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SUMMARY

Cell migration through 3D environments is essential to development, disease, and regeneration processes.

Conceptual models of migration have been developed primarily on the basis of 2D cell behaviors, but a gen-

eral understanding of 3D cell migration is still lacking due to the added complexity of the extracellular matrix.

Here, using a multiplexed biophysical imaging approach for single-cell analysis of human cell lines, we show

how the subprocesses of adhesion, contractility, actin cytoskeletal dynamics, and matrix remodeling inte-

grate to produce heterogeneous migration behaviors. This single-cell analysis identifies three modes of

cell speed and persistence coupling, driven by distinct modes of coordination between matrix remodeling

and protrusive activity. The framework that emerges establishes a predictive model linking cell trajectories

to distinct subprocess coordination states.

INTRODUCTION

Cell migration is a complex behavior that emerges from biophys-

ical and biochemical interactions between thousands of molec-

ular parts within and between cells and their environment.

Comprehensively measuring migration machinery across space

and time is not currently possible; therefore, pairing experiments

with modeling efforts is crucial to advancing our understanding

of cell migration. Most studies have been limited to 2D cell migra-

tion on flat surfaces, where cells flatten and become easy to

image due to the absence of a 3D extracellular matrix (ECM).

In these studies, the complexities of the migration machinery

have been abstracted into three predominant subprocesses

that run concurrently and are spatially coordinated: protrusion,

adhesion, and contraction.1 Many features of cell morphody-

namics and migration on 2D substrates can be explained by

treating these subprocesses as functional modules connected

in a simplistic circuit2–4 originally predicted by Abercrombie,

which goes as follows: (1) protrusion of the leading edge, (2) for-

mation of strong adhesions at the leading edge, (3) aging adhe-

sions at the trailing edge that are (4) released by contraction of

the cell leading to forwardmovement.5More recent modeling ef-

forts have focused on gaining amolecular-level understanding of

each subprocess.6 Still, this conceptual framework does not

account for the major role that the ECM plays in confining and

resisting cell movement.

Navigation through 3D tissue-like environments is physiologi-

cally relevant for many migratory cells; however, the technical

challenges inherent to studying 3D migration are formidable.

Particular challenges include microscopy and image analysis

limitations in 3D and the increased complexity brought about

by additional modes of migration in 3D vs. 2D.7–10 Predictions

of cell behavior in 3D based on data acquired in 2D are often

unreliable because signaling and mechanical parameters do

not always directly translate from 2D to 3D.11–17 Moreover, an

additional subprocess is necessary to consider for migration

through 3D environments: ECM remodeling.18–21 In vivo intersti-

tial pore sizes range from �0.025 to 0.1 mm in diameter,22

and those of the basement membrane range from �0.6 to

3.85 mm.23 These pore sizes are smaller than most cell bodies

(10–100 mm in diameter) and cell nuclei (3–7 mm in diameter

when deformed during matrix metalloproteinases (MMP)-inde-

pendent migration).21 Therefore, cells migrating through tissues

must remodel thematrix by either physical or biochemical mech-

anisms. Many 3D cell migration studies have used low density

matrices that have much larger pore sizes than the ECM

in vivo,21,24–28 which enable cells to migrate without remodeling.

Indeed, it has been demonstrated thatMMP-independentmigra-

tion is a function of pore size.21 In confining ECM, in which pore

sizes are representative of in vivo tissues, it is not well under-

stood how the processes of matrix remodeling, protrusion,

adhesion, and contraction are integrated to produce different

modes of 3D migration. Additionally, the relationships between

these processes are unclear in the context of 3D cell migration.

Without an integrated framework for whole-cell 3Dmigration in

confining ECM built on the four key subcellular processes, it re-

mains difficult to distinguish the origins of migration heterogene-

ity. For example, cells of the same type can display significantly
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different migration behaviors, even in ostensibly the same 3D

environment.18,28–31 Does cell migration heterogeneity arise

from fundamentally different interrelations between the subpro-

cesses, or can it be explained by a threshold or shift in activity

of one or several of the subprocesses? Experts argue that

answering this question may be the most important contribution

toward unraveling the mechanisms of migration.32

An integrated framework would also help contextualize seem-

ingly contradictory results from experimental perturbations.1 The

pathways controlling migration are often nonlinear and redun-

dant. They may also feedback on each other, making it exceed-

ingly difficult to address questions through single-plex molecular

experiments or mechanochemical models. For example, several

different combinations of physical mechanisms can be fitted to

explain the same experimental behaviors, but directly testing

them can be impossible. Obtaining sufficient physical and

biochemical constants required for accurate models in 3D sys-

tems can be difficult to impossible. An alternative approach for

modeling how cells process subcellular information into whole-

cell behaviors is to use a data-driven methodology based on

the quantitative effects of perturbations to key high-level process

modules.33–38

Here, we present a data-driven model of 3D cell migration in

confining ECM built on integrated measurements of protrusion,

adhesion and contraction (traction), and matrix remodeling in

single migrating cells. Single-cell tracking data revealed three

modes of coupling between cell speed and persistence, which

were linked to distinct combinations of cell-ECM interactions.

This work represents an advancement in our understanding of

how heterogeneous migration can arise and provides actionable

insights into engineering cell migration behavior.

RESULTS

Cell migration is heterogeneous and less common

behaviors can be enriched by perturbing biophysical

processes that dictate cell-ECM interactions

To determine whether different levels of migration subprocess

activity or different interrelations between the subprocesses ac-

count for heterogeneous migration behaviors within a given cell

population (Figure 1A), it is necessary to study ‘‘average’’ cells,

as well as ‘‘rare’’ cells that display fewer common behaviors.

The distributions of migration behavior for cells migrating in

confining 3D collagen type I matrices can be characterized by

the persistent random walk (PRW) model,13,39 which uses the

mean squared displacement (MSD) of cells to attribute values

of cell speed (S) and persistence time (P) to migrating cells

(Equation 1). The other parameters in this equation include the

time lag (t), dimensionality of the tracking (n), and the positioning

error (SE).

MSDðtÞ = nS2P2
�

e� t=P
+ t

�

P � 1
�

+SE (Equation 1)

For example, MDA-MB-231 (MDA) display a wide range of to-

tal displacements (10.32–183.72 mm), speeds (0.022–0.395 mm/

min), and persistence times (0.431–994.846 min). Across multi-

ple cell types, including MDAs, HT1080s, and HFF-1s, both total

cell displacement and cell speed are logarithmically distributed

(Figures 1B and 1C), and persistence shows a bimodal logarith-

mic distribution (Figure 1D). This suggests a general distribution

of cell migration behavior in confining 3D collagen matrices and

shows that capturing less common migration behaviors requires

extensive sampling.

We hypothesized that inhibitors targeting the individual pro-

cesses of contractility (rho-associated protein kinase inhibitor,

[ROCKi]), matrix remodeling (MMPi), cytoskeletal protrusion

(F-ACTINi), and adhesion (ITGB1i) could enrich different regimes

of migration behaviors within the general distribution. As antici-

pated, these treatments shifted the peak of the distributions of

displacement, speed, and persistence compared with vehicle

control while remaining within the general ranges (Figures 1E–

1H). For example, ROCKi, MMPi, and F-ACTINi increased the

population of low-persistence cells and shifted the cell speed dis-

tribution toward lower values. ITGB1i inhibition, on the other hand,

increased the number of highly persistent cells and shifted the cell

speed distribution toward faster cells. To confirm that the effects

of the small molecule inhibitors have similar effects to those of

more targeted knockdowns, we also assayed cells with ROCK1

knocked down (Figures S1A–S1E) and ITGB1 knocked down

(Figures S1F–S1I). The effects of the more specific knockdowns

were more subtle but trended in similar directions as the inhibitor

treatments. Cumulatively, these results suggest that changes in

the level of activity of one or more processes could potentially ac-

count for naturally occurring migration heterogeneity. However, it

is not clear whether shifts in activity are also accompanied by

different interrelations between the core subprocesses.

Cell-ECM interactionmeasurements capture whole-cell

biophysical behavior

To determine the interrelations between the core subprocesses

and migration outcomes, each process must be simultaneously

measured in individual cells as they migrate through the ECM.

Because the activity of a given process is not well described

by any single measurement, we integrated nine imaging-based

measurements of cell-ECM interactions to read out various

aspects of subprocess activity. These measurements were

captured by time-lapse z stack imaging in three fluorescent

channels for MDAs in 3D collagen as follows: blue fluorescent

matrix-embedded beads enabled measurement of percent (%)

bead movers, maximum bead displacement, and instantaneous

bead displacement as readouts of cellular contractility against

the matrix; green fluorescence from dye-quenched collagen

(DQ) measured the remodeling of the matrix by cells; red fluores-

cent protein expression in cells allowed us to measure instanta-

neous cell displacement, protrusion rate, lifetime, and max

length as readouts of cytoskeletal activity; and the ratio of the

average instantaneous bead displacement over the average

instantaneous cell displacement gave a measure of the coupling

between a cell and the surrounding ECM (Table 1). We will sub-

sequently refer to this imaging platform and resulting measure-

ments as ‘‘biophysical imaging.’’

3D volume view time-series demonstrate the technique’s abil-

ity to capture heterogeneous subprocess activity between indi-

vidual cells, where the differences in cell protrusive activity

(red), bead movement (blue), and matrix remodeling (green) are

easily visualized (Figures 2A and 2B). The cell in Figure 2A

remains rounded, with minimal protrusive, contractile, or matrix

remodeling activity. In contrast, the cell in Figure 2B retracts a
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protrusion, resulting in displacement of the microbeads, and has

a strong DQ signal indicating matrix remodeling. In some in-

stances, we found cells remodeling the matrix by protruding

into it and retracting (Video S1). In other cases, matrix degrada-

tion was localized at the cell body near the neck of longer

protrusions (Video S2). These results demonstrate the utility of

this imaging approach to measure heterogeneous cell-ECM in-

teractions at the single-cell level.

A

B C D

F G H

E

Figure 1. Cellmigration is heterogeneous and less commonbehaviors can be enriched by perturbing biophysical processes that dictate cell-

ECM interactions

(A–D) (A) Cell tracking trajectories of MDA-MB-231, HT1080, and HFF-1 cells in collagen I shows heterogeneous migration behavior, highlighted by the distri-

butions of (B) total displacement, (C) persistence, and (D) speed. Scale bars, 20 mm. n = 3 biological replicates, N = 180 cells for each cell type.

(E) Trajectories of MDA-MB-231 cells from 3D cultures treated with vehicle (DMSO 0.1%), ROCK inhibitor (10 mM Y-27632), MMP inhibitor (10 mMmarimastat +

GM6001), F-actin inhibitor (5 mM latrunculin B), or ITGB1 blocking antibody (5 mg mL�1 P5D2). n = 3 biological replicates, N = 180 cells for each treatment

condition.

(F–H) Distributions of the resulting (F) total cell displacement, (G) persistence time, and (H) cell speed show how each treatment population shifts while still

retaining heterogeneity and overlap between populations. See also Figure S1.
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Next, we measured how cell-ECM interactions changed in

response to inhibition of each of the core subprocesses using

the biophysical imaging platform. Because each inhibitor

treatment shifted the distribution of cell migration behavior

(Figures 1F–1H), we hypothesized that they would also shift

cell-ECM interaction distributions such that distinct cell states

could be identified. Inhibitors were used as opposed to molecu-

lar knockdowns to obtain more robust effects on the individual

biophysical processes, while still resulting in migration behavior

in the range of vehicle cells (Figures 1F–1H). 3D reconstructions

representing an average cell from each inhibitor treatment are

shown (Figure 2C) and distributions of cell-ECM interaction re-

sponses are plotted (Figures 2D–2L). Compared with vehicle-

treated cells, F-ACTINi cells (green) displaced the matrix less

(Figures 2D and 2F), moved slower (Figure 2G), remodeled the

matrix less (Figure 2H), and extended few protrusions

(Figures 2I–2K). ROCKi (blue) decreased the extent of matrix

displacement (Figures 2D and 2F), cell movement (Figure 2G),

and matrix remodeling (Figure 2H), but increased cytoskeletal

protrusion activity (Figures 2I–2K). MMPi cells (red) were slower

on average than vehicle cells (Figure 2G), but surprisingly did not

remodel the matrix to a significantly lesser extent (Figure 2H).

MMPi treatment targeted the main family of ECM collagenases,

so the insignificant decrease in the DQ measurement compared

with control cells was unexpected. As an additional check, we

confirmed that the DQ signal is an accurate readout of matrix

degradation by using a degraded-collagen hybridizing peptide

(CHP) as a secondary measurement (Figure S2). Finally, ITGB1i

cells increased their instantaneous cell speed compared with

the vehicle control. In total, each inhibitor treatment differentially

regulated cell-ECM interactions and shifted cell migration distri-

butions in distinct ways.

Principal component analysis (PCA) on this cell-ECM interac-

tion dataset clustered cells in the same treatment conditions

relatively well, despite the heterogeneity observed (Figure 2M;

Table 2). The separation of the data along PC1 was driven by

fairly equal contributions from instantaneous cell displacement,

protrusion rate, instantaneous bead displacement, and the

displacement ratio (Figure 2N). Interestingly, PC1 also seemed

to order treatment groups from least to most migratory (compare

Figure 2E with Figures 1F and 1G). PC2 separation was driven by

protrusion length and lifetime in the positive direction, and

instantaneous bead displacement and displacement ratio in

the negative direction. This axis helped to separate the ROCKi

group from the F-ACTINi and MMPi populations. To test the

generalizability of this approach, we also performed biophysical

imaging on HT1080 cells andmapped thesemeasurements onto

the principal components (Figure S3A). HT1080 cells clustered

together and were most similar to the ITGB1i treatment group

(Figures S3B–S3K), and we confirmed via western blot that

HT1080s have less ITGB1 protein than MDAs. These results

highlight this imaging platform’s capacity to detectmolecular dif-

ferences between cells. Together, these results show that the

nine cell-ECM measurements obtained from biophysical imag-

ing can discriminate between cell states associated with distinct

migration distributions arising from intra- and intercellular

heterogeneity, as well as molecular inhibition of migration

processes.

Cell trajectories are well modeled by the PRW model

when speed and persistence are coupled

Coupling between cell speed and persistence is not

universal in 3D migrating cells

With our biophysical imaging method established, we next

sought to understand how cell-ECM interactions map to

long-term cell migration trajectories. We devised a two-stage

experimental approach in which cells were tracked for 8 h, fol-

lowed by biophysical imaging for 1 h. Direct comparisons

could then be made between long-term migration behavior

and snapshots of the cell-ECM interaction state within the

same cell. In this integrated experimental protocol, cell trajec-

tories (Figure 3A) followed similar trends as those from our

earlier cell tracking experiments (Figure 1E), where fluorescent

beads and DQ were not included in the matrix. ITGB1-in-

hibited cells were again the most migratory, whereas F-actin

inhibited cells were mostly non-migratory. MMP and ROCK

inhibition decreased migration compared with the vehicle

condition.

Because two migration parameters, speed and persistence,

are sufficient to describe and predict cell migration trajectories,

we fit the MSD of individual cell trajectories to the PRW model

(Figure 3B) to extract values for cell speed (S) and persistence

time (P) (Equation 1). We found that many of the analyzed cells,

though not all, followed a migration regime wherein speed and

persistence were coupled (Figure 3C). This coupling fits a gen-

eral form of the ‘‘universal coupling between speed and persis-

tence’’ (UCSP) equation that has been previously reported

(Equation 2).40 Fitting the UCSP equation to cells displaying

this coupling behavior produced a robust fit (R2 = 0.862, Fig-

ure 3C, circled data).

Table 1. Biophysical measurements used to quantify overall cell-ECM interaction state of a cell

Measurements Method Biophysical process readout

% bead movers, maximum bead

displacement, instantaneous bead

displacement

fluorescent matrix-embedded beads (blue) cellular contractility against the matrix

DQ dye-quenched (DQ) collagen I

fluorescence (green)

remodeling of matrix by cells

Instantaneous cell displacement,

protrusion rate, protrusion lifetime, and

maximum protrusion length

cells transduced with mCherry fluorescent

protein (red)

cytoskeletal activity

Bead-cell displacement ratio ratio of instantaneous bead displacement

over instantaneous cell displacement

coupling between cell and the

surrounding ECM
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Figure 2. Cells-ECM interaction measurements capture whole-cell biophysical behavior

(A and B) Time-series snapshots showing 3D reconstructions of micrographs of individual cells (red), beads (blue), and dye-quenched (DQ) collagen (green) at

10-min intervals highlight biophysical differences among individual MDA-MB-231 cells embedded in 2.5 mg mL�1 collagen I matrices. The cell in (A) remains

(legend continued on next page)

ll
OPEN ACCESS Article

1418 Developmental Cell 58, 1414–1428, August 7, 2023



P = A � el� S
+C (Equation 2)

A subpopulation of cells, mostly from the ITGB1-inhibited pop-

ulation, did not follow this coupling law, and in fact appear to

display a negative relationship between speed and persistence

(Figure 3C, data outside of circle). Interestingly, we do not see

uncoupling of S and P at low P. These results show that cell

speed and persistence time are often, although not universally,

coupled in migrating cells in confining 3D matrices. Because in-

hibition of ITGB1 produced the most cells in the decoupled

migratory regime, this suggests that adhesion plays an important

role in determining persistence time and in coupling persistence

to speed.

Cell-ECM measurements predict cell speed and

persistence in coupling regime

Because PCA, a linear data transformation method, clustered

cell states (Figure 2E) and ordered them along PC1 similar to

the order of their migration distributions (Figures 1F–1H), we

reasoned that a simple linear regression could model the rela-

tionship between cell-ECM interactions and migration. We also

considered that cells following the UCSP law may rely on a

fundamentally different configuration of cell-ECM interactions

than the cells that do not obey this relationship. Therefore, we

used partial least squares regression (PLSR) to ask which cell-

ECM interactions are the best predictors of S and P for cells

that follow the UCSP behavior. All 511 possible combinations

of the nine cell-ECM interaction measurements were tested as

the independent variable matrix to fit the dependent variable S

or P and leave-one-out cross validation was performed to

account for over-fitting. The resulting goodness of fit (R2) and

predictive ability (Q2) of every possible regression model was

calculated, and the model with the highest Q2 was chosen as

the optimal model. Applying this approach with P as the depen-

dent variable yielded an optimal model with an R2 = 0.524 and a

Q2 = 0.449 (Figure 3D). The optimal model for P accounts for

about 52.5% of the variance using only two PLS components

(Figure 3E), and consists of bead-cell displacement ratio, protru-

sion length, instantaneous bead displacement, maximum bead

displacement, DQ, and percent beadmover measurements (Fig-

ure 3F). The observed vs. fitted values of z-normalized P values

shows that the model performs well across the different inhibitor

treatments (Figure 3G).

PLSR analysis was also performed for S (Figures 3H–3K),

which revealed that S is best predicted by a model consisting

of the same cell-ECM measurements used for P, but without

needing bead displacement or percent bead movers (R2 =

0.529, Q2 = 0.469). The loading for bead-cell displacement ratio

correlates with low speed and persistence, whereas high

maximum bead displacement, percent bead movers, and DQ

are most correlated with enhanced speed and persistence

(Figures 3F and 3J). The finding that these interaction measure-

ments are the most predictive of speed and persistence update

the UCSP model that previously reported only actin flow was

required to predict migration behavior.40 Using only the three

protrusion measurements representing actin cytoskeletal activ-

ity in the regression model (Figure S4) achieved less predictive

power for P (R2 = 0.305, Q2 = 0.201) and S (R2 = 0.292, Q2 =

0.180), and was suboptimal compared with the more compre-

hensive regressions (Figures 3G and 3K). In the updated model,

the inclusion of bead-cell displacement ratio, DQ, and multiple

bead measurements indicate that the processes of adhesion,

matrix remodeling, and contractility are key determining

factors along with actin-based protrusion dynamics for 3D cell

migration.

To test the performance of these models, we simulated PRW

migration trajectories using S and P values predicted from cell-

ECM interactions (Figure 3L). We then compared these with simu-

lated PRW trajectories using the S and P values extracted from

cell MSDs (Figure 3M) and to the original real trajectories of the

cells (Figure 3A). Trajectories predicted from cell-ECM interac-

tions recapitulate the global effects of the inhibitor treatments

and also the heterogeneity within each population. This generaliz-

ability of the model was next tested by incorporating HT1080s,

which predominantly followed the S and P coupling regime

(Figures S5A and S5B). The optimal model to predict HT1080

speed and persistence used similar biophysical measurements

as that of theMDAs (Figures S5C and S5D). Importantly themodel

generated by MDAs and agnostic to HT1080s predicted HT1080

speed and persistence nearly identically as the model generated

using both MDAs and HT1080s (Figures S5E and S5F). The cell-

ECM measurements required for the optimal model demonstrate

the necessity of capturing the coordination between cytoskeletal

protrusions, contractility, matrix remodeling, and adhesion for

this mode of cell migration.

Trajectories of cells whose speed and persistence are

not well coupled are modeled by a distinct set of cell-

ECM interactions

The PLSR model that predicts cell migration in the UCSP regime

(Figures 3D–3L) does not achieve a good fit for cells outside

of this regime, suggesting that these globally uncoupled cells

occupy a distinct cell-ECM interaction state. These cells had

longer persistence times than those in the coupled range, but

their cell speeds were within the range of the other measured

cells (Figure 4A). Because these cells are highly persistent, we

reasoned that they may be better modeled using the anisotropic

PRW (APRW) model. APRW takes into account cells with

preferred migration directions by deconvolving the migration

into a primary direction and an orthogonal non-primary direction,

each with a persistence and speed (P1,S1 and P2,S2, respec-

tively).39 When the cells with globally uncoupled speed and

persistence were fit using the APRW model, a subset of these

mostly rounded with little bead movement, whereas the cell in (B) retracts a protrusion, pulls beads, and has more DQ signal. Dotted yellow circles outline the

original positions of example beads. Scale bars, 20 mm.

(C) 3D reconstructions of representative cells from each inhibitor-treated population highlight changes to cell shape and matrix remodeling.

(D–L) Comparison of the inhibitor-treated groups for each cell-ECMmeasurement. nR 9 for each treatment group. Statistical significance was determined using

one-way ANOVA with Tukey post-test. *p < 0.05; **p < 0.01; ***p < 0.001.

(M) Top two principal component scores for each cell show the clustering of cells based on inhibitor treatments.

(N) The loadings along the first two principal components shows the relative contributions of each cell-ECM interaction in the PCA. See also Figures S2 and S3.
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cells displayed coupling in the primary direction of migration

(Figure 4B). Coupling was also observed for some cells along

the non-primary direction axis (Figure 4C). Therefore, cells that

do not display global coupling between speed and persistence,

as modeled by PRW, can still display coupling behavior along

primary or non-primary directions ofmigration, which is captured

by the APRW model.

Cell-ECM interaction state in anisotropic S vs. P

coupling

We next asked whether a distinct set of cell-ECM interactions

were associated with globally uncoupled (APRW) cell migration.

We further delineated cells that couple speed and persistence

along the primary direction of APRW migration (red squares)

from those that do not (blue triangles). PLSR of cells with speed

and persistence coupling along the primary migration axis (P1

and S1) were well modeled by only a few combinations of

cell-ECM interactions (Figure S6A). The optimal model for

persistence in the primary direction consisted of instantaneous

cell displacement, DQ, protrusion length, and percent bead

movers (Figures S6A–S6D; Table S1). DQ, protrusion length,

and percent bead movers, were also contributors to persis-

tence in the PRW model, though in the APRW model the coef-

ficient for protrusion length becomes negative, indicating that

anisotropic persistent cells tend to have shorter protrusions

(Table S1). Additionally, P1 relied on only one bead measure-

ment, indicating a decreased reliance on matrix displacement

in determining persistence. P2 was predicted by maximum

bead displacement, protrusion rate, DQ, and protrusion

lifetime.

Speed in the primary direction (S1) of APRW coupled cells

is best predicted by cell-ECM interactions (Figure S6G)

that are quite distinct from those that predict speed in

PRW coupled cells (Figure 3J), sharing only DQ as a compo-

nent. S1 instead needed maximum bead displacement, pro-

trusion rate, protrusion lifetime, and percent movers for

optimal predictive performance. S2 model components over-

lap strongly with S1, only substituting instantaneous bead

displacement and protrusion rate for maximum bead

displacement and protrusion lifetime (Figure S6O). APRW tra-

jectories predicted from cell-ECM interactions were very

similar to those simulated from MSD fits of the real trajectory

data (Figure 4D).

Cell-ECM interaction state of cells with predominantly

uncoupled S vs. P

Cells that did not display global coupling between S and P in the

PRWmodel or in the primary direction in the APRWmodel could

be regressed using a distinct set of cell-ECM interactions. Only

four combinations of measurements had R2 vs. Q2 values to

predict primary persistence. This consisted of DQ, protrusion

lifetime, protrusion length, instantaneous cell displacement,

and bead-cell displacement ratio (Figures S7A–S7D). Cells in

this regime tend to have highly linear trajectories, which were

predicted well by our model (Figure 4E). High protrusion rate

paired with low bead speed, instantaneous cell displacement,

DQ, and protrusion lifetime predicted high P1 (Figure S7C).

The PLSR model for S1 (Figures S7E–S7H) was similar to that

for the APRW coupled model (Figures S7E–S7H). This indicates

that in both subpopulations of the globally uncoupled cells, cell

speed determination is independent from the factors that dictate

cell persistence. Thus, the status of S and P coupling defines

three different cell migration modes that rely on distinct combi-

nations of cell-ECM interactions to achieve their persistence

and speed (Figures 4F and 4G). Only matrix remodeling (DQ)

was required to predict speed and persistence for all three pop-

ulations, demonstrating the importance of this measurement

when analyzing 3D migration modes.

Matrix remodeling coordination with adhesion and cell

protrusion define distinct modes of cell migration

To visualize key changes between differentmigrationmodes, cell-

ECM interactionswere plotted for cells undergoing PRWcoupled,

APRW coupled, or APRW uncoupled migration. We found no sig-

nificant differences in any individual measurement between these

groups, although the two APRW groups displayed slight differ-

ences compared with the PRW group due to their enrichment

with predominantly ITGB-1-inhibited cells (Figures 5A–5I). Anal-

ysis of the correlations among cell-ECM measurements in each

group of cells revealed key changes in how subprocesses are co-

ordinated (Figures 5J–5L). Strikingly, PRW coupled cells have

strong positive correlations betweenmultiple bead and protrusion

measurements, as well as DQ and instantaneous cell displace-

ment (Figure 5J). These contrast with the more heterogeneous

correlations in the twoAPRWgroups (Figures 5K and 5L). Notably,

the strong positive correlations between protrusion rate and DQ

Table 2. Principal component analysis loadings of cell-ECM interactions

Eigenvalue

Loadings

Mean max

bead

displacement

Inst. bead

displacement

PCT

bead

movers

Inst. cell

displacement DQ

Protrusion

rate

Protrusion

length

Protrusion

duration

Bead-cell

displacement

ratio

PC1 2.835 �0.932 �0.942 0.155 �0.226 �0.782 0.064 �0.244 �0.228 �0.527

PC2 2.242 0.203 0.169 0.126 0.678 0.218 �0.203 �0.804 �0.823 �0.533

PC3 1.498 �0.047 �0.009 0.112 �0.606 0.031 �0.773 �0.351 �0.308 0.547

PC4 1.119 0.074 �0.163 0.938 �0.019 0.312 �0.109 0.114 0.227 �0.181

PC5 0.607 �0.053 �0.025 �0.168 0.262 �0.049 �0.586 0.275 0.182 �0.228

PC6 0.379 0.191 0.130 0.180 0.147 �0.484 �0.030 �0.089 0.103 0.132

PC7 0.169 0.010 0.001 �0.071 �0.057 0.047 �0.015 �0.269 0.280 �0.086

PC8 0.086 �0.168 0.002 0.026 0.158 0.051 0.006 �0.043 0.044 0.159

PC9 0.066 �0.125 0.200 0.037 �0.058 �0.022 0.001 0.013 �0.005 �0.071
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Figure 3. Cell trajectories are well modeled by the PRW when S and P are coupled

(A) Trajectories of individual MDA cells treated with vehicle, F-ACTINi, ROCKi, MMPi, or ITGB1i show heterogeneity in migration paths. Scale bars, 5 mm.

(B) MSDs of individual cells fit using the persistent random walk (PRW) model.

(legend continued on next page)
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becomesweaker in theAPRWcoupled cells, and eventually nega-

tively correlated in the APRW uncoupled cells (Figure 5M). Thus,

the randomness of the walk is associated with the balance be-

tween cell protrusive activity and matrix degradation.

Through this correlation analysis, distinct differences in sub-

process coordination also emerged between the two APRW

groups. There was a significant switch in the relationship be-

tween DQ and protrusion length (Figure 5N). APRWcoupled cells

showed a positive correlation between thesemeasurements, but

APRW uncoupled cells showed a negative correlation. Repre-

sentative micrographs of cells from these two groups exemplify

these relationships (Figure 5O). Cells that couple speed and

persistence in the primary direction of migration (APRWcoupled)

showmorematrix remodeling withmore protrusive activity. Cells

with uncoupled speed and persistence, on the other hand, tend

to be more rounded if they are remodeling the matrix and more

elongated if they are not. These patterns are enriched for

ITGB1-inhibited cells. These findings prove that cells rely on

different combinations of cell-ECM interactions to migrate,

defined by three random walk modes of migration. Therefore, it

is possible to use cell tracking data to infer cell-ECM interaction

and, by extension, the overall biophysical state of the cell.

DISCUSSION

Cell migration trajectories predict associated cell-ECM

interaction state using S and P coupling as a classifier

In this study, we used a data-driven approach to discover how

cell-ECM interactions produce heterogeneous migration behav-

iors. This was achieved through an integration of cell-ECM inter-

action reporters and cell tracking, which revealed relationships

between motility subprocesses and whole-cell behavior.

Although previous studies applied different walk models to

describe heterogeneous migration behavior in 3D environ-

ments,41 ours connects the walk behavior to underlying cellular

subprocesses coordination. We show that confined 3D migra-

tion can be classified into three modes of speed and persistence

coupling, and we developed a predictive model for each mode

that links cell-ECM interaction state to cell trajectories. For all

migration modes, matrix remodeling was essential, and yet no

one subprocess measurement could achieve high predictive

capability in isolation. This modeling approach could serve as

an important tool toward integrating disparate conceptual

models of cell migration that comprise the Central Dogma. For

example, the adhesion-based model holds that cell speed is

well predicted by a biphasic relationship with adhesion, and

that this relationship can be explained by adhesion-promoted

forces pushing the front and resisting motion at the rear of the

cell according to a ‘‘molecular clutch’’ model of focal adhe-

sion-actin-myosin dynamics.6,42–51 The actin-based model

holds that speed is predicted by actin flow and its effect on po-

larity signals.40 None of the well-accepted conceptual models

indicate a role for matrix remodeling, likely because they origi-

nate primarily from experiments on 2D substrates or permissive

3D environments, and they do not address how migration sub-

processes integrate to produce heterogeneous behaviors.

Indeed, prior works seeking to understand the coupling between

speed and turning (persistence) of immune cells moving in 3D

in vivo52,53 have not considered the role of ECM remodeling.

Nonetheless, there is ample evidence that matrix remodeling is

required for their in vivo migratory functions. For example,

T cells require MMPs to penetrate infected tissue and contribute

to significant tissue remodeling.54

An important outcome of our models is the ability to reliably

predict cell trajectories of multiple cell types from measure-

ments of cell-ECM interactions. The reverse is also true, in

that our models enable the prediction of cell-ECM interaction

state from cell trajectories. This lends insight into how the

subprocesses of migration can produce different regimes of

cell speed and persistence coupling that generate migration

trajectories with different extents of anisotropy. Establishing

this link is important toward building multiscale models of

cell migration and generating hypotheses for further mecha-

nistic studies.

The degree of migration anisotropy is enhanced with S

and P uncoupling

This work presents a conceptual model that integrates two

migration frameworks: (1) speed and persistence coupling and

(2) PRW models. The integration of these models revealed that

speed and persistence are not universally coupled, and that

the extent of coupling is directly related to the randomness of

migration. Cells that follow the original UCSP law could only be

accurately predicted within the PRW framework. The remaining

cells were found to be either globally uncoupled or uncoupled

only in the non-primary axis of migration, which can be modeled

by the APRW framework. These classifications were necessary

to link migration behavior with cell-ECM interaction measure-

ments and achieve high predictive power. Integrating these

two paradigms of cell migration modeling represents an

(C) Graph of PRW parameters cell speed (S) vs. persistence time (P). Line indicates regression of points in the circled region to the universal coupling between

speed and persistence (UCSP) equation. S and P are coupled for the majority of the cells, though a large population does not follow this trend.

(D) PLSR was performed using every possible combination of measurements to fit cell-ECM interactions to persistence. The fit (R2) vs. predictive ability (Q2) of all

possible regressions for persistence (P), and the optimal predictive model is shown by the red square.

(E) The best predictive model for P accounts for more than 52% of the variance using just the first two PLS components.

(F) Plotting the PLS score of each cell along these two components shows separation of persistence and the cell-ECM interaction measurement component

loading projections. Loadings for the two beads displacement measurements overlap.

(G) Observed vs. fitted values of z-normalized persistence show overall good agreement.

(H–M) The same PLSR approach was applied for cell speed. (H) The fit (R2) vs. predictive ability (Q2) of all possible regressions of cell speed (S), and the optimal

predictive model is shown by the red square. (I) This model can account for more than 52% of the total variance in cell speed using just the first two PLS

components. (J) Plotting the PLS score of each cell along these two components shows separation of cell speed and the cell-ECM interaction measurement

component loading projections. (K) Observed vs. fitted values of z-normalized cell speed show overall good agreement. (L) Trajectories simulated using the PRW

from S and P values predicted by the PLSRmodel using cell-ECM interactions or extracted from the MSD fit. (M) recreate the heterogeneity and migration trends

observed experimentally. Scale bars, 5 mm. See also Figures S4 and S5.
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Figure 4. Trajectories of cells whose speed and persistence are not well coupled are predicted by a distinct set of cell-ECM interactions

(A) Graph of persistence time vs. speed, with the cells that do not follow the UCSP in the PRW model circled.

(B and C) Modeling these cells with the anisotropic persistent random walk model (APRW) identifies coupling between speed and persistence in the primary

direction ofmigration (B), as well as the non-primary direction (C). Cells that arewell coupled in the primary direction are shown as red squares, whereas those that

are not are represented by the blue triangles.

(D and E) PLSRmodeling achieves a strong fit and high predictive accuracy when these two populations are separated. Simulated trajectories using PLSRmodels

for cells coupled in the primary direction (D) or uncoupled (E) recreate migration behaviors. Scale bars, 5 mm.

(F and G) Venn diagram of which cell-ECMmeasurements were used in the PLSRmodel to predict (F) persistence or (G) speed as determined by the PRWmodel

and the persistence in the primary direction of migration for the cells modeled using APRW. See also Figures S6 and S7 and Table S1.
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Figure 5. Matrix remodeling coordination with adhesion and cell protrusion underly the differing modes of cell migration

(A–I) Cell-ECMmeasurements of individual cells grouped by their speed vs. persistence coupling behavior. The two APRWgroupsmatch the expected shifts from

cell populations comprised predominantly of ITGB1i cells. No significant differences between the APRW groups were observed.

(legend continued on next page)
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important step toward building comprehensive models of cell

migration that capture heterogeneity.

Loss of adhesion uncouples S and P

Weobserved thatmany cells display couplingbetween speed and

persistence, which has previously been described as the UCSP

law and has been reproduced in multiple experimental55,56 and

theoretical models.57,58 However, a population of cells, mostly

within the ITGB1-inhibited condition, did not follow the UCSP

and instead displayed a negative relationship between speed

andpersistence. These cells aremorepersistent at lower-than-ex-

pected cell speeds, implicating adhesion as a key mediator of

speed and persistence coupling. Increased persistence may be

consistent with the model of integrin function in which inhibition

of b1 integrin activity feeds back on MT1-MMP surface levels

and localization. Previous population-level studies have shown

that on average, inhibition of b1 integrin activity tends to induce

its association with MT1-MMP and reduce recycling, leading to

accumulation of both integrin andMT1-MMPon the cell surface.59

However, in our single-cell experiments, distinct subpopulations

within the ITGB1-inhibited condition may represent cells with

different levels of ITGB1-inhibition response or different initial

levels of ITGB1 and MT1-MMP. The extent to which the level

and activity of ITGB1 and MT1-MMP are balanced on the surface

of the cell could explain the distinct coordinationmodes of protru-

sions and matrix remodeling we observed (Figures 5M–5O).

Blocking adhesion enhanced cell speed on average, indicating

that the cells were originally slower migrating because they were

in a higher adhesion state (Figures 1E–1H and S8). This rein-

forces the established biphasic relationship between adhesion

and speed and echoes observations that cells having less

ECM adhesion are more migratory.60,61 In 2D, the force the cell

exerts via actomyosin contraction at sites of focal adhesion de-

termines adhesion plaque growth, maturation, and stability.62,63

In 3D, it has been proposed that contractility must be locally

balanced with ECM stiffness to stabilize adhesions.64 When we

diminished the ability of integrins to bind to the ECM, we would

expect the stability of adhesions to be compromised, resulting

in faster turnover and a less stable force balance between the

contractile machinery and the ECM. It is interesting that in this

condition in which we might expect multiple highly localized

force balance instabilities, we see higher persistence of migra-

tion. Perhaps with less competition from other adhesion sites,

the fewer stable adhesions drive the polarization of the cell.

The degree of S and P uncoupling is associated with the

imbalance of protrusion rate and matrix remodeling

Coupling between speed and persistence can be global or

broken into anisotropic primary and non-primary directions of

migration. Applying the PRW model distinguishes globally

coupled cells vs. those that are not. Within the PRW coupled

cell population, we found a strong positive correlation between

protrusion rate and instantaneous cell displacement, which is

consistent with the UCSP model that actin flow stabilizes cell

speed. However, protrusion rate was also significantly positively

correlated with DQ signal. This could suggest that protrusions

physically enhanced degradation, which is supported by the

fact that inhibiting actin polymerization or contractility lowered

DQ signal (Figure 2H) but MMPi treatment did not significantly

impact DQ signal or protrusions (Figures 2I–2K). This finding is

consistent with other reports, such as how latrunculin B de-

creases the ability of MDA-MB-231 cells to bundle collagen I

around the cell, more so thanmarimastat65 and that themechan-

ical plasticity of the matrix can facilitate protease-independent

migration.66 However, differences in trafficking of MMPs to the

membrane cannot be ruled out.

In contrast to the globally coupled cells, the uncoupled popu-

lation had a negative correlation between protrusion rate and

DQ. This suggests that speed and persistent coupling depends

upon balanced activity between protrusion rate and matrix

remodeling. High levels of one without the other leads to un-

coupled migration, which leads to anisotropic migration.

When globally uncoupled cells are further divided within the

APRW framework into S and P coupled or uncoupled in the pri-

mary direction, we found that the uncoupled cells drove the

negative relationship between protrusion rate and matrix

remodeling, whereas the APRW coupled cells had no significant

correlation between these cell-ECM interactions. Therefore,

there appears to be a progressive transformation of the relation-

ship from strongly positive, to no correlation, to strongly negative

as cells are globally coupled, anisotropically coupled, or un-

coupled. This implicates matrix remodeling as playing a central

role in determining S and P coupling. This, paired with the neces-

sity of the DQ measurement for each of the regression models

(Figures 4F and 4G), strengthens the argument that matrix re-

modeling is a key determinant of cell migration in confining 3D

conditions.

Matrix remodeling is a necessary input to every predictive

model we discovered, and its coordination with protrusive activ-

ity of cells helps differentiate between S and P coupling behav-

iors. The overarching conceptual model we propose captures

these essential motility subprocess coordination modes and

could be useful as a basis to model processes in which cell

migration trajectory is important, such as cancer invasion or im-

mune cell homing. Future studies to elucidate the molecular

mechanisms underlying each coordination mode will enable

the next generation of physical models of migration.

Mapping speed and persistence coupling to modes of

migration

The 2.5 mg/mL collagen I matrices used in this study have an

average pore size of 2 mm2, although the 99th percentile of sizes

(J–L) Heatmap of Pearson correlations between cell-ECMmeasurements of cells displaying PRWS vs. P coupling (J), APRW coupling in the primary direction (K),

and APRW uncoupled (L). Color indicates the Pearson r value, the strength of the correlation, and p value is indicated by *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.

(M) Correlation between DQ and protrusion rate measurements for cells in the PRW coupled and APRW uncoupled regimes.

(N) Correlation between DQ and protrusion length for cells in the APRW coupled or uncoupled regimes.

(O) Representative images of cells in the APRW coupled or uncoupled regimes demonstrating the opposite relationships between matrix remodeling and

protrusion of the two groups. Scale bars, 20 mm.
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reaches 22 mm2. When pore cross sectional area is less than

10% of a cell’s nucleus, then migration becomes dependent

on matrix remodeling.21 Unperturbed cells within these matrices

primarily behaved in a mesenchymal fashion that is character-

ized by spindle-like protrusions, cell-ECM adhesion, actomyosin

contractility, and proteolytic ECM remodeling. Conversely,

ameboid migration is typically classified by a more rounded

cell body, low adhesion, low matrix remodeling activity, high

contractility, and high migration.67,68 Inhibiting adhesion or ma-

trix remodeling can shift cells into a more ameboid state.69–71

Our findings shed light on these migration mode definitions.

We found that blocking ITGB1 enriched for cells with uncoupled

speed and persistence and enhanced motility, suggesting that

uncoupling is characteristic of amoeboid migration. The most

uncoupled cells, APRW uncoupled, displayed a negative corre-

lation between matrix remodeling and protrusion. In this mode,

migrating cells protrude and squeeze through permissible pores

in the ECM, whereas cells encountering smaller pores remain

more rounded and remodel the matrix to move. On the other

hand, broadly inhibiting MMPs did not significantly affect matrix

remodeling and did not enrich for uncoupled cells. Rather, the

majority remained in the PRW coupled mode in which matrix re-

modeling positively correlated with protrusion rate and bead

movement, suggesting that PRW coupled cells may rely heavily

on physical matrix remodeling supported by adhesion to the

ECM.We also found that the APRW coupled mode falls between

PRW coupled and APRW uncoupled in terms of protrusion and

matrix remodeling coordination and may represent transition

regime between mesenchymal and ameboid.

Limitations of the study

Cell migration is a context-dependent behavior; therefore, the

conclusions drawn from this study may not apply to all 3D cell

migration modes. Future studies exploring other cell types and

different matrix compositions will contribute to our understand-

ing of generalizable principles of motility subprocess coordina-

tion states that drive diverse migration behaviors. Additionally,

distinguishing between physical and enzymatic ECM remodeling

mechanisms will be important to achieving this goal.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Cell lines

d METHOD DETAILS

B 3D collagen gel formation

B Biophysical imaging

B Biophysical inhibitors

B Quantification of protrusion dynamics

B Quantification of matrix remodeling

B Quantification of traction force microscopy

B Bead-cell speed ratio measurement

B Principal component analysis and regression

B Long-term live cell tracking

B Fitting MSD to persistent random walk model

B Hybrid biophysical and cell tracking experi-

mental setup

B Partial least squares regression

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

devcel.2023.05.013.

ACKNOWLEDGMENTS

Support for this study was provided by National Science Foundation CAREER

award MCB-1651855 to S.I.F., National Science Foundation grant

DMS-1953469, and American Cancer Society Research Scholar Grant RSG-

21-033-01-CSM to S.I.F. We would like to thank the UC San Diego School

of Medicine Microscopy Core, which is supported by the National Institute

of Neurological Disorders and Stroke grant P30NS047101.

AUTHOR CONTRIBUTIONS

W.D.L. and S.I.F. designed the experiments. W.D.L. performed all the experi-

ments and data analysis. Data interpretation was conducted by W.D.L. and

S.I.F. Both authors contributed to the writing and editing of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 27, 2022

Revised: March 14, 2023

Accepted: May 19, 2023

Published: June 14, 2023

REFERENCES

1. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H.,

Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: inte-

grating signals from front to back. Science 302, 1704–1709.

2. DiMilla, P.A., Barbee, K., and Lauffenburger, D.A. (1991). Mathematical

model for the effects of adhesion and mechanics on cell migration speed.

Biophys. J. 60, 15–37.

3. Herant, M., and Dembo, M. (2010). Form and function in cell motility: from

fibroblasts to keratocytes. Biophys. J. 98, 1408–1417.

4. Tranquillo, R.T., Lauffenburger, D.A., and Zigmond, S.H. (1988). A sto-

chastic model for leukocyte random motility and chemotaxis based on re-

ceptor binding fluctuations. J. Cell Biol. 106, 303–309.

5. Abercrombie, M. (1980). The Croonian Lecture, 1978 - the crawling move-

ment of metazoan cells. Proc. R. Soc. Lond. B. 207, 129–147.

6. Chan, C.E., and Odde, D.J. (2008). Traction dynamics of filopodia on

compliant substrates. Science 322, 1687–1691.

7. Charwat, V., Sch€utze, K., Holnthoner, W., Lavrentieva, A., Gangnus, R.,

Hofbauer, P., Hoffmann, C., Angres, B., and Kasper, C. (2015). Potential

and limitations of microscopy and Raman spectroscopy for live-cell anal-

ysis of 3D cell cultures. J. Biotechnol. 205, 70–81.

8. Chiu, C.-L., Aguilar, J.S., Tsai, C.Y., Wu, G., Gratton, E., and Digman, M.A.

(2014). Nanoimaging of focal adhesion dynamics in 3D. PLoS One 9,

e99896.

9. Driscoll, M.K., andDanuser, G. (2015). Quantifyingmodes of 3D cell migra-

tion. Trends Cell Biol. 25, 749–759.

ll
OPEN ACCESS Article

1426 Developmental Cell 58, 1414–1428, August 7, 2023



10. Schneckenburger, H., and Richter, V. (2021). Challenges in 3D live cell im-

aging. Photonics 8, 275.

11. Baskaran, J.P., Weldy, A., Guarin, J., Munoz, G., Shpilker, P.H., Kotlik, M.,

Subbiah, N., Wishart, A., Peng, Y., Miller, M.A., et al. (2020). Cell shape,

and not 2D migration, predicts extracellular matrix-driven 3D cell invasion

in breast cancer. APL Bioeng. 4, 026105.

12. Cukierman, E., Pankov, R., Stevens, D.R., and Yamada, K.M. (2001).

Taking cell-matrix adhesions to the third dimension. Science 294,

1708–1712.

13. Fraley, S.I., Feng, Y., Krishnamurthy, R., Kim, D.-H., Celedon, A.,

Longmore, G.D., and Wirtz, D. (2010). A distinctive role for focal adhesion

proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604.

14. Fraley, S.I., Feng, Y., Giri, A., Longmore, G.D., and Wirtz, D. (2012).

Dimensional and temporal controls of three-dimensional cell migration

by zyxin and binding partners. Nat. Commun. 3, 719.

15. Friedl, P., Entschladen, F., Conrad, C., Niggemann, B., and Z€anker, K.S.

(1998). CD4+ T lymphocytes migrating in three-dimensional collagen lat-

tices lack focal adhesions and utilize beta1 integrin-independent strate-

gies for polarization, interaction with collagen fibers and locomotion.

Eur. J. Immunol. 28, 2331–2343.

16. Janmey, P.A., Hinz, B., and McCulloch, C.A. (2021). Physics and physi-

ology of cell spreading in two and three dimensions. Physiology

(Bethesda) 36, 382–391.

17. Scott, K.E., Fraley, S.I., and Rangamani, P. (2021). A spatial model of YAP/

TAZ signaling reveals how stiffness, dimensionality, and shape contribute

to emergent outcomes. Proc. Natl. Acad. Sci. USA 118, e2021571118.

https://doi.org/10.1073/pnas.2021571118.

18. Ranamukhaarachchi, S.K., Modi, R.N., Han, A., Velez, D.O., Kumar, A.,

Engler, A.J., and Fraley, S.I. (2019). Macromolecular crowding tunes 3D

collagen architecture and cell morphogenesis. Biomater. Sci. 7, 618–633.

19. Scott, K.E., Rychel, K., Ranamukhaarachchi, S., Rangamani, P., and

Fraley, S.I. (2019). Emerging themes and unifying concepts underlying

cell behavior regulation by the pericellular space. Acta Biomater.

96, 81–98.

20. Trappmann, B., Baker, B.M., Polacheck, W.J., Choi, C.K., Burdick, J.A.,

and Chen, C.S. (2017). Matrix degradability controls multicellularity of

3D cell migration. Nat. Commun. 8, 371.

21. Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A.L.,

Hoffman, R.M., Figdor, C.G., Weiss, S.J., and Friedl, P. (2013). Physical

limits of cell migration: control by ECM space and nuclear deformation

and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084.

22. Zhou, A., Qu, J., Liu, M., and Tso, P. (2020). The role of interstitial matrix

and the lymphatic system in gastrointestinal lipid and lipoprotein meta-

bolism. Front. Physiol. 11, 4.

23. Howat, W.J., Holmes, J.A., Holgate, S.T., and Lackie, P.M. (2001).

Basement membrane pores in human bronchial epithelium: a conduit for

infiltrating cells? Am. J. Pathol. 158, 673–680.

24. L€ammermann, T., Bader, B.L., Monkley, S.J., Worbs, T., Wedlich-Söldner,
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Collagen I Corning Cat# CB354249

DQ Collagen I Invitrogen Cat# D12060

Critical commercial assays

Lipofectamine 3000 Thermo Fisher Cat# L3000008

Deposited data

Original western blot images and

MATLAB code

This paper Mendeley data: https://doi.org/10.17632/

r2sm43trbr.1

Experimental models: Cell lines
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Software and algorithms
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Metamorph Molecular Devices RRID: SCR_002368

NIS-Elements Nikon RRID: SCR_014329

Prism 9 Graphpad RRID: SCR_002798

Imaris Oxford Instruments RRID: SCR_007370

Partial least squares regression analysis This paper Mendeley data: https://doi.org/10.17632/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Stephanie

Fraley (sifraley@ucsd.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Original western blot images have been deposited at Mendeley and are publicly available as of the date of publication. The DOI

is listed in the key resources table. Microscopy data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited atMendeley and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

MDA-MB-231, HT1080, and HFF-1 cells (ATCC, Manassas, VA) were cultured in high glucose Dulbecco’s modified Eagle’s medium

supplemented with 10% (v/v), fetal bovine serum (FBS, Corning, Corning, NY) and 0.1% gentamicin (Thermofisher Scientific, Wal-

tham, MA) and maintained at 37�C and 5% CO2 in a humidified environment during culture and imaging. The cells were passaged

every 2–3 days as required. Lentiviral transductionwas performed using pLV-mCherry, whichwas a gift fromPantelis Tsoulfas (Addg-

ene plasmid # 36084).

METHOD DETAILS

3D collagen gel formation

3D collagen I matrices were prepared in a manner similar to that described previously.18,28 Cells suspended in culture medium were

mixed 1:1 (v/v) with 10X reconstitution buffer. Next, blue fluorescent carboxylated microspheres (1 mm, Thermofisher Scientific, Wal-

tham, MA) were added to the cell-gel solution at 1:50 (v/v) of the final gel volume. DQ collagen (Thermofisher Scientific, Waltham,

MA)72 was added to achieve a final concentration of 100 ug/mL, followed by soluble rat tail type I collagen in acetic acid (Corning,

Corning, NY) to reach the desired final collagen concentration of 2.5 mg ml-1. 1 M NaOH was used to normalize pH and promote

polymerization in a volume proportional to the collagen concentration (pH 7.0). Thoroughlymixed gels were then pipetted into custom

made PDMS wells mounted on glass bottom dishes (Fluorodish, World precision Instruments). Gels were polymerized at 37�C in a

humidified incubator for at least 30 min before media was added to cover the gel.

Biophysical imaging

Cells were imaged immediately after cell tracking using an TI inverted microscope equipped with a 40X (NA: 1.15) long working dis-

tance objective (Nikon Instruments Inc., Melville, NY) equipped with a controlled temperature, CO2, and humidity chamber. Each cell

was imaged for 1 h at 4-min intervals. For each timepoint, a z-stack through the cell body was taken at 1.5mm steps in four channels -

blue, green, red, and reflection - to image the fluorescent beads, DQ collagen, cells, and ECMarchitecture, respectively. The resulting

image files were saved as.tif stacks and opened in ImageJ for processing (NIH, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/).

Only cells whose primary axis of spreading was in the XY plane were used for quantification. As we have shown previously, this sim-

plifies the cell and bead tracking to 2D geometry without a significant loss of information.18,73Maximum intensity projections (MIPs) of

the z-stacks were generated at each time-point to create a 2D time series for each channel of each cell for analysis. 3D reconstruc-

tions of the z-stacks for solely visualization purposes were completed using IMARIS software (Oxford Instruments, Abindon, UK).

Biophysical inhibitors

Inhibitor experiments were performed using ROCK inhibitor Y-27632 (10mM from 10mM stock in DMSO), Latrunculin B (5mM from

5mM stock in DMSO), and the combined Marimastat (10mM from 10mM stock in DMSO) and GM6001 (10mM). Inhibitors were added

to the cell solution used during gel preparation and in the media added to the top of the collagen gels after gelation. ITGB-1-blocking

antibody P5D274 was optimized for concentration (5mg/ml, Figure S8) and added solely to the cell solution and not the media (Fig-

ure S8). The vehicle and ITGB-1-blocking media contained 0.1% (v/v) DMSO.

Quantification of protrusion dynamics

Cell protrusion tracking is a well-established approach for quantifying the cytoskeletal dynamics of a cell.13,75,76 Protrusions were

manually tracked in ImageJ using the MIP time series of the cell. The time duration of each protrusion was tracked frame-by-frame
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from initial protrusion extension to complete retraction. The mean protrusion length and time duration of the protrusions was calcu-

lated for each cell. The number of cell protrusions greater than 1mm observed during the 1 hr imaging period was used for the ‘‘pro-

trusions rate’’ measurement. For cells that did not form any protrusions during the imaging, the mean max length of protrusions and

protrusion lifetime were both zero.

Quantification of matrix remodeling

DQ collagen increases in fluorescent intensity when cleaved by collagenase activity.77,78 To quantify the degree of degradation, the

fluorescence intensity of a 10mm band surrounding the cell was measured for each frame using ImageJ. The total intensity values

were summed and divided by the total area of the bands to get a mean fluorescence intensity surrounding the cell body using a

custom MATLAB script. This value was then divided by the mean fluorescence intensity of the background to get the Signal/

Background ratio.

Quantification of traction force microscopy

Traction force microscopy is a technique that uses fiducial markers in the ECM to quantify how a cell is interacting with the surround-

ing microenvironment.79–81 Bead tracking was done in the blue channel MIP using the Mosaic plugin in ImageJ. The Results table,

which contains the XY coordinates for each bead in the field of view for each time point, was saved and analyzed in a customMATLAB

script to identify the beads thatmoved during the time-lapse (Figure 2C). First, a filter was applied to analyze only trajectories of beads

that were tracked through all time points. Second, the displacement at each time point from the initial point was calculated for each

bead. Next, to identify beads that were actively pulled by the cells we used a moving standard deviation approach where we calcu-

lated the standard deviation of consecutive points across the entire bead trajectory. With this, wewere able to identify the parts of the

trajectory that significantly deviate from the rest, which corresponds to a deformation in the matrix. The ‘‘% bead movers’’ measure-

ment reflects the percent of the total beads in the image frame that met this criteria. Themax bead displacement between frames and

the instantaneous bead speed over the time course were averaged together for all the beads meeting the movement threshold to

generate the ‘‘mean max bead displacement’’ and ‘‘mean instantaneous bead speed’’ values for each cell.

Bead-cell speed ratio measurement

The bead-cell speed ratio is a measurement that describes cell-ECM movement coupling.73 It is calculated as the ratio between the

instantaneous bead speed and the instantaneous cell speed. It can be understood as the opposite of a slip ratio, which is a measure

typically applied to automobiles to describe the slipping behavior of a wheel against a road surface. Instantaneous cell speed was

calculated by tracking single cells using Metamorph software (Molecular devices, San Jose, CA). Cell tracking produces XY coordi-

nates for the cell body at every time-lapse frame and instantaneous speed is computed as the distance traveled by the cell between

consecutive frames (Figure 2C). For bead trajectories, we performed the same analysis as for cell trajectories to obtain a frame-by-

frame speed. Bead-cell speed ratio was calculated as the mean instantaneous bead speed divided by the mean instantaneous cell

speed of the filtered beads used in the displacement tracking.

Principal component analysis and regression

Principal component analysis of the cell-ECM interaction dataset used the z-normalized nine cell-ECM measurements for the cells

analyzed across the vehicle and inhibitor treatments. PCA was performed using GraphPad Prism’s PCA tool.

Long-term live cell tracking

Long-term cell tracking was conducted using MDA-MB-231 WT cells in the 2.5mg ml-1 collagen I matrices without beads or DQ. Im-

aging was conducted on a Nikon Ti-Eclipse Epifluorescent Microscope at 10x equipped with a Tokai Hit stage-top incubation sys-

tem. Brightfield images were taken every 15 min over the time course. Cells that moved within the imaging plane were tracked using

Metamorph software to generate 2D trajectories of migration, as is standard in the field.39,82 2D tracking was performed for cells that

remained in the z-plane of tracking28 to optimize spatial accuracy, imaging throughput, and analysis throughput. The mean squared

displacement was calculated from the trajectories using a custom MATLAB script.

Fitting MSD to persistent random walk model

The migration parameters of persistence (P), speed (S), and positioning error (SE) were determined using a nonlinear least squares

regression of the persistent random walk model (Equation 1) adapted from previous work by Wu, Pei-Hsun, et al.39

Hybrid biophysical and cell tracking experimental setup

Gels were prepared in the same fashion as described in the ‘‘3D collagen gel formation’’ section. The samples were imaged on the

epifluorescent microscope used in the long-term live cell tracking experiments. The acquisition settings were modified to reduce

phototoxicity by setting the time interval to 4 min and the z-step size to 1.5 mm. Cells were tracked in brightfield from hours 5-13

post-embedding at 15-min intervals, followed by 1 hr of biophysical imaging.
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Partial least squares regression

Biophysical measurements from cells in the regression dataset were analyzed as described above, as was the cell tracking and fitting

to random walk models. A custom MATLAB script was used to perform the PLSR analysis of these cells using the built-in function

plsregress(). First, the dataset was curated to remove cells that divided, died, or migrated out of frame during the tracking or biophys-

ical imaging. Next, every combination of the nine biophysical measurements were used as the input matrix to find the R2 and Q2

scores when fitting to P, S, and SE. The regression with the optimal Q2was chosen as the model to analyze the component loadings,

percent variance explained, and the observed. vs. fitted values. Simulated trajectories were calculated using MATLAB scripts modi-

fied from Wu, Pei-Hsun et al.39 PC scores of the original biophysical dataset were used as the inputs for the regression equations to

generate values of P, S, and SE for each cell imaged. For cells modeled with APRW the same analysis was performed for the primary

and non-primary P, S, and SE.

QUANTIFICATION AND STATISTICAL ANALYSIS

Principal component analysis (PCA) and all statistics were performed using Graphpad Prism. Student-t-tests were used to compare

the means two populations. One-way ANOVA analyses followed by the appropriate post-tests were performed to compare three or

more populations. See figure captions for details of statistical analyses and post-tests.
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(A) MDA-MB-231 cells knocked down for ROCK1 by shRNA confirmed by western blot. (B) MSD of the ROCK1 KD cells

show that these cells are less migratory than scramble control cells. Fitting these trajectories to the PRW model shows a

(C) significant decrease in speed and (D) insignificant change in persistence. These results show similar trends as the

cells treated with the ROCK inhibitor (E-G). Distributions of motility behavior show that migration behavior is in the range

of control cells (H-J). (K) ITGB1 knockdown in MDAs by CRISPR confirmed by western blot. Cell tracking results for

MDAs knocked down for ITGB1 show similar trends as the ITGB1-blocking antibody as well (L-T). N = 3 biological repli-

cates with n = 30 cells per replicate.

5 10

0

50

100

150 shSCR

shROCK1

sh
S
C
R

sh
R
O

C
K
1

0.1

1

10

100

1000

P
e

rs
is

te
n

c
e

(P
)

sh
S
C
R

sh
R
O

C
K
1

0.0

0.2

0.4

0.6

0.8

S
p

e
e

d
(S

)

✱ ✱

V
eh

ic
le

R
O
C
K

In
hi
bi

to
r

0.1

1

10

100

1000

P
e

rs
is

te
n

c
e

(m
in

)

V
eh

ic
le

R
O
C
K

In
hi
bi

to
r

0.0

0.2

0.4

0.6

0.8

C
e

ll
S

p
e

e
d

(μ
m

/m
in

)

✱ ✱ ✱ ✱

5 10

0

100

200

300

400

500

τ
M

e
a

n
S

q
u

a
re

d
D

is
p

la
c
e

m
e

n
t

(μ
m

2
)

Vehicle

ROCK Inhibitor

V
eh

ic
le

IT
G
B1

In
hi
bi

to
r

0.0

0.2

0.4

0.6

0.8

C
e

ll
S

p
e

e
d

(μ
m

/m
in

)

✱ ✱ ✱ ✱

V
eh

ic
le

IT
G
B1

In
hi
bi

to
r

0.1

1

10

100

1000

P
e

rs
is

te
n

c
e

(m
in

)

✱

1 3 5 7 9 11

0

200

400

600

800

τ

M
e

a
n

S
q

u
a

re
d

D
is

p
la

c
e

m
e

n
t

(μ
m

2
)

Vehicle

ITGB1 Inhibitor

1 3 5 7 9 11

0

100

200

300

400

500

600

700

800

M
S

D
(μ

m
^2

)

ITGB1 KD

Vehicle

1

10

100

1000

P
(m

in
)

V
eh

ic
le

IT
G
B
1

K
D

V
eh

ic
le

IT
G
B
1

K
D

0.0

0.2

0.4

0.6

0.8

S
p
e
e
d
 (

μm
/m

in
)

J

L

O

NM

P Q

R S
T

F

Persistence (min)
100 101 102 103

ITGB1

GAPDH

Ctrl gITGβ1
K

37 kDa

120 kDa

37 kDa

120 kDa



DAPI

Phalloidin

CHP

Vehicle Marimastat + GM6001
A B

C D

E F

Distance (μm) Distance (μm)

In
te

n
s
it
y
 (

a
.u

.)

0 80 0 80

40
00

10
00

Figure S2. Collagen Hybridizing Peptide confirms that inhibition of MMPs does not significantly decrease 

matrix remodeling, related to Figure 2

MDA-MB-231 cells embedded in 2.5mg ml-1 collagen I for 24hr were fixed with 4% PFA and stained with 

DAPI, phalloidin, and collagen hybridizing peptide (CHP) in either (A) vehicle or (B) MMP-inhibited conditions. 

(C-F) Line scans show fluorescence intensity values from the CHP channel in both treatment conditions.
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Figure S3. Biophysical measurements of HT1080 cells, related to Figure 2

(A) Biophysical imaging was performed on HT1080 fibrosarcoma cells and the resulting measurements

were transformed and mapped onto the principal components from the MDA-MB-231 measurements.

HT1080 cells cluster closest to the MDA-MB-231 ITGB1i group. (B) Western blot showed that HT1080s

have lower protein levels of ITGB1, which was predicted by the biophysical imaging. (C-K) Individual

measurements separated into MDA-MB-231 vehicle, MDA-MB-231 ITGB1i, and HT1080 vehicle

groups. Statistical significance was determined using one-way ANOVA with Tukey Post-Test. Lines

show mean + SEM. * p<0.05
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Figure S4. Protrusion metrics alone, representative of actin dynamics, do not predict migration well, related 

to Figure 3

PLSR regression to cells following the UCSP law using protrusion length, lifetime, and rate suboptimally 

predicts (A-B) cell persistence and (C-D) speed from the PRW model. (E) Simulated trajectories using the 

protrusion-only measurement PLSR regression.
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Figure S5. Regression of HT1080 data supports the predictive model, related to Figure 3

(A) Speeds vs. Persistence plot of HT1080 cell tracking data fitted to the PRW model shows both coupled and 
uncoupled migration behavior. Optimal PLSR model fitting for HT1080 cells reveal similar measurement 
composition as that of MDAs for PRW (B) speed and (C) persistence. (D, E) Model predictions built using 
training data from either MDAs-only or both MDAs and HT1080s perform similarly for predicting HT1080 (D) 
speed. The MDA-only model slightly overestimates the (E) persistence of HT1080s.
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Figure S6. PLSR models for cells coupled in the primary direction, related to Figure 4

(A) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the primary direction of migration,

and the optimal predictive model is colored in red. (B) This model can account for 100% of the total variance using four PLS

components. (C) Plotting the PLS score of every cell along the first two components shows how cell-ECM interactions and

inhibitor treatments separate migration behaviors. (D) Observed vs. fitted values. (E) The fit (R2) vs. predictive ability (Q2) of

all possible regressions for the speed in the primary direction of migration, and the optimal predictive model is colored in red.

(F) This model can account for 100% of the total variance using five PLS components. (G) Plotting the PLS score of every cell

along the first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors. (H)

Observed vs. fitted values. (I) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the

non-primary direction of migration, and the optimal predictive model is colored in red. (J) This model can account for 100% of

the total variance in total cell displacement using three PLS components. (K) Plotting the PLS score of every cell along the

first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors. (L) Observed

vs. fitted values. (M) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the speed in the non-primary direction

of migration, and the optimal predictive model is colored in red. (N) This model can account for 100% of the total variance

using five PLS components. (O) Plotting the PLS score of every cell along the first two components shows how cell-ECM

interactions and inhibitor treatments separate migration behaviors. (P) Observed vs. fitted values.
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Figure S7. PLSR models for cells uncoupled in the primary direction, related to Figure 4

(A) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the primary direction of migration,

and the optimal predictive model is colored in red. (B) This model can account for 100% of the total variance using five PLS

components. (C) Plotting the PLS score of every cell along the first two components shows how cell-ECM interactions and

inhibitor treatments separate migration behaviors. (D) Observed vs. fitted values. (E) The fit (R2) vs. predictive ability (Q2) of

all possible regressions for the speed in the primary direction of migration, and the optimal predictive model is colored in red.

(F) This model can account for 100% of the total variance using three PLS components. (G) Plotting the PLS score of every

cell along the first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors.

(H) Observed vs. fitted values. (I) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the

non-primary direction of migration, and the optimal predictive model is colored in red. (J) This model can account for 100% of

the total variance using five PLS components. (K) Plotting the PLS score of every cell along the first two components shows

how cell-ECM interactions and inhibitor treatments separate migration behaviors. (L) Observed vs. fitted values. (M) The fit

(R2) vs. predictive ability (Q2) of all possible regressions for the speed in the non-primary direction of migration, and the

optimal predictive model is colored in red. (N) This model can account for 100% of the total variance in total cell displacement

using four PLS components. (O) Plotting the PLS score of every cell along the first two components shows how cell-ECM

interactions and inhibitor treatments separate migration behaviors. (P) Observed vs. fitted values.
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Figure S8. Blocking adhesion produces a biphasic increase in cell motility and persistence, related to STAR Methods
(A) Instantaneous cell velocity over time of cells treated with varying degrees of ITGB1-blocking antibody. (B)

MSDs of cells from each treatment group. (C-D) Cell speed (C) and persistence (D) values of cells from each

treatment group. N > 60 cells per treatment condition. Data in A and B show mean +/- SEM. Statistical signifi-

cance was determined using one-way ANOVA followed by a Dunnett post-test ** p < 0.01.



Table S1: Coefficients from each PLSR model, related to Figure 4 

Dependent variable Y is predicted by a linear combination of the z-normalized cell-ECM 

interaction measurements such that Y = X*B. 

Cell 

Population

Y Const. Bead 

disp

Bead 

speed

Pct 

Movers

Inst. 

Cell 

Speed

DQ Protrusion 

rate

Protrusion 

length

Protrusion 

duration

Bead-cell 

speed ratio

All Total 

Disp

24.02 2.928 1.920 3.654 2.372 1.405 -2.631

PRW 

Linear

P 0.906 0.063 0.106 0.066 0.112 0.093 -0.120

S 0.089 0.013 0.017 0.004 -0.023

APRW 

Linear

P1 1.372 0.138 0.100 0.353 -0.277

S1 0.167 -0.041 -0.009 0.049 0.049 0.016 

P2 27.23 -83.97 -

14.87

41.609 39.05 

S2 0.092 -0.028 -0.035 0.035 0.002 0.007 

APRW 

Outliers

P1 100.3 97.92 -

1150

-629.49 -343.5 615.753 

S1 0.089 -0.072 0.075 -

0.253

-0.083 -0.134

P2 58.51 212.4 -163.3 -194.014 -132.37 -39.29

S2 0.068 0.006 -0.059 -

0.068

0.043 -0.047
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