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GPUs are progressively being integrated into modern society, playing a pivotal role in Artificial Intelligence

and High-Performance Computing. Programmers need a deep understanding of the GPU programming model

to avoid subtle data-races in their codes. Static verification that is sound and incomplete can guarantee

data-race freedom, but the alarms it raises may be spurious and need to be validated.

In this paper, we establish a True Positive Theorem for a static data-race detector for GPU programs, i.e., a
result that identifies a class of programs for which our technique only raises true alarms. Our work builds on

the formalism of memory access protocols, that models the concurrency operations of CUDA programs. The

crux of our approach is an approximation analysis that can correctly identify true alarms, and pinpoint the

conditions that make an alarm imprecise. Our approximation analysis detects when the reported locations are

reachable (control independence, or CI), and when the reported locations are precise (data independence, or

DI), as well identify inexact values in an alarm. In addition to a True Positive result for programs that are CI

and DI, we establish the root causes of spurious alarms depending on whether CI or DI are present.

We apply our theory to introduce FaialAA, the first sound and partially complete data-race detector. We

evaluate FaialAA in three experiments. First, in a comparative studywith the state-of-the-art tools, we show that

FaialAA confirms more DRF programs than others while emitting 1.9× fewer potential alarms. Importantly, the

approximation analysis of FaialAA detects 10 undocumented data-races. Second, in an experiment studying 6

commits of data-race fixes in open source projects OpenMM and Nvidia’s MegaTron, FaialAA confirmed the

buggy and fixed versions of 5 commits, while others were only able to confirm 2. Third, we show that 59.5% of

2,770 programs are CI and DI, quantifying when the approximation analysis of FaialAA is complete.

This paper is accompanied by the mechanized proofs of the theoretical results presented therein and a tool

(FaialAA) implementing of our theory.
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→ Formal software verification.
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1 Introduction
Graphical Processing Units (GPUs) are crucial in a wide range of fields such as artificial intelligence

andmachine learning [58], molecular modeling [69], systems biology [21], andmedical imaging [68].

The high-performance potential of massively parallel devices like GPUs comes with a high cost:

they are notoriously difficult to program correctly. To fully utilize the level of parallelism and

performance offered by a GPU, programmers need a deep understanding of the concurrent execution

model of GPU devices. Failing to reason about correctness may lead to errors such as data-races

which may produce unexpected behavior (nondeterminism), aborted computation, and memory

corruption, which can be exploited by malicious agents [34, 73, 76].

A static data-race detector analyzes a program’s source code to find data-races [13, 30, 74]. We

say that a data-race analysis is complete if every reported data-race is possible in an execution of the

program under analysis. There are currently no complete static data-race analysis for GPU programs.

The main objective of this paper is to present a static data-race detector for GPU programs (a.k.a.
kernels) and prove its completeness for a class of kernels by establishing a True Positive Theorem.

Gorogiannis et al. [30] were the first to establish a True Positives theorem for multithreaded
1

programs. The challenge behind designing an effective data-race detector hinges on capturing a

class of programs that is “large enough.” Our analysis targets the class of kernels (i.e., programs)

where memory accesses are unaffected by input, called control-independent and data-independent

(CIDI). In this paper, we show that CIDI kernels are common in practice (59.5% of 2,770 kernels),

which highlights the effectiveness of our technique.

Static data-race freedom (DRF) detectors analyze a kernel’s source code to guarantee that no

data-races are possible. DRF detectors for kernels [9, 10, 15, 16, 46, 47] can be used as incomplete

data-race detectors, since the reported data-races can be spurious. The drawback of this approach

is that users must validate every reported alarm manually. Research shows that manual validation

of alarms hampers the adoption of static analysis in industrial settings [35, 57, 67].

We introduce the first sound and partially-complete data-race analysis: for a subset of kernels
our tool is precise, i.e., any and all data-races are correctly detected, and every DRF kernel is

correctly detected. Establishing partial-completeness of static analysis has been proposed in Abstract

Interpretation [12, 26, 29, 62, 65], yet, not in the context of concurrent programs. There is a large

body of work in categorizing alarms as true/false, and yet none has tackled the problem of data-

races: model checking [5, 14, 19, 31, 55, 56, 59, 63, 70, 71], symbolic execution [3, 27, 28, 36, 49, 75],

abstract interpretation [43, 62, 66], and even SMT solvers [25, 38]. In the context of data-race

detectors, there has also been work on using a statistical model to rank false alarms, according

to user feedback [64]. Our approach is to establish a result of partial-completeness, including a

True Positives Theorem, by extending a sound DRF analysis called Memory Access Protocols

(MAPs) [15, 16]. MAPs has several key benefits over the state of the art, such as avoiding the

need for loop invariants (unlike [9, 11, 41]) and being able to handle loop bounds and array sizes

symbolically (unlike [48, 51, 61]). We implement our analysis in a tool called FaialAA, combining a

DRF detector with a data-race detector. Further, FaialAA leverages an approximation analysis to

explain the degree of imprecision, by indicating which elements of an alarm are potentially inexact.

This fine-grained feedback renders our approach more usable, a key requirement for developers

adopting static analysis tools [57].

1
Techniques used to analyze data-races in multithreaded programs are generally inapplicable or irrelevant to GPU program-

ming, and vice-versa. In multithreaded programming, shared resources are protected with locks. The focus of data-race

analysis is on lock usage, thread lifecycle, and pointer aliasing. In GPU programming, shared resources are accessible via

arrays, and accesses are ordered by barrier synchronization. The focus is on the equality of array indexing expressions, and

analyzing the concurrency of instructions.
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Contributions. This paper presents the following contributions:

• (§3) We introduce a novel approximation analysis that identifies: when control-flow is unaf-

fected by approximated variables (called CI for control-flow independent); and, when array

indexing is unaffected by approximated variables (called DI for data independent). These

results are formalized in Theorem 3.3.

• (§4) We specify the inference of MAPs and establish our soundness and partial-completeness

results, see Theorem 4.3. We leverage our approximation analysis to establish the root causes

of spurious alarms (for protocols that are CI, DI, both, or neither), see Corollary 4.4. We

state a True Positives result in Theorem 4.5. The theory and results of this paper have been

mechanized in Coq, see Section 4.4.

• (§5) We introduce FaialAA, as the first static analysis tool that combines a DRF detector with

a data-race detector. Our tool expands upon Faial by introducing numerous improvements

that make the analysis of CUDA kernels more precise, such as support for inter-procedural

analysis, using typing information to represent integer bounds, detecting benign data-races,

supporting array aliasing patterns, and improving the existing support for bitwise operations,

C++ templates, and precise iteration spaces of loops.

• (§6) An extensive evaluation of our contributions. We compare FaialAA to the state of the art

using a well-studied benchmark, and show that our tool outperforms others by detecting

more DRF kernels (5 more) and raising fewer potential alarms (1.9× fewer). Importantly, our

approximation analysis detected 10 racy kernels, 6 of which are missed by other tools. We

introduce a novel dataset of 6 data-race fixing commits that originate from large open source

projects, OpenMM [22] and Nvidia’s Megatron-LM [42]. In an experiment to identify the bug

in the pre-commit version and validate the post-commit version as DRF, FaialAA succeeds in

5 commits, while others only succeed in 2 commits. Finally, we found that the analysis of

FaialAA is complete in 59.5% of 2,770 kernels, i.e., detects all existing data-races or detects
that the kernel is data-race free.

In the following section we give an overview our approach and contributions. Section 7 discusses

related work and Section 8 concludes. The Coq mechanization of this theory and FaialAA are

included in the supplemental material, and will be included in the artifact submission.

2 Overview
This section showcases the practical benefits of our contributions to the validation of four alarms

of data-races. We demonstrate how our approximation analysis simplifies the validation process.

Our approximation analysis targets alarms from a data-race freedom (DRF) analysis implemented

by Faial [15, 16]. A DRF analysis either proves that a program is free from data-races for any possible

input, or raises alarms that identify potential data-races. A data-race is caused by unsynchronized

accesses to a shared location issued by two distinct threads where at least one thread is writing. An

alarm produced by FaialAA depicts (1) (reachability) the locations of the two access, i.e., filename

and line/column numbers, (2) (where) the array index, or shared variable, being accessed, and

(3) (valuation) some program variables and their valuations, representing a partial state of both

threads. An approximation report identifies whether (1), (2), and (3) are exact.

2.1 Understanding an AlarmWith an Approximation Report
The data-race in Alarm 1 occurs because thread A writes to sdata[16] in Line 2, and concurrently

thread B reads from sdata[16] in Line 3. Our approximation report indicates that Alarm 1 is exact,

that the two accesses can happen concurrently (exact) and that both threads can target the reported

index (exact). Thus, the user can conclude that Alarm 1 is a true alarm. To understand why, observe
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Alarm 1. Data-race in kernel reduceMultiPass, location sdata[16].

Approximation report: Reachable accesses. Exact index. True alarm detected.

1 if (threadIdx.x < 32) {

2 sdata[threadIdx.x] = mySum // A

3 = mySum+sdata[threadIdx.x+16];// B

4 }

Variable Thread
A B

threadIdx.x 16 0

Alarm 2. Potential data-race in kernel TransitiveClosure/stage1/kernel, location P[0].

Approximation report: Potentially unreachable accesses (variable is_conn3 has been

approximated). Exact index.

1 uint is_conn3 = P[0]; // A

2 if (is_conn3 != 0) {

3 P[threadIdx.x] = passnum * TILE_SIZE // B

4 + INDIRECTLY_CONNECTED;}

Variable Thread
A B

is_conn3 -1 -1

threadIdx.x 1 0

Alarm 3. Potential data-race in kernel collideD, location newVel[0].

Approximation report: Reachable accesses. Potentially inexact index (variable orig has been

approximated).

1 uint index = blockIdx.x * blockDim.x + threadIdx.x;

2 uint orig = gridParticleIndex[index];

3 newVel[orig] = // A, B

4 make_float4(vel + force, 0.0f);

Variable Thread
A B

blockIdx.x 0 0

blockDim.x 64 64

threadIdx.x 0 1

orig 0 0

that the variables that trigger the error are independent of the kernel’s input: variable threadIdx.x
is a unique thread identifier. Thus, the reported data-race happens in every execution of the kernel.

The potential data-race in Alarm 2 occurs on location P[0], because thread A reads in Line 1 while

thread B concurrently writes in Line 3. Our approximation report indicates that the data-race may
be spurious due to condition is_conn3 != 0 and also that is_conn3 has been approximated by the

inference (by convention, we underline approximated variables in alarms). Technically, the warning

appears because the approximation analysis identifies that possible values of variable is_conn3 are
approximated. To confirm the alarm, the user only needs to focus their attention on testing if thread B
can reach Line 3. Depending on the data from array P the condition is_conn3 != 0 may evaluate

to true, which triggers the write in Line 3 to P[0], and therefore the data-race.

The potential data-race in Alarm 3 occurs in Line 3 while accessing newVel[0], when thread A

and thread B read value 0 from array gridParticleIndex. The approximation report states that

the location is spurious, since variable orig is approximate. The user needs to confirm whether it is
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Alarm 4. Potential data-race in kernel read-index, location M[0].

Approximation report: Reachable accesses. Potentially inexact index (variable x has been

approximated).

1 M[threadIdx.x] = threadIdx.x;

2 int x = M[threadIdx.x];

3 M[x] = f(threadIdx.x); // A, B

Variable Thread
A B

threadIdx.x 1 0

x 0 0

𝑝𝐴 = if tid < 32 {rd[tid + 16];wr[tid]} CIDI (Alarm 1)

𝑝𝐵 = rd[0]; var 𝑥 . if 𝑥 ≠ 0 {wr[tid]} CDDI (Alarm 2)

𝑝𝐶 = var 𝑥 . wr[𝑥] CIDD (Alarm 3)

𝑝𝐷 = wr[tid]; rd[tid]; var 𝑥 . wr[𝑥] CIDD (Alarm 4)

Fig. 1. Protocols inferred by FaialAA.

possible for threads A and B to have the same value of orig. Note that depending on what data is in

array gridParticleIndex, a data-race may occur. In fact, the data-race can only be avoided if all

indices read from gridParticleIndex are distinct. We are certain that the concurrent access will

occur, but we are uncertain about the value of expression orig used to index the array newVel. We

can say that in Alarm 2 our analysis is unsure about the when (reachability), whereas in Alarm 3

our analysis is unsure about the where (location).
Finally, we discuss a confirmed spurious alarm. The potential data-race in Alarm 4 occurs in

Line 3 when threads A and B concurrently write to position 0, since both threads read a value 0

from array M. The approximation reports warns that the threads may not be accessing location M[0],
since variable x is over-approximated. Similarly to Alarm 3, the user needs to confirm whether it
would be possible for variable x to be 0 for both threads at once. The alarm is spurious because

for every thread program variable x must be equal to program variable threadIdx.x, however,
thread A has threadIdx.x=1 and x=0.

In summary, our approximation analysis can identify true data-races, as well as precisely identify

which elements of an alarm need to be manually validated. This feedback helps developers triage

alarms and sits in contrast to the current state-of-the-art that gives no such guarantees.

2.2 Approximation Analysis of Memory Access Protocols
In order to reason about the root cause of a spurious alarm, we must first understand the analysis

that produces such alarms. The incompleteness of the MAP-based verification originates from

transforming a CUDA kernel into a MAP, hereby known as inference. FaialAA infers one protocol

per array used in a kernel, and each protocol is verified independently.

We show protocols for the running examples in Figure 1. We 𝛼-rename variables for presentation

purposes. Program variable threadIdx.x appears as tid, and represents a unique thread identifier.

In Alarm 1, FaialAA infers protocol 𝑝𝐴 for array sdata. The read access sdata[threadIdx.x+16]
becomes rd[tid+16] and the write access in sdata[threadIdx.x] is modeled bywr[tid], i.e., MAPs

model which memory locations are accessed but not what is written to/read from arrays. Note the

order of instructions in a protocol follows the evaluation order of C/C++. Thus, although the write
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of Line 2 appears before the read of Line 3, in C/C++ the right-hand side of an assignment (the read)

executes before the left-hand side of an assignment (the write), so rd[tid + 16] precedes wr[tid].
Our approximation analysis tests whether certain characteristics of the programs are abstracted

when modeled by MAPs. Since 𝑝𝐴 models all control-flow construct accurately, our analysis deems

it control-flow independent (CI). Since 𝑝𝐴 models precisely all indexing expressions of the original

program, our analysis deems it data-independent. We denote both properties as CIDI. Informally, a
main result of our work is establishing that DRF analysis of CIDI protocols yields only true alarms
(spurious alarms are impossible). Our study of 2,544 kernels from public GitHub projects found

that 58.2% of these kernels are CIDI, suggesting that our analysis is sound and complete for a vast

majority of kernels.

In Alarm 2, FaialAA infers protocol 𝑝𝐵 for array P. The inference turns instruction P[0] into rd[0].
In MAPs, the symbolic variable binder var 𝑥 . 𝑝 introduces a new variable 𝑥 bound in 𝑝 (to some

unknown value). Each thread can assign a different value to 𝑥 . Declaration uint is_conn3 becomes

var 𝑥 . Th expression passnum * TILE_SIZE + 0 + INDIRECTLY_CONNECTED is not modeled as it

does not affect the control-flow nor any indexing of the array. The report in Alarm 2 states that

there is an over-approximated condition, because variable 𝑥 occurs in a conditional. Thus, our

analysis deems 𝑝𝐵 control-flow dependent (CD). Since 𝑥 does not appear in an index, then 𝑝𝐵 is DI

(all indexing expressions are modeled accurately). We denote both properties as CDDI. Informally,
a main result of our work is showing that spurious alarms of CDDI protocols can only be caused by
unreachable accesses.

In Alarm 3, FaialAA infers protocol 𝑝𝐶 for array newVel. Since MAPs represent one protocol per

array, the accesses of gridParticleIndex[index] is omitted here. The declaration of variable orig
is represented by the binder for 𝑥 . Variable index and the expression make_float4(vel + force,
0.0f) are not modeled here as they are unused in control flow and array indexing. The write

access newVel[orig] is represented by wr[𝑥]. Our analysis deems 𝑝𝐶 control-independent (CI)

because no symbolic variable occurs in a branch or in a loop, and data-dependent (DD) because

𝑥 appears in an index; this is denoted with CIDD. Informally, a key result of this paper is showing
that spurious alarms of CIDD protocols can only be caused by mismatched indices (of two reachable
accesses).
Finally, in Alarm 4, FaialAA infers protocol 𝑝𝐷 for array M. After the write access and the read

access, we have binder 𝑥 that represents the declaration int x. The expression f(threadIdx.x)
is modeled as it is unused in control flow and array indexing. Since 𝑥 is not used in conditions

or loops, protocol 𝑝𝐷 is control independent (CI). The alarm warns about a spurious indexing

location, because protocol 𝑝𝐷 uses a symbolic variable 𝑥 in an index, which makes the protocol

data-dependent (DD).

3 Approximation Analysis of Memory Access Protocols
The MAPs we present include one novel extension wrt. their original presentation in [15, 16]:

a symbolic variable binder to reason about points of abstraction. Additionally, for the sake of

formalizing the results of the present paper (for which we need to reason about reachability), we

instrument the semantics of MAPs so that they record the internal choices of a thread.

3.1 Syntax and Semantics
We give the syntax and semantics of MAPs in Figure 2.

Syntax. Let N be the set of natural numbers, i.e., non-negative integers (natural numbers). Meta-

variables 𝑖 , 𝑗 , 𝑘 , and 𝑙 range over natural numbers. We take the convention of using a distinct meta

variable (natural number) in different context, i.e., 𝑖 for thread identifiers (also colored in blue), 𝑗 for

array indices, 𝑘 for array contents, and 𝑙 for loop bounds. An arithmetic expression, ranged over by
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Syntax

𝑖, 𝑗, 𝑘, 𝑙 ::= 0 | 1 | · · · 𝑜 ::= wr | rd
𝑒 ::= 𝑗 | 𝑥 | 𝑒★𝑒 𝛼 ::= 𝑖 : 𝑜 [𝑘]
𝑏 ::= ⊤ | ⊥ 𝑃 ::= {𝛼1, . . . , 𝛼𝑛}
𝑐 ::= 𝑏 | 𝑒 ⋄𝑒 | 𝑐 ◦ 𝑐 𝑡 ::= 𝜏 | ⊤ | ⊥ | 𝑥 :=𝑖 | 𝑡 ; 𝑡

𝑝 ::= var 𝑥 . 𝑝 | 𝑜 [𝑒] | skip | 𝑝 ; 𝑝 | if 𝑐 {𝑝} else {𝑝} | for 𝑥 ∈ 𝑒..𝑒 {𝑝}

Semantics 𝑝 ↓𝑖 𝑃 ⊲ 𝑡 𝑝 ↓𝑃

P-var

𝑝 [𝑥 B 𝑘] ↓𝑖 𝑃 ⊲ 𝑡

var 𝑥 . 𝑝 ↓𝑖 𝑃 ⊲ 𝑡

P-acc

𝑒 ↓𝑖 𝑗
𝑜 [𝑒] ↓𝑖 {𝑖 : 𝑜 [ 𝑗]} ⊲ 𝜏

P-skip

skip↓𝑖 ∅ ⊲ 𝜏

P-seq

𝑝1 ↓𝑖 𝑃1 ⊲ 𝑡1 𝑝2 ↓𝑖 𝑃2 ⊲ 𝑡2
𝑝1 ; 𝑝2 ↓𝑖 𝑃1 ∪ 𝑃2 ⊲ 𝑡1; 𝑡2

P-if-t

𝑐 ↓𝑖 ⊤ 𝑝𝑡 ↓𝑖 𝑃 ⊲ 𝑡

if 𝑐 {𝑝𝑡 } else {𝑝 𝑓 } ↓𝑖 𝑃 ⊲ ⊤; 𝑡

P-if-f

𝑐 ↓𝑖 ⊥ 𝑝 𝑓 ↓𝑖 𝑃 ⊲ 𝑡

if 𝑐 {𝑝𝑡 } else {𝑝 𝑓 } ↓𝑖 𝑃 ⊲ ⊥; 𝑡

P-for-1

𝑒1 ≥ 𝑒2 ↓𝑖 ⊤
for 𝑥 ∈ 𝑒1 ..𝑒2 {𝑝} ↓𝑖 ∅ ⊲ 𝜏

P-for-2

𝑒1 ↓𝑖 𝑙 (𝑙 < 𝑒2) ↓𝑖 ⊤ 𝑝 [𝑥 B 𝑙] ↓𝑖 𝑃1 ⊲ 𝑡1 for 𝑥 ∈ 𝑙 + 1..𝑒2 {𝑝} ↓𝑖 𝑃2 ⊲ 𝑡2
for 𝑥 ∈ 𝑒1 ..𝑒2 {𝑝} ↓𝑖 𝑃1 ∪ 𝑃2 ⊲ (𝑥 :=𝑙 ; 𝑡1); 𝑡2

Fig. 2. Syntax and semantics of MAPs.

𝑒 , is a natural number 𝑖 , a variable 𝑥 (where 𝒳 is the set of variables and 𝑥 ∈ 𝒳 ), or a closed binary

operation on arithmetic expressions (e.g., addition). A boolean expression 𝑐 is a boolean literal 𝑏,

an arithmetic comparison 𝑒 ⋄𝑒 , or a logic connective 𝑐 ◦ 𝑐 . A MAP 𝑝 , or simply a protocol 𝑝 , is as
follows. A nondeterministic variable binder var 𝑥 . 𝑝 assigns variable 𝑥 to some natural number in

the scope of 𝑝 . The placement of a variable declaration matters. For instance, the protocol:

for 𝑦 ∈ 0..10 {var 𝑥 . wr[𝑥]}

represents 10 writes to potentially different locations in the array. Whereas the following protocol

represents 10 writes to the same location:

var 𝑥 . for 𝑦 ∈ 0..10 {wr[𝑥]}

An array access 𝑜 [𝑒] expresses how the array is being accessed with 𝑜 (which is either reading rd
or writing wr), and which index 𝑒 is being accessed. The skip denotes a no-op. Sequencing and

conditional are standard. When convenient, we abbreviate protocol if 𝑐 {𝑝} else {skip} to if 𝑐 {𝑝}.
A loop for 𝑥 ∈ 𝑒1 ..𝑒2 {𝑝} expresses a loop variable 𝑥 with a new lexical scope of 𝑝 (the loop body).

A loop range 𝑒1..𝑒2 denotes a lower bound 𝑒1 (inclusive) and an upper bound 𝑒2 (exclusive), e.g., a
loop range of 0..2 corresponds to iterations 0 and 1.

Observe that the syntax ofMAPs does not include synchronization primitives (e.g., __syncthreads).
Cogumbreiro et al. [15, Theorem 1] established that the DRF analysis of a protocol with synchro-

nization is equivalent to the DRF analysis of a set of synchronization-free protocols, so we limit our

approach to synchronization-free protocols without loss of generality. For instance, in Figure 3

the code before synchronization, in the first box labelled by 𝑝1, cannot run in parallel with the

code after synchronization, in the second box labelled by 𝑝2, so each synchronization-free protocol

can be analyzed independently. The algorithm that extracts synchronization-free protocols from a

protocol with synchronization is discussed in [15].
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� �
force += collideSpheres(...);
__syncthreads();� � 𝑝1

� �
uint originalIndex = gridParticleIndex[index];
newVel[originalIndex] = make_float4(...);� � 𝑝2

Fig. 3. Illustration of analyzing code with barrier synchronization.

Assumptions. Thread-global variables are defined as variables with the same value for all threads.

In our formalism, we encode thread-global variables as unknown number, i.e., numeric parameters

declared at the meta theoretical level. In the tool, we represent thread-global variables as a binder,

much like we do for thread-local binders. Hereafter, we only consider well-formed protocols:

protocols are closed and every binder (i.e., for and var) introduces distinct variable names.

Semantics. We define a big-step semantics for protocols with judgment 𝑝 ↓𝑖 𝑃 ⊲ 𝑡 which represents

the execution of a protocol 𝑝 by a single thread 𝑖 that yields a phase 𝑃 (which holds the set of all

concurrent accesses) and trace 𝑡 (which records the internal choices of the protocol). Let 𝒯 ⊆ N be

the set of all threads, defined as a meta-parameter of our theory. An access value 𝑖 : 𝑜 [ 𝑗] consists
of a thread identifier 𝑖 ∈ 𝒯 that issues the access, the access mode 𝑜 , and the index 𝑗 of the array.

For instance in Alarm 1, thread B with identifier 0 reads from index 16 of array sdata, thus we
write 0 : rd[16]. Let A be the set of all access values. The phase 𝑃 is as a collection of access values

representing all the read and write accesses in a protocol. For instance, for the kernel of Alarm 1,

thread A accesses sdata twice, {16 : rd[32], 16 : wr[16]}. We postpone the discussion of traces to

until they are used in Section 3.3.

Let us introduce the rules governing the semantics of MAPs. Rule P-var assigns some number 𝑘

to symbolic variable 𝑥 in 𝑝 [𝑥 B 𝑘] to produce a phase 𝑃 . Rule P-acc states that executing an

access 𝑜 [𝑒] yields a singleton phase holding access value 𝑖 : 𝑜 [ 𝑗], where index 𝑗 results from

evaluating the indexing expression 𝑒 . Protocol skip produces no accesses. Rule P-seq states that

running a sequence of protocols 𝑝1;𝑝2 consists of running each protocol independently and taking

the union of both phases 𝑃1 ∪ 𝑃2. The rules for the conditional are straightforward. There are two

rules that govern loops. When the range is empty (P-for-1), where 𝑒1 ≥ 𝑒2 ↓𝑖 ⊤, we obtain no

accesses ∅. Otherwise, (P-for-2), we run one iteration followed by the rest of the loop, yielding

the union the respective phases 𝑃1 ∪ 𝑃2. For the former, we assign the loop variable 𝑥 to the lower

bound 𝑙 in the execution of the loop body 𝑝 [𝑥 B 𝑙], which yields phase 𝑃1. For the latter, we

execute the loop by incrementing the lower bound 𝑒1 + 1, which yields phase 𝑃2.

Rule P-var renders the semantics of MAPs non-deterministic. Picking a different value 𝑘 can

yield different phases, e.g., var 𝑥 . wr[𝑥] ↓
0
{0 : wr[𝑘]} holds for any 𝑘 . The same is true for different

traces, but we postpone a detailed discussion for Section 3.2.

Explaining the alarms. An alarm results from a DRF analysis on MAPs, so we can now precisely

showwhy each alarm exists. Below, for each alarm, we evaluate the inferred protocol for each thread
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𝑋 ⊢ 𝑒 𝑋 ⊢ 𝑐

𝑋 ⊢ 𝑖 𝑋 ⊢ tid
𝑥 ∈ 𝑋

𝑋 ⊢ 𝑥
𝑋 ⊢ 𝑒1 𝑋 ⊢ 𝑒2

𝑋 ⊢ 𝑒1★𝑒2
𝑋 ⊢ 𝑏

𝑋 ⊢ 𝑒1 𝑋 ⊢ 𝑒2
𝑋 ⊢ 𝑒1 ⋄𝑒2

𝑋 ⊢ 𝑐1 𝑋 ⊢ 𝑐2
𝑋 ⊢ 𝑐1 ◦ 𝑐2

𝑋 ⊢𝛼 𝑝 𝛼 ∈ {CI, DI}
i-skip

𝑋 ⊢𝛼 skip

i-seq

𝑋 ⊢𝛼 𝑝1 𝑋 ⊢𝛼 𝑝2

𝑋 ⊢𝛼 𝑝1 ; 𝑝2

i-var

𝑋 ⊢𝛼 𝑝

𝑋 ⊢𝛼 var 𝑥 . 𝑝

𝑋 ⊢CI 𝑝
ci-acc

𝑋 ⊢CI 𝑜 [𝑒]

ci-if

𝑋 ⊢ 𝑐 𝑋 ⊢CI 𝑝1 𝑋 ⊢CI 𝑝2
𝑋 ⊢CI if 𝑐 {𝑝1} else {𝑝2}

ci-for

𝑋 ⊢ 𝑒1 𝑋 ⊢ 𝑒2 𝑋 ∪ {𝑥} ⊢CI 𝑝
𝑋 ⊢CI for 𝑥 ∈ 𝑒1..𝑒2 {𝑝}

𝑋 ⊢DI 𝑝
di-acc

𝑋 ⊢ 𝑒
𝑋 ⊢DI 𝑜 [𝑒]

di-if

𝑋 ⊢DI 𝑝1 𝑋 ⊢DI 𝑝2
𝑋 ⊢DI if 𝑐 {𝑝1} else {𝑝2}

di-for-d

𝑋 ⊢DI 𝑝
𝑋 ⊢DI for 𝑥 ∈ 𝑒1 ..𝑒2 {𝑝}

di-for-i

𝑋 ⊢ 𝑒1 𝑋 ⊢ 𝑒2 𝑋 ∪ {𝑥} ⊢DI 𝑝
𝑋 ⊢DI for 𝑥 ∈ 𝑒1..𝑒2 {𝑝}

Fig. 4. Judgments for Control-flow Independence and Data Independence.

and underline the offending access values. Recall that variable tid takes the value of threadIdx.x.

Thread A Thread B

𝑝𝐴 ↓
16
{16 : rd[32], 16 : wr[16]} ⊲ 𝑡𝐴 𝑝𝐴 ↓

0
{0 : rd[16], 0 : wr[0]} ⊲ 𝑡𝐴 (Alarm 1)

𝑝𝐵 ↓1{1 : rd[0], 1 : wr[1]} ⊲ 𝑡𝐵 𝑝𝐵 ↓0{0 : rd[0], 0 : wr[0]} ⊲ 𝑡𝐵 (Alarm 2)

𝑝𝐶 ↓
0
{0 : wr[0]} ⊲ 𝑡𝐶 𝑝𝐶 ↓

1
{1 : wr[0]} ⊲ 𝑡𝐶 (Alarm 3)

𝑝𝐷 ↓
1
{1 : wr[1], 1 : rd[1], 1 : wr[0]} ⊲ 𝑡𝐷 𝑝𝐷 ↓

0
{0 : rd[0], 0 : wr[0]} ⊲ 𝑡𝐷 (Alarm 4)

3.2 Approximation Analysis
In this section, we present our approximation analysis forMAPs. In Figure 4, we introduce judgments

that track when symbolic variables (introduced with var 𝑥 . 𝑝) either do not occur in control-flow

(in conditionals and in loop bounds), or do not occur in indexing accesses.

Let 𝑋 ⊆ 𝒳 range over a set of variables. Judgment 𝑋 ⊢ 𝑒 holds when the free variables of 𝑒 are

in 𝑋 . Similarly, judgment 𝑋 ⊢ 𝑐 holds when the free variables of 𝑐 are in 𝑋 . Note that for the family

of judgments given in Figure 4, one can always enlarge the set of variables being referred to, e.g., if
𝑋 ⊢ 𝑒 , then 𝑋 ∪ 𝑋 ′ ⊢ 𝑒 .

Control-flow-independent (CI) protocols. Judgment 𝑋 ⊢CI 𝑝 states that the control-flow in 𝑝 is

unaffected by symbolic variables, given a set of variables 𝑋 that can affect the control-flow of 𝑝 .

We say that a protocol 𝑝 is control-flow independent (CI) when 𝑋 ⊢CI 𝑝 for some 𝑋 . Rule i-skip

states that skip is always control-flow independent. Rule i-seq states that 𝑝1; 𝑝2 is control-flow

independent if 𝑝1 and 𝑝2 are both control-flow independent. Rule i-var dictates that var 𝑥 . 𝑝 is

control-flow independent when the body 𝑝 is control-flow independent; we note that the set of

variables 𝑋 that can affect control-flow remains the same. Rule ci-acc indicates that accesses are

always control independent. The interesting rules are ci-if and ci-for. Since conditionals can
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affect control-flow of the program, we enforce that condition 𝑐 only uses set 𝑋 with 𝑋 ⊢ 𝑐 , and
that branches 𝑝1 and 𝑝2 are both control-flow independent. Rule ci-for enforces that the lower 𝑒1
and upper 𝑒2 bounds only use the variables in 𝑋 . Since the bounds are unaffected by symbolic

variable binders, then variable 𝑥 can be used in the loop body 𝑝 , augmenting the set of variables

that can be used to be 𝑋 ∪ {𝑥}. We write 𝑋 �⊢CI 𝑝 when there is no derivation for which 𝑋 ⊢CI 𝑝
holds. Sequencing a control-flow dependent protocol, say 𝑝𝐵 , with any other protocol yields a

control-flow dependent protocol. Thus, 𝑝𝐴;𝑝𝐵 is control-flow dependent.

We are now able to prove the control-flow independent results of Figure 1. We have that 𝑝𝐴 is

control-flow independent, since ∅ ⊢CI 𝑝𝐴. Protocol 𝑝𝐵 is control-flow dependent, since ∅ �⊢CI 𝑝𝐵 .
We have that 𝑝𝐶 and 𝑝𝐷 are both control-flow independent.

Data-independent (DI) protocols. Judgement 𝑋 ⊢CI 𝑝 states that indexing expressions that appear

in 𝑝 are unaffected by variables defined with var, given that variables 𝑋 can affect the control-flow

of 𝑝 . We say that a protocol 𝑝 is data independent (DI) when 𝑋 ⊢DI 𝑝 for some 𝑋 . Rule di-acc

states a memory access is data-independent if index 𝑒 only uses the variables in 𝑋 . Rule di-if

allows the use of symbolic variable variables in conditions but ensures that branches 𝑝1 and 𝑝2
are data-independent. Two rules govern loops: the loop variable 𝑥 available in the loop body 𝑝

only when the loop bounds only use variables in 𝑋 (Rule di-for-i), otherwise the loop body 𝑝 is

restricted to 𝑋 (Rule di-for-d). We write 𝑋 �⊢DI 𝑝 when there is no derivation for which 𝑋 ⊢DI 𝑝
holds.

We are now able to prove the data independent results of Figure 1. We have that 𝑝𝐴 is data

independent, since ∅ ⊢DI 𝑝𝐴. We also have that 𝑝𝐵 is data independent. Protocol 𝑝𝐶 is data dependent,

since ∅ �⊢DI 𝑝𝐶 . Protocol 𝑝𝐷 is also data dependent. Sequencing a data dependent protocol, say 𝑝𝐶 ,

with any other protocol yields a data dependent protocol. Hence, 𝑝𝐵 ;𝑝𝐶 is control-flow dependent

and data-dependent.

3.3 Results
We now establish properties relating control-flow and data independence of protocols with their

phases and traces.

We first define a trace 𝑡 as the sequence of internal choices that a thread takes. We revisit

the definition of traces given in Figure 2. A trace 𝜏 denotes taking no further branches. Trace ⊤
corresponds to taking the first branch of a conditional. Trace ⊥ corresponds to taking the second

branch of a conditional. Trace 𝑥 :=𝑖 indicates running one iteration of a loop where loop variable 𝑥

is being assigned the value of 𝑖 . Trace 𝑡 ; 𝑡 is the sequential composition of two traces.

Protocol 𝑝𝐴 is control-flow independent and data independent, thus its execution yields a unique

phase and a unique trace for each thread. The only derivation of protocol 𝑝𝐴 for thread 0 is

𝑝𝐴 ↓
0
{0 : wr[0], 0 : rd[16]} ⊲ ⊤;𝜏 ;𝜏

Protocol 𝑝𝐵 is control-flow dependent and data independent, thus there is a unique phase per
trace. We have

𝑝𝐵 ↓0 {0 : rd[0], 0 : wr[0]} ⊲ 𝜏 ;⊤;𝜏 when 𝑥 ≠ 0 in Rule P-var

𝑝𝐵 ↓0 {0 : rd[0]} ⊲ 𝜏 ;⊥;𝜏 otherwise

Protocol 𝑝𝐶 is control-flow independent, thus there is a unique trace. Additionally, let us observe

what happens to the phase. Recall that 𝑝𝐶 = var 𝑥 . wr[𝑥]. When 𝑥 B 0 in Rule P-var, we have

𝑝𝐶 ↓
0
{0 : wr[0]} ⊲ 𝜏 . Similarly, when 𝑥 B 1 in Rule P-var, we have 𝑝𝐶 ↓

0
{0 : wr[1]} ⊲ 𝜏 . In fact, for

any value picked the output phase only differs in the index.

To relate phases that have distinct access-value indices we introduce the following relations.
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Definition 3.1 (Up-to relation). Letℛ be a binary relation. Given 𝑋 and 𝑌 sets, we denote 𝑋 ≡ℛ 𝑌

if, and only if, for all 𝑥 ∈ 𝑋 , then ∃𝑦 ∈ 𝑌 such that (𝑥,𝑦) ∈ ℛ, and for all 𝑦 ∈ 𝑌 , then ∃𝑥 ∈ 𝑋 such

that (𝑥,𝑦) ∈ ℛ.

Definition 3.2 (Equivalence modulo index). Let ℐ be the largest binary relation such that

(𝑖 : 𝑜 [𝑘1], 𝑖 : 𝑜 [𝑘2]) ∈ ℐ for all 𝑖 ∈ 𝒯 and 𝑜 ∈ {wr, rd}.

For instance, we have that (0 : wr[0], 0 : wr[1]) ∈ ℐ . Additionally, {0 : wr[16], 0 : rd[32]} ≡ℐ
{0 : wr[0], 0 : rd[1]}.
The following theorem makes precise our informal discussion. Result (1) states an expected

result: two executions of the same protocol on a given thread 𝑖 that make the same internal choices

will produce phases that only differ in their indices. Result (2) states that control-flow independent

protocols generate phases that may only differ wrt. the index of their accesses. Result (3) states that

data independent protocols that make the same internal choices, produce the same phase. Result (4)

states that control-flow and data independent protocols produce a unique phase and a unique trace.

Theorem 3.3 (Trace and phase determinism). Let 𝑖 ∈ 𝒯 , 𝑝 ↓𝑖 𝑃1 ⊲ 𝑡1, and 𝑝 ↓𝑖 𝑃2 ⊲ 𝑡2.
(1) If 𝑡1 = 𝑡2, then 𝑃1 ≡ℐ 𝑃2.
(2) (Trace determinism) If ∅ ⊢CI 𝑝 , then 𝑃1 ≡ℐ 𝑃2 and 𝑡1 = 𝑡2.
(3) (Phase determinism) If ∅ ⊢DI 𝑝 and 𝑡1 = 𝑡2, then 𝑃1 = 𝑃2.
(4) (Trace and phase determinism) If ∅ ⊢CI 𝑝 and ∅ ⊢DI 𝑝 , then 𝑃1 = 𝑃2 and 𝑡1 = 𝑡2.

4 Jaminan: A Core Calculus for GPU Programming
The aim of this section is to reason precisely about real and spurious alarms. To this end, we

introduce a small calculus (Jaminan) that captures the concurrency of GPU programming, then we

define an algorithm that infers protocols from Jaminan programs. Our main results for this section

are precise correspondences between Jaminan programs and their protocols. Next, we outline areas

of focus and assumptions that informed the design of Jaminan.

A key feature of MAPs [15, 16] is distinguishing syntactically between a synchronized and an

unsynchronized fragment of the protocol language. A synchronized fragment can contain unsyn-

chronized fragments, but not vice-versa. Barrier synchronization can only appear in a synchronized

fragment. Memory accesses can only appear in an unsynchronized fragment. Additionally, and

as shown in [15, 16], a synchronized fragment can be divided into a collection of unsynchronized

fragments that can be verified independently. Given this property of MAPs and that synchronization

does not affect the approximation of expressions in MAPs, we only discuss the inference of the

unsynchronized fragment (henceforth, protocols).

Any over-approximation produced by the inference can be expressed via a symbolic variable

and therefore reasoned about by the approximation analysis. For instance, loops in this paper (in

MAPs and in Jaminan) have a lower bound, an upper bound, and a loop stride of 1 (i.e., increment-

ing the loop variable by 1 per iteration). Our implementation (FaialAA) supports loop strides of

arbitrary sizes with addition, subtraction, division, and multiplication (includes bit-shift operators);

unsupported loops are modelled using symbolic variables for loop bounds. As another example,

FaialAA replaces unsupported numeric expressions by symbolic variables, e.g., function calls that

take data-types that are not integers.

4.1 Syntax and Semantics
Syntax by example. Figure 5 introduces the syntax and semantics of Jaminan, the calculus from

which we aim to infer a MAP. Let 𝑠 range over the set of statements. A read let 𝑥 = A[𝑒] in 𝑠 takes

the value at index 𝑒 and assigns it to variable 𝑥 in the scope of statement 𝑠 . A write A[𝑒1] := 𝑒2
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Syntax

𝑠 ::= let 𝑥 = A[𝑒] in 𝑠 | A[𝑒] := 𝑒 | 𝑠 ; 𝑠 | if 𝑐 {𝑠} else {𝑠} | for 𝑥 ∈ 𝑒..𝑒 {𝑠} | var 𝑥 . 𝑠 | skip

Semantics 𝑀, 𝑠 ↓𝑖 𝑀, 𝑃 ⊲ 𝑡

𝑠-var

𝑀, 𝑠 [𝑥 B 𝑘] ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

𝑀, var 𝑥 . 𝑠 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

𝑠-skip

𝑀, skip↓𝑖 ∅, ∅ ⊲ 𝜏

𝑠-read

𝑒 ↓ 𝑗 𝑀 ( 𝑗) = 𝑘 𝑀, 𝑠 [𝑥 B 𝑘] ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

𝑀, let 𝑥 = A[𝑒] in 𝑠 ↓𝑖 𝑀 ′, 𝑃 ∪ {𝑖 : rd[ 𝑗]} ⊲ 𝜏 ; 𝑡

𝑠-write

𝑒1 ↓ 𝑗 𝑒2 ↓𝑘
𝑀, A[𝑒1] := 𝑒2 ↓𝑖 { 𝑗 ↦→ 𝑘}, {𝑖 : wr[ 𝑗]} ⊲ 𝜏

𝑠-if-t

𝑐 ↓⊤ 𝑀, 𝑠1 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

𝑀, if 𝑐 {𝑠1} else {𝑠2} ↓𝑖 𝑀 ′, 𝑃 ⊲ ⊤; 𝑡

𝑠-if-f

𝑐 ↓⊥ 𝑀, 𝑠2 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

𝑀, if 𝑐 {𝑠1} else {𝑠2} ↓𝑖 𝑀 ′, 𝑃 ⊲ ⊥; 𝑡

𝑠-seq

𝑀, 𝑠1 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡1 𝑀 ∪• 𝑀 ′, 𝑠2 ↓𝑖 𝑀 ′′, 𝑃 ′ ⊲ 𝑡2

𝑀, 𝑠1 ; 𝑠2 ↓𝑖 𝑀 ′ ∪• 𝑀 ′′, 𝑃 ∪ 𝑃 ′ ⊲ 𝑡1; 𝑡2

𝑠-for-1

(𝑒1 ≥ 𝑒2) ↓⊤
𝑀, for 𝑥 ∈ 𝑒1..𝑒2 {𝑠} ↓𝑖 ∅, ∅ ⊲ 𝜏

𝑠-for-2

𝑒1 ↓𝑖 𝑙 (𝑙 < 𝑒2) ↓𝑖 ⊤ 𝑀, 𝑠 [𝑥 B 𝑙] ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡1 𝑀 ∪• 𝑀 ′, for 𝑥 ∈ 𝑙 + 1..𝑒2 {𝑠} ↓𝑖 𝑀 ′′, 𝑃 ′ ⊲ 𝑡2

𝑀, for 𝑥 ∈ 𝑒1..𝑒2 {𝑠} ↓𝑖 𝑀 ′ ∪• 𝑀 ′′, 𝑃 ∪ 𝑃 ′ ⊲ (𝑥 :=𝑙 ; 𝑡1); 𝑡2

Fig. 5. Syntax and semantics of Jaminan.

assigns the value of 𝑒2 into the array location indexed by 𝑒1. Jaminan includes a symbolic variable

binder to capture any form of abstraction produced by FaialAA.
We revisit our running examples written in Jaminan. In 𝑠𝐴, read statement let 𝑥 = A[tid+ 16] rep-

resents sdata[threadIdx.x+16]. In 𝑠𝐴, the write statement A[tid] := 𝑥 represents sdata[thread-
Idx.x] = mySum + sdata[threadIdx.x+16]. To ease presentation and without sacrificing general-

ity, we opt not to include mySum in 𝑝𝐴. The remaining examples should be straightforward.

𝑠𝐴 = if tid < 32 {let 𝑥 = A[tid + 16] in A[tid] := 𝑥} (Alarm 1)

𝑠𝐵 = let 𝑥 = A[0] in if 𝑥 ≠ 0 {var 𝑦. A[tid] := 𝑦} (Alarm 2)

𝑠𝐶 = var 𝑥 . var 𝑦. A[𝑥] := 𝑦 (Alarm 3)

𝑠𝐷 = A[tid] := tid; let 𝑥 = A[tid] in var 𝑦. A[𝑥] := 𝑦 (Alarm 4)

Semantics. We first define the finite maps we use to represent the state of an array. Let𝑀 ,𝑀 ′
, and

𝑀 ′′
range over the set of finite maps from naturals into naturals. Let dom(𝑀) denote the domain

of𝑀 . Let ∅ denote the empty map i.e., 𝑗 ∉ dom(∅) for any 𝑗 . Let𝑀 = { 𝑗 ↦→ 𝑘} denote the singleton
map where dom(𝑀) = { 𝑗} and 𝑀 ( 𝑗) = 𝑘 . Next, we define merging maps, notation 𝑀 ∪• 𝑀 ′

,

that gives precedence to the values of 𝑀 ′
. Let 𝑀 ∪• 𝑀 ′

be defined as a finite map 𝑀 ′′
such that

𝑀 ′′ (𝑖) = 𝑀 ′ (𝑖) if 𝑖 ∈ dom(𝑀 ′), otherwise 𝑀 ′′ (𝑖) = 𝑀 (𝑖). Finally, we define a lookup operator,

notation𝑀 (𝑖), that is a total function𝑀 (𝑖) = 𝑀 (𝑖) when 𝑖 ∈ dom(𝑀) otherwise𝑀 (𝑖) = 0.

We define a big-step operational semantics for protocols with judgement 𝑀, 𝑠 ↓𝑖 𝑃,𝑀 ′ ⊲ 𝑡 that
reads as: thread 𝑖 executes statement 𝑠 with memory 𝑀 and results in an output memory 𝑀 ′
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(capturing the new data written by 𝑖), a phase 𝑃 (capturing the accesses of 𝑖), and a trace 𝑡 (recording

the internal choices of 𝑖). We overload the notation for substitution, e.g., 𝑠 [𝑥 B 𝑘] means that all

free occurrences of 𝑥 in program 𝑠 are replaced by 𝑘 . Rule 𝑠-read evaluates the index down to 𝑗 ,

reads value 𝑘 from memory𝑀 and replaces variable 𝑥 by 𝑘 in continuation 𝑠 . The rule extends the

resulting phase 𝑃 that results from executing 𝑠 [𝑥 B 𝑘] with a read. The produced trace (𝜏 ; 𝑡 ) means

that reading yields no internal choices followed by the choices of the continuation. Rule 𝑠-write

evaluates the index down to 𝑗 , the payload down to 𝑘 . A write statement outputs a singleton map

assigning payload 𝑘 to index 𝑗 , and a singleton phase with the write-access value. The output

trace 𝜏 states that no internal choices were taken. The rules for conditional 𝑠-if-t and 𝑠-if-f follow

the similar principles as for MAPs. Rule 𝑠-seq evaluates 𝑠1 to obtain some memory updates in𝑀 ′

and a phase 𝑃 . Then, running 𝑠2 takes𝑀 ∪• 𝑀 ′
, so that the writes of 𝑠1 are observed by 𝑠2, yielding

memory updates𝑀 ′′
and phase 𝑃 ′

. The output of the sequence merges the memory updates and

the phases of both statements. The remaining rules should be straightforward, as they are similar

to those of MAPs. Similarly to MAPs, Jaminan’s semantics is non-deterministic, notably because of

the non-deterministic variable assignment.

Proving and disproving alarms. We are now able to formally confirm Alarm 1, Alarm 2, and

Alarm 3 by evaluating statements 𝑠𝐴, 𝑠𝐵 , and 𝑠𝐶 , respectively. We give an initial empty memory ∅
for statements 𝑠𝐴 and 𝑠𝐶 . For 𝑠𝐵 , let the initial memory 𝑀 = {0 ↦→ 10}. In these examples, the

resulting memory updates would record a single write. We underline the access values that appear

in both resulting phases.

Thread A Thread B

∅, 𝑠𝐴 ↓
16
{16 ↦→ 0}, {16 : rd[32], 16 : wr[16]} ⊲ 𝑡𝐴 ∅, 𝑠𝐴 ↓

0
{0 ↦→ 0}, {0 : rd[16], 0 : wr[0]} ⊲ 𝑡𝐴

𝑀, 𝑠𝐵 ↓1{1 ↦→ 2}, {1 : rd[0], 1 : wr[1]} ⊲ 𝑡𝐵 𝑀, 𝑠𝐵 ↓0{0 ↦→ 1}, {0 : rd[0], 0 : wr[0]} ⊲ 𝑡𝐵
∅, 𝑠𝐶 ↓

0
{0 ↦→ 1}, {0 : wr[0]} ⊲ 𝑡𝐶 ∅, 𝑠𝐶 ↓

1
{0 ↦→ 2}, {1 : wr[0]} ⊲ 𝑡𝐶

Finally, we can show that Alarm 4 is spurious, because the statement is data-race free for any

possible memory𝑀 . Given two reductions of 𝑠𝐷 for some threads 𝑖 and 𝑗 where 𝑖 ≠ 𝑗 , the access

values of each thread index different locations (at 𝑖 and 𝑗 , respectively).

𝑀, 𝑠𝐷 ↓𝑖 {𝑖 ↦→ 𝑖}, {𝑖 : wr[𝑖], 𝑖 : rd[𝑖]} ⊲ 𝑡𝐷 𝑀, 𝑠𝐷 ↓𝑗 { 𝑗 ↦→ 𝑗}, { 𝑗 : wr[ 𝑗], 𝑗 : rd[ 𝑗], } ⊲ 𝑡𝐷

4.2 Alarms Through the Lens of Approximation Analysis
In this section, we define, and reason about, a syntax-driven inference algorithm from a Jaminan

statement to a MAP. Then, we establish the properties of soundness, and (partial) completeness.

We define our inference algorithm in Figure 6. Inferring a write statement yields a write-protocol

and discards payload 𝑒2. Inferring a read statement yields a read access followed by the introduction

of a new symbolic variable. Next, we apply our inference algorithm to our running examples:
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Protocol inference [[s]] = u

[[A[𝑒1] := 𝑒2]] = wr[𝑒1] [[let 𝑥 = A[𝑒] in 𝑠]] = rd[𝑒]; var 𝑥 . [[𝑠]]

[[𝑠1 ; 𝑠2]] = [[𝑠1]] ; [[𝑠2]] [[if 𝑐 {𝑠1} else {𝑠2}]] = if 𝑐 {[[𝑠1]]} else {[[𝑠2]]}

[[for 𝑥 ∈ 𝑒1..𝑒2 {𝑠}]] = for 𝑥 ∈ 𝑒1..𝑒2 {[[𝑠]]} [[skip]] = skip [[var 𝑥 . 𝑠]] = var 𝑥 . [[𝑠]]

Sets of actions p-actions(p) j-actions(s) reachable-actions(s) spurious-actions(s)

𝑖 ∈ 𝒯 𝑝 ↓𝑖 𝑃 ⊲ 𝑡 𝛼 ∈ 𝑃

(𝛼, 𝑡) ∈ p-actions(𝑝)
𝑖 ∈ 𝒯 𝑀, 𝑠 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡 𝛼 ∈ 𝑃

(𝛼, 𝑡) ∈ j-actions(𝑠)

𝑀, 𝑠 ↓𝑖 𝑀 ′, 𝑃 ⊲ 𝑡

(𝑖 : 𝑜 [𝑘], 𝑡) ∈ reachable-actions(𝑠)
𝛿 ∈ p-actions( [[𝑠]]) \ j-actions(𝑠)

𝛿 ∈ spurious-actions(𝑠)

Fig. 6. Protocol inference rules and sets of actions.

[[𝑠𝐴]] = [[if tid < 32 {let 𝑥 = A[tid + 16] in A[tid] := 𝑥}]]
= if tid < 32 {rd[tid + 16]; var 𝑥 . wr[tid]} ≡ 𝑝𝐴

[[𝑠𝐵]] = [[let 𝑥 = A[0] in if 𝑥 ≠ 0 {var 𝑦. A[tid] := 𝑦}]]
= rd[0]; var 𝑥 . if 𝑥 ≠ 0 {var 𝑦. wr[tid]} ≡ 𝑝𝐵

[[𝑠𝐶 ]] = [[var 𝑥 . var 𝑦. A[𝑥] := 𝑦]] = var 𝑥 . var 𝑦. wr[𝑥] ≡ 𝑝𝐶

[[𝑠𝐷 ]] = [[A[tid] := tid; let 𝑥 = A[tid] in var 𝑦. A[𝑥] := 𝑦]]
= wr[tid]; rd[tid]; var 𝑥 . var 𝑦. wr[𝑥] ≡ 𝑝𝐷

For the sake of presentation, we removed unnecessary symbolic variable binders from the

protocols in Figure 1 (e.g., var 𝑥 . wr[tid] becomeswr[tid] in 𝑝𝐴). This has no effect on the protocols’

semantics.

To reason about the soundness and completeness of the inference, we would like to show that the

behaviors of the model either include (i.e., soundness), or match (i.e., completeness) the behaviors

of the program under analysis. Here, the behavior corresponds to the set of accesses per trace. Let
an action be defined as 𝛿 = (𝛼, 𝑡), representing an access value 𝛼 occurring in some trace 𝑡 .

Definition 4.1 (Equivalence modulo index for actions). We extend the equivalence modulo index

(Definition 3.2) to actions in the natural way, i.e.,
(
(𝛼1, 𝑡), (𝛼2, 𝑡 ′)

)
∈ ℐ if, and only if (𝛼1, 𝛼2) ∈ ℐ .

Next, we introduce the functions in Figure 6 that generate sets of actions from protocols and

from statements. We say that an action (𝛼, 𝑡) is in the set p-actions(𝑝) (for protocol actions) when
evaluating protocol 𝑝 yields 𝑡 and 𝛼 is in the resulting phase. We say that protocol 𝑝 emits action 𝛿 .
For instance, let (1 : wr[0], 𝑡𝐷 ) = 𝛿𝐷 be an action we want to highlight in Alarm 4. We have that

𝑝𝐷 emits 𝛿𝐷 and

𝛿𝐷 ∈ p-actions(𝑝𝐷 ) =
⋃
𝑖∈𝒯

{(𝑖 : wr[𝑖], 𝑡𝐷 ), (𝑖 : rd[𝑖], 𝑡𝐷 )} ∪ {(𝑖 : rd[ 𝑗], 𝑡𝐷 ) | 𝑖 ∈ 𝒯 ∧ 𝑗 ∈ N}
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Similarly, we say that action (𝛼, 𝑡) is in the set j-actions(𝑠) (for jaminan actions) when evaluating

statement 𝑠 yields the internal choices 𝑡 for some memory𝑀 and access value 𝛼 is in the resulting

phase. We say that statement 𝑠 emits action 𝛿 . For instance, statement 𝑠𝐷 emits 𝛿𝐷 and

𝛿𝐷 ∈ j-actions(𝑠𝐷 ) =
⋃
𝑖∈𝒯

{(𝑖 : wr[𝑖], 𝑡𝐷 ), (𝑖 : rd[𝑖], 𝑡𝐷 )}

We say that an action (𝛼, 𝑡) is reachablewithin statement 𝑠 when thread 𝑖 can evaluate statement 𝑠

and produce the internal choices 𝑡 , where 𝛼 = 𝑖 : 𝑜 [𝑘]. Crucially, 𝛼 does not need to be a member

of the resulting phase 𝑃 . For instance, action 𝛿𝐷 is reachable within 𝑠𝐷 and we have

𝛿𝐷 ∈ reachable-actions(𝑠𝐷 ) = {(𝛼, 𝑡𝐷 ) | 𝛼 = 𝑖 : 𝑜 [𝑘] ∧ 𝑖 ∈ 𝒯 }

Finally, we say that an action 𝛿 is in the set spurious-actions(𝑠) (the set of of spurious actions)
when protocol [[𝑠]] emits 𝛿 (which is what the tool observes), but statement 𝑠 does not emit 𝛿

(which is what the user observes). In such a case, we may say that action 𝛿 is spurious for 𝑠 . For

instance, action 𝛿𝐷 is spurious for 𝑠𝐷 because

𝛿𝐷 ∈ spurious-actions(𝑠𝐷 ) = p-actions(𝑝𝐷 ) \ j-actions(𝑠𝐷 ) = {(𝑖 : rd[ 𝑗], 𝑡𝐷 ) | 𝑖 ∈ 𝒯 ∧ 𝑗 ∈ N∧𝑖 ≠ 𝑗}

4.3 Results
We show that the inference is sound. That is, if a statement 𝑠 emits an action 𝛿 , then the inferred

protocol [[𝑠]] also emits 𝛿 .

Theorem 4.2 (Soundness). For all Jaminan program 𝑠 , j-actions(𝑠) ⊆ p-actions( [[𝑠]]).

The next theorem relates the actions emitted by a Jaminan statement and its inferred protocol.

Result (1) refines Theorem 4.2 and states that the actions emitted by statement 𝑠 are the actions

emitted by the inferred protocol that are feasible, up to the index (since they may be approximated).

Result (2) states that when the inferred protocol [[𝑠]] is control-independent, then the actions

emitted by [[𝑠]] are all feasible, but may have an approximate index. Result (3) states that when

the inferred protocol [[𝑠]] is data-independent, then the actions emitted by [[𝑠]] have a precise
index, yet may be unreachable within 𝑠 . Result (4) states that when the inferred protocol [[𝑠]] is
control-independent and data-independent, then both the inferred protocol and the statement emit

exactly the same actions.

Theorem 4.3 (Action-set correspondence). The following propositions hold.

(1) j-actions(𝑠) ≡ℐ p-actions( [[𝑠]]) ∩ reachable-actions(𝑠).
(2) If ∅ ⊢CI [[𝑠]], then j-actions(𝑠) ≡ℐ p-actions( [[𝑠]]).
(3) If ∅ ⊢DI [[𝑠]], then j-actions(𝑠) = p-actions( [[𝑠]]) ∩ reachable-actions(𝑠).
(4) If ∅ ⊢CI [[𝑠]] and ∅ ⊢DI [[𝑠]], then j-actions(𝑠) = p-actions( [[𝑠]]).

Finally, we establish the following properties that establish the root causes of a spurious action.

Result (1) states that a spurious action 𝛿 is either unreachable or 𝛿 has an inaccurate index. Result (2)

states when the inferred protocol is control-independent, then the index must be inaccurate.

Result (3) states when the inferred protocol is data-independent, then the action is unreachable.

Corollary 4.4 (Possible root causes). Let 𝛿 ∈ spurious-actions(𝑠).
(1) 𝛿 ∉ reachable-actions(𝑠) or ∃𝛿 ′ ∈ j-actions(𝑠) : (𝛿, 𝛿 ′) ∈ ℐ .
(2) If ∅ ⊢CI [[𝑠]], then ∃𝛿 ′ ∈ j-actions(𝑠) : (𝛿, 𝛿 ′) ∈ ℐ .
(3) If ∅ ⊢DI [[𝑠]], then 𝛿 ∉ reachable-actions(𝑠).
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We are finally equipped to state a True Positives theorem which states that when a data-race

occurs in the inferred protocol [[𝑠]] of a CIDI program, then it must occur in the program 𝑠 . A

data-race is a pair of concurrent accesses where two distinct threads, say 𝑖 and 𝑘 , address the

same location 𝑘 and at least one writes to the array. Formally, we define a data-race between two

actions 𝛿1 and 𝛿2 as

𝛿1 = (𝑖 : 𝑜1 [𝑘], 𝑡) 𝛿2 = ( 𝑗 : 𝑜2 [𝑘], 𝑡) 𝑖 ≠ 𝑗 wr ∈ {𝑜1, 𝑜2}
datarace(𝛿1, 𝛿2)

For any CIDI program 𝑠 , the following theorem states that when an inferred protocol [[𝑠]] emits

a data-race of actions 𝛿1 and 𝛿2, then program 𝑠 also emits actions 𝛿1 and 𝛿2.

Theorem 4.5 (True Positives). Let ∅ ⊢CI [[𝑠]], ∅ ⊢DI [[𝑠]], and datarace(𝛿1, 𝛿2).
If 𝛿1 ∈ p-actions( [[𝑠]]) and 𝛿2 ∈ p-actions( [[𝑠]]), then 𝛿1 ∈ j-actions(𝑠) and 𝛿2 ∈ j-actions(𝑠).

4.4 Mechanization of Results
This paper is accompanied by a Coq formalization of the theoretical contributions of this paper,

which includes a proof of Theorems 3.3, 4.2, 4.3 and 4.5 and Corollary 4.4. Our additional Coq

mechanization consists of 15,900 lines of code, 170 definitions, and 750 theorems. This proof extends

a mechanization of MAPs presented in [15]. The technical differences of our work versus [15]

include adding symbolic variable binders and traces to MAPs, the Jaminan language, the various

judgments introduced in this paper, and the aforementioned results.

5 Implementation: FaialAA
This section introduces FaialAA that builds on Faial [15, 16] to implement the approximation

analysis, along with other improvements. We refer the reader to [15, §6] for more details, where

Cogumbreiro et al. cover the implementation details of various features supported by Faial, including:
multi-dimensional thread identifiers, multi-dimensional arrays, kernel parameters, block-level

synchronization, arrays in shared memory, arrays in global memory, data-races from threads of the

same block, and data-races from threads of the same warp. Faial ignores memory fences. Faial
relies on LLVM [44], particularly libclang, to parse the source code.

5.1 Improvements over Faial
FaialAA introduces numerous improvements over Faial, which make it more precise and able

to handle more CUDA kernels. Here, we list the new features that have direct impact in the

evaluation section:

• Grid-level analysis. Detects data-races from threads of different blocks.

• Atomics. Detects data-races using atomics and considers different scopes, i.e., system, device,

and block.

• Inter-procedural analysis. Our implementation expands the kernel definition on any call site.

• Typing information. The analysis now takes into account the types of program variables. This

feature eliminates a source of false alarms that assumed a larger range of values than those

admitted by a type, e.g., an unsigned integer variable (non-negative) could be considered

negative.

• Benign data-races. A benign data-race is defined as several concurrent writes of the same data

to the same location without explicit synchronization. It is not considered a programming

error. To achieve this, we extended MAPs to optionally capture the value being written.

• Array aliasing. An example of an array aliasing pattern consists of using pointer arithmetic

to more easily index an array. For instance, in C, we declare an alias s_ThreadBase[i] that
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(𝑋1, 𝑌1) + (𝑋2, 𝑌2) = (𝑋1 ∪ 𝑋2, 𝑌1 ∪ 𝑌2) 𝑎𝑎(𝑋, var 𝑥 . 𝑝) = 𝑎𝑎(𝑋, 𝑝)

𝑎𝑎(𝑋, 𝑜 [𝑒]) = (∅, fn(𝑒) \ 𝑋 ) 𝑎𝑎(𝑋, skip) = (∅, ∅) 𝑎𝑎(𝑋, 𝑝1 ; 𝑝2) = 𝑎𝑎(𝑋, 𝑝1) + 𝑎𝑎(𝑋, 𝑝2)

𝑎𝑎(𝑋, if 𝑐 {𝑝1} else {𝑝2}) = (fn(𝑐) \ 𝑋, ∅) + 𝑎𝑎(𝑋, 𝑝1) + 𝑎𝑎(𝑋, 𝑝2)

𝑎𝑎(𝑋, for 𝑥 ∈ 𝑒1 ..𝑒2 {𝑝}) = ((fn(𝑒1) ∪ fn(𝑒2)) \ 𝑋, ∅) + 𝑎𝑎(𝑋 ∪ {𝑥 | 𝑋 ⊢ 𝑒1 ∧ 𝑋 ⊢ 𝑒2}, 𝑝)

Fig. 7. The set of approximating binders.

expands to s_Hist[threadPos + i] with the following code:

uchar *s_ThreadBase = s_Hist + threadPos;

Besides adding new features, we also improved the following existing features of Faial:

• Bitwise operators. Our implementation is an encoding of integers as bit-vectors, which are

then handled by the Z3 [20] SMT solver. Faial support for bitwise operations was a partial
encoding that relies on integer arithmetic theory of Z3, which cannot not cope with all

bitwise expressions.

• C++ templates. Added support for handling arrays of a generic type and indices of a generic

type, including support for C++ variable inference with auto.
• Loops. To make the analysis more precise, FaialAA infers the precise iteration space of a loop

when possible. We added support for while loops that increment a loop variable at the end

of the iteration, and for-loops that omit the initialization assignment.

5.2 Approximation Analysis
Our application of the approximation analysis adds the following elements to a data-race alarm:

(1) whether the indexing expressions of both concurrent accesses are DI;

(2) whether the enclosing contexts of both concurrent accesses are CI;

(3) which program variables are CI and DI in the valuation.

Given a protocol, to calculate (1) and (2) more precisely, we can discard any access that is unrelated

to the valuation. Then, we can use the 𝑋 ⊢CI 𝑝 and 𝑋 ⊢DI 𝑝 predicates in Figure 4 to obtain (1) and

(2). To calculate (3) we use function 𝑎𝑎(𝑋, 𝑝) defined in Figure 7, which we introduce next.

Function 𝑎𝑎(𝑋, 𝑝) = (𝑌, 𝑍 ) keeps track of a set of exact binders in 𝑋 and returns a set of control-

dependent binders 𝑌 , and a set of data-dependent binders 𝑍 found within protocol 𝑝 . The binders

of the input protocol are assumed to be distinct so that variables can be compared by name alone

without considering the scope. In the implementation, the top-level call of 𝑎𝑎(𝑋, 𝑝) has 𝑋 holding

the thread-global variables, such as kernel parameters, and thread identifier variables, such as

threadIdx and blockIdx.
In the following example, we show a CIDD protocol, where a symbolic variable 𝑥 appears in a

write to an array. We highlight 𝑥 with an underline and colored in pink.

𝑎𝑎({𝑧}, var 𝑥 . for 𝑦 ∈ 0..𝑧 {wr[𝑥]})
=𝑎𝑎({𝑧}, for 𝑦 ∈ 0..𝑧 {wr[𝑥]})
=(∅, ∅) + 𝑎𝑎({𝑧,𝑦},wr[𝑥])
=(∅, {𝑥})

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 357. Publication date: October 2024.



357:18 Dennis Liew, Tiago Cogumbreiro, and Julien Lange

Next, we have a CDDI protocol, where a symbolic variable 𝑥 appears in the control flow, but is

not used to index an array. We highlight 𝑥 with an underline and colored in pink.

𝑎𝑎({𝑧}, var 𝑥 . for 𝑦 ∈ 0..𝑥 {wr[𝑧]})
=𝑎𝑎({𝑧}, for 𝑦 ∈ 0..𝑥 {wr[𝑧]})
=({𝑥}, ∅) + 𝑎𝑎({𝑧},wr[𝑧])
=({𝑥}, ∅) + (∅, ∅)
=({𝑥}, ∅)

6 Evaluation
Our evaluation tries to answer 3 main questions, each answered in a subsection.

• §6.1: How does FaialAA compare to the state of the art?We compare our tool against the

state of the art by targeting a well-known dataset. We find that FaialAA outperforms other

tools and is able to detect 10 undocumented racy kernels, including 6 that are only found by

our tool.

• §6.2: Can we use FaialAA to confirm real defects and fixes?We analyze the buggy and

fixed versions of 6 kernels found in commit messages of large open source projects and show

that FaialAA is able to confirm both versions of 5, while others can do the same for only 2

kernels.

• §6.3: How common are CIDI kernels? We develop a dataset of 2,770 kernels from GitHub

repositories and benchmarks, and find that 59.5% of them are CIDI.

Experimental setup. All experiments were executed in Ubuntu 24.04, on a AMD Ryzen 7 3700X

3.6GHz (16 cores) with 16GB of RAM. For GPUVerify, we used the version included in the artifact

of [6], with the command line option --only-intra-group. For Faial, we used the version included

in the artifact of [16], with the command line option --parse-gv-args.

6.1 Static Analysis of GPU Kernels
Our primary goal with this experiment is to run the state-of-the-art of static analysis of GPU

kernels against a well-studied group of benchmarks. To this end, we reproduce an experiment

carried out by Bardsley et al. [6].
Data selection. The CAV’14 dataset is a well-studied benchmark suite of GPU kernels [6]. The

dataset consists of 226 CUDA kernels from 4 benchmark suites: NVIDIA GPU Computing SDK v2.0

(8 kernels), NVIDIA GPU Computing SDK v5.0 (165 kernels), Microsoft C++ AMP Sample Projects

(20 kernels), gpgpu-sim benchmarks [4] (33 kernels). The following synchronization mechanisms

appear in the dataset: 90 files use __syncthreads(), and 2 files use atomics. Both FaialAA and

GPUVerify support these synchronization mechanisms. Faial ignores atomics. Kernels are annotated

with verification-specific conditions that enable the verification, in the form of kernel pre-conditions

and loop invariants. In total, this dataset includes 208 loop-invariant conditions. The DRF analysis

of Faial and FaialAA eschews the need for loop invariants, as first discussed in [16]. This experiment

is the first to measure the dramatic difference between a MAPs-based approach and a Hoare-logic

based approach of GPUVerify (208 more conditions). Finally, we note that the CAV’14 dataset is

supposed to be DRF according to its authors (our emphasis):

Our default assumption is that these benchmarks are free from defects, thus our
aim is verification. However, in the process of applying GPUVerify we have identified,

reported and fixed several data race bugs. [...] We know that some of these failures are
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Table 1. Each column tallies a total number of the following. Column “DRF:” DRF kernels. Column “P-Racy:”
kernels with at least one alarm and no true alarms. Column “T-Racy:” kernels with at least one true alarm.
Column “Coverage:” percentage of analyzable kernels over all kernels, i.e., DRF, P-Racy, or T-Racy. Column
“Timeout:” kernels where the analysis timed out (up to 300 seconds). Column “Crash:” kernels where the
analysis failed to produce an answer (e.g., parsing error). Column “True:” true alarms produced by the analysis.
Column “Potential:” potential alarms produced by the analysis.

KERNELS ALARMS
DRF P-Racy T-Racy Coverage Timeout Crash True Potential

GPUVerify 194 17 n/a 93.4% 9 6 n/a 50

Faial 207 11 n/a 96.5% 0 8 n/a 21

FaialAA 212 4 10 100.0% 0 0 18 11
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Fig. 8. Runtime (top) and memory usage (bottom) of analyzable kernels. Timeouts and crashes are omitted.
The X-axis is the kernel identifier. The Y-axis of the top graph (time) is in logarithmic scale. The Y-axis of the
bottom graph (memory) is in linear scale.

(and expect most to be) false positives that demand improved invariant inference, but

some may correspond to further bugs that we have not yet identified.
Thus, the expectation of this experiment is to have tools report a higher value of DRF, and, ideally,

0 timeouts and 0 crashes (unsupported kernels).

Table 1 tallies the results of the experiment for each tool (rows). In the first section (columns

2–6), we summate the result of the analysis per kernel. In the second section (columns 7–8), we

summate the result of the analysis of each alarm. Recall that an alarm corresponds to a report of

data-race, hence the same file may yield multiple alarms. Since the analysis of GPUVerify and Faial
are incomplete, thus any alarms issued by these tools are potential. FaialAA may issue either true

or potential alarms, following its approximation analysis. Regarding the first section, the possible

status of a kernel summarizes all alarms issued, as given in Table 1. A T-Racy kernel has at least

one true alarm (only available in FaialAA). A P-Racy kernel has at least one potential alarm and 0
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Table 2. Column Kernel: unique identifier. Column AA: approximation analysis of the kernel. Column LoC:
total lines of code. Columns GPUVerify and Faial:Ë when the analysis reports at least one alarm, é when
the analysis reports the kernel DRF, t/o when the analysis times out (up to 300 seconds). Kernels annotated
with P require inter-procedural analysis and with B require support for bitwise operators.

Kernel AA LoC GPUVerify Faial

laplace3dF CIDI 65 Ë é
md5P CDDD 23 t/o é
md5_overlapP CDDD 22 t/o é
reduceMultiPassP CIDI 9 é é
scalarProd CIDI 83 Ë é
scalarProdIntraGroup CIDI 62 é é
sha1P CDDD 24 t/o é
sha1_overlapP CDDD 22 t/o é
spPostprocess2DF CIDI 52 Ë é
spPreprocess2DF CIDI 56 Ë é

true alarms. Figure 8 shows the time and memory usage of each tool. Faial and FaialAA take about

the same time to analyze kernels, yet FaialAA uses more memory, we suspect that difference stems

from our tool being able to analyze more kernels in more detail. The time and memory usage of

GPUVerify and Faial are comparable to the evaluation of [15, 16], GPUVerify has better memory

usage, and Faial is faster. The average runtime for FaialAA is 0.4 s ± 0.2 s, GPUVerify 9.6 s ± 32.2 s,

and Faial 0.3 s±0.1 s. As for memory, the average usage for FaialAA is 92.7MB±45.0MB,GPUVerify
45.7MB ± 14.9MB, and Faial 50.9MB ± 5.3MB.

We list the number of kernels where multiple tools agree on the same report. All three tools

report DRF on 174 kernels (77.0%). There are 4 DRF kernels identified by both GPUVerify and Faial,
21 by Faial and FaialAA, and 14 by FaialAA and GPUVerify. Since Faial and FaialAA share the

largest similarity in their source code, it is unsurprising that the two tools have the largest shared

reports. There were no racy reports confirmed by all three tools.

Discussion. FaialAA is the tool that can confirm most kernels as DRF, followed by Faial, and
then GPUVerify. Further, FaialAA discovered 10 undocumented racy kernels. We highlight the

importance of being able to categorize alarms as true: GPUVerify identifies as racy 17 kernels. Yet,

since there can be multiple alarms per kernel, a user would need to manually validate 50 potential

alarms. In contrast, since FaialAA can confirm 18 alarms as true, users only need to validate 11

potential alarms (4.5× fewer). This experiment also shows the improvements of FaialAA over Faial:
our tool can analyze 8 more kernels than Faial, which result from unsupported files. Finally, observe

that out of 10 true-racy kernels, there are 4 that are either control-dependent or data-dependent,

yet their alarms were confirmed true. This is possible because our implementation can restrict

the approximation analysis just to the accesses that are involved on the data race and when both

accesses are true, the alarm is true c.f., Section 5.2.

Unsound reports. Table 2 lists the racy kernels confirmed by FaialAA, so that we can report on

how GPUVerify and Faial fared. The expectation is that each tool reports all 10 kernels as racy.

Any DRF (é) report is unsound and may be caused by unsupported C++ features or bugs in the

analysis of the given tool. GPUVerify was able to confirm 4 kernels, was unsound in 2 kernels, and

timed out in 4. Faial was able to confirm 0 kernel but was unsound in 10 kernels. We note that

neither Faial nor GPUVerify were able to confirm any of the 9 kernels that require inter-procedural
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analysis, identified with
P
. If we subtract the unsound DRF reports, then we get that GPUVerify

categorizes 188 kernels as DRF (down from 194) and Faial categorizes 197 kernels as DRF (down
from 207).

True alarms. We wanted to better understand the root cause of these 10 racy kernels. We

discovered that 7 out of the 10 kernels (those which are annotated with
F
) had incorrect or missing

pre-conditions. In other words, FaialAA is able to classify as DRF these 7 kernels with a different

set of pre-conditions. The original pre-conditions are written by the authors of the CAV’14 dataset.

Some of these pre-conditions were retrieved by using runtime information [7], although there

is no information on which pre-conditions. To correct the pre-conditions of these 7 kernels, we

sampled the parameters of the kernels until FaialAA reported the kernel as DRF. Finally, the

kernel reduceMultiPass is a known data-race [23] that can be fixed with added synchronization.

The remaining kernels, md5, md5_overlap, sha1, and sha1_overlap, originate from the gpgpu-sim

benchmark; we were unable to fix the defects.

FaialAA confirmsmore kernels as DRF than other tools, with at least 1.9× fewer potential
alarms, and without any analysis errors and timeouts. The approximation analysis of

FaialAA is able to find 10 undocumented racy kernels, including 6 that are missed by

GPUVerify and by Faial.

6.2 Confirming Defects in Open Source Projects
This experiment seeks to understand how the state of the art is equipped to confirm known data-

races and their fixes. The intent behind our data selection was to curate a set of actual defects in

large-scale open source projects, preferably, in code bases that are more up-to-date than those used

in the available benchmarks of static analysis. We study 6 kernels found by searching for data races

in the commit messages of GitHub repositories.

Data selection. To find buggy kernels, we used GitHub’s search to query the terms “fix race” in

commit messages. We made our best effort to identify all CUDA kernels that were affected by a

data-race, by sieving through multiple results and were able to find 6 buggy kernels. Table 3 lists the

kernels we found as well as information regarding the commit where we found the fix. The commits

came from 2 projects. The OpenMM [22] project is a high performance molecular dynamics library

used for molecular simulation. The Megatron-LM project [42] is a library of training transformer

models designed for Large Language Models (LLM), being developed by Nvidia.

Discussion. The experiment is to have each tool analyze a commit, which consists of analyzing

two versions of a kernel, a buggy version with a data-race and a fixed version that is DRF. For a

given commit, we expect each tool to raise an alarm for the buggy kernel and categorize the fixed

kernel as DRF. Table 3 lists the results of the experiment. FaialAA is able to correctly categorize

both versions of 6 kernels. No tool was able to correctly analyze kernel sortBucket, that iteratively
issues a bitonic sort [8] on parts of an array. The kernel is challenging for FaialAA because it

is CDDD: (CD) at each iteration a range of elements is being sorted either using shared or global

memory and such choice uses data read from an array; (DD) the range of elements being sorted

is read from another array, so the locations being written are unknown to the analysis. All tools

could categorize the commit of kernels bucketPos and compRange, although only FaialAA can

guarantee the data-races as true alarms. The missed data-races are due to unsupported C++ features

by GPUVerify and Faial. We found that GPUVerify was unsound in 2 kernels, since GPUVerify
incorrectly identifies as bug-free (DRF) the racy versions of kernels layerNorm and gradInput.
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Table 3. Column Kernel: unique identifier. Column LoC: total lines of code. Column Year: the date of the
commit. Column Project: the repository holding the commit. Column AA: the approximation analysis of the
kernel. Column R for the buggy, racy version of the kernel. Column D for the fixed, DRF version of the kernel.
t/o when the analysis times out (up to 300 seconds). n/a when the analysis aborts. T-R when the analysis
reports at least one true alarm. P-R when the analysis reports only potential alarms. D when the analysis
reports the kernel DRF. é when the analysis reports an unexpected result.

GPUVerify Faial FaialAA

Kernel LoC Year Project AA R D R D R D

bucketPos 18 2018 OpenMM CIDI P-R D P-R D T-R D
compRange 36 2013 OpenMM CIDI P-R D P-R D T-R D
reduceVal 61 2018 OpenMM CIDD P-R é n/a n/a T-R D
sortBucket 69 2018 OpenMM CDDD t/o t/o n/a n/a P-R é
gradInput 112 2021 Megatron-LM CDDI é D n/a n/a T-R D
layerNorm 147 2021 Megatron-LM CIDI é D n/a n/a T-R D

Table 4. FaialAA’s approximation analysis on CAV’14, GH’22, and both datasets combined (CAV’14+GH’22).
Columns CIDI, CIDD, CDDI,and CDDD tally the percentage per approximation analysis outcome of the kernel.
Column “Total” tallies the total amount of kernels analyzed.

Dataset CIDI CIDD CDDI CDDD Total

CAV’14 74.8% 8.0% 9.3% 8.0% 226

GH’22 58.2% 8.9% 8.4% 24.5% 2,544

Total 59.5% 8.8% 8.4% 23.2% 2,770

Our understanding is that GPUVerify ignores accesses that target an array of a generic type, in a

type-parametric kernel, which occurs in the data-races of layerNorm and gradInput. Faial lacks
support for C++ templates and inter-procedural analysis, so it is unable to analyze 4 kernels.

FaialAA gives the most sound and complete results, confirming 5 out of 6 commits.

6.3 Occurrence of CIDI Kernels in the Wild
Our goal is to understand how often do CIDI kernels appear in the wild, since for such kernels

FaialAA is complete. To this end, developed a new dataset of kernels downloaded from GitHub

repositories. Our experiment is to run the approximation analysis and report what each kernel is.

Data selection. We introduce a novel dataset, called GH’22, that consists of 2,544 kernels retrieved

from GitHub repositories, in July of 2022. We select 2696 files from 261 repositories using GitHub’s

Search API, queried for the language selected as CUDA, using the default sorting parameters (“best

match”). While we removed duplicate files, the same kernel could appear in different repositories.

Some files under analysis have missing dependencies, e.g., C headers from a third-party library. In

such cases our tool is still able to infer a partial kernel, but any use of missing data and functions is

elided. We also include the CAV’14 dataset from Section 6.1 in this experiment.

Discussion. Table 4 shows a breakdown of the dataset into the four possible approximation

outcomes, along with the total number of kernels. The analysis of FaialAA is complete for 74.8% on

the CAV’14 dataset, and 58.2% on the GH’22 dataset, totaling 59.5% of kernels. In our experience,
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kernels identified as CD and DD often arise from unsupported source code features: e.g., loop
variables not being summarized precisely, or unsupported array aliasing patterns. While there are

several reasons that could explain the decrease of CIDI and increase of CDDD in GH’22 when

compared against CAV’14, we believe that an important source of CDDD is for kernels that refer

to third-party code that is absent from the dataset, which can introduce extraneous sources of

approximation.

We found that 59.5% of the 2,770 kernels is CIDI.

7 Related Work
Proving alarms. We build on the work in [52], which introduces a MAPs-inference function and

analysis that is sound and complete, and extend this approach in multiple ways, both theoretically

and practically. On the theory front, we present a novel notion of partial completeness and establish
Theorem 3.3 to state phase-determinism (caused by DI) and trace-determinism (caused by CI). We

establish a root cause analysis in the presence of CI and DI (Corollary 4.4) and a True Positives result

(Theorem 4.5). On the practical front, our work includes an implementation and a comprehensive

evaluation of the implementation.

The work by Leung et al. [45] also explores a notion akin to CIDI, called access invariance, in the

context of race detection. Their approach is to develop a partially-sound and complete dynamic race
detector, whereas ours is a sound and partially-complete static race detector. When a kernel enjoys

access invariance, their dynamic detection algorithm is able to prove DRF, which is not possible

with other dynamic race detection tools. Besides exploring a different application of a similar insight

(CIDI vs access invariance), the theoretical developments in both works are considerably different.

Since [45] is designed for dynamic analysis, the semantics being explored is simpler (no control

flow, such as loops or branching) and there are no results on partial exactness (Corollary 4.4).

The work in [30] introduces RacerDX and also establishes true positives result (data-races) for a

subset of Java multithreaded programs. Both FaialAA and RacerDX are partially complete, however

only FaialAA is sound (and therefore able to detect DRF kernels). Besides [30] covering different

domains, the two analysis are vastly different, e.g., their work builds on under-approximation,

whereas ours builds on over-approximation. Moreover, [30] has no support for partial exactness.

The field of Abstract Interpretation includes works on the completeness of sound analysis for

some classes of programs. Rival [66] combines a forward and backward analysis to identify true

alarms of critical embedded software. Popeea and Chin [62] introduce completeness in the context

of numerical analysis. Ranzato [65] formalize a notion of completeness. Giacobazzi et al. [29]

introduce a proof system to show that a given analysis is complete.

Absence of data-races. The state-of-the-art of sound static analysis of data-races includes Faial [15,
16], GPUVerify [9], and PUG [46]. All three tools are capable of detecting when a kernel is DRF,

but only report potential data races. FaialAA is the first to detect DRF and true data races. An

evaluation of various DRF verification tools conducted in [16] showed that Faial scales better than
GPUVerify and PUG in terms of verification time and memory usage. Further, PUG was unable to

analyze 62.6% of the kernels. GPUVerify’s analysis uses Hoare logic, which require user-provided

loop invariants to enable the analysis. In Section 6.1, we show that GPUVerify needed 208 loop

invariants in a dataset of 226 kernels. Because FaialAA relies on MAPs, it does not require loop

invariants, which greatly simplifies its usage.

Existence of data-races. Data-race finder tools often use dynamic race detection, symbolic

execution, or model checking. Dynamic data-race detection techniques [23, 32, 33, 37, 50, 60, 77, 78]

monitor the execution of a kernel, and require input data. These techniques impose high memory
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and time verification overheads, so their usage is limited by the available resources. Symbolic

execution and model checking techniques do not require input data, but do not scale well to larger

kernels [17, 18, 48, 61, 72]. We believe dynamic approaches are a potentially effective complimentary

technique to detect data-races in CDDD kernels.

GPU verification. There is a large body of work in the verification of GPU kernels: static detection

of uncoalesced accesses [1, 2], static cost of uncoalesced and bank-conflicts [54], mechanized

semantics of CUDA assembly [24], and deductive reasoning of CUDA kernels [11, 39–41].

8 Conclusion
We proposed a novel static analysis technique to detect true data-race in GPU kernels. Our technique

relies on analyzing the inference outcome (memory access protocols [15, 16]) and assigning two

dimensions of preciseness (CI and DI) to the protocols. Our core calculus Jaminan states the

correspondence between protocols and programs according to CI and DI, focusing on the inference

of array-operations in CUDA programs. We establish a True Positive Theorem for data-race

detection in GPU kernels; a result that identifies a specific class of programs where our analysis

reports only true alarms, thus reducing the effort of validating alarms. Given that the state of the

art can only flag potential data races, users must manually validate every alarm generated by these

tools. Additionally, we establish theoretical results to identify the root cause of spurious alarms due

to array accesses either being unreachable or containing imprecise indices. We provide mechanized

proofs of our theoretical results in Coq.

Our theory was implemented in FaialAA, as the first sound and partially complete race detector,

that can be used to confirm DRF kernels and detect true data-races. Indeed, our evaluation shows

that FaialAA emits 1.9× fewer potential alarms compared to Faial and GPUVerify, due to the

True Positives Theorem. FaialAA detected 10 undocumented, true data-races in a well-studied

benchmark suite of 226 kernels, and correctly confirms 5 pairs of both racy and fixed DRF versions

of kernels from open source projects OpenMM and Nvidia’s Megatron-LM. FaialAA builds upon

Faial, incorporating multiple features designed to analyze a larger number of kernels. These include

support for inter-procedural analysis, array aliasing, and the identification of integer bounds based

on type. Finally, we found that 59.5% of 2,770 kernels are CIDI.

Data Availability Statement
An artifact with all the tools and datasets presented in Section 6, and mechanized proofs of the

theoretical results mentioned in Section 4.4 are publicly available on Zenodo [53]. FaialAA is part

of an ongoing open source project available at https://gitlab.com/umb-svl/faial/.
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