering users metrics such as MAE, MSE, the coverage of 95 % prediction
intervals, and the WIS to assess forecast performance. By integrating these features, QuantDiffForecast offers a comprehensive platform
for model fitting and forecasting model trajectories.

Complementing QuantDiffForecast, BayesianFitForecast is an R-based toolbox that simplifies Bayesian parameter estimation and
forecasting for ODE models [85]. While QuantDiffForecast focuses on frequentist approaches such as NLS and MLE, BayesianFitForecast
allows researchers to incorporate prior knowledge into the model-fitting process, offering an alternative framework for parameter
estimation through Bayesian inference [86,87]. This toolbox is particularly useful for researchers using ODEs to model dynamic
systems. By automatically generating Stan code [88], BayesianFitForecast reduces the need for extensive programming expertise,
providing a user-friendly way to estimate parameters using advanced optimization techniques. Like QuantDiffForecast, Baye-
sianFitForecast also supports flexible error structures, allowing users to choose between Poisson, negative binomial, or normal dis-
tributions, making it suitable for handling overdispersed data.

For forecasting, BayesianFitForecast generates real-time predictions with uncertainty quantification, offering similar performance
metrics as QuantDiffForecast. This comprehensive approach allows modelers to assess the quality of both parameter estimates and
forecasts.

It is worthmentioning that alternative tools exist for fitting stochastic models, such as the pomp package in R [89]. This package was
designed for fitting models that incorporate process error, such as demographic stochasticity or random fluctuations in transmission
rates, which affect both current and future states of a trajectory. However, our focus here is on methods based on deterministic ODE
models while accounting for observation error. It is important to note that having amodel that fits the data well is insufficient; ensuring
that the estimated parameters are practically identifiable is equally critical. These aspects of practical parameter identifiability are
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addressed in the next section.

2.6. Practical identifiability of parameters

Once structural identifiability of the parameters is established and the model fits the data well, the next step in the workflow
involves is to evaluate the practical identifiability of the model parameters using real data. While structural identifiability ensures that
model parameters can, in theory, be uniquely determined from ideal, noise-free data, practical identifiability assesses whether pa-
rameters can be reliably estimated from real-world data under conditions of measurement noise and irregular data collection [20,21,
76,90,91]. Data are often noisy, incomplete, and collected at irregular intervals, which can significantly hinder parameter estima-
tion—even when the model is structurally identifiable [77,92]. A lack of practical identifiability can be detected by examining the
confidence intervals of the parameters after fitting the model. If a parameter is practically unidentifiable, its confidence interval will be
wide, indicating that the data provide insufficient information to estimate the parameter precisely. In contrast, well-identified pa-
rameters typically have narrow, well-defined confidence intervals. Several metrics can be used to assess whether a parameter is
practically identifiable, including a profile likelihood that does not exceed a critical threshold for large increases or decreases in the
parameter [21], a large relative standard error of the parameter (e.g., >30 % ), a high coefficient of variation (e.g., greater than 1), and
a small near-zero eigenvalue of the Fisher Information Matrix.

Several factors influence the practical identifiability of model parameters. Foremost among them are the quality and quantity of
data are critical factors, as high-quality data with minimal noise and frequent measurements improve the likelihood of obtaining
precise parameter estimates [76,243]. Conversely, noisy or sparse data can lead to ambiguous results and wide confidence intervals,
making distinguishing between different parameter values difficult. Additionally, an insuficient number of observations relative to the
number of parameters can result in overfitting, where the model captures noise instead of true dynamics, leading to unreliable pre-
dictions [93]. Measurement noise further complicates parameter estimation, as real-world data often exhibit non-constant variance or
overdispersion, which requires more specific techniques to characterize the relationship between model variables, parameters, and
time-series data [94]. Even structurally identifiable models may struggle with noisy data, resulting in poor parameter estimates.
Sampling frequency is another important consideration, especially in epidemic modeling. Infrequent data collection may fail to
capture rapid changes in disease dynamics, whereas more frequent sampling can improve the precision of parameter estimates. Lastly,
model complexity affects practical identifiability. More complex models with many parameters typically require more data for precise
estimation. Simpler models, while easier to fit, may lack the flexibility to capture important dynamics, highlighting the challenge of
balancing model complexity with data availability.

Several techniques are commonly used to assess the practical identifiability of model parameters. Profile likelihood is one of the
most widely used methods, where one parameter is varied over a range of values, and for each value, the likelihood is maximized with
respect to the other parameters [95,96]. A flat likelihood over a wide range indicates poor identifiability, while a sharp peak suggests
that the parameter is well-identified. Simulation-based approaches involve generating synthetic data with known parameter values
and estimating these parameters from the simulated data with different levels of noise and sampling frequencies to quantify the
average relative error (ARE) between the original and re-estimated parameters [78,91]. This helps assess how well the model recovers
the true parameters under different levels of noise and sampling frequencies and can be used to determine the minimum amount of
data needed for reliable estimates [97,98].

To improve identifiability, when parameters are poorly identifiable in practice, several strategies can be employed. One of the most
straightforward approaches is to collect more data, either by increasing the frequency of data collection or by adding additional
variables. For instance, gathering data on both infections and hospitalizations in epidemic modeling can provide more information for
estimating key parameters like transmission and recovery rates [99]. Another strategy is to simplify the model by reducing the number
of parameters, which may involve merging compartments or fixing certain parameters based on prior knowledge. Simplified models
often yield more stable parameter estimates, particularly when data are limited.

2.7. Model validation and forecast generation

Once the model has been validated and is well-calibrated, meaning the parameters are practically identifiable with reasonable
uncertainty and the model fits the data well, it can be confidently used to generate forecasts that provide valuable insights into the
future trajectory of the epidemic. These forecasts can predict the expected number of cases or hospitalizations over time. Incorporating
both real-time data and intervention measures is crucial for improving the accuracy of these forecasts, as Zhang et al. [99] emphasize
the need to model time-dependent parameters reflecting changing interventions or behaviors. Continuous validation of the model’s
predictions by comparing them with newly collected data as the epidemic progresses. As new information becomes available or the
epidemic dynamics shift—due to factors such as interventions or behavioral changes—it may be necessary to adjust the model to
ensure it remains accurate and relevant for ongoing decision-making.

In both frequentist and Bayesian frameworks, it is essential to quantify forecast uncertainty. Based on the frequentist approach
described in [82] we can make h time units ahead forecasts using the estimate f(t + h, Θ̂). The uncertainty of the forecasted value can
be obtained using the model fits of the bootstrap samples using the frequentist approach. Let

f(t+ h, Θ̂1), f(t+ h, Θ̂2), …, f(t+ h, Θ̂B)

denote the forecasted value of the current state of the system propagated h time units ahead, where Θ̂b denotes the estimation of
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parameter set Θ from the bth bootstrap sample. We can use these values to calculate the bootstrap variance to measure the uncertainty
of the forecasts and use the 2.5 % and 97.5 % percentiles to construct the 95 % prediction intervals (PI) with the assumed error
structure. In a Bayesian estimation framework, forecasts can be derived similarly by sampling from the posterior distributions of the
parameter values [12,100].

2.8. Iteration and model refinement

The forecasting process is inherently iterative, as models evolve over time to incorporate new features of the epidemic process and
additional data (Fig. 2). When parameters are not structurally or practically identifiable or the model does not fit the data well,
iteration and refinement, as outlined in the workflow diagram, are essential. This process may also include sensitivity analysis to assess
how different parameters impact model outcomes. These refinements may include adjusting the model structure, re-estimating pa-
rameters, or integrating new data to address identifiability issues and enhancemodel accuracy. This cyclical process continues until the
model produces reliable forecasts, empowering public health officials to make informed decisions. To effectively guide response
strategies, it is critical that the model remains adaptable to incoming data and responsive to changes in epidemic dynamics while
incorporating uncertainties in projections.

3. A practical example using simulated data with multiple data streams

During epidemic emergencies such as the 2002–2003 SARS outbreaks, the 2009 A/H 1N1 influenza pandemic, the 2014–2016
Ebola epidemic in West Africa, and the recent COVID-19 pandemic, modeling studies have highlighted significant challenges in
predicting the trajectory of outbreaks, particularly in forecasting the peak of an epidemic [27,101–108]. These difficulties often arise
from models that rely on a single time series of reported cases, limiting their ability to generate reliable predictions of the outbreak’s
progression. The use of a single data stream, influenced by inconsistencies in reporting practices, testing rates, and varying public
health interventions, introduces substantial variability in data quality and availability. Moreover, unpredictable changes in population
behavior in response to the evolving epidemic further complicate predictions.

To address these limitations, it is crucial to develop modeling approaches that rely on multiple data streams—such as reported
cases, deaths, recoveries, and hospital occupancy—to improve parameter identifiability and the precision of forecasts. Adding more
observed states enhances practical identifiability by providing complementary information that allows for more precise and unique
estimation of model parameters [109]. In the following example, we investigate the impact of varying the number of observed states
and the length of the calibration period on the accuracy of SEIR model forecasts. By examining 30-day ahead forecasts and evaluating
performance metrics, we aim to demonstrate how adding additional observed states and extended calibration periods can improve the
reliability of model predictions. This analysis provides valuable insights for enhancing the precision of forecasts during ongoing and
future epidemic responses.

3.1. Model and data

We used the SEIR compartmental model to evaluate the impact of calibration data and observed states on forecast accuracy and
practical identifiability of parameters. The SEIRmodel was fitted to simulated data streams representing different numbers of observed
states (1, 2, or 3 states), which included newly reported cases (dC/dt), the number of infectious individuals (dI/dt), and recoveries (dR
/dt). Each additional observed state introduces new dimensions of information that help resolve uncertainties in parameter estimates,

Fig. 3. The simulated time series from the deterministic SEIR model with constant parameters. We added normally distributed noise with a
standard deviation of 5 to the simulated curves of the number of new cases (dC/dt), number of infectious individuals I(t), and the number of new
recovered individuals (dR/dt).
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improving the practical identifiability of the model. We assessed model performance over different calibration periods (ranging from
30 to 60 days in 5-day increments) by varying the amount of data used for calibration, examining periods ranging from shorter du-
rations to more extended calibration windows.

We generated synthetic data from the deterministic SEIR model with constant parameters. We added normally distributed noise
with a standard deviation of 5 to the simulated curves of the number of new cases (dC/dt), number of infectious individuals I(t), and the
number of new recovered individuals (dR/dt). The simulated time series covering 100 days is shown in Fig. 3. For each combination of
calibration period and number of observed states, the model parameters were estimated by fitting the SEIR model to the available data
through maximum likelihood estimation using the previously discussed QuantDiffForecast toolbox [82].

The parameter estimates (mean values and 95 % confidence intervals) were computed, allowing us to assess the influence of
additional observed states and longer calibration periods on the precision of the parameter estimates. With more observed states, the
model benefits from diverse data sources that constrain parameter estimates more effectively, reducing uncertainty and improving
practical identifiability. For example, while reported cases alone might be insufficient to identify certain transmission dynamics,
adding data on recoveries or hospital occupancy provides additional constraints that improve parameter estimation. The confidence
intervals for the parameter estimates were calculated using bootstrapping methods to account for estimation variability [78].

3.2. Forecasting and performance metrics

We generated 30-day ahead forecasts by calibrating the SEIR model using different calibration periods and numbers of observed
states. Forecasts were computed iteratively by incorporating new data as they become available, to assess the model’s ability to predict
future outcomes based on the number of states used and the length of the calibration period. Forecast uncertainty was quantified by
constructing prediction intervals (95 % confidence) around the forecasted values. The performance of these forecasts was evaluated by
comparing predicted values to actual observed data over the 30-day forecast horizon. To assess the accuracy of the forecasts, we
calculated performance metrics such as the MAE and the MSE, the coverage of the 95 % prediction interval and the weighted interval

Fig. 4. Parameter estimates (solid line represents the mean and dashed lines show the 95 % confidence intervals) as a function of the amount of
data used for model calibration. The estimates for the SEIR model are shown using 1, 2, or 3 observed states. The figure demonstrates that including
additional observed states and longer calibration periods significantly enhances the precision of parameter estimates. As more data are incorporated,
the variability in the estimates decreases, with longer calibration periods generally producing narrower confidence intervals, indicating increased
confidence in the parameter estimates.
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score. These metrics were averaged across different calibration periods and analyzed as a function of the number of observed states
used in the model. This analysis enabled us to quantify how including more data streams and longer calibration windows affects the
model’s predictive performance.

The parameter estimates derived from the SEIR model, using different numbers of observed states (1, 2, or 3) and varying cali-
bration periods, demonstrate notable trends in precision and variability. As shown in Fig. 4, adding additional observed states
consistently improved the accuracy of parameter estimates, with narrower 95% confidence intervals observed when more states were
used for calibration. This improvement in parameter precision is directly linked to enhanced practical identifiability. Each observed
state provides distinct data that help resolve ambiguities in the parameter space, allowing the model to converge on more accurate
estimates. Additionally, longer calibration periods resulted in further reductions in parameter variability, suggesting that more
extensive data collection enhances the reliability of the estimated parameters. Models using only one observed state had broader
confidence intervals, indicating greater parameter estimation uncertainty than models incorporating two or three observed states.

The 30-day ahead forecasts generated by the SEIR model, shown in Fig. 5, reveal the impact of both the calibration period length
and the number of observed states on forecast reliability. Forecasts based on longer calibration periods and more observed states (two
or three) produced narrower prediction intervals, reflecting greater confidence in the forecasted epidemic trajectory. The improve-
ment in forecast reliability stems from the improved practical identifiability of parameters, as additional observed states help the
model better capture the underlying dynamics of disease transmission. In contrast, forecasts using shorter calibration periods or only a
single observed state exhibited wider intervals, indicating higher uncertainty. Notably, the forecasts generated from models calibrated
with three observed states over an extended period aligned more closely with the actual observed data, suggesting that adding
additional data streams enhances forecast precision by improving practical identifiability.

The performance metrics for 30-day forecasts as a function of the calibration period and the number of observed states are dis-
played in Fig. 6, and the average performance metrics are presented in Fig. 7. The corresponding performance metrics demonstrate a
clear improvement in forecast accuracy as more observed states were incorporated into the calibration process. Forecasts calibrated
with three observed states consistently outperformed those based on one or two states, with lower error values across all calibration
periods. Additionally, forecasts generated from longer calibration periods showed reduced error rates, emphasizing the importance of

Fig. 5. 30-day ahead forecasts generated by the SEIR model as a function of the calibration period and the number of observed states used for
calibration. The figure shows how the calibration period’s length and the number of observed states directly impact forecast accuracy and un-
certainty. Longer calibration periods and multiple observed states result in more reliable forecasts with narrower prediction intervals. This indicates
increased confidence in the model’s projections, as adding additional data streams reduces forecast uncertainty. Black dots correspond to the
simulated data points. The mean fit (solid red line) and 95 % prediction interval (dashed lines) are also shown. The vertical line separates the
calibration period (left) from the forecasting period (right).
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using extended data for model calibration. These findings highlight the benefits of incorporating multiple data streams and longer
calibration windows to improve forecast performance in epidemic modeling.

In summary, this example highlights the importance of using multiple observed states and extended calibration periods to improve
forecasts’ practical identifiability and reliability in epidemic modeling. The results demonstrate that models relying on a single
observed state and shorter calibration periods tend to produce less reliable parameter estimates and forecasts, with broader confidence
and prediction intervals reflecting greater uncertainty. In contrast, adding additional observed states, such as reported cases, hospi-
talizations, and recoveries, significantly enhances the precision of parameter estimates and reduces forecast uncertainty, particularly
when combined with longer calibration periods. Increased practical identifiability using multiple observed states ensures that model
parameters are uniquely identifiable, leading to more accurate and reliable forecasts. By increasing practical identifiability through the
use of multiple observed states, models can provide more reliable predictions, ultimately supporting more effective public health
interventions during epidemic emergencies.

4. A practical example from the early wave of COVID-19 in Spain

The first wave of COVID-19 in Spain began in late February 2020, with rapid growth in cases by early March, particularly in Madrid
and the Basque Country. On March 14, 2020, the government declared a state of emergency, implementing some of Europe’s strictest
lockdowns, which confined citizens to their homes and closed schools, non-essential businesses, and public spaces. The epidemic curve
surged, with the peak occurring in late March and early April. Hospitals, especially in Madrid and Catalonia, faced overwhelming
pressure as daily deaths exceeded 900. The early intervention measures, including extended lockdowns, helped slow the spread of the
virus. By early May, Spain began a phased de-escalation process, gradually lifting restrictions as cases declined. The first wave officially
ended when the emergency was lifted on June 21, 2020, although mask mandates and social distancing remained in place [110].

4.1. Investigating the early growth dynamics

When an infectious disease outbreak spreads within a population, it is essential to examine the early growth phase using simple

Fig. 6. Performance metrics for 30-day ahead forecasts from the SEIR model as a function of increasingly longer calibration periods and the number
of observed states used for model calibration. The figure highlights clear improvements in forecast accuracy as both the calibration period and the
number of observed states increase. The performance metrics illustrate how model accuracy improves with extended calibration periods and the
inclusion of additional observed states, emphasizing the importance of using multiple data streams to enhance model performance.
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mathematical models. For instance, the generalized-growth model (GGM) allows researchers to determine whether the epidemic is
growing exponentially, as expected in a homogeneous mixing scenario consistent with the SEIR model and the underlying assumption
supporting the definition of the basic reproduction number (R0) [33,111]. Conversely, a slower, sub-exponential growth phase could
indicate that additional factors, such as the mode of transmission, behavioral changes, or the impact of social distancing measures,
influence the early dynamics and reduce transmission rates. In such a scenario, the effective reproduction number, R(t), declines over
time [112].

Our analysis shows that the GGM fits Spain’s first 25 days of the COVID-19 pandemic well, with a growth scaling parameter close to
1.0, indicating near-exponential growth dynamics (Fig. 8). This is consistent with early transmission stages of respiratory airborne
pathogens like seasonal influenza, where the disease spreads rapidly through a fully susceptible population. Importantly, we find that
the GGM parameters are practically identifiable from the early growth phase, enhancing confidence in the robustness of these esti-
mates. Given these findings, the SEIR model provides a reasonable initial framework for mechanistic modeling.

4.2. Formulating a mechanistic model: SEIR model incorporating reported and unreported cases

Structural identifiability. The structural identifiability analysis of the model, excluding initial conditions, using DAISY reveals
that while parameters k and γ are structurally identifiable, β and ρ are not structurally identifiable (see [59]). The correlation between β
and ρ, contributes to this lack of identifiability. However, we can assume that the initial number of infectious individuals (e.g., I(0))
corresponds to the first data point in the daily curve, E(0) = 0, R(0) = 0, and S(0) can be approximated by Spain’s population size in
the context of a novel pathogen. Knowledge of the initial conditions resolves the identifiability issue, ensuring that all parameters in
the model become structurally identifiable. The next step is to evaluate the practical identifiability of the model parameters when the
model is confronted with real data.

Practical identifiability.When estimated along the transmission rate (β) and keeping the latency and recovery parameters fixed,
our results indicate that parameter ρ is not practically identifiable during the initial phase of the epidemic, as evidenced by the wide
uncertainty associated with this parameter (Fig. 9). In fact, its 95 % confidence interval spans 66 % of its possible value range. This
suggests that the available data from the early outbreak period are insufficient to reliably estimate ρ, likely due to limited observations

Fig. 7. Average performance metrics for 30-day ahead forecasts across different calibration periods as a function of the number of observed states
used to calibrate the SEIR model. The figure demonstrates the clear relationship between the number of observed states and the accuracy of the
model’s forecasts, with more observed states consistently leading to improved performance metrics, such as reduced error and narrower prediction
intervals. This underscores the critical role of incorporating multiple data streams in model calibration to enhance both the precision and reliability
of epidemic forecasts.
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or correlations with other parameters in the model. As a result, the model requires revision to address this issue. One potential
adjustment is to fix ρ at a plausible value based on prior knowledge or expert opinion. Given that initial estimates suggest ρ ≈ 1.0, an
alternative approach would be to revert to the simpler SEIR model, excluding the ρ parameter, and evaluate whether this simpler
model structure adequately captures the epidemic dynamics.

Retaining the unidentifiable parameter ρ in the model may introduce large uncertainties, reducing the precision of parameter
estimates and the accuracy of forecasts. This can lead to misleading conclusions and less reliable guidance for public health in-
terventions. Nevertheless, as shown below, the identifiability of ρ improves in the later stages of the epidemic as more data accu-
mulates, particularly as the epidemic approaches its peak. During this period, changes in transmission dynamics may provide sufficient
data to accurately estimate ρ and other parameters related to the effects of interventions, thereby improving model reliability and
reducing forecast uncertainty.

Next, we consider a simpler SEIR model in our analysis of the initial growth phase of the epidemic to resolve the practical iden-
tifiability issue.

4.3. Revising the model: consider the simple SEIR model

As previously demonstrated, the simple SEIR model ensures that all epidemiological parameters are structurally identifiable (see
[59]). By fixing the latency and infectious periods, we estimated the transmission rate during the initial phase of the COVID-19
epidemic in Spain. The model produced a good fit to the observed data, and the transmission rate was found to be practically iden-
tifiable (Fig. 10). The corresponding empirical distribution and estimate of the basic reproduction number is shown in Fig. 11.
Importantly, the uncertainty associated with the transmission rate estimates was significantly reduced in this simpler model compared
to the model that incorporates a reporting proportion while still maintaining a high quality of fit to the data. This highlights the
advantage of using a less complex model for early-phase epidemic analysis, as it ensures a more robust and practically identifiable
model.

Fig. 8. Fitting the generalized-growth model (GGM) to the early phase of the COVID-19 epidemic in Spain with a normal error structure. The top
panels display the empirical distribution of the estimated parameters alongside the model fit (solid line) to the observed case counts during the first
25 days of the epidemic (dots). The estimated growth scaling parameter (p ≈ 1.0) indicates near-exponential growth, reflecting rapid transmission in
the initial phase, which is consistent with the early spread of respiratory pathogens in a fully susceptible population. The model fit is shown in the
bottom panel. The dashed lines indicate the 95 % prediction interval around the model predictions, the shaded area indicates the mean bootstrapped
curves derived from the parametric bootstrapping process with 300 bootstrapped realizations, and the cyan lines indicate the predictive uncertainty
around the model fit.
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Fig. 9. Fitting the SEIR model with underreporting to the early phase of the COVID-19 epidemic in Spain using a normal error structure. The top
panels display the empirical distribution of the estimated parameters and the model fit (solid line) to the observed case counts over the first 25 days
of the epidemic (dots). Our results indicate that parameter ρ is not practically identifiable during the initial phase of the epidemic, as evidenced by
the wide uncertainty associated with this parameter. The model fit is shown in the bottom panel. The dashed lines indicate the 95 % prediction
interval around the model predictions, the shaded area indicates the mean bootstrapped curves derived from the parametric bootstrapping process
with 300 bootstrapped realizations, and the cyan lines indicate the predictive uncertainty around the model fit.

Fig. 10. Fitting the simple SEIR model to the early phase of the COVID-19 epidemic in Spain using a normal error structure. The top panel shows
the empirical distribution of the transmission rate. Importantly, the uncertainty in the transmission rate estimates is significantly reduced in this
simpler model, compared to the model with underreporting (Fig. 9), while still maintaining the quality of fit to the observed data. The bottom panel
displays the model fit to the observed case counts over the first 25 days of the epidemic (dots). The dashed lines indicate the 95 % prediction interval
around the model predictions, the shaded area indicates the mean bootstrapped curves derived from the parametric bootstrapping process with 300
bootstrapped realizations, and the cyan lines indicate the predictive uncertainty around the model fit.
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4.4. Assessing the observation error

Since the model demonstrated a good fit during the early epidemic phase, we further explored the impact of different error
structures on model performance. Specifically, we evaluated model fit using three error structures: Poisson, negative binomial, and
normal. To compare these error structures, we analyzed four key metrics: MAE, MSE, coverage of the 95 % prediction interval, and the
WIS (weighted interval score), as summarized in Table 1.

Our analysis demonstrates that the normal error structure performs well across all performance metrics (Table 1), providing su-
perior coverage of the 95 % prediction interval and yielding the lowest MAE and WIS values. In contrast, the Poisson and negative
binomial error structures exhibit higher error rates and lower coverage—particularly the Poisson structure, which achieves only 16 %
coverage of the 95 % prediction interval. Overall, the normal error structure is a robust choice for this model, effectively balancing
precision and accuracy in fitting the early epidemic data.

Since the early growth phase of the epidemic exhibits near exponential behavior, we can explore using the SEIR model enhanced
with a power-law scaling exponent (α) to more accurately capture the non-homogenous transmission dynamics [32]. Indeed, Fig. 12
shows that the additional α parameter is well identified along the transmission rate from the early growth phase. In the next section, we
consider an extended SEIR model that incorporates the effects of social distancing interventions during the COVID-19 pandemic in
Spain.

4.5. SEIR model with interventions for the COVID-19 pandemic in Spain

We can employ a more elaborate SEIR model incorporating a dynamic transmission rate to capture the effect of interventions
during the later stages of the epidemic in Spain. The model assumes that interventions, such as social distancing or lockdowns,
gradually reduce the transmission rate from an initial value β0 to a lower value β1. This decline is modeled using an exponential decay
function over time, reflecting how the transmission rate decreases as interventions are implemented:

β(t) = β1 + (β0 − β1) ⋅ e− qt

where:

Fig. 11. The empirical distribution of the basic reproduction number (R0) derived by fitting the SEIR model to the early growth phase of the
COVID-19 pandemic in Spain.

Table 1
Calibration performance of the SEIR model fitted to the early growth phase of the COVID-19 pandemic in Spain using QuantDiffForecast. A normal
error structure yields the best performance metrics.

Calibration period MAE MSE Coverage 95 % PI WIS

Normal 25 46.81 5983.32 92.00 31.44
Poisson 25 50.31 7237.97 16.00 43.34
NB 25 49.94 7020.39 76.00 32.19
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• β0 the initial transmission rate before interventions.
• β1 is the reduced transmission rate after interventions.
• q controls the speed of the decline in the transmission rate.

This model is particularly suitable for application as interventions take hold and more data accumulates during the later stages of
the epidemic. As the epidemic progresses, the effects of interventions and changes in transmission dynamics become clearer, allowing
for better parameter estimation and a more accurate representation of the disease’s trajectory. By incorporating both the impact of

Fig. 12. Practical identifiability analysis of the SEIR model with non-homogenous mixing parameter α . The top panels display the empirical
distribution of the estimated parameters and the model fit (solid line) to the observed case counts over the first 25 days of the epidemic (dots). Our
results indicate that parameter α is well-identified during the initial phase of the epidemic. The model fit is shown in the bottom panel. The dashed
lines indicate the 95 % prediction interval around the model predictions, the shaded area indicates the mean bootstrapped curves derived from the
parametric bootstrapping process with 300 bootstrapped realizations, and the cyan lines indicate the predictive uncertainty around the model fit.

Fig. 13. . A 45-day forecast was generated after calibrating the model, which incorporated interventions and non-homogeneous mixing, using data
from the first 40 days of the COVID-19 pandemic in Spain. The plot displays the model fit (solid line) to the observed case counts (dots) over the first
100 days of the epidemic. The dashed lines indicate the 95 % prediction interval around the model predictions, the shaded area indicates the mean
bootstrapped curves derived from the parametric bootstrapping process with 300 bootstrapped realizations, and the cyan lines indicate the pre-
dictive uncertainty around the model fit.
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interventions and non-homogeneous mixing, this model provides a flexible framework for predicting the epidemic’s progression as
more information becomes available.

We explored using the SEIR model with interventions and non-homogeneous mixing, to derive 45-day-ahead forecasts using
progressively longer calibration periods. The calibration and forecasting performance of the model during the first COVID-19 wave in
Spain are showcased in Figs. 13–17. Fig. 13 illustrates the model’s fit to observed case counts over the first 45 days, up until the peak of
the first pandemic wave, and a 45-day ahead forecast with the 95 % prediction intervals and bootstrapped uncertainty estimates
highlighting the model’s predictive accuracy. The corresponding empirical distributions and parameter estimates, which are well
identified from the data, are shown in Fig. 14.

Using data from the entire first wave (100 days) of the COVID-19 pandemic in Spain, Fig. 15 illustrates the model’s fit to observed
case counts, with the 95 % prediction intervals and bootstrapped uncertainty estimates highlighting the model’s predictive accuracy.
Parameter estimates, shown in Fig. 16, are well-identified, capturing key dynamics such as the transmission rate, intervention effects
via the q parameter, and mixing heterogeneity through the parameter α. The 45-day-ahead sequential forecasts in Fig. 17 demonstrate
improved accuracy with longer calibration periods, reflected by tighter prediction intervals and improved performance metrics
(Table 2), particularly for forecasts made after the first 45 days of the epidemic curve (Fig. 17).

5. Advancing epidemic forecasting: work in progress

In recent years, machine learning (ML) and artificial intelligence (AI) have emerged as crucial tools for predicting natural events
such as weather conditions and epidemic spread. These technologies enable researchers to analyze large datasets and produce more
precise short-term predictions [113–121]. These methods can account for the nonlinear complexities of epidemic spread, which are
often not explicitly observed in surveillance data [122–124]. For example, deep learning (DL) models have been highly effective in
forecasting short-term trends in COVID-19 cases, hospitalizations, and deaths, proving crucial in public health planning and response
efforts [118].

Despite these advances, ML models, especially deep learning architectures, often fail to provide the same level of biological
interpretability as mechanistic models [125–127]. While deep learning has advanced short-term forecasting, its black-box nature poses
a significant limitation—it does not inherently reveal the underlying epidemiological transmission dynamics, which are essential for
guiding public health interventions. As a result, there is increasing recognition of the need to integrate ML-based models with
dynamical systems approaches to improve both predictive accuracy and interpretability [128]. Merging the data-driven strengths of AI
with the theoretical foundations of mechanistic models could enable the development of hybrid models that offer more accurate
epidemic forecasting and provide deeper insights into disease transmission mechanisms.

The workflow outlined in this paper highlights the critical role of identifiability—both structural and practical—in ensuring precise
parameter estimation and reliable forecasts. Introducing ML into this workflow adds a layer of complexity, particularly in maintaining
the identifiability and interpretability of hybrid models that combine data-driven andmechanistic approaches [129–133]. Since purely
data-driven ML models often obscure mechanistic insights into system dynamics, future research should focus on developing methods
to more effectively integrate these techniques. Thus, a key challenge lies in ensuring parameter identifiability within these hybrid
models—a non-trivial task that requires further investigation. Potential strategies may involve applying regularization techniques or
embedding mechanistic constraints within ML architectures, to help preserve identifiability and enhance both predictive accuracy and

Fig. 14. Parameter estimates and their empirical distributions derived from the model incorporating interventions and non-homogeneous mixing
for the COVID-19 epidemic in Spain. The estimates include key epidemiological parameters such as the transmission rate, intervention effect, and
mixing heterogeneity using the first 40 days of the COVID-19 pandemic in Spain. Overall, the parameters from the data are practically
well-identified.
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biological interpretability.
By combining the flexibility of ML with the interpretability and theoretical rigor of dynamical systems, there is substantial potential

to improve forecast accuracy and offer more actionable insights for public health decision-making. However, significant challenges
remain in ensuring hybrid models adhere to rigorous workflows for parameter identifiability and calibration—key elements for
reliable epidemic forecasting. Addressing these challenges will require innovative approaches that integrate the data-driven capa-
bilities of ML with the structural clarity of mechanistic models. This integration must ensure that the resulting framework not only
improves predictive performance but also maintains the transparency and interpretability essential for public health applications.

Fig. 15. Fitting the model incorporating interventions and non-homogeneous mixing to the first 100 days of the COVID-19 pandemic in Spain. The
plot shows the model fit (solid line) to the observed case counts (dots) over the first 100 days of the epidemic. The dashed lines indicate the 95 %
prediction interval around the model predictions, the shaded area indicates the mean bootstrapped curves derived from the parametric boot-
strapping process with 300 bootstrapped realizations, and the cyan lines indicate the predictive uncertainty around the model fit.

Fig. 16. Parameter estimates and their empirical distributions derived from the model incorporating interventions and non-homogeneous mixing
for the COVID-19 epidemic in Spain. The estimates include key epidemiological parameters such as the transmission rate, intervention effect, and
mixing heterogeneity over the 100 days. Overall, the parameters from the data are well-identified.
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6. Methodology of molecular surveillance of epidemiological dynamics

6.1. Major challenges and opportunities in molecular surveillance of viral diseases

Tracking and forecasting infectious disease dynamics is a crucial public health task. While traditional surveillance methods, such as
surveys, contact tracing, and data collection on exposures and risk factors, are widely used, they are often labor-intensive, time-
consuming, and prone to biases. Moreover, the accuracy of these methods can be compromised by sampling and reporting biases.

Recent breakthroughs in genomics and high-throughput sequencing technologies have spurred the rapid development of genomic
epidemiology and genomic surveillance (see Fig. 18). These multidisciplinary fields leverage viral genome data to infer and forecast
epidemiological dynamics [134,135]. As viruses evolve quickly through mutations and genomic alterations, these changes — when
accurately sampled and analyzed — can offer valuable insights into the history of viral spread.

Modern high-throughput sequencing technologies can rapidly generate vast amounts of viral genomic data for surveillance and
outbreak investigations. With decreasing sequencing cost and the growing capabilities of computational technologies, genomic
epidemiology has becomemore feasible and affordable. This presents a unique opportunity to observe viral evolution in near real time,
significantly enhancing genomics-based forecasting methods.

The power of genomic methods was vividly demonstrated during the COVID-19 pandemic caused by SARS-CoV-2. Shortly after the
initial outbreak in Wuhan, China, researchers sequenced and assembled the virus’s genome, identifying it as a novel betacoronavirus

Fig. 17. 45-day ahead forecasts using an increasingly longer calibration period for fitting the SEIR model that incorporates interventions and non-
homogeneous mixing during the first COVID-19 wave in Spain. The solid line represents the model fit and forecast. The dashed lines denote the 95 %
prediction interval, capturing the uncertainty of future projections. The vertical dashed line separates the calibration from the forecasting period.

Table 2
Forecasting performance metrics for the 45-day ahead forecasts derived from the SEIR model incorporating interventions and non-homogeneous
mixing, evaluated across progressively longer calibration periods during the first COVID-19 wave in Spain.

Calibration period MAE MSE Coverage 95 % PI WIS

30 338,882.49 256,601,419,414.54 11.11 219,960.64
35 46,790.81 3,460,948,859.79 86.67 30,063.53
40 4834.83 27,638,183.18 17.78 3535.65
45 1484.19 2,545,303.36 100.00 879.22
50 350.22 187,782.56 97.78 232.24
55 669.70 550,589.78 97.78 414.40
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closely related to SARS-CoV-1 and bat coronaviruses, suggesting a zoonotic origin. By the time the World Health Organization (WHO)
declared a Public Health Emergency of International Concern, over 300 SARS-CoV-2 genomes had already been sequenced. At the
pandemic’s peak, nearly 70,000 genomes were being uploaded daily to public repositories such as GISAID, COG-UK, and GenBank
[136]. This unprecedented volume of genomic data enabled rapid tracking of transmission routes, early detection of Variants of
Concern (VOCs) and Variants of Interest (VOIs), and, for the first time, reliable forecasting of viral evolutionary dynamics and their
epidemiological impacts.

A major advantage of genomic surveillance is its ability to avoid many of the biases inherent in traditional epidemiological
methods. However, it also presents unique challenges, often stemming from the complexity of genomic data and the limitations of
sequencing technologies. Viral genomes do not directly encode epidemiological history; thus, advanced computational methods are
required to infer it. The accuracy of these inferences depends heavily on the quality of the underlying mathematical and statistical
models, making model selection a critical factor in the success of genomic epidemiology methods applied for each particular scenario.
More complex models can capture intricate epidemiological dynamics and offer deeper, more accurate insights. However, these
models often demand significant computational resources and may struggle to scale with even moderately sized datasets. Conse-
quently, the effective application of genomic epidemiology requires striking a delicate balance between biological realism and
computational efficiency.

Moreover, sequencing technologies are inherently imperfect, introducing errors and noise into the data that can affect downstream
analyses. The highest sequencing coverage is typically achieved through short-read technologies, which generate fragmented se-
quences (reads) rather than full-length genomes. Before any epidemiological inferences can be drawn, these sequencing errors must be
corrected, and the full genomes assembled using specialized bioinformatics tools—a process commonly known as primary processing.
Primary processing of viral genomic data is particularly challenging due to the high heterogeneity of viral populations, where signals
from minor variants can be difficult to distinguish from sequencing noise. The computational toolkit for viral genomics is continually
evolving, with frequent updates designed to address emerging challenges. As a result, selecting the appropriate bioinformatics tools for
primary analysis is crucial.

Until recently, the relatively high cost and logistical challenges of sample collection were significant obstacles to the efficient use of
genomic surveillance. However, recent advances in wastewater-based surveillance offer a more cost-effective and efficient sampling
method. The detection of trace viral genomic material in wastewater has been successfully used to track SARS-CoV-2 infection dy-
namics and has been implemented in many countries worldwide [136]. Wastewater-based surveillance accounts for both symptomatic
and asymptomatic cases, can detect viral variants before they become widespread, and provides more balanced estimates of viral
prevalence compared to clinical testing alone [136].

Finally, it is important to recognize that traditional epidemiological and genomic approaches are not mutually exclusive; they are

Fig. 18. Trends in publications related to molecular epidemiology and those focused on outbreak investigations. The trends indicate that the
application of molecular epidemiology in outbreak investigations started to take off around 2005, coinciding with the regular use of sequencing
technologies in biology and epidemiology. Data for this figure were retrieved from the Web of Science.
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most effective when used together. The most accurate genomic epidemiology approaches often integrate case-specific epidemiological
evidence, which can serve as constraints on model parameters or inform priors in Bayesian frameworks. This integration helps resolve
inconsistencies and refine evolutionary scenarios that may arise when relying solely on genomic data.

6.2. Genomic methods and models for detection of transmission clusters and outbreaks

A key application of genomic epidemiology is the investigation of viral outbreaks [134,135]. This process typically involves two
major steps: (a) identifying transmission clusters and (b) inferring transmission histories within these clusters. Numerous bioinfor-
matics tools have been developed for these tasks, including, but not limited to, Outbreaker and Outbreaker 2 [137,138], SeqTrack
[139], SCOTTI [140], SOPHIE [141], Phybreak [142], Bitrugs [143], BadTrIP [144], Phyloscanner [145], StrainHub [146], Trans-
Phylo [147,148] and its extension TransPhyloMulti [149], STraTUS [150], TreeFix-TP [151], QUENTIN [152], VOICE [153], HIV-
Trace [154], GHOST [155], MicrobeTrace [156], SharpTNI [157], TiTUS [158], TNeT [159], AutoNet [160], SMiTH [161], and others
[148,162–169]. These tools have been successfully employed to investigate outbreaks and track transmission dynamics of a variety of
pathogens [170–175].

From a methodological standpoint, transmission inference methods can be broadly classified into network-based and phylogenetic
approaches. Network-basedmethods have gained significant traction, particularly among researchers studying HIV and HCV, and have
been adopted as a standard approach for outbreak investigations by the CDC [154,156,169,173,175–177].

This approach typically involves two stages. First, a relatedness graph is constructed, where vertices represent infected individuals
and edges connect those whose intra-host viral populations are closely related, based on a chosen population genetics measure. In some
cases, this graph provides sufficient information for epidemiological analysis [169,176,177]. However, it usually contains edges that
do not correspond to direct transmissions. Therefore, in an optional second stage, a transmission tree is inferred, usually as a spanning
tree of the genetic relatedness graph, optimized according to a selected objective. While network-based methods cannot determine the
directionality of transmissions [178], they are highly scalable, simple to implement, and produce results that are both visualizable and
interpretable. Several tools, such as GHOST [155] and MicrobeTrace [156], offer web-based platforms with user-friendly interfaces.

Another family of methods utilizes a phylogenetic approach, where transmission networks are reconstructed from viral phylo-
genetic trees. In some cases, the topology of the phylogenetic tree alone can reveal transmission events without requiring further
calculations. For example, a paraphyletic relationship between intra-host viral populations—where populations intermingle rather
than form distinct clades—indicates recent transmission between the corresponding hosts [153,179–181].

However, in general a phylogenetic tree does not directly indicate transmission events. Internal nodes in the tree represent lineage
divergences [13], some of which arise from transmissions between hosts, while others occur within already infected hosts. Therefore,
deriving a transmission network from a phylogenetic tree requires inferring the traits of internal nodes by annotating them with labels
representing the infected hosts. These labels allow researchers to distinguish whether each divergence event occurred within a host or
resulted from the transmission of viral variants to a new host. Trait inference is typically framed as a character optimization problem,
where traits (or characters) are reconstructed to maximize or minimize a predefined objective function.

Various objectives and constraints have been implemented in existing methods. The simplest approaches are based on the principle
of maximum parsimony, which favors transmission histories with fewer transmission events, smaller bottleneck sizes, or minimal back-
transmissions as the most plausible solutions [139,145,150,158,159,182]. These methods are relatively scalable, and the associated
algorithmic problems can often be efficiently solved using dynamic programming or, in more complex scenarios, through Integer
Linear Programming (ILP) [183], with ILP solvers offering reasonable computational efficiency.

Maximum likelihood and Bayesian phylogenetic models [137,140,142,144,149], which incorporate constraints regularized as
priors, provide a more nuanced biological and epidemiological perspective. These models allow for the inclusion of temporal infor-
mation to improve the accuracy of transmission link reconstructions [184], while also incorporating parameters that describe
evolutionary and epidemiological dynamics, such as effective reproduction numbers and sampling rates. However, a drawback of these
parameter-rich models is their computational complexity, which often leads to challenging optimization problems.

It is important to note that when relying solely on genomic data, multiple optimal solutions may fit the observed data equally or
nearly as well. To resolve these ambiguities, additional epidemiological evidence can be incorporated to establish the order of in-
fections and rule out unlikely transmission links [137,140,142,143,147,158,163], provided such evidence is available. This evidence
can include exposure intervals, where hosts with overlapping intervals are more likely to be connected, as well as symptom onset,
diagnosis, or sample collection dates, which can help estimate infectious periods if their distribution is known or reasonably assumed.
In rare cases, known contact networks can also be used to refine transmission inferences [175,185].

For pathogens associated with endemic diseases and chronic infections, such as HIV or Hepatitis C, case-specific epidemiological
data is often unavailable, non-informative, or sensitive [141,152,169]. In such cases, general knowledge about the expected properties
of viral transmission networks—derived from the structure of susceptible populations—can serve as a substitute [141,152]. Infectious
diseases typically spread through social networks of contacts, and transmission networks often mirror the underlying properties of
these social structures [177,186–188]. The general characteristics of these social networks (e.g., being scale-free) are well established
in network theory, sociology, and classical epidemiology [189]. This allows the transmission inference problem to be framed as finding
transmission networks that are consistent with both the observed genomic data and the highest probability of being subnetworks of
random contact networks [141,152].

An example of transmission network inference methodology in evaluating epidemiological dynamics is the study of a large
2015–2016 HIV/HCV outbreak in rural Indiana. Identified by the Indiana State Department of Health (ISDH) in early 2015, the
outbreak in Scott County led to hundreds of HIV and HCV infections and a public health emergency [190]. It was traced to unsafe
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injection of the opioid oxymorphone [191], highlighting the link between viral transmission and the opioid abuse epidemic [192,193].
In ref. [141], the transmission detection tool SOPHIE was combined with phylogenetic tree construction to infer and analyze the

HCV transmission network in this outbreak. SOPHIE (SOcial and PHilogenetic Investigation of Epidemics) infers transmission net-
works from viral phylogenetic trees and models inter-host social networks as random graphs with expected degree distributions. It
samples from the joint distribution of phylogeny ancestral traits, estimates the probability that the sampled networks are subgraphs of
a random contact network, and summarizes them into a consensus network.

In the study, genomic data collected by the CDC during the outbreak investigation were used to construct a phylogenetic tree with
RAxML [194]. The tree was then post-processed using TreeTime [195] to estimate the timing of branching events. This time-scaled tree
was used as input for SOPHIE, which inferred transmission networks and their probabilities, providing estimates for the timing of
transmissions. Importantly, SOPHIE generates a distribution of possible transmission networks, allowing confidence intervals to be
calculated for transmission times and derived epidemiological parameters.

SOPHIE’s output was used to estimate key epidemiological dynamics, including incidence, generation times, and the effective
reproduction number. Incident case numbers, i.e. numbers of transmissions within specific time intervals, were calculated directly. The
incidence curve suggests the outbreak began in mid-2012, entering an exponential growth phase in 2014 (Fig. 19(c)), before rapidly
declining after the public health emergency was declared. The exponential phase largely coincides with the HIV spread in the same
community [175]. Additionally, the fact that HIV co-infected hosts formed a connected subnetwork within the HCV transmission
network suggests both outbreaks were driven by the same epidemiological mechanism, with HCV preceding HIV by several years, and
HIV spread facilitated by the pre-existing HCV network.

Similar to incidence, generation times—i.e., the intervals between infection events—were derived from the timed phylogenies and
internal node traits corresponding to transmission events (Fig. 19b). These, along with incidence data, were processed using EpiEstim
[15] to estimate the effective reproduction number Rt over a 1-month sliding window during the exponential phase. The results show
that before the public health emergency, Rt ranged from 1.81 to 2.33, indicating sustained transmission, but dropped below the
epidemic threshold of 1 following the declaration (Fig. 19d).

These results also highlight how epidemiological parameter estimation based on inferred transmission networks offers significant
advantages as they provide more realistic estimates than more traditional methods based on randommixing models [196]. In the study
discussed, this approach produced more moderate and seemingly realistic reproduction number estimates compared to the higher
values from the birth-death skyline phylodynamics model (R0 = 6.6, 95 % CI: 3.2–9.9; R0 = 5.1, 95 % CI: 1.7–9.2) as inferred by BEAST
[175,197,198] (see the next section for the detailed discussion of phylodynamics methods). These estimates also align better with the
R0 = 3.8 obtained for the parallel HIV outbreak via contact tracing [175].

6.3. Phylodynamic surveillance and epidemiological forecasting

Bayesian phylogenetics and phylodynamics are key tools in genomic epidemiology. Phylodynamics is a statistical approach that
estimates pathogen evolutionary and population dynamics from genomic data [199] by fitting a predefined epidemiological and
evolutionary models to viral phylogenetic trees. Fitting is carried out via sampling from the posterior distribution of model parameters.
These methods are invaluable when traditional epidemiological data (e.g., incidence statistics) are unavailable or unreliable, or when
genomic data are insufficient to reconstruct actual transmission links, as described earlier.

Phylodynamic models are typically framed within a Bayesian framework and can be formulated as follows. It is assumed that
observed viral genomes G = {g1,…,gn}, their frequencies A = {a1,…,an} and their time-labelled phylogenetic tree T result from the
combined effects of mutation, selection, and transmission processes. This process is described by a model that is parametrized by
epidemiological parameters E (e.g. effective reproduction number, becoming noninfectious rate, sampling rate, etc.), selection pa-
rameters F (e.g. fitnesses of viral variants reflecting their relative infectivity and/or transmissibility) and mutation parameters Θ (e.g.
molecular clock rate and substitution rates). The model often utilizes Markov [200] or Poisson [168,201] models for genome evo-
lution, alongside birth-death [202,203], coalescent [204], or replicator models [205] for phylogeny construction. The model is often
described by a system of coupled ODEs, and the goal is to estimate parameters and the phylogenetic tree by sampling from or
maximizing the posterior probability distribution:

p(T, F, Θ,E|G,A) (1)

which is decomposed in a Bayesian manner [76,66,80,37] as

p(T, F, Θ,E|G,A)∝p(G,A|T, E, F, Θ) ⋅ p(T|F,E) ⋅ p(E) ⋅ p(F) ⋅ p(Θ) (2)

Inference of both discrete and continuous parameters is typically performed using Markov Chain Monte Carlo (MCMC) sampling
from the distribution (2). MCMC explores the parameter space by generating Markov chains whose states represent possible parameter
values, with transitions based on their relative likelihoods. By constructing a large sample of parameter sets, MCMC provides a detailed
picture of the distributions of evolutionary and epidemiological parameters, including medians and confidence intervals, while ac-
counting for uncertainties and noise. For inference, the parameter sets must be finite. To capture changes over time, parameters can be
approximated as piecewise continuous functions over a predefined number of disjoint time intervals (so-called skyline models). The
interval lengths can be uniform or set according to specific epidemiological conditions.

From this description, it is clear that the successful application of phylodynamic methods depends heavily on the careful selection
of evolutionary and epidemiological models, parameter priors, andMCMC transition probabilities. This task is typically left to the user,
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but phylodynamic tools often provide a selection of popular options. It is important to note that phylodynamic inference is compu-
tationally intensive—especially for certain models, where even likelihood calculations [202,206], let alone MCMC sampling, can be
demanding. Adequate computational resources are essential when analyzing large numbers of pathogen sequences.

The most widely used phylodynamics tool among researchers and public health practitioners is BEAST (Bayesian Evolutionary
Analysis Sampling Trees) [198], which features a graphical interface, a wide range of models and parameters, and libraries to speed up
calculations. Its modular design also allows easy integration of new models. Other tools include phylodyn [207], RevBayes [208]
(Bayesian methods), and TreeTime [195] and TreePar [197] (maximum likelihood methods).

Phylodynamic methods can reveal past epidemiological dynamics from viral genomic data. A notable example is the study of the
HCV epidemic in Egypt [215], where Bayesian skyline and birth-death skyline models inferred that the rapid rise in HCV infections was
triggered by antischistosomal injection campaigns in the mid-20th century. In further analyses, the inferred effective population size
and reproduction number curves can be extrapolated for future forecasting [209].

An example of such analysis is the author’s study of COVID-19 dynamics in Belarus [210] and Ukraine [211], two neighboring
countries with differing approaches to containment measures. Belarus implemented limited measures, while Ukraine followed broader
non-pharmaceutical interventions (NPIs) similar to other European countries. Due to limited epidemiological data and undersampling
in both countries [212], genomic data was used to replace missing epidemiological statistics. First, the Coalescent Bayesian Skyline
(CBS) model was employed to infer historical population size changes and times of lineage splits. Priors for evolutionary parameters
were set by using HKY+Γ nucleotide substitution model and a strict molecular clock. HKY+Γ is a nucleotide substitution model that
accounts for differences in transition and transversion rates and incorporates rate variation across genomic positions using a gamma
distribution. The molecular clock rate was also assumed to follow a gamma (Γ) distribution with the mean and the standard deviation
taken from published measurements for SARS-CoV-2 [213,214]. The number of time segments for the skyline model (four) was set
based on the epidemiological considerations, as there were four growth and decline periods of the first and second COVID-19 epidemic

Fig. 19. Computational analysis of the Indiana HCV outbreak.
(a) Consensus transmission network, with edge thickness proportional to inferred likelihood support (only edges with support above 0.0005 are
shown). Red, blue and black dots are patients infected with HCV subtypes 1,3 and both. (b) Distribution of generation times (in months). (c)
Dynamics of incident cases over time, with vertical lines marking key public health events. (d) Effective reproduction number during the exponential
stage, with vertical lines indicating major public health interventions.
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waves. MCMC sampling was run for 3× 107 iterations, sampling every 3 × 103 iterations and the initial 10 % “burn-in” iterations, thus
allowing for sufficient statistical power.

The maximum clade credibility tree inferred by the Coalescent Bayesian Skyline (CBS) model (Fig. 20) was used to identify the
largest within-country transmission clusters, which were further analyzed using the more parameter-rich Birth-Death Skyline (BDSKY)
model [215]. BDSKY infers effective reproduction numbers, recovery rates, and changes in the infected population over time, assuming
a birth-death process where “births” represent infections and “deaths” represent recoveries. Given the presence of co-circulating
lineages, we employed a linked model where lineages evolve independently but share substitution model parameters, molecular
clock rates, and reproduction numbers from the same priors. The same substitution model, molecular clock settings, and MCMC
sampling as in the CBS analysis were used.

Since the BDSKY model is parameter-rich, we incorporated informative priors. For the sampling rate, we used a Beta distribution
prior with parameters set to reflect the low proportion of sequenced cases. The origin of each cluster was given a normally distributed
prior based on CBS estimates, and for the rate of becoming non-infectious, we used published estimates [184,213]. After MCMC
sampling, we used the tool EpiInf [216] to reconstruct cumulative case count trajectories from the sampled trees and BDSKY
parameters.

The analysis enabled a comparison of the effects of NPIs during the first COVID-19 wave in Belarus and Ukraine. While a moderate
but statistically significant decrease in the effective reproduction number Rtwas observed in Belarus after NPIs were implemented, the
reduction was smaller compared to countries with stricter measures. Additionally, the similar estimates of Rt for both countries suggest
that widespread violations of lockdown and distancing measures in Ukraine, along with limited governmental control, diminished the
effectiveness of NPIs there. This highlights the importance of regional demographic and social factors in COVID-19 epidemiology,
alongside NPIs. The study also showed that the true number of infections in Belarus by the end of May 2020 was likely about four times
higher than reported, facilitating more accurate forecasting of future case counts (Fig. 20).

6.4. Genomic methods and models for evolutionary forecasting

Understanding the predictability of evolution is a fundamental challenge in the life sciences, with significant practical implications
for viruses and other pathogens. Even a modest ability to predict pathogen evolution can significantly improve our capacity to forecast
and control the spread of infectious diseases [217–220].

Over the past decade, genomic epidemiology has played an increasingly signifcant role in tracking viral evolution, including
monitoring the emergence of new strains and antigenic drift. This approach has proven effective in forecasting the epidemiological
dynamics of viruses such as influenza, Ebola, and SARS-CoV2, as well as informing the biannual selection of influenza A and B vaccine
seed strains [221]. Notable evolutionary surveillance systems used by public health professionals include the WHO’s Global Influenza
Surveillance and Response System (GISRS) and Nextstrain, an open-source genomic platform that has been providing tools for
phylogenetic analysis and virus spread visualization since 2015.

Genomic methods for evolutionary prediction received significant advancement during the COVID-19 pandemic. Successive waves
of COVID-19 have been driven by emerging variants of interest (VOIs) or variants of concern (VOCs), which are associated with altered
phenotypic traits such as increased transmissibility [222,223], antibody resistance, and immune escape [224–226]. Each genomic
variant is defined as a phylogenetic lineage, characterized by a distinct combination of single amino acid variants (SAVs) and/or indels

Fig. 20. Phylodynamics analysis of SARS-CoV-2 evolution and spread. Left: The annotated and timed phylogenetic tree for Belarusian SARS-CoV-2
sequences created using Coalescent Bayesian Skyline. Right: Possible cumulative case count trajectories. Solid blue and dashed lines represent a
median and 95 % confidence intervals.
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acquired during the evolution of SARS-CoV-2.
Given these developments, genomic surveillance methods have proven indispensable and effective for accurate COVID-19

epidemiological forecasting. Monitoring the evolution of SARS-CoV-2 has enabled the detection of spreading lineages and the pre-
diction of their dynamics [136]. Tools like Nextstrain have been enhanced to estimate reproduction numbers and forecast viral lineage
frequencies based on historical data, employing various regression techniques. However, despite their strengths, regression-based
genomic surveillance methods have an important limitation — they are typically applied retrospectively. This means growing line-
ages and their fitness can only be assessed once they have already become sufficiently prevalent.

In contrast to regression-based forecasting, early detection methods aim to proactively identify SARS-CoV-2 variants that may
become prevalent in the future, even if they have not yet emerged or are currently at low frequencies. This task is inherently more
challenging [227], but several published methods address it using various machine learning techniques [217,218,228–232]. The
largest group of these methods focuses on predicting the emergence of individual mutations, assuming either independent accumu-
lation of mutations or that interaction effects can be averaged across different genomic backgrounds [218,231]. This can be framed as a
classification problem, where mutations are categorized as “potentially spreading” or “non-spreading” based on carefully selected
genomic, epidemiological, and physicochemical features.

Other methods address a more complex version of the problem by relaxing the assumption of mutation independence. This
approach is justified by the widespread occurrence of epistasis —- non-additive phenotypic effects of combinations of mutations [217,
233–238]. The presence of epistasis suggests that selection acts on haplotypes, or combinations of mutations, rather than on individual
mutations, contributing to the non-linearity of viral evolution and making forecasting more challenging. However, various methods
exist to detect epistatic links between mutations [217,234,236]. The identification of these links, and more broadly epistatic networks,
holds promise for improving evolutionary forecasting. In fact, it may enable predictions of viral variants before they emerge, as
epistatic interactions influencing their phenotypes can be detected early [230]. For example, the tool HELEN [230] forecasts poten-
tially spreading viral variants by identifying dense communities of mutations in networks of epistatic interactions.

Another exciting development in evolutionary forecasting is the application of Large Language Models (LLMs) [239–242]—
advanced artificial intelligence systems trained on large amounts of text data to understand, generate, and process natural language.
Biological nucleotide or amino acid sequences, including viral genomes, can be conceptualized as words in a genomic “language,”with
specific syntax (or grammar) defining viable genomes and semantics (or meaning) dictating their phenotypic features. Machine
learning models properly trained on large viral genome datasets can potentially forecast viral evolution by identifying mutations or
combinations of mutations that maintain syntax while altering semantics, leading to the emergence of viable variants with modified
phenotypes. For instance, a recent study [239] applied LLMs to influenza, HIV-1, and SARSCoV-2 protein sequences to accurately
predict escape mutations, allowing these viruses to evade hosts’ immune responses and potentially giving rise to novel strains with
increased infectivity or virulence.

A demonstration of the potential power of genomic-based evolutionary forecasting is the authors’ use of the HELEN (Heralding
Emerging Lineages in Epistatic Networks) tool [230]. In this study, SARS-CoV-2 genomic data from 16 countries with high sampling
coverage were used to retroactively predict the emergence of Variants of Concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron,
and Variants of Interest (VOIs) Lambda, Mu, Theta, Eta, and Kappa. All VOCs were detected early, with forecasting depths ranging
from 30 days (Omicron) to 285 days (Delta) prior to the times when the variants reached 1 % prevalence. Four out of five VOIs were
also detected 0 to 75 days before they reached a 1 % prevalence.

Footnotes
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