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SUMMARY

Cell migration through 3D environments is essential to development, disease, and regeneration processes.
Conceptual models of migration have been developed primarily on the basis of 2D cell behaviors, but a gen-
eral understanding of 3D cell migration is still lacking due to the added complexity of the extracellular matrix.
Here, using a multiplexed biophysical imaging approach for single-cell analysis of human cell lines, we show
how the subprocesses of adhesion, contractility, actin cytoskeletal dynamics, and matrix remodeling inte-
grate to produce heterogeneous migration behaviors. This single-cell analysis identifies three modes of
cell speed and persistence coupling, driven by distinct modes of coordination between matrix remodeling
and protrusive activity. The framework that emerges establishes a predictive model linking cell trajectories

to distinct subprocess coordination states.

INTRODUCTION

Cell migration is a complex behavior that emerges from biophys-
ical and biochemical interactions between thousands of molec-
ular parts within and between cells and their environment.
Comprehensively measuring migration machinery across space
and time is not currently possible; therefore, pairing experiments
with modeling efforts is crucial to advancing our understanding
of cell migration. Most studies have been limited to 2D cell migra-
tion on flat surfaces, where cells flatten and become easy to
image due to the absence of a 3D extracellular matrix (ECM).
In these studies, the complexities of the migration machinery
have been abstracted into three predominant subprocesses
that run concurrently and are spatially coordinated: protrusion,
adhesion, and contraction.” Many features of cell morphody-
namics and migration on 2D substrates can be explained by
treating these subprocesses as functional modules connected
in a simplistic circuit®™ originally predicted by Abercrombie,
which goes as follows: (1) protrusion of the leading edge, (2) for-
mation of strong adhesions at the leading edge, (3) aging adhe-
sions at the trailing edge that are (4) released by contraction of
the cell leading to forward movement.® More recent modeling ef-
forts have focused on gaining a molecular-level understanding of
each subprocess.® Still, this conceptual framework does not
account for the major role that the ECM plays in confining and
resisting cell movement.

Navigation through 3D tissue-like environments is physiologi-
cally relevant for many migratory cells; however, the technical
challenges inherent to studying 3D migration are formidable.

Particular challenges include microscopy and image analysis
limitations in 3D and the increased complexity brought about
by additional modes of migration in 3D vs. 2D.”'° Predictions
of cell behavior in 3D based on data acquired in 2D are often
unreliable because signaling and mechanical parameters do
not always directly translate from 2D to 3D.""~"” Moreover, an
additional subprocess is necessary to consider for migration
through 3D environments: ECM remodeling.'®" In vivo intersti-
tial pore sizes range from ~0.025 to 0.1 um in diameter,?
and those of the basement membrane range from ~0.6 to
3.85 um.”® These pore sizes are smaller than most cell bodies
(10-100 pum in diameter) and cell nuclei (3-7 um in diameter
when deformed during matrix metalloproteinases (MMP)-inde-
pendent migration).”’ Therefore, cells migrating through tissues
must remodel the matrix by either physical or biochemical mech-
anisms. Many 3D cell migration studies have used low density
matrices that have much larger pore sizes than the ECM
in vivo,?"?*2® which enable cells to migrate without remodeling.
Indeed, it has been demonstrated that MMP-independent migra-
tion is a function of pore size.”" In confining ECM, in which pore
sizes are representative of in vivo tissues, it is not well under-
stood how the processes of matrix remodeling, protrusion,
adhesion, and contraction are integrated to produce different
modes of 3D migration. Additionally, the relationships between
these processes are unclear in the context of 3D cell migration.

Without an integrated framework for whole-cell 3D migration in
confining ECM built on the four key subcellular processes, it re-
mains difficult to distinguish the origins of migration heterogene-
ity. For example, cells of the same type can display significantly
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different migration behaviors, even in ostensibly the same 3D
environment.'®?4*" Does cell migration heterogeneity arise
from fundamentally different interrelations between the subpro-
cesses, or can it be explained by a threshold or shift in activity
of one or several of the subprocesses? Experts argue that
answering this question may be the most important contribution
toward unraveling the mechanisms of migration.*”

An integrated framework would also help contextualize seem-
ingly contradictory results from experimental perturbations.’ The
pathways controlling migration are often nonlinear and redun-
dant. They may also feedback on each other, making it exceed-
ingly difficult to address questions through single-plex molecular
experiments or mechanochemical models. For example, several
different combinations of physical mechanisms can be fitted to
explain the same experimental behaviors, but directly testing
them can be impossible. Obtaining sufficient physical and
biochemical constants required for accurate models in 3D sys-
tems can be difficult to impossible. An alternative approach for
modeling how cells process subcellular information into whole-
cell behaviors is to use a data-driven methodology based on
the quantitative effects of perturbations to key high-level process
modules.**%®

Here, we present a data-driven model of 3D cell migration in
confining ECM built on integrated measurements of protrusion,
adhesion and contraction (traction), and matrix remodeling in
single migrating cells. Single-cell tracking data revealed three
modes of coupling between cell speed and persistence, which
were linked to distinct combinations of cell-ECM interactions.
This work represents an advancement in our understanding of
how heterogeneous migration can arise and provides actionable
insights into engineering cell migration behavior.

RESULTS

Cell migration is heterogeneous and less common
behaviors can be enriched by perturbing biophysical
processes that dictate cell-ECM interactions

To determine whether different levels of migration subprocess
activity or different interrelations between the subprocesses ac-
count for heterogeneous migration behaviors within a given cell
population (Figure 1A), it is necessary to study “average” cells,
as well as “rare” cells that display fewer common behaviors.
The distributions of migration behavior for cells migrating in
confining 3D collagen type | matrices can be characterized by
the persistent random walk (PRW) model, ' which uses the
mean squared displacement (MSD) of cells to attribute values
of cell speed (S) and persistence time (P) to migrating cells
(Equation 1). The other parameters in this equation include the
time lag (7), dimensionality of the tracking (n), and the positioning
error (SE).

MSD(r) = nS?P?*(e”"/P + 7 /P — 1) +SE (Equation 1)

For example, MDA-MB-231 (MDA) display a wide range of to-
tal displacements (10.32-183.72 pum), speeds (0.022-0.395 pm/
min), and persistence times (0.431-994.846 min). Across multi-
ple cell types, including MDAs, HT1080s, and HFF-1s, both total
cell displacement and cell speed are logarithmically distributed
(Figures 1B and 1C), and persistence shows a bimodal logarith-
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mic distribution (Figure 1D). This suggests a general distribution
of cell migration behavior in confining 3D collagen matrices and
shows that capturing less common migration behaviors requires
extensive sampling.

We hypothesized that inhibitors targeting the individual pro-
cesses of contractility (rho-associated protein kinase inhibitor,
[ROCKIi]), matrix remodeling (MMPi), cytoskeletal protrusion
(F-ACTINi), and adhesion (ITGB1i) could enrich different regimes
of migration behaviors within the general distribution. As antici-
pated, these treatments shifted the peak of the distributions of
displacement, speed, and persistence compared with vehicle
control while remaining within the general ranges (Figures 1E-
1H). For example, ROCKi, MMPi, and F-ACTINi increased the
population of low-persistence cells and shifted the cell speed dis-
tribution toward lower values. ITGB1i inhibition, on the other hand,
increased the number of highly persistent cells and shifted the cell
speed distribution toward faster cells. To confirm that the effects
of the small molecule inhibitors have similar effects to those of
more targeted knockdowns, we also assayed cells with ROCK1
knocked down (Figures STA-S1E) and ITGB1 knocked down
(Figures STF=S1I). The effects of the more specific knockdowns
were more subtle but trended in similar directions as the inhibitor
treatments. Cumulatively, these results suggest that changes in
the level of activity of one or more processes could potentially ac-
count for naturally occurring migration heterogeneity. However, it
is not clear whether shifts in activity are also accompanied by
different interrelations between the core subprocesses.

Cell-ECM interaction measurements capture whole-cell
biophysical behavior
To determine the interrelations between the core subprocesses
and migration outcomes, each process must be simultaneously
measured in individual cells as they migrate through the ECM.
Because the activity of a given process is not well described
by any single measurement, we integrated nine imaging-based
measurements of cell-ECM interactions to read out various
aspects of subprocess activity. These measurements were
captured by time-lapse z stack imaging in three fluorescent
channels for MDAs in 3D collagen as follows: blue fluorescent
matrix-embedded beads enabled measurement of percent (%)
bead movers, maximum bead displacement, and instantaneous
bead displacement as readouts of cellular contractility against
the matrix; green fluorescence from dye-quenched collagen
(DQ) measured the remodeling of the matrix by cells; red fluores-
cent protein expression in cells allowed us to measure instanta-
neous cell displacement, protrusion rate, lifetime, and max
length as readouts of cytoskeletal activity; and the ratio of the
average instantaneous bead displacement over the average
instantaneous cell displacement gave a measure of the coupling
between a cell and the surrounding ECM (Table 1). We will sub-
sequently refer to this imaging platform and resulting measure-
ments as “biophysical imaging.”

3D volume view time-series demonstrate the technique’s abil-
ity to capture heterogeneous subprocess activity between indi-
vidual cells, where the differences in cell protrusive activity
(red), bead movement (blue), and matrix remodeling (green) are
easily visualized (Figures 2A and 2B). The cell in Figure 2A
remains rounded, with minimal protrusive, contractile, or matrix
remodeling activity. In contrast, the cell in Figure 2B retracts a
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Figure 1. Cell migration is heterogeneous and less common behaviors can be enriched by perturbing biophysical processes that dictate cell-
ECM interactions

(A-D) (A) Cell tracking trajectories of MDA-MB-231, HT1080, and HFF-1 cells in collagen | shows heterogeneous migration behavior, highlighted by the distri-
butions of (B) total displacement, (C) persistence, and (D) speed. Scale bars, 20 um. n = 3 biological replicates, N = 180 cells for each cell type.
(E) Trajectories of MDA-MB-231 cells from 3D cultures treated with vehicle (DMSO 0.1%), ROCK inhibitor (10 uM Y-27632), MMP inhibitor (10 M marimastat +

GMB6001), F-actin inhibitor (5 uM latrunculin B), or ITGB1 blocking antibody (5 ng mL~' P5D2). n = 3 biological replicates, N = 180 cells for each treatment
condition.

(F-H) Distributions of the resulting (F) total cell displacement, (G) persistence time, and (H) cell speed show how each treatment population shifts while still
retaining heterogeneity and overlap between populations. See also Figure S1.

protrusion, resulting in displacement of the microbeads, and has  tion was localized at the cell body near the neck of longer
a strong DQ signal indicating matrix remodeling. In some in-  protrusions (Video S2). These results demonstrate the utility of
stances, we found cells remodeling the matrix by protruding this imaging approach to measure heterogeneous cell-ECM in-
into it and retracting (Video S1). In other cases, matrix degrada-  teractions at the single-cell level.
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Table 1. Biophysical measurements used to quantify overall cell-ECM interaction state of a cell

Measurements Method

Biophysical process readout

% bead movers, maximum bead
displacement, instantaneous bead
displacement

DQ dye-quenched (DQ) collagen |

fluorescence (green)

Instantaneous cell displacement,
protrusion rate, protrusion lifetime, and
maximum protrusion length

protein (red)

Bead-cell displacement ratio

fluorescent matrix-embedded beads (blue)

cells transduced with mCherry fluorescent

ratio of instantaneous bead displacement
over instantaneous cell displacement

cellular contractility against the matrix

remodeling of matrix by cells

cytoskeletal activity

coupling between cell and the
surrounding ECM

Next, we measured how cell-ECM interactions changed in
response to inhibition of each of the core subprocesses using
the biophysical imaging platform. Because each inhibitor
treatment shifted the distribution of cell migration behavior
(Figures 1F-1H), we hypothesized that they would also shift
cell-ECM interaction distributions such that distinct cell states
could be identified. Inhibitors were used as opposed to molecu-
lar knockdowns to obtain more robust effects on the individual
biophysical processes, while still resulting in migration behavior
in the range of vehicle cells (Figures 1F-1H). 3D reconstructions
representing an average cell from each inhibitor treatment are
shown (Figure 2C) and distributions of cell-ECM interaction re-
sponses are plotted (Figures 2D-2L). Compared with vehicle-
treated cells, F-ACTINi cells (green) displaced the matrix less
(Figures 2D and 2F), moved slower (Figure 2G), remodeled the
matrix less (Figure 2H), and extended few protrusions
(Figures 21-2K). ROCKi (blue) decreased the extent of matrix
displacement (Figures 2D and 2F), cell movement (Figure 2G),
and matrix remodeling (Figure 2H), but increased cytoskeletal
protrusion activity (Figures 21-2K). MMPi cells (red) were slower
on average than vehicle cells (Figure 2G), but surprisingly did not
remodel the matrix to a significantly lesser extent (Figure 2H).
MMPi treatment targeted the main family of ECM collagenases,
so the insignificant decrease in the DQ measurement compared
with control cells was unexpected. As an additional check, we
confirmed that the DQ signal is an accurate readout of matrix
degradation by using a degraded-collagen hybridizing peptide
(CHP) as a secondary measurement (Figure S2). Finally, ITGB1i
cells increased their instantaneous cell speed compared with
the vehicle control. In total, each inhibitor treatment differentially
regulated cell-ECM interactions and shifted cell migration distri-
butions in distinct ways.

Principal component analysis (PCA) on this cell-ECM interac-
tion dataset clustered cells in the same treatment conditions
relatively well, despite the heterogeneity observed (Figure 2M;
Table 2). The separation of the data along PC1 was driven by
fairly equal contributions from instantaneous cell displacement,
protrusion rate, instantaneous bead displacement, and the
displacement ratio (Figure 2N). Interestingly, PC1 also seemed
to order treatment groups from least to most migratory (compare
Figure 2E with Figures 1F and 1G). PC2 separation was driven by
protrusion length and lifetime in the positive direction, and
instantaneous bead displacement and displacement ratio in
the negative direction. This axis helped to separate the ROCKi
group from the F-ACTINi and MMPi populations. To test the

generalizability of this approach, we also performed biophysical
imaging on HT1080 cells and mapped these measurements onto
the principal components (Figure S3A). HT1080 cells clustered
together and were most similar to the ITGB1i treatment group
(Figures S3B-S3K), and we confirmed via western blot that
HT1080s have less ITGB1 protein than MDAs. These results
highlight this imaging platform’s capacity to detect molecular dif-
ferences between cells. Together, these results show that the
nine cell-ECM measurements obtained from biophysical imag-
ing can discriminate between cell states associated with distinct
migration distributions arising from intra- and intercellular
heterogeneity, as well as molecular inhibition of migration
processes.

Cell trajectories are well modeled by the PRW model
when speed and persistence are coupled

Coupling between cell speed and persistence is not
universal in 3D migrating cells

With our biophysical imaging method established, we next
sought to understand how cell-ECM interactions map to
long-term cell migration trajectories. We devised a two-stage
experimental approach in which cells were tracked for 8 h, fol-
lowed by biophysical imaging for 1 h. Direct comparisons
could then be made between long-term migration behavior
and snapshots of the cell-ECM interaction state within the
same cell. In this integrated experimental protocol, cell trajec-
tories (Figure 3A) followed similar trends as those from our
earlier cell tracking experiments (Figure 1E), where fluorescent
beads and DQ were not included in the matrix. ITGB1-in-
hibited cells were again the most migratory, whereas F-actin
inhibited cells were mostly non-migratory. MMP and ROCK
inhibition decreased migration compared with the vehicle
condition.

Because two migration parameters, speed and persistence,
are sufficient to describe and predict cell migration trajectories,
we fit the MSD of individual cell trajectories to the PRW model
(Figure 3B) to extract values for cell speed (S) and persistence
time (P) (Equation 1). We found that many of the analyzed cells,
though not all, followed a migration regime wherein speed and
persistence were coupled (Figure 3C). This coupling fits a gen-
eral form of the “universal coupling between speed and persis-
tence” (UCSP) equation that has been previously reported
(Equation 2).“° Fitting the UCSP equation to cells displaying
this coupling behavior produced a robust fit (R® = 0.862, Fig-
ure 3C, circled data).
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Figure 2. Cells-ECM interaction measurements capture whole-cell biophysical behavior
(A and B) Time-series snapshots showing 3D reconstructions of micrographs of individual cells (red), beads (blue), and dye-quenched (DQ) collagen (green) at
10-min intervals highlight biophysical differences among individual MDA-MB-231 cells embedded in 2.5 mg mL~" collagen | matrices. The cell in (A) remains

(legend continued on next page)
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P=Axe™*S4+C (Equation 2)
A subpopulation of cells, mostly from the ITGB1-inhibited pop-
ulation, did not follow this coupling law, and in fact appear to
display a negative relationship between speed and persistence
(Figure 3C, data outside of circle). Interestingly, we do not see
uncoupling of S and P at low P. These results show that cell
speed and persistence time are often, although not universally,
coupled in migrating cells in confining 3D matrices. Because in-
hibition of ITGB1 produced the most cells in the decoupled
migratory regime, this suggests that adhesion plays an important
role in determining persistence time and in coupling persistence
to speed.
Cell-ECM measurements predict cell speed and
persistence in coupling regime
Because PCA, a linear data transformation method, clustered
cell states (Figure 2E) and ordered them along PC1 similar to
the order of their migration distributions (Figures 1F-1H), we
reasoned that a simple linear regression could model the rela-
tionship between cell-ECM interactions and migration. We also
considered that cells following the UCSP law may rely on a
fundamentally different configuration of cell-ECM interactions
than the cells that do not obey this relationship. Therefore, we
used partial least squares regression (PLSR) to ask which cell-
ECM interactions are the best predictors of S and P for cells
that follow the UCSP behavior. All 511 possible combinations
of the nine cell-ECM interaction measurements were tested as
the independent variable matrix to fit the dependent variable S
or P and leave-one-out cross validation was performed to
account for over-fitting. The resulting goodness of fit (R%) and
predictive ability (Q%) of every possible regression model was
calculated, and the model with the highest Q? was chosen as
the optimal model. Applying this approach with P as the depen-
dent variable yielded an optimal model with an R = 0.524 and a
Q? = 0.449 (Figure 3D). The optimal model for P accounts for
about 52.5% of the variance using only two PLS components
(Figure 3E), and consists of bead-cell displacement ratio, protru-
sion length, instantaneous bead displacement, maximum bead
displacement, DQ, and percent bead mover measurements (Fig-
ure 3F). The observed vs. fitted values of z-normalized P values
shows that the model performs well across the different inhibitor
treatments (Figure 3G).

PLSR analysis was also performed for S (Figures 3H-3K),
which revealed that S is best predicted by a model consisting
of the same cell-ECM measurements used for P, but without
needing bead displacement or percent bead movers (R% =
0.529, Q2 = 0.469). The loading for bead-cell displacement ratio
correlates with low speed and persistence, whereas high
maximum bead displacement, percent bead movers, and DQ
are most correlated with enhanced speed and persistence
(Figures 3F and 3J). The finding that these interaction measure-
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ments are the most predictive of speed and persistence update
the UCSP model that previously reported only actin flow was
required to predict migration behavior.*® Using only the three
protrusion measurements representing actin cytoskeletal activ-
ity in the regression model (Figure S4) achieved less predictive
power for P (R? = 0.305, Q% = 0.201) and S (R? = 0.292, Q% =
0.180), and was suboptimal compared with the more compre-
hensive regressions (Figures 3G and 3K). In the updated model,
the inclusion of bead-cell displacement ratio, DQ, and multiple
bead measurements indicate that the processes of adhesion,
matrix remodeling, and contractility are key determining
factors along with actin-based protrusion dynamics for 3D cell
migration.

To test the performance of these models, we simulated PRW
migration trajectories using S and P values predicted from cell-
ECM interactions (Figure 3L). We then compared these with simu-
lated PRW trajectories using the S and P values extracted from
cell MSDs (Figure 3M) and to the original real trajectories of the
cells (Figure 3A). Trajectories predicted from cell-ECM interac-
tions recapitulate the global effects of the inhibitor treatments
and also the heterogeneity within each population. This generaliz-
ability of the model was next tested by incorporating HT1080s,
which predominantly followed the S and P coupling regime
(Figures S5A and S5B). The optimal model to predict HT1080
speed and persistence used similar biophysical measurements
as that of the MDAs (Figures S5C and S5D). Importantly the model
generated by MDAs and agnostic to HT1080s predicted HT1080
speed and persistence nearly identically as the model generated
using both MDAs and HT1080s (Figures S5E and S5F). The cell-
ECM measurements required for the optimal model demonstrate
the necessity of capturing the coordination between cytoskeletal
protrusions, contractility, matrix remodeling, and adhesion for
this mode of cell migration.

Trajectories of cells whose speed and persistence are
not well coupled are modeled by a distinct set of cell-
ECM interactions

The PLSR model that predicts cell migration in the UCSP regime
(Figures 3D-3L) does not achieve a good fit for cells outside
of this regime, suggesting that these globally uncoupled cells
occupy a distinct cell-ECM interaction state. These cells had
longer persistence times than those in the coupled range, but
their cell speeds were within the range of the other measured
cells (Figure 4A). Because these cells are highly persistent, we
reasoned that they may be better modeled using the anisotropic
PRW (APRW) model. APRW takes into account cells with
preferred migration directions by deconvolving the migration
into a primary direction and an orthogonal non-primary direction,
each with a persistence and speed (P1,S1 and P2,S2, respec-
tively).>® When the cells with globally uncoupled speed and
persistence were fit using the APRW model, a subset of these

mostly rounded with little bead movement, whereas the cell in (B) retracts a protrusion, pulls beads, and has more DQ signal. Dotted yellow circles outline the

original positions of example beads. Scale bars, 20 um.

(C) 3D reconstructions of representative cells from each inhibitor-treated population highlight changes to cell shape and matrix remodeling.
(D-L) Comparison of the inhibitor-treated groups for each cell-ECM measurement. n > 9 for each treatment group. Statistical significance was determined using

one-way ANOVA with Tukey post-test. *p < 0.05; **p < 0.01; ***p < 0.001.

(M) Top two principal component scores for each cell show the clustering of cells based on inhibitor treatments.
(N) The loadings along the first two principal components shows the relative contributions of each cell-ECM interaction in the PCA. See also Figures S2 and S3.
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Table 2. Principal component analysis loadings of cell-ECM interactions

Loadings

Mean max PCT Bead-cell

bead Inst. bead bead Inst. cell Protrusion  Protrusion Protrusion displacement

Eigenvalue displacement displacement movers  displacement DQ rate length duration ratio

PC1 2.835 —0.932 —0.942 0.155 —0.226 —0.782 0.064 —0.244 —0.228 —0.527
PC2 2.242 0.203 0.169 0.126 0.678 0.218 —0.203 —0.804 —0.823 —0.533
PC3 1.498 —0.047 —0.009 0.112 —0.606 0.031 —0.773 —0.351 —0.308 0.547
PC4 1.119 0.074 —0.163 0.938 —0.019 0.312 —0.109 0.114 0.227 —0.181
PC5 0.607 —0.053 —0.025 —0.168  0.262 —0.049 -0.586 0.275 0.182 —0.228
PC6 0.379 0.191 0.130 0.180 0.147 —0.484 —0.030 —0.089 0.103 0.132
PC7 0.169 0.010 0.001 —0.071 —0.057 0.047 —0.015 —0.269 0.280 —0.086
PC8 0.086 -0.168 0.002 0.026 0.158 0.051 0.006 —0.043 0.044 0.159
PC9 0.066 —0.125 0.200 0.037 —0.058 —0.022 0.001 0.013 —0.005 —0.071

cells displayed coupling in the primary direction of migration
(Figure 4B). Coupling was also observed for some cells along
the non-primary direction axis (Figure 4C). Therefore, cells that
do not display global coupling between speed and persistence,
as modeled by PRW, can still display coupling behavior along
primary or non-primary directions of migration, which is captured
by the APRW model.

Cell-ECM interaction state in anisotropic S vs. P
coupling

We next asked whether a distinct set of cell-ECM interactions
were associated with globally uncoupled (APRW) cell migration.
We further delineated cells that couple speed and persistence
along the primary direction of APRW migration (red squares)
from those that do not (blue triangles). PLSR of cells with speed
and persistence coupling along the primary migration axis (P1
and S1) were well modeled by only a few combinations of
cell-ECM interactions (Figure S6A). The optimal model for
persistence in the primary direction consisted of instantaneous
cell displacement, DQ, protrusion length, and percent bead
movers (Figures S6A-S6D; Table S1). DQ, protrusion length,
and percent bead movers, were also contributors to persis-
tence in the PRW model, though in the APRW model the coef-
ficient for protrusion length becomes negative, indicating that
anisotropic persistent cells tend to have shorter protrusions
(Table S1). Additionally, P1 relied on only one bead measure-
ment, indicating a decreased reliance on matrix displacement
in determining persistence. P2 was predicted by maximum
bead displacement, protrusion rate, DQ, and protrusion
lifetime.

Speed in the primary direction (S1) of APRW coupled cells
is best predicted by cell-ECM interactions (Figure S6G)
that are quite distinct from those that predict speed in
PRW coupled cells (Figure 3J), sharing only DQ as a compo-
nent. S1 instead needed maximum bead displacement, pro-
trusion rate, protrusion lifetime, and percent movers for
optimal predictive performance. S2 model components over-
lap strongly with S1, only substituting instantaneous bead
displacement and protrusion rate for maximum bead
displacement and protrusion lifetime (Figure S60). APRW tra-
jectories predicted from cell-ECM interactions were very
similar to those simulated from MSD fits of the real trajectory
data (Figure 4D).
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Cell-ECM interaction state of cells with predominantly
uncoupled S vs. P

Cells that did not display global coupling between S and P in the
PRW model or in the primary direction in the APRW model could
be regressed using a distinct set of cell-ECM interactions. Only
four combinations of measurements had R? vs. Q2 values to
predict primary persistence. This consisted of DQ, protrusion
lifetime, protrusion length, instantaneous cell displacement,
and bead-cell displacement ratio (Figures S7A-S7D). Cells in
this regime tend to have highly linear trajectories, which were
predicted well by our model (Figure 4E). High protrusion rate
paired with low bead speed, instantaneous cell displacement,
DQ, and protrusion lifetime predicted high P1 (Figure S7C).
The PLSR model for S1 (Figures S7TE-S7H) was similar to that
for the APRW coupled model (Figures S7TE-S7H). This indicates
that in both subpopulations of the globally uncoupled cells, cell
speed determination is independent from the factors that dictate
cell persistence. Thus, the status of S and P coupling defines
three different cell migration modes that rely on distinct combi-
nations of cell-ECM interactions to achieve their persistence
and speed (Figures 4F and 4G). Only matrix remodeling (DQ)
was required to predict speed and persistence for all three pop-
ulations, demonstrating the importance of this measurement
when analyzing 3D migration modes.

Matrix remodeling coordination with adhesion and cell
protrusion define distinct modes of cell migration

To visualize key changes between different migration modes, cell-
ECM interactions were plotted for cells undergoing PRW coupled,
APRW coupled, or APRW uncoupled migration. We found no sig-
nificant differences in any individual measurement between these
groups, although the two APRW groups displayed slight differ-
ences compared with the PRW group due to their enrichment
with predominantly ITGB-1-inhibited cells (Figures 5A-5I). Anal-
ysis of the correlations among cell-ECM measurements in each
group of cells revealed key changes in how subprocesses are co-
ordinated (Figures 5J-5L). Strikingly, PRW coupled cells have
strong positive correlations between multiple bead and protrusion
measurements, as well as DQ and instantaneous cell displace-
ment (Figure 5J). These contrast with the more heterogeneous
correlations in the two APRW groups (Figures 5K and 5L). Notably,
the strong positive correlations between protrusion rate and DQ
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Figure 3. Cell trajectories are well modeled by the PRW when S and P are coupled
(A) Trajectories of individual MDA cells treated with vehicle, F-ACTINi, ROCKi, MMPi, or ITGB1i show heterogeneity in migration paths. Scale bars, 5 um.
(B) MSDs of individual cells fit using the persistent random walk (PRW) model.

(legend continued on next page)
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becomes weaker in the APRW coupled cells, and eventually nega-
tively correlated in the APRW uncoupled cells (Figure 5M). Thus,
the randomness of the walk is associated with the balance be-
tween cell protrusive activity and matrix degradation.

Through this correlation analysis, distinct differences in sub-
process coordination also emerged between the two APRW
groups. There was a significant switch in the relationship be-
tween DQ and protrusion length (Figure 5N). APRW coupled cells
showed a positive correlation between these measurements, but
APRW uncoupled cells showed a negative correlation. Repre-
sentative micrographs of cells from these two groups exemplify
these relationships (Figure 50). Cells that couple speed and
persistence in the primary direction of migration (APRW coupled)
show more matrix remodeling with more protrusive activity. Cells
with uncoupled speed and persistence, on the other hand, tend
to be more rounded if they are remodeling the matrix and more
elongated if they are not. These patterns are enriched for
ITGB1-inhibited cells. These findings prove that cells rely on
different combinations of cell-ECM interactions to migrate,
defined by three random walk modes of migration. Therefore, it
is possible to use cell tracking data to infer cell-ECM interaction
and, by extension, the overall biophysical state of the cell.

DISCUSSION

Cell migration trajectories predict associated cell-ECM

interaction state using S and P coupling as a classifier

In this study, we used a data-driven approach to discover how
cell-ECM interactions produce heterogeneous migration behav-
iors. This was achieved through an integration of cell-ECM inter-
action reporters and cell tracking, which revealed relationships
between motility subprocesses and whole-cell behavior.
Although previous studies applied different walk models to
describe heterogeneous migration behavior in 3D environ-
ments,*" ours connects the walk behavior to underlying cellular
subprocesses coordination. We show that confined 3D migra-
tion can be classified into three modes of speed and persistence
coupling, and we developed a predictive model for each mode
that links cell-ECM interaction state to cell trajectories. For all
migration modes, matrix remodeling was essential, and yet no
one subprocess measurement could achieve high predictive
capability in isolation. This modeling approach could serve as
an important tool toward integrating disparate conceptual
models of cell migration that comprise the Central Dogma. For
example, the adhesion-based model holds that cell speed is

Developmental Cell

well predicted by a biphasic relationship with adhesion, and
that this relationship can be explained by adhesion-promoted
forces pushing the front and resisting motion at the rear of the
cell according to a “molecular clutch” model of focal adhe-
sion-actin-myosin dynamics.®*>*" The actin-based model
holds that speed is predicted by actin flow and its effect on po-
larity signals.’® None of the well-accepted conceptual models
indicate a role for matrix remodeling, likely because they origi-
nate primarily from experiments on 2D substrates or permissive
3D environments, and they do not address how migration sub-
processes integrate to produce heterogeneous behaviors.
Indeed, prior works seeking to understand the coupling between
speed and turning (persistence) of immune cells moving in 3D
in vivo®>*® have not considered the role of ECM remodeling.
Nonetheless, there is ample evidence that matrix remodeling is
required for their in vivo migratory functions. For example,
T cells require MMPs to penetrate infected tissue and contribute
to significant tissue remodeling.>*

An important outcome of our models is the ability to reliably
predict cell trajectories of multiple cell types from measure-
ments of cell-ECM interactions. The reverse is also true, in
that our models enable the prediction of cell-ECM interaction
state from cell trajectories. This lends insight into how the
subprocesses of migration can produce different regimes of
cell speed and persistence coupling that generate migration
trajectories with different extents of anisotropy. Establishing
this link is important toward building multiscale models of
cell migration and generating hypotheses for further mecha-
nistic studies.

The degree of migration anisotropy is enhanced with S
and P uncoupling

This work presents a conceptual model that integrates two
migration frameworks: (1) speed and persistence coupling and
(2) PRW models. The integration of these models revealed that
speed and persistence are not universally coupled, and that
the extent of coupling is directly related to the randomness of
migration. Cells that follow the original UCSP law could only be
accurately predicted within the PRW framework. The remaining
cells were found to be either globally uncoupled or uncoupled
only in the non-primary axis of migration, which can be modeled
by the APRW framework. These classifications were necessary
to link migration behavior with cell-ECM interaction measure-
ments and achieve high predictive power. Integrating these
two paradigms of cell migration modeling represents an

(C) Graph of PRW parameters cell speed (S) vs. persistence time (P). Line indicates regression of points in the circled region to the universal coupling between
speed and persistence (UCSP) equation. S and P are coupled for the majority of the cells, though a large population does not follow this trend.

(D) PLSR was performed using every possible combination of measurements to fit cell-ECM interactions to persistence. The fit (R?) vs. predictive ability (Q?) of all
possible regressions for persistence (P), and the optimal predictive model is shown by the red square.

(E) The best predictive model for P accounts for more than 52% of the variance using just the first two PLS components.

(F) Plotting the PLS score of each cell along these two components shows separation of persistence and the cell-ECM interaction measurement component
loading projections. Loadings for the two beads displacement measurements overlap.

(G) Observed vs. fitted values of z-normalized persistence show overall good agreement.

(H-M) The same PLSR approach was applied for cell speed. (H) The fit (R?) vs. predictive ability (Q) of all possible regressions of cell speed (S), and the optimal
predictive model is shown by the red square. (I) This model can account for more than 52% of the total variance in cell speed using just the first two PLS
components. (J) Plotting the PLS score of each cell along these two components shows separation of cell speed and the cell-ECM interaction measurement
component loading projections. (K) Observed vs. fitted values of z-normalized cell speed show overall good agreement. (L) Trajectories simulated using the PRW
from S and P values predicted by the PLSR model using cell-ECM interactions or extracted from the MSD fit. (M) recreate the heterogeneity and migration trends
observed experimentally. Scale bars, 5 um. See also Figures S4 and S5.
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Figure 4. Trajectories of cells whose speed and persistence are not well coupled are predicted by a distinct set of cell-ECM interactions
(A) Graph of persistence time vs. speed, with the cells that do not follow the UCSP in the PRW model circled.

(B and C) Modeling these cells with the anisotropic persistent random walk model (APRW) identifies coupling between speed and persistence in the primary

direction of migration (B), as well as the non-primary direction (C). Cells that are well coupled in the primary direction are shown as red squares, whereas those that
are not are represented by the blue triangles.

(D and E) PLSR modeling achieves a strong fit and high predictive accuracy when these two populations are separated. Simulated trajectories using PLSR models
for cells coupled in the primary direction (D) or uncoupled (E) recreate migration behaviors. Scale bars, 5 um.

(F and G) Venn diagram of which cell-ECM measurements were used in the PLSR model to predict (F) persistence or (G) speed as determined by the PRW model
and the persistence in the primary direction of migration for the cells modeled using APRW. See also Figures S6 and S7 and Table S1.

Developmental Cell 58, 1414-1428, August 7, 2023 1423



¢? CellPress Developmental Cell

OPEN ACCESS

A B —— C . D E
100 &= 020 ¢ 1 T — 129 —— 16m —ns
o :—l ns ° " ns ns ns
€ I_I ] ns N
= 0.8 $ —_ ° N —~ 0.3 ns - = ° A 1.5 M
- s ,E016- ¢ = S = o E $
x < 5 3 A A ~ ° O VOS_ ° 1.4 - Y A
T O 3 ® g " & o = 0. .
= E 06+ —I— 83 '} J 5 HI 25 o { -
c S g 20.12 = S 3 02+ N o= i - a 134 ¢ ==
§2 0.4 . 5o N 58 I
se 5o . o + 5504 ?% 1.2 L
) = £ %0.08 3 - 4 o . CILIEN
3 0.2 @ s @ 0.1 L £5 " 1.1 s
[an]
0.0 +——m—mm—m—— 0.04 - 0.0~ 1.0
ns
ns 'ns ]
F 25— s G 309 — H o goq € b 0 o PRW Coupled
—_—s H —
- € g ¢ o — 4 APRW Uncoupled
o = 204 = = ns 154 ¢ = APRW Coupled
K ns £ 20 ° g 40 < =
c 15- I— 8’ ns = LY n A 8 <
c o A ) 9] 7 O s
Ke g b . A - ° '_l 3 - £1.0- ¢ ns
21048 % < : - c . 3 8 R
£8 = ~I~ S04 % - + 5204 o @8 o
°a H @ 2 LD I —1— 20.54 .
e {2 LT St 5
: mE A o i 6 ! l.- N o H A
]
- o mm A E A
0- 0= 0- 0.0~
J K L 1.0
_ PRW Coupled APRW Coupled APRW Uncoupled
>
& 05
&
e?’b
o\ 0
&
\&"@V 05
Q
Q«O\'V« 1.0
\.:\\2'
&
o a 4 a 2 £ o o a 4 a g 2 £ o a a 14 a O 2 £ 2
R o 2 & @ T B E 2 © © 2 A T © E 2 2 © @ a & o E
9 a o8 3 0o € 5 B a & 3 a x 3§ ® 6 B8 3 © € 5 B
T B =2 3 5 - 35 T B =2 3 3 - 3 T B =2 3 5 - 35
§43S &S 8238 Sz 843 fEg
% 3 o 2 o % B o 2 o % % o 2 o
S 2 . = = £ r - = = 8 0~
- ° N (0]
20 15 ® APRW Coupled @ APRW Uncoupled
] — °
— €
2= =
T — b 104
o ] 5
c5 ] g
S8 10 -
25 ] 5
fa ] 3 7
= 9
-4 o
0 0 — T T T
10 11 12 13 14 15 16 10 11 12 13 14 15
DQ DQ

- PRW Coupled -@- APRW Coupled
-®- APRW Uncoupled
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(legend continued on next page)
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important step toward building comprehensive models of cell
migration that capture heterogeneity.

Loss of adhesion uncouples S and P
We observed that many cells display coupling between speed and
persistence, which has previously been described as the UCSP
law and has been reproduced in multiple experimental®>>° and
theoretical models.®”-°® However, a population of cells, mostly
within the ITGB1-inhibited condition, did not follow the UCSP
and instead displayed a negative relationship between speed
and persistence. These cells are more persistent at lower-than-ex-
pected cell speeds, implicating adhesion as a key mediator of
speed and persistence coupling. Increased persistence may be
consistent with the model of integrin function in which inhibition
of B1 integrin activity feeds back on MT1-MMP surface levels
and localization. Previous population-level studies have shown
that on average, inhibition of B1 integrin activity tends to induce
its association with MT1-MMP and reduce recycling, leading to
accumulation of both integrin and MT1-MMP on the cell surface.”®
However, in our single-cell experiments, distinct subpopulations
within the ITGB1-inhibited condition may represent cells with
different levels of ITGB1-inhibition response or different initial
levels of ITGB1 and MT1-MMP. The extent to which the level
and activity of ITGB1 and MT1-MMP are balanced on the surface
of the cell could explain the distinct coordination modes of protru-
sions and matrix remodeling we observed (Figures 5M-50).
Blocking adhesion enhanced cell speed on average, indicating
that the cells were originally slower migrating because they were
in a higher adhesion state (Figures 1E-1H and S8). This rein-
forces the established biphasic relationship between adhesion
and speed and echoes observations that cells having less
ECM adhesion are more migratory.®>¢" In 2D, the force the cell
exerts via actomyosin contraction at sites of focal adhesion de-
termines adhesion plaque growth, maturation, and stability.®*:®
In 3D, it has been proposed that contractility must be locally
balanced with ECM stiffness to stabilize adhesions.®* When we
diminished the ability of integrins to bind to the ECM, we would
expect the stability of adhesions to be compromised, resulting
in faster turnover and a less stable force balance between the
contractile machinery and the ECM. It is interesting that in this
condition in which we might expect multiple highly localized
force balance instabilities, we see higher persistence of migra-
tion. Perhaps with less competition from other adhesion sites,
the fewer stable adhesions drive the polarization of the cell.

The degree of S and P uncoupling is associated with the
imbalance of protrusion rate and matrix remodeling
Coupling between speed and persistence can be global or
broken into anisotropic primary and non-primary directions of
migration. Applying the PRW model distinguishes globally
coupled cells vs. those that are not. Within the PRW coupled
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cell population, we found a strong positive correlation between
protrusion rate and instantaneous cell displacement, which is
consistent with the UCSP model that actin flow stabilizes cell
speed. However, protrusion rate was also significantly positively
correlated with DQ signal. This could suggest that protrusions
physically enhanced degradation, which is supported by the
fact that inhibiting actin polymerization or contractility lowered
DQ signal (Figure 2H) but MMPi treatment did not significantly
impact DQ signal or protrusions (Figures 21-2K). This finding is
consistent with other reports, such as how latrunculin B de-
creases the ability of MDA-MB-231 cells to bundle collagen |
around the cell, more so than marimastat®® and that the mechan-
ical plasticity of the matrix can facilitate protease-independent
migration.®® However, differences in trafficking of MMPs to the
membrane cannot be ruled out.

In contrast to the globally coupled cells, the uncoupled popu-
lation had a negative correlation between protrusion rate and
DQ. This suggests that speed and persistent coupling depends
upon balanced activity between protrusion rate and matrix
remodeling. High levels of one without the other leads to un-
coupled migration, which leads to anisotropic migration.

When globally uncoupled cells are further divided within the
APRW framework into S and P coupled or uncoupled in the pri-
mary direction, we found that the uncoupled cells drove the
negative relationship between protrusion rate and matrix
remodeling, whereas the APRW coupled cells had no significant
correlation between these cell-ECM interactions. Therefore,
there appears to be a progressive transformation of the relation-
ship from strongly positive, to no correlation, to strongly negative
as cells are globally coupled, anisotropically coupled, or un-
coupled. This implicates matrix remodeling as playing a central
role in determining S and P coupling. This, paired with the neces-
sity of the DQ measurement for each of the regression models
(Figures 4F and 4G), strengthens the argument that matrix re-
modeling is a key determinant of cell migration in confining 3D
conditions.

Matrix remodeling is a necessary input to every predictive
model we discovered, and its coordination with protrusive activ-
ity of cells helps differentiate between S and P coupling behav-
iors. The overarching conceptual model we propose captures
these essential motility subprocess coordination modes and
could be useful as a basis to model processes in which cell
migration trajectory is important, such as cancer invasion or im-
mune cell homing. Future studies to elucidate the molecular
mechanisms underlying each coordination mode will enable
the next generation of physical models of migration.

Mapping speed and persistence coupling to modes of
migration

The 2.5 mg/mL collagen | matrices used in this study have an
average pore size of 2 um?, although the 99th percentile of sizes

(J-L) Heatmap of Pearson correlations between cell-ECM measurements of cells displaying PRW S vs. P coupling (J), APRW coupling in the primary direction (K),
and APRW uncoupled (L). Color indicates the Pearson p value, the strength of the correlation, and p value is indicated by *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.

(M) Correlation between DQ and protrusion rate measurements for cells in the PRW coupled and APRW uncoupled regimes.
(N) Correlation between DQ and protrusion length for cells in the APRW coupled or uncoupled regimes.
(O) Representative images of cells in the APRW coupled or uncoupled regimes demonstrating the opposite relationships between matrix remodeling and

protrusion of the two groups. Scale bars, 20 um.
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reaches 22 um?. When pore cross sectional area is less than
10% of a cell’s nucleus, then migration becomes dependent
on matrix remodeling.”’ Unperturbed cells within these matrices
primarily behaved in a mesenchymal fashion that is character-
ized by spindle-like protrusions, cell-ECM adhesion, actomyosin
contractility, and proteolytic ECM remodeling. Conversely,
ameboid migration is typically classified by a more rounded
cell body, low adhesion, low matrix remodeling activity, high
contractility, and high migration.®”:°® Inhibiting adhesion or ma-
trix remodeling can shift cells into a more ameboid state.®®""
Our findings shed light on these migration mode definitions.
We found that blocking ITGB1 enriched for cells with uncoupled
speed and persistence and enhanced motility, suggesting that
uncoupling is characteristic of amoeboid migration. The most
uncoupled cells, APRW uncoupled, displayed a negative corre-
lation between matrix remodeling and protrusion. In this mode,
migrating cells protrude and squeeze through permissible pores
in the ECM, whereas cells encountering smaller pores remain
more rounded and remodel the matrix to move. On the other
hand, broadly inhibiting MMPs did not significantly affect matrix
remodeling and did not enrich for uncoupled cells. Rather, the
majority remained in the PRW coupled mode in which matrix re-
modeling positively correlated with protrusion rate and bead
movement, suggesting that PRW coupled cells may rely heavily
on physical matrix remodeling supported by adhesion to the
ECM. We also found that the APRW coupled mode falls between
PRW coupled and APRW uncoupled in terms of protrusion and
matrix remodeling coordination and may represent transition
regime between mesenchymal and ameboid.

Limitations of the study

Cell migration is a context-dependent behavior; therefore, the
conclusions drawn from this study may not apply to all 3D cell
migration modes. Future studies exploring other cell types and
different matrix compositions will contribute to our understand-
ing of generalizable principles of motility subprocess coordina-
tion states that drive diverse migration behaviors. Additionally,
distinguishing between physical and enzymatic ECM remodeling
mechanisms will be important to achieving this goal.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Stephanie
Fraley (sifraley@ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
o Original western blot images have been deposited at Mendeley and are publicly available as of the date of publication. The DOI
is listed in the key resources table. Microscopy data reported in this paper will be shared by the lead contact upon request.
® All original code has been deposited at Mendeley and is publicly available as of the date of publication. DOlIs are listed in the key
resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

MDA-MB-231, HT1080, and HFF-1 cells (ATCC, Manassas, VA) were cultured in high glucose Dulbecco’s modified Eagle’s medium
supplemented with 10% (v/v), fetal bovine serum (FBS, Corning, Corning, NY) and 0.1% gentamicin (Thermofisher Scientific, Wal-
tham, MA) and maintained at 37°C and 5% CO, in a humidified environment during culture and imaging. The cells were passaged
every 2-3 days as required. Lentiviral transduction was performed using pLV-mCherry, which was a gift from Pantelis Tsoulfas (Addg-
ene plasmid # 36084).

METHOD DETAILS

3D collagen gel formation

3D collagen | matrices were prepared in a manner similar to that described previously.'®2® Cells suspended in culture medium were
mixed 1:1 (v/v) with 10X reconstitution buffer. Next, blue fluorescent carboxylated microspheres (1 um, Thermofisher Scientific, Wal-
tham, MA) were added to the cell-gel solution at 1:50 (v/v) of the final gel volume. DQ collagen (Thermofisher Scientific, Waltham,
MA)"? was added to achieve a final concentration of 100 ug/mL, followed by soluble rat tail type | collagen in acetic acid (Corning,
Corning, NY) to reach the desired final collagen concentration of 2.5 mg ml™'. 1 M NaOH was used to normalize pH and promote
polymerization in a volume proportional to the collagen concentration (pH 7.0). Thoroughly mixed gels were then pipetted into custom
made PDMS wells mounted on glass bottom dishes (Fluorodish, World precision Instruments). Gels were polymerized at 37°C in a
humidified incubator for at least 30 min before media was added to cover the gel.

Biophysical imaging

Cells were imaged immediately after cell tracking using an Tl inverted microscope equipped with a 40X (NA: 1.15) long working dis-
tance objective (Nikon Instruments Inc., Melville, NY) equipped with a controlled temperature, CO,, and humidity chamber. Each cell
was imaged for 1 h at 4-min intervals. For each timepoint, a z-stack through the cell body was taken at 1.5um steps in four channels -
blue, green, red, and reflection - to image the fluorescent beads, DQ collagen, cells, and ECM architecture, respectively. The resulting
image files were saved as.tif stacks and opened in Imaged for processing (NIH, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/).
Only cells whose primary axis of spreading was in the XY plane were used for quantification. As we have shown previously, this sim-
plifies the cell and bead tracking to 2D geometry without a significant loss of information.'®”® Maximum intensity projections (MIPs) of
the z-stacks were generated at each time-point to create a 2D time series for each channel of each cell for analysis. 3D reconstruc-
tions of the z-stacks for solely visualization purposes were completed using IMARIS software (Oxford Instruments, Abindon, UK).

Biophysical inhibitors

Inhibitor experiments were performed using ROCK inhibitor Y-27632 (10uM from 10mM stock in DMSO), Latrunculin B (5uM from
5mM stock in DMSO), and the combined Marimastat (10puM from 10mM stock in DMSO) and GM6001 (10uM). Inhibitors were added
to the cell solution used during gel preparation and in the media added to the top of the collagen gels after gelation. ITGB-1-blocking
antibody P5D2"“ was optimized for concentration (5ug/ml, Figure S8) and added solely to the cell solution and not the media (Fig-
ure S8). The vehicle and ITGB-1-blocking media contained 0.1% (v/v) DMSO.

Quantification of protrusion dynamics
Cell protrusion tracking is a well-established approach for quantifying the cytoskeletal dynamics of a cell.’®”>7® Protrusions were

manually tracked in Imaged using the MIP time series of the cell. The time duration of each protrusion was tracked frame-by-frame
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from initial protrusion extension to complete retraction. The mean protrusion length and time duration of the protrusions was calcu-
lated for each cell. The number of cell protrusions greater than 1um observed during the 1 hr imaging period was used for the “pro-
trusions rate” measurement. For cells that did not form any protrusions during the imaging, the mean max length of protrusions and
protrusion lifetime were both zero.

Quantification of matrix remodeling

DQ collagen increases in fluorescent intensity when cleaved by collagenase activity.””>’® To quantify the degree of degradation, the
fluorescence intensity of a 10um band surrounding the cell was measured for each frame using Imaged. The total intensity values
were summed and divided by the total area of the bands to get a mean fluorescence intensity surrounding the cell body using a
custom MATLAB script. This value was then divided by the mean fluorescence intensity of the background to get the Signal/
Background ratio.

Quantification of traction force microscopy

Traction force microscopy is a technique that uses fiducial markers in the ECM to quantify how a cell is interacting with the surround-
ing microenvironment.”®®" Bead tracking was done in the blue channel MIP using the Mosaic plugin in ImageJ. The Results table,
which contains the XY coordinates for each bead in the field of view for each time point, was saved and analyzed in a custom MATLAB
script to identify the beads that moved during the time-lapse (Figure 2C). First, a filter was applied to analyze only trajectories of beads
that were tracked through all time points. Second, the displacement at each time point from the initial point was calculated for each
bead. Next, to identify beads that were actively pulled by the cells we used a moving standard deviation approach where we calcu-
lated the standard deviation of consecutive points across the entire bead trajectory. With this, we were able to identify the parts of the
trajectory that significantly deviate from the rest, which corresponds to a deformation in the matrix. The “% bead movers” measure-
ment reflects the percent of the total beads in the image frame that met this criteria. The max bead displacement between frames and
the instantaneous bead speed over the time course were averaged together for all the beads meeting the movement threshold to
generate the “mean max bead displacement” and “mean instantaneous bead speed” values for each cell.

Bead-cell speed ratio measurement

The bead-cell speed ratio is a measurement that describes cell-ECM movement coupling.” It is calculated as the ratio between the
instantaneous bead speed and the instantaneous cell speed. It can be understood as the opposite of a slip ratio, which is a measure
typically applied to automobiles to describe the slipping behavior of a wheel against a road surface. Instantaneous cell speed was
calculated by tracking single cells using Metamorph software (Molecular devices, San Jose, CA). Cell tracking produces XY coordi-
nates for the cell body at every time-lapse frame and instantaneous speed is computed as the distance traveled by the cell between
consecutive frames (Figure 2C). For bead trajectories, we performed the same analysis as for cell trajectories to obtain a frame-by-
frame speed. Bead-cell speed ratio was calculated as the mean instantaneous bead speed divided by the mean instantaneous cell
speed of the filtered beads used in the displacement tracking.

Principal component analysis and regression
Principal component analysis of the cell-ECM interaction dataset used the z-normalized nine cell-ECM measurements for the cells
analyzed across the vehicle and inhibitor treatments. PCA was performed using GraphPad Prism’s PCA tool.

Long-term live cell tracking

Long-term cell tracking was conducted using MDA-MB-231 WT cells in the 2.5mg mlI™ collagen | matrices without beads or DQ. Im-
aging was conducted on a Nikon Ti-Eclipse Epifluorescent Microscope at 10x equipped with a Tokai Hit stage-top incubation sys-
tem. Brightfield images were taken every 15 min over the time course. Cells that moved within the imaging plane were tracked using
Metamorph software to generate 2D trajectories of migration, as is standard in the field.*%%2 2D tracking was performed for cells that
remained in the z-plane of tracking®® to optimize spatial accuracy, imaging throughput, and analysis throughput. The mean squared
displacement was calculated from the trajectories using a custom MATLAB script.

Fitting MSD to persistent random walk model
The migration parameters of persistence (P), speed (S), and positioning error (SE) were determined using a nonlinear least squares
regression of the persistent random walk model (Equation 1) adapted from previous work by Wu, Pei-Hsun, et al.*®

Hybrid biophysical and cell tracking experimental setup

Gels were prepared in the same fashion as described in the “3D collagen gel formation” section. The samples were imaged on the
epifluorescent microscope used in the long-term live cell tracking experiments. The acquisition settings were modified to reduce
phototoxicity by setting the time interval to 4 min and the z-step size to 1.5 um. Cells were tracked in brightfield from hours 5-13
post-embedding at 15-min intervals, followed by 1 hr of biophysical imaging.
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Partial least squares regression

Biophysical measurements from cells in the regression dataset were analyzed as described above, as was the cell tracking and fitting
to random walk models. A custom MATLAB script was used to perform the PLSR analysis of these cells using the built-in function
plsregress(). First, the dataset was curated to remove cells that divided, died, or migrated out of frame during the tracking or biophys-
ical imaging. Next, every combination of the nine biophysical measurements were used as the input matrix to find the R? and Q?
scores when fitting to P, S, and SE. The regression with the optimal Q® was chosen as the model to analyze the component loadings,
percent variance explained, and the observed. vs. fitted values. Simulated trajectories were calculated using MATLAB scripts modi-
fied from Wu, Pei-Hsun et al.®° PC scores of the original biophysical dataset were used as the inputs for the regression equations to
generate values of P, S, and SE for each cell imaged. For cells modeled with APRW the same analysis was performed for the primary
and non-primary P, S, and SE.

QUANTIFICATION AND STATISTICAL ANALYSIS
Principal component analysis (PCA) and all statistics were performed using Graphpad Prism. Student-t-tests were used to compare

the means two populations. One-way ANOVA analyses followed by the appropriate post-tests were performed to compare three or
more populations. See figure captions for details of statistical analyses and post-tests.
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Figure S1. Molecular knockdown of biophysical process components causes similar changes to migration as small
molecule inhibition, related to Figure 1

(A) MDA-MB-231 cells knocked down for ROCK1 by shRNA confirmed by western blot. (B) MSD of the ROCK1 KD cells
show that these cells are less migratory than scramble control cells. Fitting these trajectories to the PRW model shows a
(C) significant decrease in speed and (D) insignificant change in persistence. These results show similar trends as the
cells treated with the ROCK inhibitor (E-G). Distributions of motility behavior show that migration behavior is in the range
of control cells (H-J). (K) ITGB1 knockdown in MDAs by CRISPR confirmed by western blot. Cell tracking results for
MDAs knocked down for ITGB1 show similar trends as the ITGB1-blocking antibody as well (L-T). N = 3 biological repli-
cates with n = 30 cells per replicate.
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Figure S2. Collagen Hybridizing Peptide confirms that inhibition of MMPs does not significantly decrease
matrix remodeling, related to Figure 2

MDA-MB-231 cells embedded in 2.5mg ml-1 collagen | for 24hr were fixed with 4% PFA and stained with
DAPI, phalloidin, and collagen hybridizing peptide (CHP) in either (A) vehicle or (B) MMP-inhibited conditions.
(C-F) Line scans show fluorescence intensity values from the CHP channel in both treatment conditions.
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Figure S3. Biophysical measurements of HT1080 cells, related to Figure 2

(A) Biophysical imaging was performed on HT1080 fibrosarcoma cells and the resulting measurements
were transformed and mapped onto the principal components from the MDA-MB-231 measurements.
HT1080 cells cluster closest to the MDA-MB-231 ITGB1i group. (B) Western blot showed that HT1080s
have lower protein levels of ITGB1, which was predicted by the biophysical imaging. (C-K) Individual
measurements separated into MDA-MB-231 vehicle, MDA-MB-231 ITGB1i, and HT1080 vehicle
groups. Statistical significance was determined using one-way ANOVA with Tukey Post-Test. Lines
show mean + SEM. * p<0.05
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Figure S4. Protrusion metrics alone, representative of actin dynamics, do not predict migration well, related
to Figure 3

PLSR regression to cells following the UCSP law using protrusion length, lifetime, and rate suboptimally
predicts (A-B) cell persistence and (C-D) speed from the PRW model. (E) Simulated trajectories using the
protrusion-only measurement PLSR regression.
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Figure S5. Regression of HT1080 data supports the predictive model, related to Figure 3

(A) Speeds vs. Persistence plot of HT1080 cell tracking data fitted to the PRW model shows both coupled and
uncoupled migration behavior. Optimal PLSR model fitting for HT1080 cells reveal similar measurement
composition as that of MDAs for PRW (B) speed and (C) persistence. (D, E) Model predictions built using
training data from either MDAs-only or both MDAs and HT1080s perform similarly for predicting HT1080 (D)
speed. The MDA-only model slightly overestimates the (E) persistence of HT1080s.
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Figure S6. PLSR models for cells coupled in the primary direction, related to Figure 4

(A) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the primary direction of migration,
and the optimal predictive model is colored in red. (B) This model can account for 100% of the total variance using four PLS
components. (C) Plotting the PLS score of every cell along the first two components shows how cell-ECM interactions and
inhibitor treatments separate migration behaviors. (D) Observed vs. fitted values. (E) The fit (R2) vs. predictive ability (Q2) of
all possible regressions for the speed in the primary direction of migration, and the optimal predictive model is colored in red.
(F) This model can account for 100% of the total variance using five PLS components. (G) Plotting the PLS score of every cell
along the first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors. (H)
Observed vs. fitted values. (1) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the
non-primary direction of migration, and the optimal predictive model is colored in red. (J) This model can account for 100% of
the total variance in total cell displacement using three PLS components. (K) Plotting the PLS score of every cell along the
first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors. (L) Observed
vs. fitted values. (M) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the speed in the non-primary direction
of migration, and the optimal predictive model is colored in red. (N) This model can account for 100% of the total variance
using five PLS components. (O) Plotting the PLS score of every cell along the first two components shows how cell-ECM
interactions and inhibitor treatments separate migration behaviors. (P) Observed vs. fitted values.
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Figure S7. PLSR models for cells uncoupled in the primary direction, related to Figure 4
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(A) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the primary direction of migration,
and the optimal predictive model is colored in red. (B) This model can account for 100% of the total variance using five PLS
components. (C) Plotting the PLS score of every cell along the first two components shows how cell-ECM interactions and
inhibitor treatments separate migration behaviors. (D) Observed vs. fitted values. (E) The fit (R2) vs. predictive ability (Q2) of
all possible regressions for the speed in the primary direction of migration, and the optimal predictive model is colored in red.
(F) This model can account for 100% of the total variance using three PLS components. (G) Plotting the PLS score of every
cell along the first two components shows how cell-ECM interactions and inhibitor treatments separate migration behaviors.
(H) Observed vs. fitted values. (I) The fit (R2) vs. predictive ability (Q2) of all possible regressions for the persistence in the
non-primary direction of migration, and the optimal predictive model is colored in red. (J) This model can account for 100% of
the total variance using five PLS components. (K) Plotting the PLS score of every cell along the first two components shows
how cell-ECM interactions and inhibitor treatments separate migration behaviors. (L) Observed vs. fitted values. (M) The fit
(R2) vs. predictive ability (Q2) of all possible regressions for the speed in the non-primary direction of migration, and the
optimal predictive model is colored in red. (N) This model can account for 100% of the total variance in total cell displacement
using four PLS components. (O) Plotting the PLS score of every cell along the first two components shows how cell-ECM
interactions and inhibitor treatments separate migration behaviors. (P) Observed vs. fitted values.
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Figure S8. Blocking adhesion produces a biphasic increase in cell motility and persistence, related to STAR Methods
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(A) Instantaneous cell velocity over time of cells treated with varying degrees of ITGB1-blocking antibody. (B)
MSDs of cells from each treatment group. (C-D) Cell speed (C) and persistence (D) values of cells from each
treatment group. N > 60 cells per treatment condition. Data in A and B show mean +/- SEM. Statistical signifi-

cance was determined using one-way ANOVA followed by a Dunnett post-test ** p < 0.01.




Table S1: Coefficients from each PLSR model, related to Figure 4

Dependent variable Y is predicted by a linear combination of the z-normalized cell-ECM
interaction measurements such that Y = X*B.

Cell Y Const. | Bead Bead Pct Inst. DQ Protrusion | Protrusion Protrusion Bead-cell
Population disp speed | Movers Cell rate length duration speed ratio
Speed
All Total | 24.02 2.928 1.920 3.654 2.372 1.405 -2.631
Disp
PRW P 0.906 | 0.063 | 0.106 0.066 0.112 0.093 -0.120
Linear
S 0.089 0.013 0.017 0.004 -0.023
APRW Pl 1.372 0.138 0.100 0.353 -0.277
Linear
S1 0.167 | -0.041 -0.009 0.049 0.049 0.016

P2 27.23 | -83.97 - 41.609 39.05
14.87
S2 0.092 -0.028 -0.035 0.035 0.002 0.007
APRW Pl 100.3 97.92 - -629.49 -343.5 615.753
Outliers 1150
S1 0.089 -0.072 0.075 - -0.083 -0.134
0.253
P2 58.51 | 2124 -163.3 -194.014 -132.37 -39.29
S2 0.068 | 0.006 | -0.059 0.043 -0.047

0.068
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